/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jquant2.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * jquant2.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1991-1996, Thomas G. Lane.  | 
5  |  |  * Modified 2011 by Guido Vollbeding.  | 
6  |  |  * This file is part of the Independent JPEG Group's software.  | 
7  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
8  |  |  *  | 
9  |  |  * This file contains 2-pass color quantization (color mapping) routines.  | 
10  |  |  * These routines provide selection of a custom color map for an image,  | 
11  |  |  * followed by mapping of the image to that color map, with optional  | 
12  |  |  * Floyd-Steinberg dithering.  | 
13  |  |  * It is also possible to use just the second pass to map to an arbitrary  | 
14  |  |  * externally-given color map.  | 
15  |  |  *  | 
16  |  |  * Note: ordered dithering is not supported, since there isn't any fast  | 
17  |  |  * way to compute intercolor distances; it's unclear that ordered dither's  | 
18  |  |  * fundamental assumptions even hold with an irregularly spaced color map.  | 
19  |  |  */  | 
20  |  |  | 
21  |  | #define JPEG_INTERNALS  | 
22  |  | #include "jinclude.h"  | 
23  |  | #include "jpeglib.h"  | 
24  |  |  | 
25  |  | #ifdef QUANT_2PASS_SUPPORTED  | 
26  |  |  | 
27  |  |  | 
28  |  | /*  | 
29  |  |  * This module implements the well-known Heckbert paradigm for color  | 
30  |  |  * quantization.  Most of the ideas used here can be traced back to  | 
31  |  |  * Heckbert's seminal paper  | 
32  |  |  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",  | 
33  |  |  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.  | 
34  |  |  *  | 
35  |  |  * In the first pass over the image, we accumulate a histogram showing the  | 
36  |  |  * usage count of each possible color.  To keep the histogram to a reasonable  | 
37  |  |  * size, we reduce the precision of the input; typical practice is to retain  | 
38  |  |  * 5 or 6 bits per color, so that 8 or 4 different input values are counted  | 
39  |  |  * in the same histogram cell.  | 
40  |  |  *  | 
41  |  |  * Next, the color-selection step begins with a box representing the whole  | 
42  |  |  * color space, and repeatedly splits the "largest" remaining box until we  | 
43  |  |  * have as many boxes as desired colors.  Then the mean color in each  | 
44  |  |  * remaining box becomes one of the possible output colors.  | 
45  |  |  *   | 
46  |  |  * The second pass over the image maps each input pixel to the closest output  | 
47  |  |  * color (optionally after applying a Floyd-Steinberg dithering correction).  | 
48  |  |  * This mapping is logically trivial, but making it go fast enough requires  | 
49  |  |  * considerable care.  | 
50  |  |  *  | 
51  |  |  * Heckbert-style quantizers vary a good deal in their policies for choosing  | 
52  |  |  * the "largest" box and deciding where to cut it.  The particular policies  | 
53  |  |  * used here have proved out well in experimental comparisons, but better ones  | 
54  |  |  * may yet be found.  | 
55  |  |  *  | 
56  |  |  * In earlier versions of the IJG code, this module quantized in YCbCr color  | 
57  |  |  * space, processing the raw upsampled data without a color conversion step.  | 
58  |  |  * This allowed the color conversion math to be done only once per colormap  | 
59  |  |  * entry, not once per pixel.  However, that optimization precluded other  | 
60  |  |  * useful optimizations (such as merging color conversion with upsampling)  | 
61  |  |  * and it also interfered with desired capabilities such as quantizing to an  | 
62  |  |  * externally-supplied colormap.  We have therefore abandoned that approach.  | 
63  |  |  * The present code works in the post-conversion color space, typically RGB.  | 
64  |  |  *  | 
65  |  |  * To improve the visual quality of the results, we actually work in scaled  | 
66  |  |  * RGB space, giving G distances more weight than R, and R in turn more than  | 
67  |  |  * B.  To do everything in integer math, we must use integer scale factors.  | 
68  |  |  * The 2/3/1 scale factors used here correspond loosely to the relative  | 
69  |  |  * weights of the colors in the NTSC grayscale equation.  | 
70  |  |  * If you want to use this code to quantize a non-RGB color space, you'll  | 
71  |  |  * probably need to change these scale factors.  | 
72  |  |  */  | 
73  |  |  | 
74  | 0  | #define R_SCALE 2    /* scale R distances by this much */  | 
75  | 0  | #define G_SCALE 3    /* scale G distances by this much */  | 
76  | 0  | #define B_SCALE 1    /* and B by this much */  | 
77  |  |  | 
78  |  | /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined  | 
79  |  |  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B  | 
80  |  |  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,  | 
81  |  |  * you'll get compile errors until you extend this logic.  In that case  | 
82  |  |  * you'll probably want to tweak the histogram sizes too.  | 
83  |  |  */  | 
84  |  |  | 
85  |  | #if RGB_RED == 0  | 
86  | 0  | #define C0_SCALE R_SCALE  | 
87  |  | #endif  | 
88  |  | #if RGB_BLUE == 0  | 
89  |  | #define C0_SCALE B_SCALE  | 
90  |  | #endif  | 
91  |  | #if RGB_GREEN == 1  | 
92  | 0  | #define C1_SCALE G_SCALE  | 
93  |  | #endif  | 
94  |  | #if RGB_RED == 2  | 
95  |  | #define C2_SCALE R_SCALE  | 
96  |  | #endif  | 
97  |  | #if RGB_BLUE == 2  | 
98  | 0  | #define C2_SCALE B_SCALE  | 
99  |  | #endif  | 
100  |  |  | 
101  |  |  | 
102  |  | /*  | 
103  |  |  * First we have the histogram data structure and routines for creating it.  | 
104  |  |  *  | 
105  |  |  * The number of bits of precision can be adjusted by changing these symbols.  | 
106  |  |  * We recommend keeping 6 bits for G and 5 each for R and B.  | 
107  |  |  * If you have plenty of memory and cycles, 6 bits all around gives marginally  | 
108  |  |  * better results; if you are short of memory, 5 bits all around will save  | 
109  |  |  * some space but degrade the results.  | 
110  |  |  * To maintain a fully accurate histogram, we'd need to allocate a "long"  | 
111  |  |  * (preferably unsigned long) for each cell.  In practice this is overkill;  | 
112  |  |  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,  | 
113  |  |  * and clamping those that do overflow to the maximum value will give close-  | 
114  |  |  * enough results.  This reduces the recommended histogram size from 256Kb  | 
115  |  |  * to 128Kb, which is a useful savings on PC-class machines.  | 
116  |  |  * (In the second pass the histogram space is re-used for pixel mapping data;  | 
117  |  |  * in that capacity, each cell must be able to store zero to the number of  | 
118  |  |  * desired colors.  16 bits/cell is plenty for that too.)  | 
119  |  |  * Since the JPEG code is intended to run in small memory model on 80x86  | 
120  |  |  * machines, we can't just allocate the histogram in one chunk.  Instead  | 
121  |  |  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each  | 
122  |  |  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and  | 
123  |  |  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that  | 
124  |  |  * on 80x86 machines, the pointer row is in near memory but the actual  | 
125  |  |  * arrays are in far memory (same arrangement as we use for image arrays).  | 
126  |  |  */  | 
127  |  |  | 
128  | 0  | #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */  | 
129  |  |  | 
130  |  | /* These will do the right thing for either R,G,B or B,G,R color order,  | 
131  |  |  * but you may not like the results for other color orders.  | 
132  |  |  */  | 
133  | 0  | #define HIST_C0_BITS  5    /* bits of precision in R/B histogram */  | 
134  | 0  | #define HIST_C1_BITS  6    /* bits of precision in G histogram */  | 
135  | 0  | #define HIST_C2_BITS  5    /* bits of precision in B/R histogram */  | 
136  |  |  | 
137  |  | /* Number of elements along histogram axes. */  | 
138  | 0  | #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)  | 
139  | 0  | #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)  | 
140  | 0  | #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)  | 
141  |  |  | 
142  |  | /* These are the amounts to shift an input value to get a histogram index. */  | 
143  | 0  | #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)  | 
144  | 0  | #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)  | 
145  | 0  | #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)  | 
146  |  |  | 
147  |  |  | 
148  |  | typedef UINT16 histcell;  /* histogram cell; prefer an unsigned type */  | 
149  |  |  | 
150  |  | typedef histcell FAR * histptr; /* for pointers to histogram cells */  | 
151  |  |  | 
152  |  | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */  | 
153  |  | typedef hist1d FAR * hist2d;  /* type for the 2nd-level pointers */  | 
154  |  | typedef hist2d * hist3d;  /* type for top-level pointer */  | 
155  |  |  | 
156  |  |  | 
157  |  | /* Declarations for Floyd-Steinberg dithering.  | 
158  |  |  *  | 
159  |  |  * Errors are accumulated into the array fserrors[], at a resolution of  | 
160  |  |  * 1/16th of a pixel count.  The error at a given pixel is propagated  | 
161  |  |  * to its not-yet-processed neighbors using the standard F-S fractions,  | 
162  |  |  *    ... (here)  7/16  | 
163  |  |  *    3/16  5/16  1/16  | 
164  |  |  * We work left-to-right on even rows, right-to-left on odd rows.  | 
165  |  |  *  | 
166  |  |  * We can get away with a single array (holding one row's worth of errors)  | 
167  |  |  * by using it to store the current row's errors at pixel columns not yet  | 
168  |  |  * processed, but the next row's errors at columns already processed.  We  | 
169  |  |  * need only a few extra variables to hold the errors immediately around the  | 
170  |  |  * current column.  (If we are lucky, those variables are in registers, but  | 
171  |  |  * even if not, they're probably cheaper to access than array elements are.)  | 
172  |  |  *  | 
173  |  |  * The fserrors[] array has (#columns + 2) entries; the extra entry at  | 
174  |  |  * each end saves us from special-casing the first and last pixels.  | 
175  |  |  * Each entry is three values long, one value for each color component.  | 
176  |  |  *  | 
177  |  |  * Note: on a wide image, we might not have enough room in a PC's near data  | 
178  |  |  * segment to hold the error array; so it is allocated with alloc_large.  | 
179  |  |  */  | 
180  |  |  | 
181  |  | #if BITS_IN_JSAMPLE == 8  | 
182  |  | typedef INT16 FSERROR;    /* 16 bits should be enough */  | 
183  |  | typedef int LOCFSERROR;   /* use 'int' for calculation temps */  | 
184  |  | #else  | 
185  |  | typedef INT32 FSERROR;    /* may need more than 16 bits */  | 
186  |  | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */  | 
187  |  | #endif  | 
188  |  |  | 
189  |  | typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */  | 
190  |  |  | 
191  |  |  | 
192  |  | /* Private subobject */  | 
193  |  |  | 
194  |  | typedef struct { | 
195  |  |   struct jpeg_color_quantizer pub; /* public fields */  | 
196  |  |  | 
197  |  |   /* Space for the eventually created colormap is stashed here */  | 
198  |  |   JSAMPARRAY sv_colormap; /* colormap allocated at init time */  | 
199  |  |   int desired;      /* desired # of colors = size of colormap */  | 
200  |  |  | 
201  |  |   /* Variables for accumulating image statistics */  | 
202  |  |   hist3d histogram;   /* pointer to the histogram */  | 
203  |  |  | 
204  |  |   boolean needs_zeroed;   /* TRUE if next pass must zero histogram */  | 
205  |  |  | 
206  |  |   /* Variables for Floyd-Steinberg dithering */  | 
207  |  |   FSERRPTR fserrors;    /* accumulated errors */  | 
208  |  |   boolean on_odd_row;   /* flag to remember which row we are on */  | 
209  |  |   int * error_limiter;    /* table for clamping the applied error */  | 
210  |  | } my_cquantizer;  | 
211  |  |  | 
212  |  | typedef my_cquantizer * my_cquantize_ptr;  | 
213  |  |  | 
214  |  |  | 
215  |  | /*  | 
216  |  |  * Prescan some rows of pixels.  | 
217  |  |  * In this module the prescan simply updates the histogram, which has been  | 
218  |  |  * initialized to zeroes by start_pass.  | 
219  |  |  * An output_buf parameter is required by the method signature, but no data  | 
220  |  |  * is actually output (in fact the buffer controller is probably passing a  | 
221  |  |  * NULL pointer).  | 
222  |  |  */  | 
223  |  |  | 
224  |  | METHODDEF(void)  | 
225  |  | prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,  | 
226  |  |       JSAMPARRAY output_buf, int num_rows)  | 
227  | 0  | { | 
228  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;  | 
229  | 0  |   register JSAMPROW ptr;  | 
230  | 0  |   register histptr histp;  | 
231  | 0  |   register hist3d histogram = cquantize->histogram;  | 
232  | 0  |   int row;  | 
233  | 0  |   JDIMENSION col;  | 
234  | 0  |   JDIMENSION width = cinfo->output_width;  | 
235  |  | 
  | 
236  | 0  |   for (row = 0; row < num_rows; row++) { | 
237  | 0  |     ptr = input_buf[row];  | 
238  | 0  |     for (col = width; col > 0; col--) { | 
239  |  |       /* get pixel value and index into the histogram */  | 
240  | 0  |       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]  | 
241  | 0  |        [GETJSAMPLE(ptr[1]) >> C1_SHIFT]  | 
242  | 0  |        [GETJSAMPLE(ptr[2]) >> C2_SHIFT];  | 
243  |  |       /* increment, check for overflow and undo increment if so. */  | 
244  | 0  |       if (++(*histp) <= 0)  | 
245  | 0  |   (*histp)--;  | 
246  | 0  |       ptr += 3;  | 
247  | 0  |     }  | 
248  | 0  |   }  | 
249  | 0  | }  | 
250  |  |  | 
251  |  |  | 
252  |  | /*  | 
253  |  |  * Next we have the really interesting routines: selection of a colormap  | 
254  |  |  * given the completed histogram.  | 
255  |  |  * These routines work with a list of "boxes", each representing a rectangular  | 
256  |  |  * subset of the input color space (to histogram precision).  | 
257  |  |  */  | 
258  |  |  | 
259  |  | typedef struct { | 
260  |  |   /* The bounds of the box (inclusive); expressed as histogram indexes */  | 
261  |  |   int c0min, c0max;  | 
262  |  |   int c1min, c1max;  | 
263  |  |   int c2min, c2max;  | 
264  |  |   /* The volume (actually 2-norm) of the box */  | 
265  |  |   INT32 volume;  | 
266  |  |   /* The number of nonzero histogram cells within this box */  | 
267  |  |   long colorcount;  | 
268  |  | } box;  | 
269  |  |  | 
270  |  | typedef box * boxptr;  | 
271  |  |  | 
272  |  |  | 
273  |  | LOCAL(boxptr)  | 
274  |  | find_biggest_color_pop (boxptr boxlist, int numboxes)  | 
275  |  | /* Find the splittable box with the largest color population */  | 
276  |  | /* Returns NULL if no splittable boxes remain */  | 
277  | 0  | { | 
278  | 0  |   register boxptr boxp;  | 
279  | 0  |   register int i;  | 
280  | 0  |   register long maxc = 0;  | 
281  | 0  |   boxptr which = NULL;  | 
282  |  |     | 
283  | 0  |   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | 
284  | 0  |     if (boxp->colorcount > maxc && boxp->volume > 0) { | 
285  | 0  |       which = boxp;  | 
286  | 0  |       maxc = boxp->colorcount;  | 
287  | 0  |     }  | 
288  | 0  |   }  | 
289  | 0  |   return which;  | 
290  | 0  | }  | 
291  |  |  | 
292  |  |  | 
293  |  | LOCAL(boxptr)  | 
294  |  | find_biggest_volume (boxptr boxlist, int numboxes)  | 
295  |  | /* Find the splittable box with the largest (scaled) volume */  | 
296  |  | /* Returns NULL if no splittable boxes remain */  | 
297  | 0  | { | 
298  | 0  |   register boxptr boxp;  | 
299  | 0  |   register int i;  | 
300  | 0  |   register INT32 maxv = 0;  | 
301  | 0  |   boxptr which = NULL;  | 
302  |  |     | 
303  | 0  |   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | 
304  | 0  |     if (boxp->volume > maxv) { | 
305  | 0  |       which = boxp;  | 
306  | 0  |       maxv = boxp->volume;  | 
307  | 0  |     }  | 
308  | 0  |   }  | 
309  | 0  |   return which;  | 
310  | 0  | }  | 
311  |  |  | 
312  |  |  | 
313  |  | LOCAL(void)  | 
314  |  | update_box (j_decompress_ptr cinfo, boxptr boxp)  | 
315  |  | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */  | 
316  |  | /* and recompute its volume and population */  | 
317  | 0  | { | 
318  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;  | 
319  | 0  |   hist3d histogram = cquantize->histogram;  | 
320  | 0  |   histptr histp;  | 
321  | 0  |   int c0,c1,c2;  | 
322  | 0  |   int c0min,c0max,c1min,c1max,c2min,c2max;  | 
323  | 0  |   INT32 dist0,dist1,dist2;  | 
324  | 0  |   long ccount;  | 
325  |  |     | 
326  | 0  |   c0min = boxp->c0min;  c0max = boxp->c0max;  | 
327  | 0  |   c1min = boxp->c1min;  c1max = boxp->c1max;  | 
328  | 0  |   c2min = boxp->c2min;  c2max = boxp->c2max;  | 
329  |  |     | 
330  | 0  |   if (c0max > c0min)  | 
331  | 0  |     for (c0 = c0min; c0 <= c0max; c0++)  | 
332  | 0  |       for (c1 = c1min; c1 <= c1max; c1++) { | 
333  | 0  |   histp = & histogram[c0][c1][c2min];  | 
334  | 0  |   for (c2 = c2min; c2 <= c2max; c2++)  | 
335  | 0  |     if (*histp++ != 0) { | 
336  | 0  |       boxp->c0min = c0min = c0;  | 
337  | 0  |       goto have_c0min;  | 
338  | 0  |     }  | 
339  | 0  |       }  | 
340  | 0  |  have_c0min:  | 
341  | 0  |   if (c0max > c0min)  | 
342  | 0  |     for (c0 = c0max; c0 >= c0min; c0--)  | 
343  | 0  |       for (c1 = c1min; c1 <= c1max; c1++) { | 
344  | 0  |   histp = & histogram[c0][c1][c2min];  | 
345  | 0  |   for (c2 = c2min; c2 <= c2max; c2++)  | 
346  | 0  |     if (*histp++ != 0) { | 
347  | 0  |       boxp->c0max = c0max = c0;  | 
348  | 0  |       goto have_c0max;  | 
349  | 0  |     }  | 
350  | 0  |       }  | 
351  | 0  |  have_c0max:  | 
352  | 0  |   if (c1max > c1min)  | 
353  | 0  |     for (c1 = c1min; c1 <= c1max; c1++)  | 
354  | 0  |       for (c0 = c0min; c0 <= c0max; c0++) { | 
355  | 0  |   histp = & histogram[c0][c1][c2min];  | 
356  | 0  |   for (c2 = c2min; c2 <= c2max; c2++)  | 
357  | 0  |     if (*histp++ != 0) { | 
358  | 0  |       boxp->c1min = c1min = c1;  | 
359  | 0  |       goto have_c1min;  | 
360  | 0  |     }  | 
361  | 0  |       }  | 
362  | 0  |  have_c1min:  | 
363  | 0  |   if (c1max > c1min)  | 
364  | 0  |     for (c1 = c1max; c1 >= c1min; c1--)  | 
365  | 0  |       for (c0 = c0min; c0 <= c0max; c0++) { | 
366  | 0  |   histp = & histogram[c0][c1][c2min];  | 
367  | 0  |   for (c2 = c2min; c2 <= c2max; c2++)  | 
368  | 0  |     if (*histp++ != 0) { | 
369  | 0  |       boxp->c1max = c1max = c1;  | 
370  | 0  |       goto have_c1max;  | 
371  | 0  |     }  | 
372  | 0  |       }  | 
373  | 0  |  have_c1max:  | 
374  | 0  |   if (c2max > c2min)  | 
375  | 0  |     for (c2 = c2min; c2 <= c2max; c2++)  | 
376  | 0  |       for (c0 = c0min; c0 <= c0max; c0++) { | 
377  | 0  |   histp = & histogram[c0][c1min][c2];  | 
378  | 0  |   for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)  | 
379  | 0  |     if (*histp != 0) { | 
380  | 0  |       boxp->c2min = c2min = c2;  | 
381  | 0  |       goto have_c2min;  | 
382  | 0  |     }  | 
383  | 0  |       }  | 
384  | 0  |  have_c2min:  | 
385  | 0  |   if (c2max > c2min)  | 
386  | 0  |     for (c2 = c2max; c2 >= c2min; c2--)  | 
387  | 0  |       for (c0 = c0min; c0 <= c0max; c0++) { | 
388  | 0  |   histp = & histogram[c0][c1min][c2];  | 
389  | 0  |   for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)  | 
390  | 0  |     if (*histp != 0) { | 
391  | 0  |       boxp->c2max = c2max = c2;  | 
392  | 0  |       goto have_c2max;  | 
393  | 0  |     }  | 
394  | 0  |       }  | 
395  | 0  |  have_c2max:  | 
396  |  |  | 
397  |  |   /* Update box volume.  | 
398  |  |    * We use 2-norm rather than real volume here; this biases the method  | 
399  |  |    * against making long narrow boxes, and it has the side benefit that  | 
400  |  |    * a box is splittable iff norm > 0.  | 
401  |  |    * Since the differences are expressed in histogram-cell units,  | 
402  |  |    * we have to shift back to JSAMPLE units to get consistent distances;  | 
403  |  |    * after which, we scale according to the selected distance scale factors.  | 
404  |  |    */  | 
405  | 0  |   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;  | 
406  | 0  |   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;  | 
407  | 0  |   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;  | 
408  | 0  |   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;  | 
409  |  |     | 
410  |  |   /* Now scan remaining volume of box and compute population */  | 
411  | 0  |   ccount = 0;  | 
412  | 0  |   for (c0 = c0min; c0 <= c0max; c0++)  | 
413  | 0  |     for (c1 = c1min; c1 <= c1max; c1++) { | 
414  | 0  |       histp = & histogram[c0][c1][c2min];  | 
415  | 0  |       for (c2 = c2min; c2 <= c2max; c2++, histp++)  | 
416  | 0  |   if (*histp != 0) { | 
417  | 0  |     ccount++;  | 
418  | 0  |   }  | 
419  | 0  |     }  | 
420  | 0  |   boxp->colorcount = ccount;  | 
421  | 0  | }  | 
422  |  |  | 
423  |  |  | 
424  |  | LOCAL(int)  | 
425  |  | median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,  | 
426  |  |       int desired_colors)  | 
427  |  | /* Repeatedly select and split the largest box until we have enough boxes */  | 
428  | 0  | { | 
429  | 0  |   int n,lb;  | 
430  | 0  |   int c0,c1,c2,cmax;  | 
431  | 0  |   register boxptr b1,b2;  | 
432  |  | 
  | 
433  | 0  |   while (numboxes < desired_colors) { | 
434  |  |     /* Select box to split.  | 
435  |  |      * Current algorithm: by population for first half, then by volume.  | 
436  |  |      */  | 
437  | 0  |     if (numboxes*2 <= desired_colors) { | 
438  | 0  |       b1 = find_biggest_color_pop(boxlist, numboxes);  | 
439  | 0  |     } else { | 
440  | 0  |       b1 = find_biggest_volume(boxlist, numboxes);  | 
441  | 0  |     }  | 
442  | 0  |     if (b1 == NULL)   /* no splittable boxes left! */  | 
443  | 0  |       break;  | 
444  | 0  |     b2 = &boxlist[numboxes];  /* where new box will go */  | 
445  |  |     /* Copy the color bounds to the new box. */  | 
446  | 0  |     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;  | 
447  | 0  |     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;  | 
448  |  |     /* Choose which axis to split the box on.  | 
449  |  |      * Current algorithm: longest scaled axis.  | 
450  |  |      * See notes in update_box about scaling distances.  | 
451  |  |      */  | 
452  | 0  |     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;  | 
453  | 0  |     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;  | 
454  | 0  |     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;  | 
455  |  |     /* We want to break any ties in favor of green, then red, blue last.  | 
456  |  |      * This code does the right thing for R,G,B or B,G,R color orders only.  | 
457  |  |      */  | 
458  | 0  | #if RGB_RED == 0  | 
459  | 0  |     cmax = c1; n = 1;  | 
460  | 0  |     if (c0 > cmax) { cmax = c0; n = 0; } | 
461  | 0  |     if (c2 > cmax) { n = 2; } | 
462  |  | #else  | 
463  |  |     cmax = c1; n = 1;  | 
464  |  |     if (c2 > cmax) { cmax = c2; n = 2; } | 
465  |  |     if (c0 > cmax) { n = 0; } | 
466  |  | #endif  | 
467  |  |     /* Choose split point along selected axis, and update box bounds.  | 
468  |  |      * Current algorithm: split at halfway point.  | 
469  |  |      * (Since the box has been shrunk to minimum volume,  | 
470  |  |      * any split will produce two nonempty subboxes.)  | 
471  |  |      * Note that lb value is max for lower box, so must be < old max.  | 
472  |  |      */  | 
473  | 0  |     switch (n) { | 
474  | 0  |     case 0:  | 
475  | 0  |       lb = (b1->c0max + b1->c0min) / 2;  | 
476  | 0  |       b1->c0max = lb;  | 
477  | 0  |       b2->c0min = lb+1;  | 
478  | 0  |       break;  | 
479  | 0  |     case 1:  | 
480  | 0  |       lb = (b1->c1max + b1->c1min) / 2;  | 
481  | 0  |       b1->c1max = lb;  | 
482  | 0  |       b2->c1min = lb+1;  | 
483  | 0  |       break;  | 
484  | 0  |     case 2:  | 
485  | 0  |       lb = (b1->c2max + b1->c2min) / 2;  | 
486  | 0  |       b1->c2max = lb;  | 
487  | 0  |       b2->c2min = lb+1;  | 
488  | 0  |       break;  | 
489  | 0  |     }  | 
490  |  |     /* Update stats for boxes */  | 
491  | 0  |     update_box(cinfo, b1);  | 
492  | 0  |     update_box(cinfo, b2);  | 
493  | 0  |     numboxes++;  | 
494  | 0  |   }  | 
495  | 0  |   return numboxes;  | 
496  | 0  | }  | 
497  |  |  | 
498  |  |  | 
499  |  | LOCAL(void)  | 
500  |  | compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)  | 
501  |  | /* Compute representative color for a box, put it in colormap[icolor] */  | 
502  | 0  | { | 
503  |  |   /* Current algorithm: mean weighted by pixels (not colors) */  | 
504  |  |   /* Note it is important to get the rounding correct! */  | 
505  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;  | 
506  | 0  |   hist3d histogram = cquantize->histogram;  | 
507  | 0  |   histptr histp;  | 
508  | 0  |   int c0,c1,c2;  | 
509  | 0  |   int c0min,c0max,c1min,c1max,c2min,c2max;  | 
510  | 0  |   long count;  | 
511  | 0  |   long total = 0;  | 
512  | 0  |   long c0total = 0;  | 
513  | 0  |   long c1total = 0;  | 
514  | 0  |   long c2total = 0;  | 
515  |  |     | 
516  | 0  |   c0min = boxp->c0min;  c0max = boxp->c0max;  | 
517  | 0  |   c1min = boxp->c1min;  c1max = boxp->c1max;  | 
518  | 0  |   c2min = boxp->c2min;  c2max = boxp->c2max;  | 
519  |  |     | 
520  | 0  |   for (c0 = c0min; c0 <= c0max; c0++)  | 
521  | 0  |     for (c1 = c1min; c1 <= c1max; c1++) { | 
522  | 0  |       histp = & histogram[c0][c1][c2min];  | 
523  | 0  |       for (c2 = c2min; c2 <= c2max; c2++) { | 
524  | 0  |   if ((count = *histp++) != 0) { | 
525  | 0  |     total += count;  | 
526  | 0  |     c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;  | 
527  | 0  |     c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;  | 
528  | 0  |     c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;  | 
529  | 0  |   }  | 
530  | 0  |       }  | 
531  | 0  |     }  | 
532  |  |     | 
533  | 0  |   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);  | 
534  | 0  |   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);  | 
535  | 0  |   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);  | 
536  | 0  | }  | 
537  |  |  | 
538  |  |  | 
539  |  | LOCAL(void)  | 
540  |  | select_colors (j_decompress_ptr cinfo, int desired_colors)  | 
541  |  | /* Master routine for color selection */  | 
542  | 0  | { | 
543  | 0  |   boxptr boxlist;  | 
544  | 0  |   int numboxes;  | 
545  | 0  |   int i;  | 
546  |  |  | 
547  |  |   /* Allocate workspace for box list */  | 
548  | 0  |   boxlist = (boxptr) (*cinfo->mem->alloc_small)  | 
549  | 0  |     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));  | 
550  |  |   /* Initialize one box containing whole space */  | 
551  | 0  |   numboxes = 1;  | 
552  | 0  |   boxlist[0].c0min = 0;  | 
553  | 0  |   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;  | 
554  | 0  |   boxlist[0].c1min = 0;  | 
555  | 0  |   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;  | 
556  | 0  |   boxlist[0].c2min = 0;  | 
557  | 0  |   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;  | 
558  |  |   /* Shrink it to actually-used volume and set its statistics */  | 
559  | 0  |   update_box(cinfo, & boxlist[0]);  | 
560  |  |   /* Perform median-cut to produce final box list */  | 
561  | 0  |   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);  | 
562  |  |   /* Compute the representative color for each box, fill colormap */  | 
563  | 0  |   for (i = 0; i < numboxes; i++)  | 
564  | 0  |     compute_color(cinfo, & boxlist[i], i);  | 
565  | 0  |   cinfo->actual_number_of_colors = numboxes;  | 
566  | 0  |   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);  | 
567  | 0  | }  | 
568  |  |  | 
569  |  |  | 
570  |  | /*  | 
571  |  |  * These routines are concerned with the time-critical task of mapping input  | 
572  |  |  * colors to the nearest color in the selected colormap.  | 
573  |  |  *  | 
574  |  |  * We re-use the histogram space as an "inverse color map", essentially a  | 
575  |  |  * cache for the results of nearest-color searches.  All colors within a  | 
576  |  |  * histogram cell will be mapped to the same colormap entry, namely the one  | 
577  |  |  * closest to the cell's center.  This may not be quite the closest entry to  | 
578  |  |  * the actual input color, but it's almost as good.  A zero in the cache  | 
579  |  |  * indicates we haven't found the nearest color for that cell yet; the array  | 
580  |  |  * is cleared to zeroes before starting the mapping pass.  When we find the  | 
581  |  |  * nearest color for a cell, its colormap index plus one is recorded in the  | 
582  |  |  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap  | 
583  |  |  * when they need to use an unfilled entry in the cache.  | 
584  |  |  *  | 
585  |  |  * Our method of efficiently finding nearest colors is based on the "locally  | 
586  |  |  * sorted search" idea described by Heckbert and on the incremental distance  | 
587  |  |  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics  | 
588  |  |  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that  | 
589  |  |  * the distances from a given colormap entry to each cell of the histogram can  | 
590  |  |  * be computed quickly using an incremental method: the differences between  | 
591  |  |  * distances to adjacent cells themselves differ by a constant.  This allows a  | 
592  |  |  * fairly fast implementation of the "brute force" approach of computing the  | 
593  |  |  * distance from every colormap entry to every histogram cell.  Unfortunately,  | 
594  |  |  * it needs a work array to hold the best-distance-so-far for each histogram  | 
595  |  |  * cell (because the inner loop has to be over cells, not colormap entries).  | 
596  |  |  * The work array elements have to be INT32s, so the work array would need  | 
597  |  |  * 256Kb at our recommended precision.  This is not feasible in DOS machines.  | 
598  |  |  *  | 
599  |  |  * To get around these problems, we apply Thomas' method to compute the  | 
600  |  |  * nearest colors for only the cells within a small subbox of the histogram.  | 
601  |  |  * The work array need be only as big as the subbox, so the memory usage  | 
602  |  |  * problem is solved.  Furthermore, we need not fill subboxes that are never  | 
603  |  |  * referenced in pass2; many images use only part of the color gamut, so a  | 
604  |  |  * fair amount of work is saved.  An additional advantage of this  | 
605  |  |  * approach is that we can apply Heckbert's locality criterion to quickly  | 
606  |  |  * eliminate colormap entries that are far away from the subbox; typically  | 
607  |  |  * three-fourths of the colormap entries are rejected by Heckbert's criterion,  | 
608  |  |  * and we need not compute their distances to individual cells in the subbox.  | 
609  |  |  * The speed of this approach is heavily influenced by the subbox size: too  | 
610  |  |  * small means too much overhead, too big loses because Heckbert's criterion  | 
611  |  |  * can't eliminate as many colormap entries.  Empirically the best subbox  | 
612  |  |  * size seems to be about 1/512th of the histogram (1/8th in each direction).  | 
613  |  |  *  | 
614  |  |  * Thomas' article also describes a refined method which is asymptotically  | 
615  |  |  * faster than the brute-force method, but it is also far more complex and  | 
616  |  |  * cannot efficiently be applied to small subboxes.  It is therefore not  | 
617  |  |  * useful for programs intended to be portable to DOS machines.  On machines  | 
618  |  |  * with plenty of memory, filling the whole histogram in one shot with Thomas'  | 
619  |  |  * refined method might be faster than the present code --- but then again,  | 
620  |  |  * it might not be any faster, and it's certainly more complicated.  | 
621  |  |  */  | 
622  |  |  | 
623  |  |  | 
624  |  | /* log2(histogram cells in update box) for each axis; this can be adjusted */  | 
625  | 0  | #define BOX_C0_LOG  (HIST_C0_BITS-3)  | 
626  | 0  | #define BOX_C1_LOG  (HIST_C1_BITS-3)  | 
627  | 0  | #define BOX_C2_LOG  (HIST_C2_BITS-3)  | 
628  |  |  | 
629  | 0  | #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */  | 
630  | 0  | #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)  | 
631  | 0  | #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)  | 
632  |  |  | 
633  | 0  | #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)  | 
634  | 0  | #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)  | 
635  | 0  | #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)  | 
636  |  |  | 
637  |  |  | 
638  |  | /*  | 
639  |  |  * The next three routines implement inverse colormap filling.  They could  | 
640  |  |  * all be folded into one big routine, but splitting them up this way saves  | 
641  |  |  * some stack space (the mindist[] and bestdist[] arrays need not coexist)  | 
642  |  |  * and may allow some compilers to produce better code by registerizing more  | 
643  |  |  * inner-loop variables.  | 
644  |  |  */  | 
645  |  |  | 
646  |  | LOCAL(int)  | 
647  |  | find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,  | 
648  |  |         JSAMPLE colorlist[])  | 
649  |  | /* Locate the colormap entries close enough to an update box to be candidates  | 
650  |  |  * for the nearest entry to some cell(s) in the update box.  The update box  | 
651  |  |  * is specified by the center coordinates of its first cell.  The number of  | 
652  |  |  * candidate colormap entries is returned, and their colormap indexes are  | 
653  |  |  * placed in colorlist[].  | 
654  |  |  * This routine uses Heckbert's "locally sorted search" criterion to select  | 
655  |  |  * the colors that need further consideration.  | 
656  |  |  */  | 
657  | 0  | { | 
658  | 0  |   int numcolors = cinfo->actual_number_of_colors;  | 
659  | 0  |   int maxc0, maxc1, maxc2;  | 
660  | 0  |   int centerc0, centerc1, centerc2;  | 
661  | 0  |   int i, x, ncolors;  | 
662  | 0  |   INT32 minmaxdist, min_dist, max_dist, tdist;  | 
663  | 0  |   INT32 mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */  | 
664  |  |  | 
665  |  |   /* Compute true coordinates of update box's upper corner and center.  | 
666  |  |    * Actually we compute the coordinates of the center of the upper-corner  | 
667  |  |    * histogram cell, which are the upper bounds of the volume we care about.  | 
668  |  |    * Note that since ">>" rounds down, the "center" values may be closer to  | 
669  |  |    * min than to max; hence comparisons to them must be "<=", not "<".  | 
670  |  |    */  | 
671  | 0  |   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));  | 
672  | 0  |   centerc0 = (minc0 + maxc0) >> 1;  | 
673  | 0  |   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));  | 
674  | 0  |   centerc1 = (minc1 + maxc1) >> 1;  | 
675  | 0  |   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));  | 
676  | 0  |   centerc2 = (minc2 + maxc2) >> 1;  | 
677  |  |  | 
678  |  |   /* For each color in colormap, find:  | 
679  |  |    *  1. its minimum squared-distance to any point in the update box  | 
680  |  |    *     (zero if color is within update box);  | 
681  |  |    *  2. its maximum squared-distance to any point in the update box.  | 
682  |  |    * Both of these can be found by considering only the corners of the box.  | 
683  |  |    * We save the minimum distance for each color in mindist[];  | 
684  |  |    * only the smallest maximum distance is of interest.  | 
685  |  |    */  | 
686  | 0  |   minmaxdist = 0x7FFFFFFFL;  | 
687  |  | 
  | 
688  | 0  |   for (i = 0; i < numcolors; i++) { | 
689  |  |     /* We compute the squared-c0-distance term, then add in the other two. */  | 
690  | 0  |     x = GETJSAMPLE(cinfo->colormap[0][i]);  | 
691  | 0  |     if (x < minc0) { | 
692  | 0  |       tdist = (x - minc0) * C0_SCALE;  | 
693  | 0  |       min_dist = tdist*tdist;  | 
694  | 0  |       tdist = (x - maxc0) * C0_SCALE;  | 
695  | 0  |       max_dist = tdist*tdist;  | 
696  | 0  |     } else if (x > maxc0) { | 
697  | 0  |       tdist = (x - maxc0) * C0_SCALE;  | 
698  | 0  |       min_dist = tdist*tdist;  | 
699  | 0  |       tdist = (x - minc0) * C0_SCALE;  | 
700  | 0  |       max_dist = tdist*tdist;  | 
701  | 0  |     } else { | 
702  |  |       /* within cell range so no contribution to min_dist */  | 
703  | 0  |       min_dist = 0;  | 
704  | 0  |       if (x <= centerc0) { | 
705  | 0  |   tdist = (x - maxc0) * C0_SCALE;  | 
706  | 0  |   max_dist = tdist*tdist;  | 
707  | 0  |       } else { | 
708  | 0  |   tdist = (x - minc0) * C0_SCALE;  | 
709  | 0  |   max_dist = tdist*tdist;  | 
710  | 0  |       }  | 
711  | 0  |     }  | 
712  |  | 
  | 
713  | 0  |     x = GETJSAMPLE(cinfo->colormap[1][i]);  | 
714  | 0  |     if (x < minc1) { | 
715  | 0  |       tdist = (x - minc1) * C1_SCALE;  | 
716  | 0  |       min_dist += tdist*tdist;  | 
717  | 0  |       tdist = (x - maxc1) * C1_SCALE;  | 
718  | 0  |       max_dist += tdist*tdist;  | 
719  | 0  |     } else if (x > maxc1) { | 
720  | 0  |       tdist = (x - maxc1) * C1_SCALE;  | 
721  | 0  |       min_dist += tdist*tdist;  | 
722  | 0  |       tdist = (x - minc1) * C1_SCALE;  | 
723  | 0  |       max_dist += tdist*tdist;  | 
724  | 0  |     } else { | 
725  |  |       /* within cell range so no contribution to min_dist */  | 
726  | 0  |       if (x <= centerc1) { | 
727  | 0  |   tdist = (x - maxc1) * C1_SCALE;  | 
728  | 0  |   max_dist += tdist*tdist;  | 
729  | 0  |       } else { | 
730  | 0  |   tdist = (x - minc1) * C1_SCALE;  | 
731  | 0  |   max_dist += tdist*tdist;  | 
732  | 0  |       }  | 
733  | 0  |     }  | 
734  |  | 
  | 
735  | 0  |     x = GETJSAMPLE(cinfo->colormap[2][i]);  | 
736  | 0  |     if (x < minc2) { | 
737  | 0  |       tdist = (x - minc2) * C2_SCALE;  | 
738  | 0  |       min_dist += tdist*tdist;  | 
739  | 0  |       tdist = (x - maxc2) * C2_SCALE;  | 
740  | 0  |       max_dist += tdist*tdist;  | 
741  | 0  |     } else if (x > maxc2) { | 
742  | 0  |       tdist = (x - maxc2) * C2_SCALE;  | 
743  | 0  |       min_dist += tdist*tdist;  | 
744  | 0  |       tdist = (x - minc2) * C2_SCALE;  | 
745  | 0  |       max_dist += tdist*tdist;  | 
746  | 0  |     } else { | 
747  |  |       /* within cell range so no contribution to min_dist */  | 
748  | 0  |       if (x <= centerc2) { | 
749  | 0  |   tdist = (x - maxc2) * C2_SCALE;  | 
750  | 0  |   max_dist += tdist*tdist;  | 
751  | 0  |       } else { | 
752  | 0  |   tdist = (x - minc2) * C2_SCALE;  | 
753  | 0  |   max_dist += tdist*tdist;  | 
754  | 0  |       }  | 
755  | 0  |     }  | 
756  |  | 
  | 
757  | 0  |     mindist[i] = min_dist;  /* save away the results */  | 
758  | 0  |     if (max_dist < minmaxdist)  | 
759  | 0  |       minmaxdist = max_dist;  | 
760  | 0  |   }  | 
761  |  |  | 
762  |  |   /* Now we know that no cell in the update box is more than minmaxdist  | 
763  |  |    * away from some colormap entry.  Therefore, only colors that are  | 
764  |  |    * within minmaxdist of some part of the box need be considered.  | 
765  |  |    */  | 
766  | 0  |   ncolors = 0;  | 
767  | 0  |   for (i = 0; i < numcolors; i++) { | 
768  | 0  |     if (mindist[i] <= minmaxdist)  | 
769  | 0  |       colorlist[ncolors++] = (JSAMPLE) i;  | 
770  | 0  |   }  | 
771  | 0  |   return ncolors;  | 
772  | 0  | }  | 
773  |  |  | 
774  |  |  | 
775  |  | LOCAL(void)  | 
776  |  | find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,  | 
777  |  |       int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])  | 
778  |  | /* Find the closest colormap entry for each cell in the update box,  | 
779  |  |  * given the list of candidate colors prepared by find_nearby_colors.  | 
780  |  |  * Return the indexes of the closest entries in the bestcolor[] array.  | 
781  |  |  * This routine uses Thomas' incremental distance calculation method to  | 
782  |  |  * find the distance from a colormap entry to successive cells in the box.  | 
783  |  |  */  | 
784  | 0  | { | 
785  | 0  |   int ic0, ic1, ic2;  | 
786  | 0  |   int i, icolor;  | 
787  | 0  |   register INT32 * bptr;  /* pointer into bestdist[] array */  | 
788  | 0  |   JSAMPLE * cptr;   /* pointer into bestcolor[] array */  | 
789  | 0  |   INT32 dist0, dist1;   /* initial distance values */  | 
790  | 0  |   register INT32 dist2;   /* current distance in inner loop */  | 
791  | 0  |   INT32 xx0, xx1;   /* distance increments */  | 
792  | 0  |   register INT32 xx2;  | 
793  | 0  |   INT32 inc0, inc1, inc2; /* initial values for increments */  | 
794  |  |   /* This array holds the distance to the nearest-so-far color for each cell */  | 
795  | 0  |   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];  | 
796  |  |  | 
797  |  |   /* Initialize best-distance for each cell of the update box */  | 
798  | 0  |   bptr = bestdist;  | 
799  | 0  |   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)  | 
800  | 0  |     *bptr++ = 0x7FFFFFFFL;  | 
801  |  |     | 
802  |  |   /* For each color selected by find_nearby_colors,  | 
803  |  |    * compute its distance to the center of each cell in the box.  | 
804  |  |    * If that's less than best-so-far, update best distance and color number.  | 
805  |  |    */  | 
806  |  |     | 
807  |  |   /* Nominal steps between cell centers ("x" in Thomas article) */ | 
808  | 0  | #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)  | 
809  | 0  | #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)  | 
810  | 0  | #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)  | 
811  |  |     | 
812  | 0  |   for (i = 0; i < numcolors; i++) { | 
813  | 0  |     icolor = GETJSAMPLE(colorlist[i]);  | 
814  |  |     /* Compute (square of) distance from minc0/c1/c2 to this color */  | 
815  | 0  |     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;  | 
816  | 0  |     dist0 = inc0*inc0;  | 
817  | 0  |     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;  | 
818  | 0  |     dist0 += inc1*inc1;  | 
819  | 0  |     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;  | 
820  | 0  |     dist0 += inc2*inc2;  | 
821  |  |     /* Form the initial difference increments */  | 
822  | 0  |     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;  | 
823  | 0  |     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;  | 
824  | 0  |     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;  | 
825  |  |     /* Now loop over all cells in box, updating distance per Thomas method */  | 
826  | 0  |     bptr = bestdist;  | 
827  | 0  |     cptr = bestcolor;  | 
828  | 0  |     xx0 = inc0;  | 
829  | 0  |     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { | 
830  | 0  |       dist1 = dist0;  | 
831  | 0  |       xx1 = inc1;  | 
832  | 0  |       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { | 
833  | 0  |   dist2 = dist1;  | 
834  | 0  |   xx2 = inc2;  | 
835  | 0  |   for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { | 
836  | 0  |     if (dist2 < *bptr) { | 
837  | 0  |       *bptr = dist2;  | 
838  | 0  |       *cptr = (JSAMPLE) icolor;  | 
839  | 0  |     }  | 
840  | 0  |     dist2 += xx2;  | 
841  | 0  |     xx2 += 2 * STEP_C2 * STEP_C2;  | 
842  | 0  |     bptr++;  | 
843  | 0  |     cptr++;  | 
844  | 0  |   }  | 
845  | 0  |   dist1 += xx1;  | 
846  | 0  |   xx1 += 2 * STEP_C1 * STEP_C1;  | 
847  | 0  |       }  | 
848  | 0  |       dist0 += xx0;  | 
849  | 0  |       xx0 += 2 * STEP_C0 * STEP_C0;  | 
850  | 0  |     }  | 
851  | 0  |   }  | 
852  | 0  | }  | 
853  |  |  | 
854  |  |  | 
855  |  | LOCAL(void)  | 
856  |  | fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)  | 
857  |  | /* Fill the inverse-colormap entries in the update box that contains */  | 
858  |  | /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */  | 
859  |  | /* we can fill as many others as we wish.) */  | 
860  | 0  | { | 
861  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;  | 
862  | 0  |   hist3d histogram = cquantize->histogram;  | 
863  | 0  |   int minc0, minc1, minc2;  /* lower left corner of update box */  | 
864  | 0  |   int ic0, ic1, ic2;  | 
865  | 0  |   register JSAMPLE * cptr;  /* pointer into bestcolor[] array */  | 
866  | 0  |   register histptr cachep;  /* pointer into main cache array */  | 
867  |  |   /* This array lists the candidate colormap indexes. */  | 
868  | 0  |   JSAMPLE colorlist[MAXNUMCOLORS];  | 
869  | 0  |   int numcolors;    /* number of candidate colors */  | 
870  |  |   /* This array holds the actually closest colormap index for each cell. */  | 
871  | 0  |   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];  | 
872  |  |  | 
873  |  |   /* Convert cell coordinates to update box ID */  | 
874  | 0  |   c0 >>= BOX_C0_LOG;  | 
875  | 0  |   c1 >>= BOX_C1_LOG;  | 
876  | 0  |   c2 >>= BOX_C2_LOG;  | 
877  |  |  | 
878  |  |   /* Compute true coordinates of update box's origin corner.  | 
879  |  |    * Actually we compute the coordinates of the center of the corner  | 
880  |  |    * histogram cell, which are the lower bounds of the volume we care about.  | 
881  |  |    */  | 
882  | 0  |   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);  | 
883  | 0  |   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);  | 
884  | 0  |   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);  | 
885  |  |     | 
886  |  |   /* Determine which colormap entries are close enough to be candidates  | 
887  |  |    * for the nearest entry to some cell in the update box.  | 
888  |  |    */  | 
889  | 0  |   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);  | 
890  |  |  | 
891  |  |   /* Determine the actually nearest colors. */  | 
892  | 0  |   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,  | 
893  | 0  |        bestcolor);  | 
894  |  |  | 
895  |  |   /* Save the best color numbers (plus 1) in the main cache array */  | 
896  | 0  |   c0 <<= BOX_C0_LOG;   /* convert ID back to base cell indexes */  | 
897  | 0  |   c1 <<= BOX_C1_LOG;  | 
898  | 0  |   c2 <<= BOX_C2_LOG;  | 
899  | 0  |   cptr = bestcolor;  | 
900  | 0  |   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { | 
901  | 0  |     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { | 
902  | 0  |       cachep = & histogram[c0+ic0][c1+ic1][c2];  | 
903  | 0  |       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { | 
904  | 0  |   *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);  | 
905  | 0  |       }  | 
906  | 0  |     }  | 
907  | 0  |   }  | 
908  | 0  | }  | 
909  |  |  | 
910  |  |  | 
911  |  | /*  | 
912  |  |  * Map some rows of pixels to the output colormapped representation.  | 
913  |  |  */  | 
914  |  |  | 
915  |  | METHODDEF(void)  | 
916  |  | pass2_no_dither (j_decompress_ptr cinfo,  | 
917  |  |      JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)  | 
918  |  | /* This version performs no dithering */  | 
919  | 0  | { | 
920  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;  | 
921  | 0  |   hist3d histogram = cquantize->histogram;  | 
922  | 0  |   register JSAMPROW inptr, outptr;  | 
923  | 0  |   register histptr cachep;  | 
924  | 0  |   register int c0, c1, c2;  | 
925  | 0  |   int row;  | 
926  | 0  |   JDIMENSION col;  | 
927  | 0  |   JDIMENSION width = cinfo->output_width;  | 
928  |  | 
  | 
929  | 0  |   for (row = 0; row < num_rows; row++) { | 
930  | 0  |     inptr = input_buf[row];  | 
931  | 0  |     outptr = output_buf[row];  | 
932  | 0  |     for (col = width; col > 0; col--) { | 
933  |  |       /* get pixel value and index into the cache */  | 
934  | 0  |       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;  | 
935  | 0  |       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;  | 
936  | 0  |       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;  | 
937  | 0  |       cachep = & histogram[c0][c1][c2];  | 
938  |  |       /* If we have not seen this color before, find nearest colormap entry */  | 
939  |  |       /* and update the cache */  | 
940  | 0  |       if (*cachep == 0)  | 
941  | 0  |   fill_inverse_cmap(cinfo, c0,c1,c2);  | 
942  |  |       /* Now emit the colormap index for this cell */  | 
943  | 0  |       *outptr++ = (JSAMPLE) (*cachep - 1);  | 
944  | 0  |     }  | 
945  | 0  |   }  | 
946  | 0  | }  | 
947  |  |  | 
948  |  |  | 
949  |  | METHODDEF(void)  | 
950  |  | pass2_fs_dither (j_decompress_ptr cinfo,  | 
951  |  |      JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)  | 
952  |  | /* This version performs Floyd-Steinberg dithering */  | 
953  | 0  | { | 
954  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;  | 
955  | 0  |   hist3d histogram = cquantize->histogram;  | 
956  | 0  |   register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */  | 
957  | 0  |   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */  | 
958  | 0  |   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */  | 
959  | 0  |   register FSERRPTR errorptr; /* => fserrors[] at column before current */  | 
960  | 0  |   JSAMPROW inptr;   /* => current input pixel */  | 
961  | 0  |   JSAMPROW outptr;    /* => current output pixel */  | 
962  | 0  |   histptr cachep;  | 
963  | 0  |   int dir;      /* +1 or -1 depending on direction */  | 
964  | 0  |   int dir3;     /* 3*dir, for advancing inptr & errorptr */  | 
965  | 0  |   int row;  | 
966  | 0  |   JDIMENSION col;  | 
967  | 0  |   JDIMENSION width = cinfo->output_width;  | 
968  | 0  |   JSAMPLE *range_limit = cinfo->sample_range_limit;  | 
969  | 0  |   int *error_limit = cquantize->error_limiter;  | 
970  | 0  |   JSAMPROW colormap0 = cinfo->colormap[0];  | 
971  | 0  |   JSAMPROW colormap1 = cinfo->colormap[1];  | 
972  | 0  |   JSAMPROW colormap2 = cinfo->colormap[2];  | 
973  | 0  |   SHIFT_TEMPS  | 
974  |  | 
  | 
975  | 0  |   for (row = 0; row < num_rows; row++) { | 
976  | 0  |     inptr = input_buf[row];  | 
977  | 0  |     outptr = output_buf[row];  | 
978  | 0  |     if (cquantize->on_odd_row) { | 
979  |  |       /* work right to left in this row */  | 
980  | 0  |       inptr += (width-1) * 3; /* so point to rightmost pixel */  | 
981  | 0  |       outptr += width-1;  | 
982  | 0  |       dir = -1;  | 
983  | 0  |       dir3 = -3;  | 
984  | 0  |       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */  | 
985  | 0  |       cquantize->on_odd_row = FALSE; /* flip for next time */  | 
986  | 0  |     } else { | 
987  |  |       /* work left to right in this row */  | 
988  | 0  |       dir = 1;  | 
989  | 0  |       dir3 = 3;  | 
990  | 0  |       errorptr = cquantize->fserrors; /* => entry before first real column */  | 
991  | 0  |       cquantize->on_odd_row = TRUE; /* flip for next time */  | 
992  | 0  |     }  | 
993  |  |     /* Preset error values: no error propagated to first pixel from left */  | 
994  | 0  |     cur0 = cur1 = cur2 = 0;  | 
995  |  |     /* and no error propagated to row below yet */  | 
996  | 0  |     belowerr0 = belowerr1 = belowerr2 = 0;  | 
997  | 0  |     bpreverr0 = bpreverr1 = bpreverr2 = 0;  | 
998  |  | 
  | 
999  | 0  |     for (col = width; col > 0; col--) { | 
1000  |  |       /* curN holds the error propagated from the previous pixel on the  | 
1001  |  |        * current line.  Add the error propagated from the previous line  | 
1002  |  |        * to form the complete error correction term for this pixel, and  | 
1003  |  |        * round the error term (which is expressed * 16) to an integer.  | 
1004  |  |        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct  | 
1005  |  |        * for either sign of the error value.  | 
1006  |  |        * Note: errorptr points to *previous* column's array entry.  | 
1007  |  |        */  | 
1008  | 0  |       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);  | 
1009  | 0  |       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);  | 
1010  | 0  |       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);  | 
1011  |  |       /* Limit the error using transfer function set by init_error_limit.  | 
1012  |  |        * See comments with init_error_limit for rationale.  | 
1013  |  |        */  | 
1014  | 0  |       cur0 = error_limit[cur0];  | 
1015  | 0  |       cur1 = error_limit[cur1];  | 
1016  | 0  |       cur2 = error_limit[cur2];  | 
1017  |  |       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.  | 
1018  |  |        * The maximum error is +- MAXJSAMPLE (or less with error limiting);  | 
1019  |  |        * this sets the required size of the range_limit array.  | 
1020  |  |        */  | 
1021  | 0  |       cur0 += GETJSAMPLE(inptr[0]);  | 
1022  | 0  |       cur1 += GETJSAMPLE(inptr[1]);  | 
1023  | 0  |       cur2 += GETJSAMPLE(inptr[2]);  | 
1024  | 0  |       cur0 = GETJSAMPLE(range_limit[cur0]);  | 
1025  | 0  |       cur1 = GETJSAMPLE(range_limit[cur1]);  | 
1026  | 0  |       cur2 = GETJSAMPLE(range_limit[cur2]);  | 
1027  |  |       /* Index into the cache with adjusted pixel value */  | 
1028  | 0  |       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];  | 
1029  |  |       /* If we have not seen this color before, find nearest colormap */  | 
1030  |  |       /* entry and update the cache */  | 
1031  | 0  |       if (*cachep == 0)  | 
1032  | 0  |   fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);  | 
1033  |  |       /* Now emit the colormap index for this cell */  | 
1034  | 0  |       { register int pixcode = *cachep - 1; | 
1035  | 0  |   *outptr = (JSAMPLE) pixcode;  | 
1036  |  |   /* Compute representation error for this pixel */  | 
1037  | 0  |   cur0 -= GETJSAMPLE(colormap0[pixcode]);  | 
1038  | 0  |   cur1 -= GETJSAMPLE(colormap1[pixcode]);  | 
1039  | 0  |   cur2 -= GETJSAMPLE(colormap2[pixcode]);  | 
1040  | 0  |       }  | 
1041  |  |       /* Compute error fractions to be propagated to adjacent pixels.  | 
1042  |  |        * Add these into the running sums, and simultaneously shift the  | 
1043  |  |        * next-line error sums left by 1 column.  | 
1044  |  |        */  | 
1045  | 0  |       { register LOCFSERROR bnexterr, delta; | 
1046  |  | 
  | 
1047  | 0  |   bnexterr = cur0;  /* Process component 0 */  | 
1048  | 0  |   delta = cur0 * 2;  | 
1049  | 0  |   cur0 += delta;    /* form error * 3 */  | 
1050  | 0  |   errorptr[0] = (FSERROR) (bpreverr0 + cur0);  | 
1051  | 0  |   cur0 += delta;    /* form error * 5 */  | 
1052  | 0  |   bpreverr0 = belowerr0 + cur0;  | 
1053  | 0  |   belowerr0 = bnexterr;  | 
1054  | 0  |   cur0 += delta;    /* form error * 7 */  | 
1055  | 0  |   bnexterr = cur1;  /* Process component 1 */  | 
1056  | 0  |   delta = cur1 * 2;  | 
1057  | 0  |   cur1 += delta;    /* form error * 3 */  | 
1058  | 0  |   errorptr[1] = (FSERROR) (bpreverr1 + cur1);  | 
1059  | 0  |   cur1 += delta;    /* form error * 5 */  | 
1060  | 0  |   bpreverr1 = belowerr1 + cur1;  | 
1061  | 0  |   belowerr1 = bnexterr;  | 
1062  | 0  |   cur1 += delta;    /* form error * 7 */  | 
1063  | 0  |   bnexterr = cur2;  /* Process component 2 */  | 
1064  | 0  |   delta = cur2 * 2;  | 
1065  | 0  |   cur2 += delta;    /* form error * 3 */  | 
1066  | 0  |   errorptr[2] = (FSERROR) (bpreverr2 + cur2);  | 
1067  | 0  |   cur2 += delta;    /* form error * 5 */  | 
1068  | 0  |   bpreverr2 = belowerr2 + cur2;  | 
1069  | 0  |   belowerr2 = bnexterr;  | 
1070  | 0  |   cur2 += delta;    /* form error * 7 */  | 
1071  | 0  |       }  | 
1072  |  |       /* At this point curN contains the 7/16 error value to be propagated  | 
1073  |  |        * to the next pixel on the current line, and all the errors for the  | 
1074  |  |        * next line have been shifted over.  We are therefore ready to move on.  | 
1075  |  |        */  | 
1076  | 0  |       inptr += dir3;    /* Advance pixel pointers to next column */  | 
1077  | 0  |       outptr += dir;  | 
1078  | 0  |       errorptr += dir3;   /* advance errorptr to current column */  | 
1079  | 0  |     }  | 
1080  |  |     /* Post-loop cleanup: we must unload the final error values into the  | 
1081  |  |      * final fserrors[] entry.  Note we need not unload belowerrN because  | 
1082  |  |      * it is for the dummy column before or after the actual array.  | 
1083  |  |      */  | 
1084  | 0  |     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */  | 
1085  | 0  |     errorptr[1] = (FSERROR) bpreverr1;  | 
1086  | 0  |     errorptr[2] = (FSERROR) bpreverr2;  | 
1087  | 0  |   }  | 
1088  | 0  | }  | 
1089  |  |  | 
1090  |  |  | 
1091  |  | /*  | 
1092  |  |  * Initialize the error-limiting transfer function (lookup table).  | 
1093  |  |  * The raw F-S error computation can potentially compute error values of up to  | 
1094  |  |  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be  | 
1095  |  |  * much less, otherwise obviously wrong pixels will be created.  (Typical  | 
1096  |  |  * effects include weird fringes at color-area boundaries, isolated bright  | 
1097  |  |  * pixels in a dark area, etc.)  The standard advice for avoiding this problem  | 
1098  |  |  * is to ensure that the "corners" of the color cube are allocated as output  | 
1099  |  |  * colors; then repeated errors in the same direction cannot cause cascading  | 
1100  |  |  * error buildup.  However, that only prevents the error from getting  | 
1101  |  |  * completely out of hand; Aaron Giles reports that error limiting improves  | 
1102  |  |  * the results even with corner colors allocated.  | 
1103  |  |  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty  | 
1104  |  |  * well, but the smoother transfer function used below is even better.  Thanks  | 
1105  |  |  * to Aaron Giles for this idea.  | 
1106  |  |  */  | 
1107  |  |  | 
1108  |  | LOCAL(void)  | 
1109  |  | init_error_limit (j_decompress_ptr cinfo)  | 
1110  |  | /* Allocate and fill in the error_limiter table */  | 
1111  | 0  | { | 
1112  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;  | 
1113  | 0  |   int * table;  | 
1114  | 0  |   int in, out;  | 
1115  |  | 
  | 
1116  | 0  |   table = (int *) (*cinfo->mem->alloc_small)  | 
1117  | 0  |     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));  | 
1118  | 0  |   table += MAXJSAMPLE;   /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */  | 
1119  | 0  |   cquantize->error_limiter = table;  | 
1120  |  | 
  | 
1121  | 0  | #define STEPSIZE ((MAXJSAMPLE+1)/16)  | 
1122  |  |   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */  | 
1123  | 0  |   out = 0;  | 
1124  | 0  |   for (in = 0; in < STEPSIZE; in++, out++) { | 
1125  | 0  |     table[in] = out; table[-in] = -out;  | 
1126  | 0  |   }  | 
1127  |  |   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */  | 
1128  | 0  |   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { | 
1129  | 0  |     table[in] = out; table[-in] = -out;  | 
1130  | 0  |   }  | 
1131  |  |   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */  | 
1132  | 0  |   for (; in <= MAXJSAMPLE; in++) { | 
1133  | 0  |     table[in] = out; table[-in] = -out;  | 
1134  | 0  |   }  | 
1135  | 0  | #undef STEPSIZE  | 
1136  | 0  | }  | 
1137  |  |  | 
1138  |  |  | 
1139  |  | /*  | 
1140  |  |  * Finish up at the end of each pass.  | 
1141  |  |  */  | 
1142  |  |  | 
1143  |  | METHODDEF(void)  | 
1144  |  | finish_pass1 (j_decompress_ptr cinfo)  | 
1145  | 0  | { | 
1146  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;  | 
1147  |  |  | 
1148  |  |   /* Select the representative colors and fill in cinfo->colormap */  | 
1149  | 0  |   cinfo->colormap = cquantize->sv_colormap;  | 
1150  | 0  |   select_colors(cinfo, cquantize->desired);  | 
1151  |  |   /* Force next pass to zero the color index table */  | 
1152  | 0  |   cquantize->needs_zeroed = TRUE;  | 
1153  | 0  | }  | 
1154  |  |  | 
1155  |  |  | 
1156  |  | METHODDEF(void)  | 
1157  |  | finish_pass2 (j_decompress_ptr cinfo)  | 
1158  | 0  | { | 
1159  |  |   /* no work */  | 
1160  | 0  | }  | 
1161  |  |  | 
1162  |  |  | 
1163  |  | /*  | 
1164  |  |  * Initialize for each processing pass.  | 
1165  |  |  */  | 
1166  |  |  | 
1167  |  | METHODDEF(void)  | 
1168  |  | start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)  | 
1169  | 0  | { | 
1170  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;  | 
1171  | 0  |   hist3d histogram = cquantize->histogram;  | 
1172  | 0  |   int i;  | 
1173  |  |  | 
1174  |  |   /* Only F-S dithering or no dithering is supported. */  | 
1175  |  |   /* If user asks for ordered dither, give him F-S. */  | 
1176  | 0  |   if (cinfo->dither_mode != JDITHER_NONE)  | 
1177  | 0  |     cinfo->dither_mode = JDITHER_FS;  | 
1178  |  | 
  | 
1179  | 0  |   if (is_pre_scan) { | 
1180  |  |     /* Set up method pointers */  | 
1181  | 0  |     cquantize->pub.color_quantize = prescan_quantize;  | 
1182  | 0  |     cquantize->pub.finish_pass = finish_pass1;  | 
1183  | 0  |     cquantize->needs_zeroed = TRUE; /* Always zero histogram */  | 
1184  | 0  |   } else { | 
1185  |  |     /* Set up method pointers */  | 
1186  | 0  |     if (cinfo->dither_mode == JDITHER_FS)  | 
1187  | 0  |       cquantize->pub.color_quantize = pass2_fs_dither;  | 
1188  | 0  |     else  | 
1189  | 0  |       cquantize->pub.color_quantize = pass2_no_dither;  | 
1190  | 0  |     cquantize->pub.finish_pass = finish_pass2;  | 
1191  |  |  | 
1192  |  |     /* Make sure color count is acceptable */  | 
1193  | 0  |     i = cinfo->actual_number_of_colors;  | 
1194  | 0  |     if (i < 1)  | 
1195  | 0  |       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);  | 
1196  | 0  |     if (i > MAXNUMCOLORS)  | 
1197  | 0  |       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);  | 
1198  |  | 
  | 
1199  | 0  |     if (cinfo->dither_mode == JDITHER_FS) { | 
1200  | 0  |       size_t arraysize = (size_t) ((cinfo->output_width + 2) *  | 
1201  | 0  |            (3 * SIZEOF(FSERROR)));  | 
1202  |  |       /* Allocate Floyd-Steinberg workspace if we didn't already. */  | 
1203  | 0  |       if (cquantize->fserrors == NULL)  | 
1204  | 0  |   cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)  | 
1205  | 0  |     ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);  | 
1206  |  |       /* Initialize the propagated errors to zero. */  | 
1207  | 0  |       FMEMZERO((void FAR *) cquantize->fserrors, arraysize);  | 
1208  |  |       /* Make the error-limit table if we didn't already. */  | 
1209  | 0  |       if (cquantize->error_limiter == NULL)  | 
1210  | 0  |   init_error_limit(cinfo);  | 
1211  | 0  |       cquantize->on_odd_row = FALSE;  | 
1212  | 0  |     }  | 
1213  |  | 
  | 
1214  | 0  |   }  | 
1215  |  |   /* Zero the histogram or inverse color map, if necessary */  | 
1216  | 0  |   if (cquantize->needs_zeroed) { | 
1217  | 0  |     for (i = 0; i < HIST_C0_ELEMS; i++) { | 
1218  | 0  |       FMEMZERO((void FAR *) histogram[i],  | 
1219  | 0  |          HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));  | 
1220  | 0  |     }  | 
1221  | 0  |     cquantize->needs_zeroed = FALSE;  | 
1222  | 0  |   }  | 
1223  | 0  | }  | 
1224  |  |  | 
1225  |  |  | 
1226  |  | /*  | 
1227  |  |  * Switch to a new external colormap between output passes.  | 
1228  |  |  */  | 
1229  |  |  | 
1230  |  | METHODDEF(void)  | 
1231  |  | new_color_map_2_quant (j_decompress_ptr cinfo)  | 
1232  | 0  | { | 
1233  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;  | 
1234  |  |  | 
1235  |  |   /* Reset the inverse color map */  | 
1236  | 0  |   cquantize->needs_zeroed = TRUE;  | 
1237  | 0  | }  | 
1238  |  |  | 
1239  |  |  | 
1240  |  | /*  | 
1241  |  |  * Module initialization routine for 2-pass color quantization.  | 
1242  |  |  */  | 
1243  |  |  | 
1244  |  | GLOBAL(void)  | 
1245  |  | jinit_2pass_quantizer (j_decompress_ptr cinfo)  | 
1246  | 0  | { | 
1247  | 0  |   my_cquantize_ptr cquantize;  | 
1248  | 0  |   int i;  | 
1249  |  | 
  | 
1250  | 0  |   cquantize = (my_cquantize_ptr)  | 
1251  | 0  |     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
1252  | 0  |         SIZEOF(my_cquantizer));  | 
1253  | 0  |   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;  | 
1254  | 0  |   cquantize->pub.start_pass = start_pass_2_quant;  | 
1255  | 0  |   cquantize->pub.new_color_map = new_color_map_2_quant;  | 
1256  | 0  |   cquantize->fserrors = NULL; /* flag optional arrays not allocated */  | 
1257  | 0  |   cquantize->error_limiter = NULL;  | 
1258  |  |  | 
1259  |  |   /* Make sure jdmaster didn't give me a case I can't handle */  | 
1260  | 0  |   if (cinfo->out_color_components != 3)  | 
1261  | 0  |     ERREXIT(cinfo, JERR_NOTIMPL);  | 
1262  |  |  | 
1263  |  |   /* Allocate the histogram/inverse colormap storage */  | 
1264  | 0  |   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)  | 
1265  | 0  |     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));  | 
1266  | 0  |   for (i = 0; i < HIST_C0_ELEMS; i++) { | 
1267  | 0  |     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)  | 
1268  | 0  |       ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
1269  | 0  |        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));  | 
1270  | 0  |   }  | 
1271  | 0  |   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */  | 
1272  |  |  | 
1273  |  |   /* Allocate storage for the completed colormap, if required.  | 
1274  |  |    * We do this now since it is FAR storage and may affect  | 
1275  |  |    * the memory manager's space calculations.  | 
1276  |  |    */  | 
1277  | 0  |   if (cinfo->enable_2pass_quant) { | 
1278  |  |     /* Make sure color count is acceptable */  | 
1279  | 0  |     int desired = cinfo->desired_number_of_colors;  | 
1280  |  |     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */  | 
1281  | 0  |     if (desired < 8)  | 
1282  | 0  |       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);  | 
1283  |  |     /* Make sure colormap indexes can be represented by JSAMPLEs */  | 
1284  | 0  |     if (desired > MAXNUMCOLORS)  | 
1285  | 0  |       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);  | 
1286  | 0  |     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)  | 
1287  | 0  |       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);  | 
1288  | 0  |     cquantize->desired = desired;  | 
1289  | 0  |   } else  | 
1290  | 0  |     cquantize->sv_colormap = NULL;  | 
1291  |  |  | 
1292  |  |   /* Only F-S dithering or no dithering is supported. */  | 
1293  |  |   /* If user asks for ordered dither, give him F-S. */  | 
1294  | 0  |   if (cinfo->dither_mode != JDITHER_NONE)  | 
1295  | 0  |     cinfo->dither_mode = JDITHER_FS;  | 
1296  |  |  | 
1297  |  |   /* Allocate Floyd-Steinberg workspace if necessary.  | 
1298  |  |    * This isn't really needed until pass 2, but again it is FAR storage.  | 
1299  |  |    * Although we will cope with a later change in dither_mode,  | 
1300  |  |    * we do not promise to honor max_memory_to_use if dither_mode changes.  | 
1301  |  |    */  | 
1302  | 0  |   if (cinfo->dither_mode == JDITHER_FS) { | 
1303  | 0  |     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)  | 
1304  | 0  |       ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
1305  | 0  |        (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));  | 
1306  |  |     /* Might as well create the error-limiting table too. */  | 
1307  | 0  |     init_error_limit(cinfo);  | 
1308  | 0  |   }  | 
1309  | 0  | }  | 
1310  |  |  | 
1311  |  | #endif /* QUANT_2PASS_SUPPORTED */  |