/src/freeimage-svn/FreeImage/trunk/Source/OpenEXR/IlmImf/ImfFastHuf.cpp
Line  | Count  | Source  | 
1  |  | ///////////////////////////////////////////////////////////////////////////  | 
2  |  | //  | 
3  |  | // Copyright (c) 2009-2014 DreamWorks Animation LLC.   | 
4  |  | //  | 
5  |  | // All rights reserved.  | 
6  |  | //  | 
7  |  | // Redistribution and use in source and binary forms, with or without  | 
8  |  | // modification, are permitted provided that the following conditions are  | 
9  |  | // met:  | 
10  |  | // *       Redistributions of source code must retain the above copyright  | 
11  |  | // notice, this list of conditions and the following disclaimer.  | 
12  |  | // *       Redistributions in binary form must reproduce the above  | 
13  |  | // copyright notice, this list of conditions and the following disclaimer  | 
14  |  | // in the documentation and/or other materials provided with the  | 
15  |  | // distribution.  | 
16  |  | // *       Neither the name of DreamWorks Animation nor the names of  | 
17  |  | // its contributors may be used to endorse or promote products derived  | 
18  |  | // from this software without specific prior written permission.  | 
19  |  | //  | 
20  |  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS  | 
21  |  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT  | 
22  |  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR  | 
23  |  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT  | 
24  |  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,  | 
25  |  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT  | 
26  |  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,  | 
27  |  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY  | 
28  |  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  | 
29  |  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE  | 
30  |  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
31  |  | //  | 
32  |  | ///////////////////////////////////////////////////////////////////////////  | 
33  |  |  | 
34  |  | #include "ImfFastHuf.h"  | 
35  |  | #include <Iex.h>  | 
36  |  |  | 
37  |  | #include <string.h>  | 
38  |  | #include <assert.h>  | 
39  |  | #include <math.h>  | 
40  |  | #include <vector>  | 
41  |  |  | 
42  |  | OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER  | 
43  |  |  | 
44  |  | //  | 
45  |  | // Adapted from hufUnpackEncTable -   | 
46  |  | // We don't need to reconstruct the code book, just the encoded  | 
47  |  | // lengths for each symbol. From the lengths, we can build the  | 
48  |  | // base + offset tables. This should be a bit more efficient  | 
49  |  | // for sparse code books.  | 
50  |  | //   | 
51  |  | //   table     - ptr to the start of the code length data. Will be  | 
52  |  | //               updated as we decode data  | 
53  |  | //  | 
54  |  | //   numBytes  - size of the encoded table (I think)?  | 
55  |  | //  | 
56  |  | //   minSymbol - smallest symbol in the code book  | 
57  |  | //  | 
58  |  | //   maxSymbol - largest symbol in the code book.   | 
59  |  | //  | 
60  |  | //   rleSymbol - the symbol to trigger RLE in the encoded bitstream  | 
61  |  | //  | 
62  |  |  | 
63  |  | FastHufDecoder::FastHufDecoder  | 
64  |  |     (const char *&table,  | 
65  |  |      int numBytes,  | 
66  |  |      int minSymbol,  | 
67  |  |      int maxSymbol,  | 
68  |  |      int rleSymbol)  | 
69  |  | :  | 
70  | 0  |     _rleSymbol (rleSymbol),  | 
71  | 0  |     _numSymbols (0),  | 
72  | 0  |     _minCodeLength (255),  | 
73  | 0  |     _maxCodeLength (0),  | 
74  | 0  |     _idToSymbol (0)  | 
75  | 0  | { | 
76  |  |     //  | 
77  |  |     // List of symbols that we find with non-zero code lengths  | 
78  |  |     // (listed in the order we find them). Store these in the  | 
79  |  |     // same format as the code book stores codes + lengths -   | 
80  |  |     // low 6 bits are the length, everything above that is  | 
81  |  |     // the symbol.  | 
82  |  |     //  | 
83  |  | 
  | 
84  | 0  |     std::vector<Int64> symbols;  | 
85  |  |  | 
86  |  |     //  | 
87  |  |     // The 'base' table is the minimum code at each code length. base[i]  | 
88  |  |     // is the smallest code (numerically) of length i.  | 
89  |  |     //  | 
90  |  | 
  | 
91  | 0  |     Int64 base[MAX_CODE_LEN + 1];       | 
92  |  |  | 
93  |  |     //  | 
94  |  |     // The 'offset' table is the position (in sorted order) of the first id  | 
95  |  |     // of a given code lenght. Array is indexed by code length, like base.    | 
96  |  |     //  | 
97  |  | 
  | 
98  | 0  |     Int64 offset[MAX_CODE_LEN + 1];     | 
99  |  |  | 
100  |  |     //  | 
101  |  |     // Count of how many codes at each length there are. Array is   | 
102  |  |     // indexed by code length, like base and offset.  | 
103  |  |     //  | 
104  |  | 
  | 
105  | 0  |     size_t codeCount[MAX_CODE_LEN + 1];      | 
106  |  | 
  | 
107  | 0  |     for (int i = 0; i <= MAX_CODE_LEN; ++i)  | 
108  | 0  |     { | 
109  | 0  |         codeCount[i] = 0;  | 
110  | 0  |         base[i]      = 0xffffffffffffffffL;  | 
111  | 0  |         offset[i]    = 0;  | 
112  | 0  |     }  | 
113  |  |  | 
114  |  |     //  | 
115  |  |     // Count the number of codes, the min/max code lengths, the number of  | 
116  |  |     // codes with each length, and record symbols with non-zero code  | 
117  |  |     // length as we find them.  | 
118  |  |     //  | 
119  |  | 
  | 
120  | 0  |     const char *currByte     = table;  | 
121  | 0  |     Int64       currBits     = 0;  | 
122  | 0  |     int         currBitCount = 0;  | 
123  |  | 
  | 
124  | 0  |     const int SHORT_ZEROCODE_RUN = 59;  | 
125  | 0  |     const int LONG_ZEROCODE_RUN  = 63;  | 
126  | 0  |     const int SHORTEST_LONG_RUN  = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;  | 
127  |  | 
  | 
128  | 0  |     for (Int64 symbol = minSymbol; symbol <= maxSymbol; symbol++)  | 
129  | 0  |     { | 
130  | 0  |         if (currByte - table > numBytes)  | 
131  | 0  |         { | 
132  | 0  |             throw Iex::InputExc ("Error decoding Huffman table " | 
133  | 0  |                                  "(Truncated table data).");  | 
134  | 0  |         }  | 
135  |  |  | 
136  |  |         //  | 
137  |  |         // Next code length - either:  | 
138  |  |         //       0-58  (literal code length)  | 
139  |  |         //       59-62 (various lengths runs of 0)  | 
140  |  |         //       63    (run of n 0's, with n is the next 8 bits)  | 
141  |  |         //  | 
142  |  |  | 
143  | 0  |         Int64 codeLen = readBits (6, currBits, currBitCount, currByte);  | 
144  |  | 
  | 
145  | 0  |         if (codeLen == (Int64) LONG_ZEROCODE_RUN)  | 
146  | 0  |         { | 
147  | 0  |             if (currByte - table > numBytes)  | 
148  | 0  |             { | 
149  | 0  |                 throw Iex::InputExc ("Error decoding Huffman table " | 
150  | 0  |                                      "(Truncated table data).");  | 
151  | 0  |             }  | 
152  |  |  | 
153  | 0  |             int runLen = readBits (8, currBits, currBitCount, currByte) +  | 
154  | 0  |                          SHORTEST_LONG_RUN;  | 
155  |  | 
  | 
156  | 0  |             if (symbol + runLen > maxSymbol + 1)  | 
157  | 0  |             { | 
158  | 0  |                 throw Iex::InputExc ("Error decoding Huffman table " | 
159  | 0  |                                      "(Run beyond end of table).");  | 
160  | 0  |             }  | 
161  |  |               | 
162  | 0  |             symbol += runLen - 1;  | 
163  |  | 
  | 
164  | 0  |         }  | 
165  | 0  |         else if (codeLen >= (Int64) SHORT_ZEROCODE_RUN)  | 
166  | 0  |         { | 
167  | 0  |             int runLen = codeLen - SHORT_ZEROCODE_RUN + 2;  | 
168  |  | 
  | 
169  | 0  |             if (symbol + runLen > maxSymbol + 1)  | 
170  | 0  |             { | 
171  | 0  |                 throw Iex::InputExc ("Error decoding Huffman table " | 
172  | 0  |                                      "(Run beyond end of table).");  | 
173  | 0  |             }  | 
174  |  |  | 
175  | 0  |             symbol += runLen - 1;  | 
176  |  | 
  | 
177  | 0  |         }  | 
178  | 0  |         else if (codeLen != 0)  | 
179  | 0  |         { | 
180  | 0  |             symbols.push_back ((symbol << 6) | (codeLen & 63));  | 
181  |  | 
  | 
182  | 0  |             if (codeLen < _minCodeLength)  | 
183  | 0  |                 _minCodeLength = codeLen;  | 
184  |  | 
  | 
185  | 0  |             if (codeLen > _maxCodeLength)  | 
186  | 0  |                 _maxCodeLength = codeLen;  | 
187  |  | 
  | 
188  | 0  |             codeCount[codeLen]++;  | 
189  | 0  |         }  | 
190  | 0  |     }  | 
191  |  |  | 
192  | 0  |     for (int i = 0; i < MAX_CODE_LEN; ++i)  | 
193  | 0  |         _numSymbols += codeCount[i];  | 
194  |  | 
  | 
195  | 0  |     table = currByte;  | 
196  |  |  | 
197  |  |     //  | 
198  |  |     // Compute base - once we have the code length counts, there  | 
199  |  |     //                is a closed form solution for this  | 
200  |  |     //  | 
201  |  | 
  | 
202  | 0  |     { | 
203  | 0  |         double* countTmp = new double[_maxCodeLength+1];  | 
204  |  | 
  | 
205  | 0  |         for (int l = _minCodeLength; l <= _maxCodeLength; ++l)  | 
206  | 0  |         { | 
207  | 0  |             countTmp[l] = (double)codeCount[l] *   | 
208  | 0  |                           (double)(2 << (_maxCodeLength-l));  | 
209  | 0  |         }  | 
210  |  |       | 
211  | 0  |         for (int l = _minCodeLength; l <= _maxCodeLength; ++l)  | 
212  | 0  |         { | 
213  | 0  |             double tmp = 0;  | 
214  |  | 
  | 
215  | 0  |             for (int k =l + 1; k <= _maxCodeLength; ++k)  | 
216  | 0  |                 tmp += countTmp[k];  | 
217  |  |               | 
218  | 0  |             tmp /= (double)(2 << (_maxCodeLength - l));  | 
219  |  | 
  | 
220  | 0  |             base[l] = (Int64)ceil (tmp);  | 
221  | 0  |         }  | 
222  |  | 
  | 
223  | 0  |         delete [] countTmp;  | 
224  | 0  |     }  | 
225  |  |      | 
226  |  |     //  | 
227  |  |     // Compute offset - these are the positions of the first  | 
228  |  |     //                  id (not symbol) that has length [i]  | 
229  |  |     //  | 
230  |  | 
  | 
231  | 0  |     offset[_maxCodeLength] = 0;  | 
232  |  | 
  | 
233  | 0  |     for (int i= _maxCodeLength - 1; i >= _minCodeLength; i--)  | 
234  | 0  |         offset[i] = offset[i + 1] + codeCount[i + 1];  | 
235  |  |  | 
236  |  |     //  | 
237  |  |     // Allocate and fill the symbol-to-id mapping. Smaller Ids should be  | 
238  |  |     // mapped to less-frequent symbols (which have longer codes). Use  | 
239  |  |     // the offset table to tell us where the id's for a given code   | 
240  |  |     // length start off.  | 
241  |  |     //  | 
242  |  | 
  | 
243  | 0  |     _idToSymbol = new int[_numSymbols];  | 
244  |  | 
  | 
245  | 0  |     Int64 mapping[MAX_CODE_LEN + 1];  | 
246  | 0  |     for (int i = 0; i < MAX_CODE_LEN + 1; ++i)   | 
247  | 0  |         mapping[i] = -1;  | 
248  | 0  |     for (int i = _minCodeLength; i <= _maxCodeLength; ++i)  | 
249  | 0  |         mapping[i] = offset[i];  | 
250  |  | 
  | 
251  | 0  |     for (std::vector<Int64>::const_iterator i = symbols.begin();   | 
252  | 0  |          i != symbols.end();  | 
253  | 0  |          ++i)  | 
254  | 0  |     { | 
255  | 0  |         int codeLen = *i & 63;  | 
256  | 0  |         int symbol  = *i >> 6;  | 
257  |  | 
  | 
258  | 0  |         if (mapping[codeLen] >= _numSymbols)  | 
259  | 0  |             throw Iex::InputExc ("Huffman decode error " | 
260  | 0  |                                   "(Invalid symbol in header).");  | 
261  |  |           | 
262  | 0  |         _idToSymbol[mapping[codeLen]] = symbol;  | 
263  | 0  |         mapping[codeLen]++;  | 
264  | 0  |     }  | 
265  |  |  | 
266  | 0  |     buildTables(base, offset);  | 
267  | 0  | }  | 
268  |  |  | 
269  |  |  | 
270  |  | FastHufDecoder::~FastHufDecoder()  | 
271  | 0  | { | 
272  | 0  |     delete[] _idToSymbol;  | 
273  | 0  | }  | 
274  |  |  | 
275  |  |  | 
276  |  | //  | 
277  |  | // Static check if the decoder is enabled.  | 
278  |  | //  | 
279  |  | // ATM, I only have access to little endian hardware for testing,  | 
280  |  | // so I'm not entirely sure that we are reading fom the bit stream  | 
281  |  | // properly on BE.   | 
282  |  | //  | 
283  |  | // If you happen to have more obscure hardware, check that the   | 
284  |  | // byte swapping in refill() is happening sensable, add an endian   | 
285  |  | // check if needed, and fix the preprocessor magic here.  | 
286  |  | //  | 
287  |  |  | 
288  |  | #define READ64(c) \  | 
289  | 0  |     ((Int64)(c)[0] << 56) | ((Int64)(c)[1] << 48) | ((Int64)(c)[2] << 40) | \  | 
290  | 0  |     ((Int64)(c)[3] << 32) | ((Int64)(c)[4] << 24) | ((Int64)(c)[5] << 16) | \  | 
291  | 0  |     ((Int64)(c)[6] <<  8) | ((Int64)(c)[7] )   | 
292  |  |  | 
293  |  | #ifdef __INTEL_COMPILER // ICC built-in swap for LE hosts  | 
294  |  |     #if defined (__i386__) || defined(__x86_64__)  | 
295  |  |         #undef  READ64  | 
296  |  |         #define READ64(c) _bswap64 (*(const Int64*)(c))  | 
297  |  |     #endif  | 
298  |  | #endif  | 
299  |  |  | 
300  |  |  | 
301  |  | bool  | 
302  |  | FastHufDecoder::enabled()  | 
303  | 0  | { | 
304  | 0  |     #if defined(__INTEL_COMPILER) || defined(__GNUC__)    | 
305  |  |  | 
306  |  |         //  | 
307  |  |         // Enabled for ICC, GCC:  | 
308  |  |         //       __i386__   -> x86  | 
309  |  |         //       __x86_64__ -> 64-bit x86  | 
310  |  |         //  | 
311  |  | 
  | 
312  | 0  |         #if defined (__i386__) || defined(__x86_64__)  | 
313  | 0  |             return true;  | 
314  |  |         #else  | 
315  |  |             return false;  | 
316  |  |         #endif  | 
317  |  | 
  | 
318  |  |     #elif defined (_MSC_VER)  | 
319  |  |  | 
320  |  |         //  | 
321  |  |         // Enabled for Visual Studio:  | 
322  |  |         //        _M_IX86 -> x86  | 
323  |  |         //        _M_X64  -> 64bit x86  | 
324  |  |  | 
325  |  |         #if defined (_M_IX86) || defined(_M_X64)  | 
326  |  |             return true;  | 
327  |  |         #else  | 
328  |  |             return false;  | 
329  |  |         #endif  | 
330  |  |  | 
331  |  |     #else  | 
332  |  |  | 
333  |  |         //  | 
334  |  |         // Unknown compiler - Be safe and disable.  | 
335  |  |         //  | 
336  |  |         return false;  | 
337  |  |     #endif  | 
338  | 0  | }  | 
339  |  |  | 
340  |  | //  | 
341  |  | //  | 
342  |  | // Built the acceleration tables for lookups on the upper bits  | 
343  |  | // as well as the 'LJ' tables.  | 
344  |  | //  | 
345  |  |  | 
346  |  | void  | 
347  |  | FastHufDecoder::buildTables (Int64 *base, Int64 *offset)  | 
348  | 0  | { | 
349  |  |     //  | 
350  |  |     // Build the 'left justified' base table, by shifting base left..  | 
351  |  |     //  | 
352  |  | 
  | 
353  | 0  |     for (int i = 0; i <= MAX_CODE_LEN; ++i)  | 
354  | 0  |     { | 
355  | 0  |         if (base[i] != 0xffffffffffffffffL)  | 
356  | 0  |         { | 
357  | 0  |             _ljBase[i] = base[i] << (64 - i);  | 
358  | 0  |         }  | 
359  | 0  |         else  | 
360  | 0  |         { | 
361  |  |             //  | 
362  |  |             // Unused code length - insert dummy values  | 
363  |  |             //  | 
364  |  | 
  | 
365  | 0  |             _ljBase[i] = 0xffffffffffffffffL;  | 
366  | 0  |         }  | 
367  | 0  |     }  | 
368  |  |  | 
369  |  |     //  | 
370  |  |     // Combine some terms into a big fat constant, which for  | 
371  |  |     // lack of a better term we'll call the 'left justified'   | 
372  |  |     // offset table (because it serves the same function  | 
373  |  |     // as 'offset', when using the left justified base table.  | 
374  |  |     //  | 
375  |  | 
  | 
376  | 0  |     for (int i = 0; i <= MAX_CODE_LEN; ++i)  | 
377  | 0  |         _ljOffset[i] = offset[i] - (_ljBase[i] >> (64 - i));  | 
378  |  |  | 
379  |  |     //  | 
380  |  |     // Build the acceleration tables for the lookups of  | 
381  |  |     // short codes ( <= TABLE_LOOKUP_BITS long)  | 
382  |  |     //  | 
383  |  | 
  | 
384  | 0  |     for (Int64 i = 0; i < 1 << TABLE_LOOKUP_BITS; ++i)  | 
385  | 0  |     { | 
386  | 0  |         Int64 value = i << (64 - TABLE_LOOKUP_BITS);  | 
387  |  | 
  | 
388  | 0  |         _tableSymbol[i]  = 0xffff;  | 
389  | 0  |         _tableCodeLen[i] = 0;   | 
390  |  | 
  | 
391  | 0  |         for (int codeLen = _minCodeLength; codeLen <= _maxCodeLength; ++codeLen)  | 
392  | 0  |         { | 
393  | 0  |             if (_ljBase[codeLen] <= value)  | 
394  | 0  |             { | 
395  | 0  |                 _tableCodeLen[i] = codeLen;  | 
396  |  | 
  | 
397  | 0  |                 Int64 id = _ljOffset[codeLen] + (value >> (64 - codeLen));  | 
398  | 0  |                 if (id < _numSymbols)  | 
399  | 0  |                 { | 
400  | 0  |                     _tableSymbol[i] = _idToSymbol[id];  | 
401  | 0  |                 }  | 
402  | 0  |                 else  | 
403  | 0  |                 { | 
404  | 0  |                     throw Iex::InputExc ("Huffman decode error " | 
405  | 0  |                                           "(Overrun).");  | 
406  | 0  |                 }  | 
407  | 0  |                 break;  | 
408  | 0  |             }  | 
409  | 0  |         }  | 
410  | 0  |     }  | 
411  |  |  | 
412  |  |     //  | 
413  |  |     // Store the smallest value in the table that points to real data.  | 
414  |  |     // This should be the entry for the largest length that has   | 
415  |  |     // valid data (in our case, non-dummy _ljBase)  | 
416  |  |     //  | 
417  |  |  | 
418  | 0  |     int minIdx = TABLE_LOOKUP_BITS;  | 
419  |  | 
  | 
420  | 0  |     while (minIdx > 0 && _ljBase[minIdx] == 0xffffffffffffffffL)  | 
421  | 0  |         minIdx--;  | 
422  |  | 
  | 
423  | 0  |     if (minIdx < 0)  | 
424  | 0  |     { | 
425  |  |         //  | 
426  |  |         // Error, no codes with lengths 0-TABLE_LOOKUP_BITS used.  | 
427  |  |         // Set the min value such that the table is never tested.  | 
428  |  |         //  | 
429  |  | 
  | 
430  | 0  |         _tableMin = 0xffffffffffffffffL;  | 
431  | 0  |     }  | 
432  | 0  |     else  | 
433  | 0  |     { | 
434  | 0  |         _tableMin = _ljBase[minIdx];  | 
435  | 0  |     }  | 
436  | 0  | }  | 
437  |  |  | 
438  |  |  | 
439  |  | //   | 
440  |  | // For decoding, we're holding onto 2 Int64's.   | 
441  |  | //  | 
442  |  | // The first (buffer), holds the next bits from the bitstream to be   | 
443  |  | // decoded. For certain paths in the decoder, we only need TABLE_LOOKUP_BITS  | 
444  |  | // valid bits to decode the next symbol. For other paths, we need a full  | 
445  |  | // 64-bits to decode a symbol.   | 
446  |  | //  | 
447  |  | // When we need to refill 'buffer', we could pull bits straight from   | 
448  |  | // the bitstream. But this is very slow and requires lots of book keeping  | 
449  |  | // (what's the next bit in the next byte?). Instead, we keep another Int64  | 
450  |  | // around that we use to refill from. While this doesn't cut down on the  | 
451  |  | // book keeping (still need to know how many valid bits), it does cut  | 
452  |  | // down on some of the bit shifting crazy and byte access.   | 
453  |  | //  | 
454  |  | // The refill Int64 (bufferBack) gets left-shifted after we've pulled  | 
455  |  | // off bits. If we run out of bits in the input bit stream, we just  | 
456  |  | // shift in 0's to bufferBack.   | 
457  |  | //  | 
458  |  | // The refill act takes numBits from the top of bufferBack and sticks  | 
459  |  | // them in the bottom of buffer. If there arn't enough bits in bufferBack,  | 
460  |  | // it gets refilled (to 64-bits) from the input bitstream.  | 
461  |  | //  | 
462  |  |  | 
463  |  | inline void  | 
464  |  | FastHufDecoder::refill  | 
465  |  |     (Int64 &buffer,  | 
466  |  |      int numBits,                       // number of bits to refill  | 
467  |  |      Int64 &bufferBack,                 // the next 64-bits, to refill from  | 
468  |  |      int &bufferBackNumBits,            // number of bits left in bufferBack  | 
469  |  |      const unsigned char *&currByte,    // current byte in the bitstream  | 
470  |  |      int &currBitsLeft)                 // number of bits left in the bitsream  | 
471  | 0  | { | 
472  |  |     //   | 
473  |  |     // Refill bits into the bottom of buffer, from the top of bufferBack.  | 
474  |  |     // Always top up buffer to be completely full.  | 
475  |  |     //  | 
476  |  | 
  | 
477  | 0  |     buffer |= bufferBack >> (64 - numBits);  | 
478  |  | 
  | 
479  | 0  |     if (bufferBackNumBits < numBits)  | 
480  | 0  |     { | 
481  | 0  |         numBits -= bufferBackNumBits;  | 
482  |  |  | 
483  |  |         //   | 
484  |  |         // Refill all of bufferBack from the bitstream. Either grab  | 
485  |  |         // a full 64-bit chunk, or whatever bytes are left. If we  | 
486  |  |         // don't have 64-bits left, pad with 0's.  | 
487  |  |         //  | 
488  |  | 
  | 
489  | 0  |         if (currBitsLeft >= 64)  | 
490  | 0  |         { | 
491  | 0  |             bufferBack        = READ64 (currByte);   | 
492  | 0  |             bufferBackNumBits = 64;  | 
493  | 0  |             currByte         += sizeof (Int64);  | 
494  | 0  |             currBitsLeft     -= 8 * sizeof (Int64);  | 
495  |  | 
  | 
496  | 0  |         }  | 
497  | 0  |         else  | 
498  | 0  |         { | 
499  | 0  |             bufferBack        = 0;  | 
500  | 0  |             bufferBackNumBits = 64;   | 
501  |  | 
  | 
502  | 0  |             Int64 shift = 56;  | 
503  |  |               | 
504  | 0  |             while (currBitsLeft > 0)  | 
505  | 0  |             { | 
506  | 0  |                 bufferBack |= ((Int64)(*currByte)) << shift;  | 
507  |  | 
  | 
508  | 0  |                 currByte++;  | 
509  | 0  |                 shift        -= 8;  | 
510  | 0  |                 currBitsLeft -= 8;  | 
511  | 0  |             }  | 
512  |  |  | 
513  |  |             //  | 
514  |  |             // At this point, currBitsLeft might be negative, just because  | 
515  |  |             // we're subtracting whole bytes. To keep anyone from freaking  | 
516  |  |             // out, zero the counter.  | 
517  |  |             //  | 
518  |  | 
  | 
519  | 0  |             if (currBitsLeft < 0)  | 
520  | 0  |                 currBitsLeft = 0;  | 
521  | 0  |         }  | 
522  |  | 
  | 
523  | 0  |         buffer |= bufferBack >> (64 - numBits);  | 
524  | 0  |     }  | 
525  |  |       | 
526  | 0  |     bufferBack         = bufferBack << numBits;  | 
527  | 0  |     bufferBackNumBits -= numBits;  | 
528  |  |  | 
529  |  |     //   | 
530  |  |     // We can have cases where the previous shift of bufferBack is << 64 -   | 
531  |  |     // in which case no shift occurs. The bit count math still works though,  | 
532  |  |     // so if we don't have any bits left, zero out bufferBack.  | 
533  |  |     //  | 
534  |  | 
  | 
535  | 0  |     if (bufferBackNumBits == 0)  | 
536  | 0  |         bufferBack = 0;  | 
537  | 0  | }  | 
538  |  |  | 
539  |  | //  | 
540  |  | // Read the next few bits out of a bitstream. Will be given a backing buffer  | 
541  |  | // (buffer) that may still have data left over from previous reads  | 
542  |  | // (bufferNumBits).  Bitstream pointer (currByte) will be advanced when needed.  | 
543  |  | //  | 
544  |  |  | 
545  |  | inline Int64   | 
546  |  | FastHufDecoder::readBits  | 
547  |  |     (int numBits,  | 
548  |  |      Int64 &buffer,             // c  | 
549  |  |      int &bufferNumBits,        // lc  | 
550  |  |      const char *&currByte)     // in  | 
551  | 0  | { | 
552  | 0  |     while (bufferNumBits < numBits)  | 
553  | 0  |     { | 
554  | 0  |         buffer = (buffer << 8) | *(unsigned char*)(currByte++);  | 
555  | 0  |         bufferNumBits += 8;  | 
556  | 0  |     }  | 
557  |  | 
  | 
558  | 0  |     bufferNumBits -= numBits;  | 
559  | 0  |     return (buffer >> bufferNumBits) & ((1 << numBits) - 1);  | 
560  | 0  | }  | 
561  |  |  | 
562  |  |  | 
563  |  | //  | 
564  |  | // Decode using a the 'One-Shift' strategy for decoding, with a   | 
565  |  | // small-ish table to accelerate decoding of short codes.  | 
566  |  | //  | 
567  |  | // If possible, try looking up codes into the acceleration table.  | 
568  |  | // This has a few benifits - there's no search involved; We don't  | 
569  |  | // need an additional lookup to map id to symbol; we don't need  | 
570  |  | // a full 64-bits (so less refilling).   | 
571  |  | //  | 
572  |  |  | 
573  |  | void  | 
574  |  | FastHufDecoder::decode  | 
575  |  |     (const unsigned char *src,  | 
576  |  |      int numSrcBits,  | 
577  |  |      unsigned short *dst,   | 
578  |  |      int numDstElems)  | 
579  | 0  | { | 
580  | 0  |     if (numSrcBits < 128)  | 
581  | 0  |         throw Iex::InputExc ("Error choosing Huffman decoder implementation " | 
582  | 0  |                              "(insufficient number of bits).");  | 
583  |  |  | 
584  |  |     //  | 
585  |  |     // Current position (byte/bit) in the src data stream  | 
586  |  |     // (after the first buffer fill)  | 
587  |  |     //  | 
588  |  |  | 
589  | 0  |     const unsigned char *currByte = src + 2 * sizeof (Int64);  | 
590  |  | 
  | 
591  | 0  |     numSrcBits -= 8 * 2 * sizeof (Int64);  | 
592  |  |  | 
593  |  |     //  | 
594  |  |     // 64-bit buffer holding the current bits in the stream  | 
595  |  |     //  | 
596  |  | 
  | 
597  | 0  |     Int64 buffer            = READ64 (src);   | 
598  | 0  |     int   bufferNumBits     = 64;  | 
599  |  |  | 
600  |  |     //  | 
601  |  |     // 64-bit buffer holding the next bits in the stream  | 
602  |  |     //  | 
603  |  | 
  | 
604  | 0  |     Int64 bufferBack        = READ64 ((src + sizeof (Int64)));   | 
605  | 0  |     int   bufferBackNumBits = 64;  | 
606  |  | 
  | 
607  | 0  |     int dstIdx = 0;  | 
608  |  | 
  | 
609  | 0  |     while (dstIdx < numDstElems)  | 
610  | 0  |     { | 
611  | 0  |         int  codeLen;  | 
612  | 0  |         int  symbol;  | 
613  |  |  | 
614  |  |         //  | 
615  |  |         // Test if we can be table accelerated. If so, directly  | 
616  |  |         // lookup the output symbol. Otherwise, we need to fall  | 
617  |  |         // back to searching for the code.  | 
618  |  |         //  | 
619  |  |         // If we're doing table lookups, we don't really need  | 
620  |  |         // a re-filled buffer, so long as we have TABLE_LOOKUP_BITS  | 
621  |  |         // left. But for a search, we do need a refilled table.  | 
622  |  |         //  | 
623  |  | 
  | 
624  | 0  |         if (_tableMin <= buffer)  | 
625  | 0  |         { | 
626  | 0  |             int tableIdx = buffer >> (64 - TABLE_LOOKUP_BITS);  | 
627  |  |  | 
628  |  |             //   | 
629  |  |             // For invalid codes, _tableCodeLen[] should return 0. This  | 
630  |  |             // will cause the decoder to get stuck in the current spot  | 
631  |  |             // until we run out of elements, then barf that the codestream  | 
632  |  |             // is bad.  So we don't need to stick a condition like  | 
633  |  |             //     if (codeLen > _maxCodeLength) in this inner.  | 
634  |  |             //  | 
635  |  | 
  | 
636  | 0  |             codeLen = _tableCodeLen[tableIdx];  | 
637  | 0  |             symbol  = _tableSymbol[tableIdx];  | 
638  | 0  |         }  | 
639  | 0  |         else  | 
640  | 0  |         { | 
641  | 0  |             if (bufferNumBits < 64)  | 
642  | 0  |             { | 
643  | 0  |                 refill (buffer,  | 
644  | 0  |                         64 - bufferNumBits,  | 
645  | 0  |                         bufferBack,  | 
646  | 0  |                         bufferBackNumBits,  | 
647  | 0  |                         currByte,  | 
648  | 0  |                         numSrcBits);  | 
649  |  | 
  | 
650  | 0  |                 bufferNumBits = 64;  | 
651  | 0  |             }  | 
652  |  |  | 
653  |  |             //   | 
654  |  |             // Brute force search:   | 
655  |  |             // Find the smallest length where _ljBase[length] <= buffer  | 
656  |  |             //  | 
657  |  | 
  | 
658  | 0  |             codeLen = TABLE_LOOKUP_BITS + 1;  | 
659  |  | 
  | 
660  | 0  |             while (_ljBase[codeLen] > buffer && codeLen <= _maxCodeLength)  | 
661  | 0  |                 codeLen++;  | 
662  |  | 
  | 
663  | 0  |             if (codeLen > _maxCodeLength)  | 
664  | 0  |             { | 
665  | 0  |                 throw Iex::InputExc ("Huffman decode error " | 
666  | 0  |                                      "(Decoded an invalid symbol).");  | 
667  | 0  |             }  | 
668  |  |  | 
669  | 0  |             Int64 id = _ljOffset[codeLen] + (buffer >> (64 - codeLen));  | 
670  | 0  |             if (id < _numSymbols)  | 
671  | 0  |             { | 
672  | 0  |                 symbol = _idToSymbol[id];  | 
673  | 0  |             }  | 
674  | 0  |             else  | 
675  | 0  |             { | 
676  | 0  |                 throw Iex::InputExc ("Huffman decode error " | 
677  | 0  |                                      "(Decoded an invalid symbol).");  | 
678  | 0  |             }  | 
679  | 0  |         }  | 
680  |  |  | 
681  |  |         //  | 
682  |  |         // Shift over bit stream, and update the bit count in the buffer  | 
683  |  |         //  | 
684  |  |  | 
685  | 0  |         buffer = buffer << codeLen;  | 
686  | 0  |         bufferNumBits -= codeLen;  | 
687  |  |  | 
688  |  |         //  | 
689  |  |         // If we recieved a RLE symbol (_rleSymbol), then we need  | 
690  |  |         // to read ahead 8 bits to know how many times to repeat  | 
691  |  |         // the previous symbol. Need to ensure we at least have  | 
692  |  |         // 8 bits of data in the buffer  | 
693  |  |         //  | 
694  |  | 
  | 
695  | 0  |         if (symbol == _rleSymbol)  | 
696  | 0  |         { | 
697  | 0  |             if (bufferNumBits < 8)  | 
698  | 0  |             { | 
699  | 0  |                 refill (buffer,  | 
700  | 0  |                         64 - bufferNumBits,  | 
701  | 0  |                         bufferBack,  | 
702  | 0  |                         bufferBackNumBits,  | 
703  | 0  |                         currByte,  | 
704  | 0  |                         numSrcBits);  | 
705  |  | 
  | 
706  | 0  |                 bufferNumBits = 64;  | 
707  | 0  |             }  | 
708  |  | 
  | 
709  | 0  |             int rleCount = buffer >> 56;  | 
710  |  | 
  | 
711  | 0  |             if (dstIdx < 1)  | 
712  | 0  |             { | 
713  | 0  |                 throw Iex::InputExc ("Huffman decode error (RLE code " | 
714  | 0  |                                      "with no previous symbol).");  | 
715  | 0  |             }  | 
716  |  |  | 
717  | 0  |             if (dstIdx + rleCount > numDstElems)  | 
718  | 0  |             { | 
719  | 0  |                 throw Iex::InputExc ("Huffman decode error (Symbol run " | 
720  | 0  |                                      "beyond expected output buffer length).");  | 
721  | 0  |             }  | 
722  |  |  | 
723  | 0  |             if (rleCount <= 0)   | 
724  | 0  |             { | 
725  | 0  |                 throw Iex::InputExc("Huffman decode error" | 
726  | 0  |                                     " (Invalid RLE length)");  | 
727  | 0  |             }  | 
728  |  |  | 
729  | 0  |             for (int i = 0; i < rleCount; ++i)  | 
730  | 0  |                 dst[dstIdx + i] = dst[dstIdx - 1];  | 
731  |  | 
  | 
732  | 0  |             dstIdx += rleCount;  | 
733  |  | 
  | 
734  | 0  |             buffer = buffer << 8;  | 
735  | 0  |             bufferNumBits -= 8;  | 
736  | 0  |         }  | 
737  | 0  |         else  | 
738  | 0  |         { | 
739  | 0  |             dst[dstIdx] = symbol;  | 
740  | 0  |             dstIdx++;  | 
741  | 0  |         }  | 
742  |  |  | 
743  |  |         //  | 
744  |  |         // refill bit stream buffer if we're below the number of   | 
745  |  |         // bits needed for a table lookup  | 
746  |  |         //  | 
747  |  |  | 
748  | 0  |         if (bufferNumBits < TABLE_LOOKUP_BITS)  | 
749  | 0  |         { | 
750  | 0  |             refill (buffer,  | 
751  | 0  |                     64 - bufferNumBits,  | 
752  | 0  |                     bufferBack,  | 
753  | 0  |                     bufferBackNumBits,  | 
754  | 0  |                     currByte,  | 
755  | 0  |                     numSrcBits);  | 
756  |  | 
  | 
757  | 0  |             bufferNumBits = 64;  | 
758  | 0  |         }  | 
759  | 0  |     }  | 
760  |  |  | 
761  | 0  |     if (numSrcBits != 0)  | 
762  | 0  |     { | 
763  | 0  |         throw Iex::InputExc ("Huffman decode error (Compressed data remains " | 
764  | 0  |                              "after filling expected output buffer).");  | 
765  | 0  |     }  | 
766  | 0  | }  | 
767  |  |  | 
768  |  | OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_EXIT  |