/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jmemmgr.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * jmemmgr.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1991-1997, Thomas G. Lane.  | 
5  |  |  * Modified 2011-2019 by Guido Vollbeding.  | 
6  |  |  * This file is part of the Independent JPEG Group's software.  | 
7  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
8  |  |  *  | 
9  |  |  * This file contains the JPEG system-independent memory management  | 
10  |  |  * routines.  This code is usable across a wide variety of machines; most  | 
11  |  |  * of the system dependencies have been isolated in a separate file.  | 
12  |  |  * The major functions provided here are:  | 
13  |  |  *   * pool-based allocation and freeing of memory;  | 
14  |  |  *   * policy decisions about how to divide available memory among the  | 
15  |  |  *     virtual arrays;  | 
16  |  |  *   * control logic for swapping virtual arrays between main memory and  | 
17  |  |  *     backing storage.  | 
18  |  |  * The separate system-dependent file provides the actual backing-storage  | 
19  |  |  * access code, and it contains the policy decision about how much total  | 
20  |  |  * main memory to use.  | 
21  |  |  * This file is system-dependent in the sense that some of its functions  | 
22  |  |  * are unnecessary in some systems.  For example, if there is enough virtual  | 
23  |  |  * memory so that backing storage will never be used, much of the virtual  | 
24  |  |  * array control logic could be removed.  (Of course, if you have that much  | 
25  |  |  * memory then you shouldn't care about a little bit of unused code...)  | 
26  |  |  */  | 
27  |  |  | 
28  |  | #define JPEG_INTERNALS  | 
29  |  | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */  | 
30  |  | #include "jinclude.h"  | 
31  |  | #include "jpeglib.h"  | 
32  |  | #include "jmemsys.h"    /* import the system-dependent declarations */  | 
33  |  |  | 
34  |  | #ifndef NO_GETENV  | 
35  |  | #ifndef HAVE_STDLIB_H   /* <stdlib.h> should declare getenv() */  | 
36  |  | extern char * getenv JPP((const char * name));  | 
37  |  | #endif  | 
38  |  | #endif  | 
39  |  |  | 
40  |  |  | 
41  |  | /*  | 
42  |  |  * Some important notes:  | 
43  |  |  *   The allocation routines provided here must never return NULL.  | 
44  |  |  *   They should exit to error_exit if unsuccessful.  | 
45  |  |  *  | 
46  |  |  *   It's not a good idea to try to merge the sarray and barray routines,  | 
47  |  |  *   even though they are textually almost the same, because samples are  | 
48  |  |  *   usually stored as bytes while coefficients are shorts or ints.  Thus,  | 
49  |  |  *   in machines where byte pointers have a different representation from  | 
50  |  |  *   word pointers, the resulting machine code could not be the same.  | 
51  |  |  */  | 
52  |  |  | 
53  |  |  | 
54  |  | /*  | 
55  |  |  * Many machines require storage alignment: longs must start on 4-byte  | 
56  |  |  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()  | 
57  |  |  * always returns pointers that are multiples of the worst-case alignment  | 
58  |  |  * requirement, and we had better do so too.  | 
59  |  |  * There isn't any really portable way to determine the worst-case alignment  | 
60  |  |  * requirement.  This module assumes that the alignment requirement is  | 
61  |  |  * multiples of sizeof(ALIGN_TYPE).  | 
62  |  |  * By default, we define ALIGN_TYPE as double.  This is necessary on some  | 
63  |  |  * workstations (where doubles really do need 8-byte alignment) and will work  | 
64  |  |  * fine on nearly everything.  If your machine has lesser alignment needs,  | 
65  |  |  * you can save a few bytes by making ALIGN_TYPE smaller.  | 
66  |  |  * The only place I know of where this will NOT work is certain Macintosh  | 
67  |  |  * 680x0 compilers that define double as a 10-byte IEEE extended float.  | 
68  |  |  * Doing 10-byte alignment is counterproductive because longwords won't be  | 
69  |  |  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have  | 
70  |  |  * such a compiler.  | 
71  |  |  */  | 
72  |  |  | 
73  |  | #ifndef ALIGN_TYPE    /* so can override from jconfig.h */  | 
74  |  | #define ALIGN_TYPE  double  | 
75  |  | #endif  | 
76  |  |  | 
77  |  |  | 
78  |  | /*  | 
79  |  |  * We allocate objects from "pools", where each pool is gotten with a single  | 
80  |  |  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object  | 
81  |  |  * overhead within a pool, except for alignment padding.  Each pool has a  | 
82  |  |  * header with a link to the next pool of the same class.  | 
83  |  |  * Small and large pool headers are identical except that the latter's  | 
84  |  |  * link pointer must be FAR on 80x86 machines.  | 
85  |  |  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE  | 
86  |  |  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple  | 
87  |  |  * of the alignment requirement of ALIGN_TYPE.  | 
88  |  |  */  | 
89  |  |  | 
90  |  | typedef union small_pool_struct * small_pool_ptr;  | 
91  |  |  | 
92  |  | typedef union small_pool_struct { | 
93  |  |   struct { | 
94  |  |     small_pool_ptr next;  /* next in list of pools */  | 
95  |  |     size_t bytes_used;    /* how many bytes already used within pool */  | 
96  |  |     size_t bytes_left;    /* bytes still available in this pool */  | 
97  |  |   } hdr;  | 
98  |  |   ALIGN_TYPE dummy;   /* included in union to ensure alignment */  | 
99  |  | } small_pool_hdr;  | 
100  |  |  | 
101  |  | typedef union large_pool_struct FAR * large_pool_ptr;  | 
102  |  |  | 
103  |  | typedef union large_pool_struct { | 
104  |  |   struct { | 
105  |  |     large_pool_ptr next;  /* next in list of pools */  | 
106  |  |     size_t bytes_used;    /* how many bytes already used within pool */  | 
107  |  |     size_t bytes_left;    /* bytes still available in this pool */  | 
108  |  |   } hdr;  | 
109  |  |   ALIGN_TYPE dummy;   /* included in union to ensure alignment */  | 
110  |  | } large_pool_hdr;  | 
111  |  |  | 
112  |  |  | 
113  |  | /*  | 
114  |  |  * Here is the full definition of a memory manager object.  | 
115  |  |  */  | 
116  |  |  | 
117  |  | typedef struct { | 
118  |  |   struct jpeg_memory_mgr pub; /* public fields */  | 
119  |  |  | 
120  |  |   /* Each pool identifier (lifetime class) names a linked list of pools. */  | 
121  |  |   small_pool_ptr small_list[JPOOL_NUMPOOLS];  | 
122  |  |   large_pool_ptr large_list[JPOOL_NUMPOOLS];  | 
123  |  |  | 
124  |  |   /* Since we only have one lifetime class of virtual arrays, only one  | 
125  |  |    * linked list is necessary (for each datatype).  Note that the virtual  | 
126  |  |    * array control blocks being linked together are actually stored somewhere  | 
127  |  |    * in the small-pool list.  | 
128  |  |    */  | 
129  |  |   jvirt_sarray_ptr virt_sarray_list;  | 
130  |  |   jvirt_barray_ptr virt_barray_list;  | 
131  |  |  | 
132  |  |   /* This counts total space obtained from jpeg_get_small/large */  | 
133  |  |   size_t total_space_allocated;  | 
134  |  |  | 
135  |  |   /* alloc_sarray and alloc_barray set this value for use by virtual  | 
136  |  |    * array routines.  | 
137  |  |    */  | 
138  |  |   JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */  | 
139  |  | } my_memory_mgr;  | 
140  |  |  | 
141  |  | typedef my_memory_mgr * my_mem_ptr;  | 
142  |  |  | 
143  |  |  | 
144  |  | /*  | 
145  |  |  * The control blocks for virtual arrays.  | 
146  |  |  * Note that these blocks are allocated in the "small" pool area.  | 
147  |  |  * System-dependent info for the associated backing store (if any) is hidden  | 
148  |  |  * inside the backing_store_info struct.  | 
149  |  |  */  | 
150  |  |  | 
151  |  | struct jvirt_sarray_control { | 
152  |  |   JSAMPARRAY mem_buffer;  /* => the in-memory buffer */  | 
153  |  |   JDIMENSION rows_in_array; /* total virtual array height */  | 
154  |  |   JDIMENSION samplesperrow; /* width of array (and of memory buffer) */  | 
155  |  |   JDIMENSION maxaccess;   /* max rows accessed by access_virt_sarray */  | 
156  |  |   JDIMENSION rows_in_mem; /* height of memory buffer */  | 
157  |  |   JDIMENSION rowsperchunk;  /* allocation chunk size in mem_buffer */  | 
158  |  |   JDIMENSION cur_start_row; /* first logical row # in the buffer */  | 
159  |  |   JDIMENSION first_undef_row; /* row # of first uninitialized row */  | 
160  |  |   boolean pre_zero;   /* pre-zero mode requested? */  | 
161  |  |   boolean dirty;    /* do current buffer contents need written? */  | 
162  |  |   boolean b_s_open;   /* is backing-store data valid? */  | 
163  |  |   jvirt_sarray_ptr next;  /* link to next virtual sarray control block */  | 
164  |  |   backing_store_info b_s_info;  /* System-dependent control info */  | 
165  |  | };  | 
166  |  |  | 
167  |  | struct jvirt_barray_control { | 
168  |  |   JBLOCKARRAY mem_buffer; /* => the in-memory buffer */  | 
169  |  |   JDIMENSION rows_in_array; /* total virtual array height */  | 
170  |  |   JDIMENSION blocksperrow;  /* width of array (and of memory buffer) */  | 
171  |  |   JDIMENSION maxaccess;   /* max rows accessed by access_virt_barray */  | 
172  |  |   JDIMENSION rows_in_mem; /* height of memory buffer */  | 
173  |  |   JDIMENSION rowsperchunk;  /* allocation chunk size in mem_buffer */  | 
174  |  |   JDIMENSION cur_start_row; /* first logical row # in the buffer */  | 
175  |  |   JDIMENSION first_undef_row; /* row # of first uninitialized row */  | 
176  |  |   boolean pre_zero;   /* pre-zero mode requested? */  | 
177  |  |   boolean dirty;    /* do current buffer contents need written? */  | 
178  |  |   boolean b_s_open;   /* is backing-store data valid? */  | 
179  |  |   jvirt_barray_ptr next;  /* link to next virtual barray control block */  | 
180  |  |   backing_store_info b_s_info;  /* System-dependent control info */  | 
181  |  | };  | 
182  |  |  | 
183  |  |  | 
184  |  | #ifdef MEM_STATS    /* optional extra stuff for statistics */  | 
185  |  |  | 
186  |  | LOCAL(void)  | 
187  |  | print_mem_stats (j_common_ptr cinfo, int pool_id)  | 
188  |  | { | 
189  |  |   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;  | 
190  |  |   small_pool_ptr shdr_ptr;  | 
191  |  |   large_pool_ptr lhdr_ptr;  | 
192  |  |  | 
193  |  |   /* Since this is only a debugging stub, we can cheat a little by using  | 
194  |  |    * fprintf directly rather than going through the trace message code.  | 
195  |  |    * This is helpful because message parm array can't handle longs.  | 
196  |  |    */  | 
197  |  |   fprintf(stderr, "Freeing pool %d, total space = %ld\n",  | 
198  |  |     pool_id, (long) mem->total_space_allocated);  | 
199  |  |  | 
200  |  |   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;  | 
201  |  |        lhdr_ptr = lhdr_ptr->hdr.next) { | 
202  |  |     fprintf(stderr, "  Large chunk used %ld\n",  | 
203  |  |       (long) lhdr_ptr->hdr.bytes_used);  | 
204  |  |   }  | 
205  |  |  | 
206  |  |   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;  | 
207  |  |        shdr_ptr = shdr_ptr->hdr.next) { | 
208  |  |     fprintf(stderr, "  Small chunk used %ld free %ld\n",  | 
209  |  |       (long) shdr_ptr->hdr.bytes_used,  | 
210  |  |       (long) shdr_ptr->hdr.bytes_left);  | 
211  |  |   }  | 
212  |  | }  | 
213  |  |  | 
214  |  | #endif /* MEM_STATS */  | 
215  |  |  | 
216  |  |  | 
217  |  | LOCAL(noreturn_t)  | 
218  |  | out_of_memory (j_common_ptr cinfo, int which)  | 
219  |  | /* Report an out-of-memory error and stop execution */  | 
220  |  | /* If we compiled MEM_STATS support, report alloc requests before dying */  | 
221  | 0  | { | 
222  |  | #ifdef MEM_STATS  | 
223  |  |   cinfo->err->trace_level = 2;  /* force self_destruct to report stats */  | 
224  |  | #endif  | 
225  | 0  |   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);  | 
226  | 0  | }  | 
227  |  |  | 
228  |  |  | 
229  |  | /*  | 
230  |  |  * Allocation of "small" objects.  | 
231  |  |  *  | 
232  |  |  * For these, we use pooled storage.  When a new pool must be created,  | 
233  |  |  * we try to get enough space for the current request plus a "slop" factor,  | 
234  |  |  * where the slop will be the amount of leftover space in the new pool.  | 
235  |  |  * The speed vs. space tradeoff is largely determined by the slop values.  | 
236  |  |  * A different slop value is provided for each pool class (lifetime),  | 
237  |  |  * and we also distinguish the first pool of a class from later ones.  | 
238  |  |  * NOTE: the values given work fairly well on both 16- and 32-bit-int  | 
239  |  |  * machines, but may be too small if longs are 64 bits or more.  | 
240  |  |  */  | 
241  |  |  | 
242  |  | static const size_t first_pool_slop[JPOOL_NUMPOOLS] =   | 
243  |  | { | 
244  |  |   1600,     /* first PERMANENT pool */  | 
245  |  |   16000     /* first IMAGE pool */  | 
246  |  | };  | 
247  |  |  | 
248  |  | static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =   | 
249  |  | { | 
250  |  |   0,      /* additional PERMANENT pools */  | 
251  |  |   5000      /* additional IMAGE pools */  | 
252  |  | };  | 
253  |  |  | 
254  | 0  | #define MIN_SLOP  50    /* greater than 0 to avoid futile looping */  | 
255  |  |  | 
256  |  |  | 
257  |  | METHODDEF(void *)  | 
258  |  | alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)  | 
259  |  | /* Allocate a "small" object */  | 
260  | 0  | { | 
261  | 0  |   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;  | 
262  | 0  |   small_pool_ptr hdr_ptr, prev_hdr_ptr;  | 
263  | 0  |   size_t odd_bytes, min_request, slop;  | 
264  | 0  |   char * data_ptr;  | 
265  |  |  | 
266  |  |   /* Check for unsatisfiable request (do now to ensure no overflow below) */  | 
267  | 0  |   if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(small_pool_hdr))  | 
268  | 0  |     out_of_memory(cinfo, 1); /* request exceeds malloc's ability */  | 
269  |  |  | 
270  |  |   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */  | 
271  | 0  |   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);  | 
272  | 0  |   if (odd_bytes > 0)  | 
273  | 0  |     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;  | 
274  |  |  | 
275  |  |   /* See if space is available in any existing pool */  | 
276  | 0  |   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)  | 
277  | 0  |     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */  | 
278  | 0  |   prev_hdr_ptr = NULL;  | 
279  | 0  |   hdr_ptr = mem->small_list[pool_id];  | 
280  | 0  |   while (hdr_ptr != NULL) { | 
281  | 0  |     if (hdr_ptr->hdr.bytes_left >= sizeofobject)  | 
282  | 0  |       break;     /* found pool with enough space */  | 
283  | 0  |     prev_hdr_ptr = hdr_ptr;  | 
284  | 0  |     hdr_ptr = hdr_ptr->hdr.next;  | 
285  | 0  |   }  | 
286  |  |  | 
287  |  |   /* Time to make a new pool? */  | 
288  | 0  |   if (hdr_ptr == NULL) { | 
289  |  |     /* min_request is what we need now, slop is what will be leftover */  | 
290  | 0  |     min_request = sizeofobject + SIZEOF(small_pool_hdr);  | 
291  | 0  |     if (prev_hdr_ptr == NULL) /* first pool in class? */  | 
292  | 0  |       slop = first_pool_slop[pool_id];  | 
293  | 0  |     else  | 
294  | 0  |       slop = extra_pool_slop[pool_id];  | 
295  |  |     /* Don't ask for more than MAX_ALLOC_CHUNK */  | 
296  | 0  |     if (slop > (size_t) MAX_ALLOC_CHUNK - min_request)  | 
297  | 0  |       slop = (size_t) MAX_ALLOC_CHUNK - min_request;  | 
298  |  |     /* Try to get space, if fail reduce slop and try again */  | 
299  | 0  |     for (;;) { | 
300  | 0  |       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);  | 
301  | 0  |       if (hdr_ptr != NULL)  | 
302  | 0  |   break;  | 
303  | 0  |       slop /= 2;  | 
304  | 0  |       if (slop < MIN_SLOP) /* give up when it gets real small */  | 
305  | 0  |   out_of_memory(cinfo, 2); /* jpeg_get_small failed */  | 
306  | 0  |     }  | 
307  | 0  |     mem->total_space_allocated += min_request + slop;  | 
308  |  |     /* Success, initialize the new pool header and add to end of list */  | 
309  | 0  |     hdr_ptr->hdr.next = NULL;  | 
310  | 0  |     hdr_ptr->hdr.bytes_used = 0;  | 
311  | 0  |     hdr_ptr->hdr.bytes_left = sizeofobject + slop;  | 
312  | 0  |     if (prev_hdr_ptr == NULL) /* first pool in class? */  | 
313  | 0  |       mem->small_list[pool_id] = hdr_ptr;  | 
314  | 0  |     else  | 
315  | 0  |       prev_hdr_ptr->hdr.next = hdr_ptr;  | 
316  | 0  |   }  | 
317  |  |  | 
318  |  |   /* OK, allocate the object from the current pool */  | 
319  | 0  |   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */  | 
320  | 0  |   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */  | 
321  | 0  |   hdr_ptr->hdr.bytes_used += sizeofobject;  | 
322  | 0  |   hdr_ptr->hdr.bytes_left -= sizeofobject;  | 
323  |  | 
  | 
324  | 0  |   return (void *) data_ptr;  | 
325  | 0  | }  | 
326  |  |  | 
327  |  |  | 
328  |  | /*  | 
329  |  |  * Allocation of "large" objects.  | 
330  |  |  *  | 
331  |  |  * The external semantics of these are the same as "small" objects,  | 
332  |  |  * except that FAR pointers are used on 80x86.  However the pool  | 
333  |  |  * management heuristics are quite different.  We assume that each  | 
334  |  |  * request is large enough that it may as well be passed directly to  | 
335  |  |  * jpeg_get_large; the pool management just links everything together  | 
336  |  |  * so that we can free it all on demand.  | 
337  |  |  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY  | 
338  |  |  * structures.  The routines that create these structures (see below)  | 
339  |  |  * deliberately bunch rows together to ensure a large request size.  | 
340  |  |  */  | 
341  |  |  | 
342  |  | METHODDEF(void FAR *)  | 
343  |  | alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)  | 
344  |  | /* Allocate a "large" object */  | 
345  | 0  | { | 
346  | 0  |   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;  | 
347  | 0  |   large_pool_ptr hdr_ptr;  | 
348  | 0  |   size_t odd_bytes;  | 
349  |  |  | 
350  |  |   /* Check for unsatisfiable request (do now to ensure no overflow below) */  | 
351  | 0  |   if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr))  | 
352  | 0  |     out_of_memory(cinfo, 3); /* request exceeds malloc's ability */  | 
353  |  |  | 
354  |  |   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */  | 
355  | 0  |   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);  | 
356  | 0  |   if (odd_bytes > 0)  | 
357  | 0  |     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;  | 
358  |  |  | 
359  |  |   /* Always make a new pool */  | 
360  | 0  |   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)  | 
361  | 0  |     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */  | 
362  |  | 
  | 
363  | 0  |   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +  | 
364  | 0  |               SIZEOF(large_pool_hdr));  | 
365  | 0  |   if (hdr_ptr == NULL)  | 
366  | 0  |     out_of_memory(cinfo, 4); /* jpeg_get_large failed */  | 
367  | 0  |   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);  | 
368  |  |  | 
369  |  |   /* Success, initialize the new pool header and add to list */  | 
370  | 0  |   hdr_ptr->hdr.next = mem->large_list[pool_id];  | 
371  |  |   /* We maintain space counts in each pool header for statistical purposes,  | 
372  |  |    * even though they are not needed for allocation.  | 
373  |  |    */  | 
374  | 0  |   hdr_ptr->hdr.bytes_used = sizeofobject;  | 
375  | 0  |   hdr_ptr->hdr.bytes_left = 0;  | 
376  | 0  |   mem->large_list[pool_id] = hdr_ptr;  | 
377  |  | 
  | 
378  | 0  |   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */  | 
379  | 0  | }  | 
380  |  |  | 
381  |  |  | 
382  |  | /*  | 
383  |  |  * Creation of 2-D sample arrays.  | 
384  |  |  * The pointers are in near heap, the samples themselves in FAR heap.  | 
385  |  |  *  | 
386  |  |  * To minimize allocation overhead and to allow I/O of large contiguous  | 
387  |  |  * blocks, we allocate the sample rows in groups of as many rows as possible  | 
388  |  |  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.  | 
389  |  |  * NB: the virtual array control routines, later in this file, know about  | 
390  |  |  * this chunking of rows.  The rowsperchunk value is left in the mem manager  | 
391  |  |  * object so that it can be saved away if this sarray is the workspace for  | 
392  |  |  * a virtual array.  | 
393  |  |  */  | 
394  |  |  | 
395  |  | METHODDEF(JSAMPARRAY)  | 
396  |  | alloc_sarray (j_common_ptr cinfo, int pool_id,  | 
397  |  |         JDIMENSION samplesperrow, JDIMENSION numrows)  | 
398  |  | /* Allocate a 2-D sample array */  | 
399  | 0  | { | 
400  | 0  |   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;  | 
401  | 0  |   JSAMPARRAY result;  | 
402  | 0  |   JSAMPROW workspace;  | 
403  | 0  |   JDIMENSION rowsperchunk, currow, i;  | 
404  | 0  |   long ltemp;  | 
405  |  |  | 
406  |  |   /* Calculate max # of rows allowed in one allocation chunk */  | 
407  | 0  |   ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /  | 
408  | 0  |     ((long) samplesperrow * SIZEOF(JSAMPLE));  | 
409  | 0  |   if (ltemp <= 0)  | 
410  | 0  |     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);  | 
411  | 0  |   if (ltemp < (long) numrows)  | 
412  | 0  |     rowsperchunk = (JDIMENSION) ltemp;  | 
413  | 0  |   else  | 
414  | 0  |     rowsperchunk = numrows;  | 
415  | 0  |   mem->last_rowsperchunk = rowsperchunk;  | 
416  |  |  | 
417  |  |   /* Get space for row pointers (small object) */  | 
418  | 0  |   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,  | 
419  | 0  |             (size_t) numrows * SIZEOF(JSAMPROW));  | 
420  |  |  | 
421  |  |   /* Get the rows themselves (large objects) */  | 
422  | 0  |   currow = 0;  | 
423  | 0  |   while (currow < numrows) { | 
424  | 0  |     rowsperchunk = MIN(rowsperchunk, numrows - currow);  | 
425  | 0  |     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,  | 
426  | 0  |       (size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE));  | 
427  | 0  |     for (i = rowsperchunk; i > 0; i--) { | 
428  | 0  |       result[currow++] = workspace;  | 
429  | 0  |       workspace += samplesperrow;  | 
430  | 0  |     }  | 
431  | 0  |   }  | 
432  |  | 
  | 
433  | 0  |   return result;  | 
434  | 0  | }  | 
435  |  |  | 
436  |  |  | 
437  |  | /*  | 
438  |  |  * Creation of 2-D coefficient-block arrays.  | 
439  |  |  * This is essentially the same as the code for sample arrays, above.  | 
440  |  |  */  | 
441  |  |  | 
442  |  | METHODDEF(JBLOCKARRAY)  | 
443  |  | alloc_barray (j_common_ptr cinfo, int pool_id,  | 
444  |  |         JDIMENSION blocksperrow, JDIMENSION numrows)  | 
445  |  | /* Allocate a 2-D coefficient-block array */  | 
446  | 0  | { | 
447  | 0  |   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;  | 
448  | 0  |   JBLOCKARRAY result;  | 
449  | 0  |   JBLOCKROW workspace;  | 
450  | 0  |   JDIMENSION rowsperchunk, currow, i;  | 
451  | 0  |   long ltemp;  | 
452  |  |  | 
453  |  |   /* Calculate max # of rows allowed in one allocation chunk */  | 
454  | 0  |   ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /  | 
455  | 0  |     ((long) blocksperrow * SIZEOF(JBLOCK));  | 
456  | 0  |   if (ltemp <= 0)  | 
457  | 0  |     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);  | 
458  | 0  |   if (ltemp < (long) numrows)  | 
459  | 0  |     rowsperchunk = (JDIMENSION) ltemp;  | 
460  | 0  |   else  | 
461  | 0  |     rowsperchunk = numrows;  | 
462  | 0  |   mem->last_rowsperchunk = rowsperchunk;  | 
463  |  |  | 
464  |  |   /* Get space for row pointers (small object) */  | 
465  | 0  |   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,  | 
466  | 0  |              (size_t) numrows * SIZEOF(JBLOCKROW));  | 
467  |  |  | 
468  |  |   /* Get the rows themselves (large objects) */  | 
469  | 0  |   currow = 0;  | 
470  | 0  |   while (currow < numrows) { | 
471  | 0  |     rowsperchunk = MIN(rowsperchunk, numrows - currow);  | 
472  | 0  |     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,  | 
473  | 0  |       (size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK));  | 
474  | 0  |     for (i = rowsperchunk; i > 0; i--) { | 
475  | 0  |       result[currow++] = workspace;  | 
476  | 0  |       workspace += blocksperrow;  | 
477  | 0  |     }  | 
478  | 0  |   }  | 
479  |  | 
  | 
480  | 0  |   return result;  | 
481  | 0  | }  | 
482  |  |  | 
483  |  |  | 
484  |  | /*  | 
485  |  |  * About virtual array management:  | 
486  |  |  *  | 
487  |  |  * The above "normal" array routines are only used to allocate strip buffers  | 
488  |  |  * (as wide as the image, but just a few rows high).  Full-image-sized buffers  | 
489  |  |  * are handled as "virtual" arrays.  The array is still accessed a strip at a  | 
490  |  |  * time, but the memory manager must save the whole array for repeated  | 
491  |  |  * accesses.  The intended implementation is that there is a strip buffer in  | 
492  |  |  * memory (as high as is possible given the desired memory limit), plus a  | 
493  |  |  * backing file that holds the rest of the array.  | 
494  |  |  *  | 
495  |  |  * The request_virt_array routines are told the total size of the image and  | 
496  |  |  * the maximum number of rows that will be accessed at once.  The in-memory  | 
497  |  |  * buffer must be at least as large as the maxaccess value.  | 
498  |  |  *  | 
499  |  |  * The request routines create control blocks but not the in-memory buffers.  | 
500  |  |  * That is postponed until realize_virt_arrays is called.  At that time the  | 
501  |  |  * total amount of space needed is known (approximately, anyway), so free  | 
502  |  |  * memory can be divided up fairly.  | 
503  |  |  *  | 
504  |  |  * The access_virt_array routines are responsible for making a specific strip  | 
505  |  |  * area accessible (after reading or writing the backing file, if necessary).  | 
506  |  |  * Note that the access routines are told whether the caller intends to modify  | 
507  |  |  * the accessed strip; during a read-only pass this saves having to rewrite  | 
508  |  |  * data to disk.  The access routines are also responsible for pre-zeroing  | 
509  |  |  * any newly accessed rows, if pre-zeroing was requested.  | 
510  |  |  *  | 
511  |  |  * In current usage, the access requests are usually for nonoverlapping  | 
512  |  |  * strips; that is, successive access start_row numbers differ by exactly  | 
513  |  |  * num_rows = maxaccess.  This means we can get good performance with simple  | 
514  |  |  * buffer dump/reload logic, by making the in-memory buffer be a multiple  | 
515  |  |  * of the access height; then there will never be accesses across bufferload  | 
516  |  |  * boundaries.  The code will still work with overlapping access requests,  | 
517  |  |  * but it doesn't handle bufferload overlaps very efficiently.  | 
518  |  |  */  | 
519  |  |  | 
520  |  |  | 
521  |  | METHODDEF(jvirt_sarray_ptr)  | 
522  |  | request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,  | 
523  |  |          JDIMENSION samplesperrow, JDIMENSION numrows,  | 
524  |  |          JDIMENSION maxaccess)  | 
525  |  | /* Request a virtual 2-D sample array */  | 
526  | 0  | { | 
527  | 0  |   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;  | 
528  | 0  |   jvirt_sarray_ptr result;  | 
529  |  |  | 
530  |  |   /* Only IMAGE-lifetime virtual arrays are currently supported */  | 
531  | 0  |   if (pool_id != JPOOL_IMAGE)  | 
532  | 0  |     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */  | 
533  |  |  | 
534  |  |   /* get control block */  | 
535  | 0  |   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,  | 
536  | 0  |             SIZEOF(struct jvirt_sarray_control));  | 
537  |  | 
  | 
538  | 0  |   result->mem_buffer = NULL; /* marks array not yet realized */  | 
539  | 0  |   result->rows_in_array = numrows;  | 
540  | 0  |   result->samplesperrow = samplesperrow;  | 
541  | 0  |   result->maxaccess = maxaccess;  | 
542  | 0  |   result->pre_zero = pre_zero;  | 
543  | 0  |   result->b_s_open = FALSE; /* no associated backing-store object */  | 
544  | 0  |   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */  | 
545  | 0  |   mem->virt_sarray_list = result;  | 
546  |  | 
  | 
547  | 0  |   return result;  | 
548  | 0  | }  | 
549  |  |  | 
550  |  |  | 
551  |  | METHODDEF(jvirt_barray_ptr)  | 
552  |  | request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,  | 
553  |  |          JDIMENSION blocksperrow, JDIMENSION numrows,  | 
554  |  |          JDIMENSION maxaccess)  | 
555  |  | /* Request a virtual 2-D coefficient-block array */  | 
556  | 0  | { | 
557  | 0  |   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;  | 
558  | 0  |   jvirt_barray_ptr result;  | 
559  |  |  | 
560  |  |   /* Only IMAGE-lifetime virtual arrays are currently supported */  | 
561  | 0  |   if (pool_id != JPOOL_IMAGE)  | 
562  | 0  |     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */  | 
563  |  |  | 
564  |  |   /* get control block */  | 
565  | 0  |   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,  | 
566  | 0  |             SIZEOF(struct jvirt_barray_control));  | 
567  |  | 
  | 
568  | 0  |   result->mem_buffer = NULL; /* marks array not yet realized */  | 
569  | 0  |   result->rows_in_array = numrows;  | 
570  | 0  |   result->blocksperrow = blocksperrow;  | 
571  | 0  |   result->maxaccess = maxaccess;  | 
572  | 0  |   result->pre_zero = pre_zero;  | 
573  | 0  |   result->b_s_open = FALSE; /* no associated backing-store object */  | 
574  | 0  |   result->next = mem->virt_barray_list; /* add to list of virtual arrays */  | 
575  | 0  |   mem->virt_barray_list = result;  | 
576  |  | 
  | 
577  | 0  |   return result;  | 
578  | 0  | }  | 
579  |  |  | 
580  |  |  | 
581  |  | METHODDEF(void)  | 
582  |  | realize_virt_arrays (j_common_ptr cinfo)  | 
583  |  | /* Allocate the in-memory buffers for any unrealized virtual arrays */  | 
584  | 0  | { | 
585  | 0  |   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;  | 
586  | 0  |   long bytesperrow, space_per_minheight, maximum_space;  | 
587  | 0  |   long avail_mem, minheights, max_minheights;  | 
588  | 0  |   jvirt_sarray_ptr sptr;  | 
589  | 0  |   jvirt_barray_ptr bptr;  | 
590  |  |  | 
591  |  |   /* Compute the minimum space needed (maxaccess rows in each buffer)  | 
592  |  |    * and the maximum space needed (full image height in each buffer).  | 
593  |  |    * These may be of use to the system-dependent jpeg_mem_available routine.  | 
594  |  |    */  | 
595  | 0  |   space_per_minheight = 0;  | 
596  | 0  |   maximum_space = 0;  | 
597  | 0  |   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 
598  | 0  |     if (sptr->mem_buffer == NULL) { /* if not realized yet */ | 
599  | 0  |       bytesperrow = (long) sptr->samplesperrow * SIZEOF(JSAMPLE);  | 
600  | 0  |       space_per_minheight += (long) sptr->maxaccess * bytesperrow;  | 
601  | 0  |       maximum_space += (long) sptr->rows_in_array * bytesperrow;  | 
602  | 0  |     }  | 
603  | 0  |   }  | 
604  | 0  |   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 
605  | 0  |     if (bptr->mem_buffer == NULL) { /* if not realized yet */ | 
606  | 0  |       bytesperrow = (long) bptr->blocksperrow * SIZEOF(JBLOCK);  | 
607  | 0  |       space_per_minheight += (long) bptr->maxaccess * bytesperrow;  | 
608  | 0  |       maximum_space += (long) bptr->rows_in_array * bytesperrow;  | 
609  | 0  |     }  | 
610  | 0  |   }  | 
611  |  | 
  | 
612  | 0  |   if (space_per_minheight <= 0)  | 
613  | 0  |     return;     /* no unrealized arrays, no work */  | 
614  |  |  | 
615  |  |   /* Determine amount of memory to actually use; this is system-dependent. */  | 
616  | 0  |   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,  | 
617  | 0  |          (long) mem->total_space_allocated);  | 
618  |  |  | 
619  |  |   /* If the maximum space needed is available, make all the buffers full  | 
620  |  |    * height; otherwise parcel it out with the same number of minheights  | 
621  |  |    * in each buffer.  | 
622  |  |    */  | 
623  | 0  |   if (avail_mem >= maximum_space)  | 
624  | 0  |     max_minheights = 1000000000L;  | 
625  | 0  |   else { | 
626  | 0  |     max_minheights = avail_mem / space_per_minheight;  | 
627  |  |     /* If there doesn't seem to be enough space, try to get the minimum  | 
628  |  |      * anyway.  This allows a "stub" implementation of jpeg_mem_available().  | 
629  |  |      */  | 
630  | 0  |     if (max_minheights <= 0)  | 
631  | 0  |       max_minheights = 1;  | 
632  | 0  |   }  | 
633  |  |  | 
634  |  |   /* Allocate the in-memory buffers and initialize backing store as needed. */  | 
635  |  | 
  | 
636  | 0  |   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 
637  | 0  |     if (sptr->mem_buffer == NULL) { /* if not realized yet */ | 
638  | 0  |       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;  | 
639  | 0  |       if (minheights <= max_minheights) { | 
640  |  |   /* This buffer fits in memory */  | 
641  | 0  |   sptr->rows_in_mem = sptr->rows_in_array;  | 
642  | 0  |       } else { | 
643  |  |   /* It doesn't fit in memory, create backing store. */  | 
644  | 0  |   sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);  | 
645  | 0  |   jpeg_open_backing_store(cinfo, & sptr->b_s_info,  | 
646  | 0  |         (long) sptr->rows_in_array *  | 
647  | 0  |         (long) sptr->samplesperrow *  | 
648  | 0  |         (long) SIZEOF(JSAMPLE));  | 
649  | 0  |   sptr->b_s_open = TRUE;  | 
650  | 0  |       }  | 
651  | 0  |       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,  | 
652  | 0  |               sptr->samplesperrow, sptr->rows_in_mem);  | 
653  | 0  |       sptr->rowsperchunk = mem->last_rowsperchunk;  | 
654  | 0  |       sptr->cur_start_row = 0;  | 
655  | 0  |       sptr->first_undef_row = 0;  | 
656  | 0  |       sptr->dirty = FALSE;  | 
657  | 0  |     }  | 
658  | 0  |   }  | 
659  |  | 
  | 
660  | 0  |   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 
661  | 0  |     if (bptr->mem_buffer == NULL) { /* if not realized yet */ | 
662  | 0  |       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;  | 
663  | 0  |       if (minheights <= max_minheights) { | 
664  |  |   /* This buffer fits in memory */  | 
665  | 0  |   bptr->rows_in_mem = bptr->rows_in_array;  | 
666  | 0  |       } else { | 
667  |  |   /* It doesn't fit in memory, create backing store. */  | 
668  | 0  |   bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);  | 
669  | 0  |   jpeg_open_backing_store(cinfo, & bptr->b_s_info,  | 
670  | 0  |         (long) bptr->rows_in_array *  | 
671  | 0  |         (long) bptr->blocksperrow *  | 
672  | 0  |         (long) SIZEOF(JBLOCK));  | 
673  | 0  |   bptr->b_s_open = TRUE;  | 
674  | 0  |       }  | 
675  | 0  |       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,  | 
676  | 0  |               bptr->blocksperrow, bptr->rows_in_mem);  | 
677  | 0  |       bptr->rowsperchunk = mem->last_rowsperchunk;  | 
678  | 0  |       bptr->cur_start_row = 0;  | 
679  | 0  |       bptr->first_undef_row = 0;  | 
680  | 0  |       bptr->dirty = FALSE;  | 
681  | 0  |     }  | 
682  | 0  |   }  | 
683  | 0  | }  | 
684  |  |  | 
685  |  |  | 
686  |  | LOCAL(void)  | 
687  |  | do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)  | 
688  |  | /* Do backing store read or write of a virtual sample array */  | 
689  | 0  | { | 
690  | 0  |   long bytesperrow, file_offset, byte_count, rows, thisrow, i;  | 
691  |  | 
  | 
692  | 0  |   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);  | 
693  | 0  |   file_offset = (long) ptr->cur_start_row * bytesperrow;  | 
694  |  |   /* Loop to read or write each allocation chunk in mem_buffer */  | 
695  | 0  |   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | 
696  |  |     /* One chunk, but check for short chunk at end of buffer */  | 
697  | 0  |     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);  | 
698  |  |     /* Transfer no more than is currently defined */  | 
699  | 0  |     thisrow = (long) ptr->cur_start_row + i;  | 
700  | 0  |     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);  | 
701  |  |     /* Transfer no more than fits in file */  | 
702  | 0  |     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);  | 
703  | 0  |     if (rows <= 0)   /* this chunk might be past end of file! */  | 
704  | 0  |       break;  | 
705  | 0  |     byte_count = rows * bytesperrow;  | 
706  | 0  |     if (writing)  | 
707  | 0  |       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,  | 
708  | 0  |               (void FAR *) ptr->mem_buffer[i],  | 
709  | 0  |               file_offset, byte_count);  | 
710  | 0  |     else  | 
711  | 0  |       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,  | 
712  | 0  |              (void FAR *) ptr->mem_buffer[i],  | 
713  | 0  |              file_offset, byte_count);  | 
714  | 0  |     file_offset += byte_count;  | 
715  | 0  |   }  | 
716  | 0  | }  | 
717  |  |  | 
718  |  |  | 
719  |  | LOCAL(void)  | 
720  |  | do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)  | 
721  |  | /* Do backing store read or write of a virtual coefficient-block array */  | 
722  | 0  | { | 
723  | 0  |   long bytesperrow, file_offset, byte_count, rows, thisrow, i;  | 
724  |  | 
  | 
725  | 0  |   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);  | 
726  | 0  |   file_offset = (long) ptr->cur_start_row * bytesperrow;  | 
727  |  |   /* Loop to read or write each allocation chunk in mem_buffer */  | 
728  | 0  |   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | 
729  |  |     /* One chunk, but check for short chunk at end of buffer */  | 
730  | 0  |     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);  | 
731  |  |     /* Transfer no more than is currently defined */  | 
732  | 0  |     thisrow = (long) ptr->cur_start_row + i;  | 
733  | 0  |     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);  | 
734  |  |     /* Transfer no more than fits in file */  | 
735  | 0  |     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);  | 
736  | 0  |     if (rows <= 0)   /* this chunk might be past end of file! */  | 
737  | 0  |       break;  | 
738  | 0  |     byte_count = rows * bytesperrow;  | 
739  | 0  |     if (writing)  | 
740  | 0  |       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,  | 
741  | 0  |               (void FAR *) ptr->mem_buffer[i],  | 
742  | 0  |               file_offset, byte_count);  | 
743  | 0  |     else  | 
744  | 0  |       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,  | 
745  | 0  |              (void FAR *) ptr->mem_buffer[i],  | 
746  | 0  |              file_offset, byte_count);  | 
747  | 0  |     file_offset += byte_count;  | 
748  | 0  |   }  | 
749  | 0  | }  | 
750  |  |  | 
751  |  |  | 
752  |  | METHODDEF(JSAMPARRAY)  | 
753  |  | access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,  | 
754  |  |         JDIMENSION start_row, JDIMENSION num_rows,  | 
755  |  |         boolean writable)  | 
756  |  | /* Access the part of a virtual sample array starting at start_row */  | 
757  |  | /* and extending for num_rows rows.  writable is true if  */  | 
758  |  | /* caller intends to modify the accessed area. */  | 
759  | 0  | { | 
760  | 0  |   JDIMENSION end_row = start_row + num_rows;  | 
761  | 0  |   JDIMENSION undef_row;  | 
762  |  |  | 
763  |  |   /* debugging check */  | 
764  | 0  |   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||  | 
765  | 0  |       ptr->mem_buffer == NULL)  | 
766  | 0  |     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);  | 
767  |  |  | 
768  |  |   /* Make the desired part of the virtual array accessible */  | 
769  | 0  |   if (start_row < ptr->cur_start_row ||  | 
770  | 0  |       end_row > ptr->cur_start_row + ptr->rows_in_mem) { | 
771  | 0  |     if (! ptr->b_s_open)  | 
772  | 0  |       ERREXIT(cinfo, JERR_VIRTUAL_BUG);  | 
773  |  |     /* Flush old buffer contents if necessary */  | 
774  | 0  |     if (ptr->dirty) { | 
775  | 0  |       do_sarray_io(cinfo, ptr, TRUE);  | 
776  | 0  |       ptr->dirty = FALSE;  | 
777  | 0  |     }  | 
778  |  |     /* Decide what part of virtual array to access.  | 
779  |  |      * Algorithm: if target address > current window, assume forward scan,  | 
780  |  |      * load starting at target address.  If target address < current window,  | 
781  |  |      * assume backward scan, load so that target area is top of window.  | 
782  |  |      * Note that when switching from forward write to forward read, will have  | 
783  |  |      * start_row = 0, so the limiting case applies and we load from 0 anyway.  | 
784  |  |      */  | 
785  | 0  |     if (start_row > ptr->cur_start_row) { | 
786  | 0  |       ptr->cur_start_row = start_row;  | 
787  | 0  |     } else { | 
788  |  |       /* use long arithmetic here to avoid overflow & unsigned problems */  | 
789  | 0  |       long ltemp;  | 
790  |  | 
  | 
791  | 0  |       ltemp = (long) end_row - (long) ptr->rows_in_mem;  | 
792  | 0  |       if (ltemp < 0)  | 
793  | 0  |   ltemp = 0;   /* don't fall off front end of file */  | 
794  | 0  |       ptr->cur_start_row = (JDIMENSION) ltemp;  | 
795  | 0  |     }  | 
796  |  |     /* Read in the selected part of the array.  | 
797  |  |      * During the initial write pass, we will do no actual read  | 
798  |  |      * because the selected part is all undefined.  | 
799  |  |      */  | 
800  | 0  |     do_sarray_io(cinfo, ptr, FALSE);  | 
801  | 0  |   }  | 
802  |  |   /* Ensure the accessed part of the array is defined; prezero if needed.  | 
803  |  |    * To improve locality of access, we only prezero the part of the array  | 
804  |  |    * that the caller is about to access, not the entire in-memory array.  | 
805  |  |    */  | 
806  | 0  |   if (ptr->first_undef_row < end_row) { | 
807  | 0  |     if (ptr->first_undef_row < start_row) { | 
808  | 0  |       if (writable)   /* writer skipped over a section of array */  | 
809  | 0  |   ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);  | 
810  | 0  |       undef_row = start_row;  /* but reader is allowed to read ahead */  | 
811  | 0  |     } else { | 
812  | 0  |       undef_row = ptr->first_undef_row;  | 
813  | 0  |     }  | 
814  | 0  |     if (writable)  | 
815  | 0  |       ptr->first_undef_row = end_row;  | 
816  | 0  |     if (ptr->pre_zero) { | 
817  | 0  |       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);  | 
818  | 0  |       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */  | 
819  | 0  |       end_row -= ptr->cur_start_row;  | 
820  | 0  |       while (undef_row < end_row) { | 
821  | 0  |   FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);  | 
822  | 0  |   undef_row++;  | 
823  | 0  |       }  | 
824  | 0  |     } else { | 
825  | 0  |       if (! writable)   /* reader looking at undefined data */  | 
826  | 0  |   ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);  | 
827  | 0  |     }  | 
828  | 0  |   }  | 
829  |  |   /* Flag the buffer dirty if caller will write in it */  | 
830  | 0  |   if (writable)  | 
831  | 0  |     ptr->dirty = TRUE;  | 
832  |  |   /* Return address of proper part of the buffer */  | 
833  | 0  |   return ptr->mem_buffer + (start_row - ptr->cur_start_row);  | 
834  | 0  | }  | 
835  |  |  | 
836  |  |  | 
837  |  | METHODDEF(JBLOCKARRAY)  | 
838  |  | access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,  | 
839  |  |         JDIMENSION start_row, JDIMENSION num_rows,  | 
840  |  |         boolean writable)  | 
841  |  | /* Access the part of a virtual block array starting at start_row */  | 
842  |  | /* and extending for num_rows rows.  writable is true if  */  | 
843  |  | /* caller intends to modify the accessed area. */  | 
844  | 0  | { | 
845  | 0  |   JDIMENSION end_row = start_row + num_rows;  | 
846  | 0  |   JDIMENSION undef_row;  | 
847  |  |  | 
848  |  |   /* debugging check */  | 
849  | 0  |   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||  | 
850  | 0  |       ptr->mem_buffer == NULL)  | 
851  | 0  |     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);  | 
852  |  |  | 
853  |  |   /* Make the desired part of the virtual array accessible */  | 
854  | 0  |   if (start_row < ptr->cur_start_row ||  | 
855  | 0  |       end_row > ptr->cur_start_row + ptr->rows_in_mem) { | 
856  | 0  |     if (! ptr->b_s_open)  | 
857  | 0  |       ERREXIT(cinfo, JERR_VIRTUAL_BUG);  | 
858  |  |     /* Flush old buffer contents if necessary */  | 
859  | 0  |     if (ptr->dirty) { | 
860  | 0  |       do_barray_io(cinfo, ptr, TRUE);  | 
861  | 0  |       ptr->dirty = FALSE;  | 
862  | 0  |     }  | 
863  |  |     /* Decide what part of virtual array to access.  | 
864  |  |      * Algorithm: if target address > current window, assume forward scan,  | 
865  |  |      * load starting at target address.  If target address < current window,  | 
866  |  |      * assume backward scan, load so that target area is top of window.  | 
867  |  |      * Note that when switching from forward write to forward read, will have  | 
868  |  |      * start_row = 0, so the limiting case applies and we load from 0 anyway.  | 
869  |  |      */  | 
870  | 0  |     if (start_row > ptr->cur_start_row) { | 
871  | 0  |       ptr->cur_start_row = start_row;  | 
872  | 0  |     } else { | 
873  |  |       /* use long arithmetic here to avoid overflow & unsigned problems */  | 
874  | 0  |       long ltemp;  | 
875  |  | 
  | 
876  | 0  |       ltemp = (long) end_row - (long) ptr->rows_in_mem;  | 
877  | 0  |       if (ltemp < 0)  | 
878  | 0  |   ltemp = 0;   /* don't fall off front end of file */  | 
879  | 0  |       ptr->cur_start_row = (JDIMENSION) ltemp;  | 
880  | 0  |     }  | 
881  |  |     /* Read in the selected part of the array.  | 
882  |  |      * During the initial write pass, we will do no actual read  | 
883  |  |      * because the selected part is all undefined.  | 
884  |  |      */  | 
885  | 0  |     do_barray_io(cinfo, ptr, FALSE);  | 
886  | 0  |   }  | 
887  |  |   /* Ensure the accessed part of the array is defined; prezero if needed.  | 
888  |  |    * To improve locality of access, we only prezero the part of the array  | 
889  |  |    * that the caller is about to access, not the entire in-memory array.  | 
890  |  |    */  | 
891  | 0  |   if (ptr->first_undef_row < end_row) { | 
892  | 0  |     if (ptr->first_undef_row < start_row) { | 
893  | 0  |       if (writable)   /* writer skipped over a section of array */  | 
894  | 0  |   ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);  | 
895  | 0  |       undef_row = start_row;  /* but reader is allowed to read ahead */  | 
896  | 0  |     } else { | 
897  | 0  |       undef_row = ptr->first_undef_row;  | 
898  | 0  |     }  | 
899  | 0  |     if (writable)  | 
900  | 0  |       ptr->first_undef_row = end_row;  | 
901  | 0  |     if (ptr->pre_zero) { | 
902  | 0  |       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);  | 
903  | 0  |       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */  | 
904  | 0  |       end_row -= ptr->cur_start_row;  | 
905  | 0  |       while (undef_row < end_row) { | 
906  | 0  |   FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);  | 
907  | 0  |   undef_row++;  | 
908  | 0  |       }  | 
909  | 0  |     } else { | 
910  | 0  |       if (! writable)   /* reader looking at undefined data */  | 
911  | 0  |   ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);  | 
912  | 0  |     }  | 
913  | 0  |   }  | 
914  |  |   /* Flag the buffer dirty if caller will write in it */  | 
915  | 0  |   if (writable)  | 
916  | 0  |     ptr->dirty = TRUE;  | 
917  |  |   /* Return address of proper part of the buffer */  | 
918  | 0  |   return ptr->mem_buffer + (start_row - ptr->cur_start_row);  | 
919  | 0  | }  | 
920  |  |  | 
921  |  |  | 
922  |  | /*  | 
923  |  |  * Release all objects belonging to a specified pool.  | 
924  |  |  */  | 
925  |  |  | 
926  |  | METHODDEF(void)  | 
927  |  | free_pool (j_common_ptr cinfo, int pool_id)  | 
928  | 0  | { | 
929  | 0  |   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;  | 
930  | 0  |   small_pool_ptr shdr_ptr;  | 
931  | 0  |   large_pool_ptr lhdr_ptr;  | 
932  | 0  |   size_t space_freed;  | 
933  |  | 
  | 
934  | 0  |   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)  | 
935  | 0  |     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */  | 
936  |  | 
  | 
937  |  | #ifdef MEM_STATS  | 
938  |  |   if (cinfo->err->trace_level > 1)  | 
939  |  |     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */  | 
940  |  | #endif  | 
941  |  |  | 
942  |  |   /* If freeing IMAGE pool, close any virtual arrays first */  | 
943  | 0  |   if (pool_id == JPOOL_IMAGE) { | 
944  | 0  |     jvirt_sarray_ptr sptr;  | 
945  | 0  |     jvirt_barray_ptr bptr;  | 
946  |  | 
  | 
947  | 0  |     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 
948  | 0  |       if (sptr->b_s_open) { /* there may be no backing store */ | 
949  | 0  |   sptr->b_s_open = FALSE; /* prevent recursive close if error */  | 
950  | 0  |   (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);  | 
951  | 0  |       }  | 
952  | 0  |     }  | 
953  | 0  |     mem->virt_sarray_list = NULL;  | 
954  | 0  |     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 
955  | 0  |       if (bptr->b_s_open) { /* there may be no backing store */ | 
956  | 0  |   bptr->b_s_open = FALSE; /* prevent recursive close if error */  | 
957  | 0  |   (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);  | 
958  | 0  |       }  | 
959  | 0  |     }  | 
960  | 0  |     mem->virt_barray_list = NULL;  | 
961  | 0  |   }  | 
962  |  |  | 
963  |  |   /* Release large objects */  | 
964  | 0  |   lhdr_ptr = mem->large_list[pool_id];  | 
965  | 0  |   mem->large_list[pool_id] = NULL;  | 
966  |  | 
  | 
967  | 0  |   while (lhdr_ptr != NULL) { | 
968  | 0  |     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;  | 
969  | 0  |     space_freed = lhdr_ptr->hdr.bytes_used +  | 
970  | 0  |       lhdr_ptr->hdr.bytes_left +  | 
971  | 0  |       SIZEOF(large_pool_hdr);  | 
972  | 0  |     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);  | 
973  | 0  |     mem->total_space_allocated -= space_freed;  | 
974  | 0  |     lhdr_ptr = next_lhdr_ptr;  | 
975  | 0  |   }  | 
976  |  |  | 
977  |  |   /* Release small objects */  | 
978  | 0  |   shdr_ptr = mem->small_list[pool_id];  | 
979  | 0  |   mem->small_list[pool_id] = NULL;  | 
980  |  | 
  | 
981  | 0  |   while (shdr_ptr != NULL) { | 
982  | 0  |     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;  | 
983  | 0  |     space_freed = shdr_ptr->hdr.bytes_used +  | 
984  | 0  |       shdr_ptr->hdr.bytes_left +  | 
985  | 0  |       SIZEOF(small_pool_hdr);  | 
986  | 0  |     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);  | 
987  | 0  |     mem->total_space_allocated -= space_freed;  | 
988  | 0  |     shdr_ptr = next_shdr_ptr;  | 
989  | 0  |   }  | 
990  | 0  | }  | 
991  |  |  | 
992  |  |  | 
993  |  | /*  | 
994  |  |  * Close up shop entirely.  | 
995  |  |  * Note that this cannot be called unless cinfo->mem is non-NULL.  | 
996  |  |  */  | 
997  |  |  | 
998  |  | METHODDEF(void)  | 
999  |  | self_destruct (j_common_ptr cinfo)  | 
1000  | 0  | { | 
1001  | 0  |   int pool;  | 
1002  |  |  | 
1003  |  |   /* Close all backing store, release all memory.  | 
1004  |  |    * Releasing pools in reverse order might help avoid fragmentation  | 
1005  |  |    * with some (brain-damaged) malloc libraries.  | 
1006  |  |    */  | 
1007  | 0  |   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | 
1008  | 0  |     free_pool(cinfo, pool);  | 
1009  | 0  |   }  | 
1010  |  |  | 
1011  |  |   /* Release the memory manager control block too. */  | 
1012  | 0  |   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));  | 
1013  | 0  |   cinfo->mem = NULL;   /* ensures I will be called only once */  | 
1014  |  | 
  | 
1015  | 0  |   jpeg_mem_term(cinfo);   /* system-dependent cleanup */  | 
1016  | 0  | }  | 
1017  |  |  | 
1018  |  |  | 
1019  |  | /*  | 
1020  |  |  * Memory manager initialization.  | 
1021  |  |  * When this is called, only the error manager pointer is valid in cinfo!  | 
1022  |  |  */  | 
1023  |  |  | 
1024  |  | GLOBAL(void)  | 
1025  |  | jinit_memory_mgr (j_common_ptr cinfo)  | 
1026  | 0  | { | 
1027  | 0  |   my_mem_ptr mem;  | 
1028  | 0  |   long max_to_use;  | 
1029  | 0  |   int pool;  | 
1030  | 0  |   size_t test_mac;  | 
1031  |  | 
  | 
1032  | 0  |   cinfo->mem = NULL;   /* for safety if init fails */  | 
1033  |  |  | 
1034  |  |   /* Check for configuration errors.  | 
1035  |  |    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably  | 
1036  |  |    * doesn't reflect any real hardware alignment requirement.  | 
1037  |  |    * The test is a little tricky: for X>0, X and X-1 have no one-bits  | 
1038  |  |    * in common if and only if X is a power of 2, ie has only one one-bit.  | 
1039  |  |    * Some compilers may give an "unreachable code" warning here; ignore it.  | 
1040  |  |    */  | 
1041  | 0  |   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)  | 
1042  | 0  |     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);  | 
1043  |  |   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be  | 
1044  |  |    * a multiple of SIZEOF(ALIGN_TYPE).  | 
1045  |  |    * Again, an "unreachable code" warning may be ignored here.  | 
1046  |  |    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.  | 
1047  |  |    */  | 
1048  | 0  |   test_mac = (size_t) MAX_ALLOC_CHUNK;  | 
1049  | 0  |   if ((long) test_mac != MAX_ALLOC_CHUNK ||  | 
1050  | 0  |       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)  | 
1051  | 0  |     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);  | 
1052  |  | 
  | 
1053  | 0  |   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */  | 
1054  |  |  | 
1055  |  |   /* Attempt to allocate memory manager's control block */  | 
1056  | 0  |   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));  | 
1057  |  | 
  | 
1058  | 0  |   if (mem == NULL) { | 
1059  | 0  |     jpeg_mem_term(cinfo); /* system-dependent cleanup */  | 
1060  | 0  |     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);  | 
1061  | 0  |   }  | 
1062  |  |  | 
1063  |  |   /* OK, fill in the method pointers */  | 
1064  | 0  |   mem->pub.alloc_small = alloc_small;  | 
1065  | 0  |   mem->pub.alloc_large = alloc_large;  | 
1066  | 0  |   mem->pub.alloc_sarray = alloc_sarray;  | 
1067  | 0  |   mem->pub.alloc_barray = alloc_barray;  | 
1068  | 0  |   mem->pub.request_virt_sarray = request_virt_sarray;  | 
1069  | 0  |   mem->pub.request_virt_barray = request_virt_barray;  | 
1070  | 0  |   mem->pub.realize_virt_arrays = realize_virt_arrays;  | 
1071  | 0  |   mem->pub.access_virt_sarray = access_virt_sarray;  | 
1072  | 0  |   mem->pub.access_virt_barray = access_virt_barray;  | 
1073  | 0  |   mem->pub.free_pool = free_pool;  | 
1074  | 0  |   mem->pub.self_destruct = self_destruct;  | 
1075  |  |  | 
1076  |  |   /* Make MAX_ALLOC_CHUNK accessible to other modules */  | 
1077  | 0  |   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;  | 
1078  |  |  | 
1079  |  |   /* Initialize working state */  | 
1080  | 0  |   mem->pub.max_memory_to_use = max_to_use;  | 
1081  |  | 
  | 
1082  | 0  |   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | 
1083  | 0  |     mem->small_list[pool] = NULL;  | 
1084  | 0  |     mem->large_list[pool] = NULL;  | 
1085  | 0  |   }  | 
1086  | 0  |   mem->virt_sarray_list = NULL;  | 
1087  | 0  |   mem->virt_barray_list = NULL;  | 
1088  |  | 
  | 
1089  | 0  |   mem->total_space_allocated = SIZEOF(my_memory_mgr);  | 
1090  |  |  | 
1091  |  |   /* Declare ourselves open for business */  | 
1092  | 0  |   cinfo->mem = &mem->pub;  | 
1093  |  |  | 
1094  |  |   /* Check for an environment variable JPEGMEM; if found, override the  | 
1095  |  |    * default max_memory setting from jpeg_mem_init.  Note that the  | 
1096  |  |    * surrounding application may again override this value.  | 
1097  |  |    * If your system doesn't support getenv(), define NO_GETENV to disable  | 
1098  |  |    * this feature.  | 
1099  |  |    */  | 
1100  | 0  | #ifndef NO_GETENV  | 
1101  | 0  |   { char * memenv; | 
1102  |  | 
  | 
1103  | 0  |     if ((memenv = getenv("JPEGMEM")) != NULL) { | 
1104  | 0  |       char ch = 'x';  | 
1105  |  | 
  | 
1106  | 0  |       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { | 
1107  | 0  |   if (ch == 'm' || ch == 'M')  | 
1108  | 0  |     max_to_use *= 1000L;  | 
1109  | 0  |   mem->pub.max_memory_to_use = max_to_use * 1000L;  | 
1110  | 0  |       }  | 
1111  | 0  |     }  | 
1112  | 0  |   }  | 
1113  | 0  | #endif  | 
1114  |  | 
  | 
1115  | 0  | }  |