/src/freeimage-svn/FreeImage/trunk/Source/OpenEXR/IlmImf/ImfHuf.cpp
Line  | Count  | Source  | 
1  |  | ///////////////////////////////////////////////////////////////////////////  | 
2  |  | //  | 
3  |  | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas  | 
4  |  | // Digital Ltd. LLC  | 
5  |  | //   | 
6  |  | // All rights reserved.  | 
7  |  | //   | 
8  |  | // Redistribution and use in source and binary forms, with or without  | 
9  |  | // modification, are permitted provided that the following conditions are  | 
10  |  | // met:  | 
11  |  | // *       Redistributions of source code must retain the above copyright  | 
12  |  | // notice, this list of conditions and the following disclaimer.  | 
13  |  | // *       Redistributions in binary form must reproduce the above  | 
14  |  | // copyright notice, this list of conditions and the following disclaimer  | 
15  |  | // in the documentation and/or other materials provided with the  | 
16  |  | // distribution.  | 
17  |  | // *       Neither the name of Industrial Light & Magic nor the names of  | 
18  |  | // its contributors may be used to endorse or promote products derived  | 
19  |  | // from this software without specific prior written permission.   | 
20  |  | //   | 
21  |  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS  | 
22  |  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT  | 
23  |  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR  | 
24  |  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT  | 
25  |  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,  | 
26  |  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT  | 
27  |  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,  | 
28  |  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY  | 
29  |  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  | 
30  |  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE  | 
31  |  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
32  |  | //  | 
33  |  | ///////////////////////////////////////////////////////////////////////////  | 
34  |  |  | 
35  |  |  | 
36  |  |  | 
37  |  |  | 
38  |  | //-----------------------------------------------------------------------------  | 
39  |  | //  | 
40  |  | //  16-bit Huffman compression and decompression.  | 
41  |  | //  | 
42  |  | //  The source code in this file is derived from the 8-bit  | 
43  |  | //  Huffman compression and decompression routines written  | 
44  |  | //  by Christian Rouet for his PIZ image file format.  | 
45  |  | //  | 
46  |  | //-----------------------------------------------------------------------------  | 
47  |  |  | 
48  |  | #include <ImfHuf.h>  | 
49  |  | #include <ImfInt64.h>  | 
50  |  | #include "ImfAutoArray.h"  | 
51  |  | #include "ImfFastHuf.h"  | 
52  |  | #include "Iex.h"  | 
53  |  | #include <cstring>  | 
54  |  | #include <cassert>  | 
55  |  | #include <algorithm>  | 
56  |  |  | 
57  |  |  | 
58  |  | using namespace std;  | 
59  |  | using namespace IEX_NAMESPACE;  | 
60  |  | #include "ImfNamespace.h"  | 
61  |  |  | 
62  |  | OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER  | 
63  |  |  | 
64  |  | namespace { | 
65  |  |  | 
66  |  |  | 
67  |  | const int HUF_ENCBITS = 16;     // literal (value) bit length  | 
68  |  | const int HUF_DECBITS = 14;     // decoding bit size (>= 8)  | 
69  |  |  | 
70  |  | const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size  | 
71  |  | const int HUF_DECSIZE =  1 << HUF_DECBITS;  // decoding table size  | 
72  |  | const int HUF_DECMASK = HUF_DECSIZE - 1;  | 
73  |  |  | 
74  |  |  | 
75  |  | struct HufDec  | 
76  |  | {       // short code   long code | 
77  |  |         //-------------------------------  | 
78  |  |     int   len:8;    // code length    0    | 
79  |  |     int   lit:24;   // lit      p size     | 
80  |  |     int * p;    // 0      lits     | 
81  |  | };  | 
82  |  |  | 
83  |  |  | 
84  |  | void  | 
85  |  | invalidNBits ()  | 
86  | 0  | { | 
87  | 0  |     throw InputExc ("Error in header for Huffman-encoded data " | 
88  | 0  |         "(invalid number of bits).");  | 
89  | 0  | }  | 
90  |  |  | 
91  |  |  | 
92  |  | void  | 
93  |  | tooMuchData ()  | 
94  | 0  | { | 
95  | 0  |     throw InputExc ("Error in Huffman-encoded data " | 
96  | 0  |         "(decoded data are longer than expected).");  | 
97  | 0  | }  | 
98  |  |  | 
99  |  |  | 
100  |  | void  | 
101  |  | notEnoughData ()  | 
102  | 0  | { | 
103  | 0  |     throw InputExc ("Error in Huffman-encoded data " | 
104  | 0  |         "(decoded data are shorter than expected).");  | 
105  | 0  | }  | 
106  |  |  | 
107  |  |  | 
108  |  | void  | 
109  |  | invalidCode ()  | 
110  | 0  | { | 
111  | 0  |     throw InputExc ("Error in Huffman-encoded data " | 
112  | 0  |         "(invalid code).");  | 
113  | 0  | }  | 
114  |  |  | 
115  |  |  | 
116  |  | void  | 
117  |  | invalidTableSize ()  | 
118  | 0  | { | 
119  | 0  |     throw InputExc ("Error in Huffman-encoded data " | 
120  | 0  |         "(invalid code table size).");  | 
121  | 0  | }  | 
122  |  |  | 
123  |  |  | 
124  |  | void  | 
125  |  | unexpectedEndOfTable ()  | 
126  | 0  | { | 
127  | 0  |     throw InputExc ("Error in Huffman-encoded data " | 
128  | 0  |         "(unexpected end of code table data).");  | 
129  | 0  | }  | 
130  |  |  | 
131  |  |  | 
132  |  | void  | 
133  |  | tableTooLong ()  | 
134  | 0  | { | 
135  | 0  |     throw InputExc ("Error in Huffman-encoded data " | 
136  | 0  |         "(code table is longer than expected).");  | 
137  | 0  | }  | 
138  |  |  | 
139  |  |  | 
140  |  | void  | 
141  |  | invalidTableEntry ()  | 
142  | 0  | { | 
143  | 0  |     throw InputExc ("Error in Huffman-encoded data " | 
144  | 0  |         "(invalid code table entry).");  | 
145  | 0  | }  | 
146  |  |  | 
147  |  |  | 
148  |  | inline Int64  | 
149  |  | hufLength (Int64 code)  | 
150  | 0  | { | 
151  | 0  |     return code & 63;  | 
152  | 0  | }  | 
153  |  |  | 
154  |  |  | 
155  |  | inline Int64  | 
156  |  | hufCode (Int64 code)  | 
157  | 0  | { | 
158  | 0  |     return code >> 6;  | 
159  | 0  | }  | 
160  |  |  | 
161  |  |  | 
162  |  | inline void  | 
163  |  | outputBits (int nBits, Int64 bits, Int64 &c, int &lc, char *&out)  | 
164  | 0  | { | 
165  | 0  |     c <<= nBits;  | 
166  | 0  |     lc += nBits;  | 
167  |  | 
  | 
168  | 0  |     c |= bits;  | 
169  |  | 
  | 
170  | 0  |     while (lc >= 8)  | 
171  | 0  |   *out++ = (c >> (lc -= 8));  | 
172  | 0  | }  | 
173  |  |  | 
174  |  |  | 
175  |  | inline Int64  | 
176  |  | getBits (int nBits, Int64 &c, int &lc, const char *&in)  | 
177  | 0  | { | 
178  | 0  |     while (lc < nBits)  | 
179  | 0  |     { | 
180  | 0  |   c = (c << 8) | *(unsigned char *)(in++);  | 
181  | 0  |   lc += 8;  | 
182  | 0  |     }  | 
183  |  | 
  | 
184  | 0  |     lc -= nBits;  | 
185  | 0  |     return (c >> lc) & ((1 << nBits) - 1);  | 
186  | 0  | }  | 
187  |  |  | 
188  |  |  | 
189  |  | //  | 
190  |  | // ENCODING TABLE BUILDING & (UN)PACKING  | 
191  |  | //  | 
192  |  |  | 
193  |  | //  | 
194  |  | // Build a "canonical" Huffman code table:  | 
195  |  | //  - for each (uncompressed) symbol, hcode contains the length  | 
196  |  | //    of the corresponding code (in the compressed data)  | 
197  |  | //  - canonical codes are computed and stored in hcode  | 
198  |  | //  - the rules for constructing canonical codes are as follows:  | 
199  |  | //    * shorter codes (if filled with zeroes to the right)  | 
200  |  | //      have a numerically higher value than longer codes  | 
201  |  | //    * for codes with the same length, numerical values  | 
202  |  | //      increase with numerical symbol values  | 
203  |  | //  - because the canonical code table can be constructed from  | 
204  |  | //    symbol lengths alone, the code table can be transmitted  | 
205  |  | //    without sending the actual code values  | 
206  |  | //  - see http://www.compressconsult.com/huffman/  | 
207  |  | //  | 
208  |  |  | 
209  |  | void  | 
210  |  | hufCanonicalCodeTable (Int64 hcode[HUF_ENCSIZE])  | 
211  | 0  | { | 
212  | 0  |     Int64 n[59];  | 
213  |  |  | 
214  |  |     //  | 
215  |  |     // For each i from 0 through 58, count the  | 
216  |  |     // number of different codes of length i, and  | 
217  |  |     // store the count in n[i].  | 
218  |  |     //  | 
219  |  | 
  | 
220  | 0  |     for (int i = 0; i <= 58; ++i)  | 
221  | 0  |   n[i] = 0;  | 
222  |  | 
  | 
223  | 0  |     for (int i = 0; i < HUF_ENCSIZE; ++i)  | 
224  | 0  |   n[hcode[i]] += 1;  | 
225  |  |  | 
226  |  |     //  | 
227  |  |     // For each i from 58 through 1, compute the  | 
228  |  |     // numerically lowest code with length i, and  | 
229  |  |     // store that code in n[i].  | 
230  |  |     //  | 
231  |  | 
  | 
232  | 0  |     Int64 c = 0;  | 
233  |  | 
  | 
234  | 0  |     for (int i = 58; i > 0; --i)  | 
235  | 0  |     { | 
236  | 0  |   Int64 nc = ((c + n[i]) >> 1);  | 
237  | 0  |   n[i] = c;  | 
238  | 0  |   c = nc;  | 
239  | 0  |     }  | 
240  |  |  | 
241  |  |     //  | 
242  |  |     // hcode[i] contains the length, l, of the  | 
243  |  |     // code for symbol i.  Assign the next available  | 
244  |  |     // code of length l to the symbol and store both  | 
245  |  |     // l and the code in hcode[i].  | 
246  |  |     //  | 
247  |  | 
  | 
248  | 0  |     for (int i = 0; i < HUF_ENCSIZE; ++i)  | 
249  | 0  |     { | 
250  | 0  |   int l = hcode[i];  | 
251  |  | 
  | 
252  | 0  |   if (l > 0)  | 
253  | 0  |       hcode[i] = l | (n[l]++ << 6);  | 
254  | 0  |     }  | 
255  | 0  | }  | 
256  |  |  | 
257  |  |  | 
258  |  | //  | 
259  |  | // Compute Huffman codes (based on frq input) and store them in frq:  | 
260  |  | //  - code structure is : [63:lsb - 6:msb] | [5-0: bit length];  | 
261  |  | //  - max code length is 58 bits;  | 
262  |  | //  - codes outside the range [im-iM] have a null length (unused values);  | 
263  |  | //  - original frequencies are destroyed;  | 
264  |  | //  - encoding tables are used by hufEncode() and hufBuildDecTable();  | 
265  |  | //  | 
266  |  |  | 
267  |  |  | 
268  |  | struct FHeapCompare  | 
269  |  | { | 
270  | 0  |     bool operator () (Int64 *a, Int64 *b) {return *a > *b;} | 
271  |  | };  | 
272  |  |  | 
273  |  |  | 
274  |  | void  | 
275  |  | hufBuildEncTable  | 
276  |  |     (Int64* frq,  // io: input frequencies [HUF_ENCSIZE], output table  | 
277  |  |      int* im, //  o: min frq index  | 
278  |  |      int* iM) //  o: max frq index  | 
279  | 0  | { | 
280  |  |     //  | 
281  |  |     // This function assumes that when it is called, array frq  | 
282  |  |     // indicates the frequency of all possible symbols in the data  | 
283  |  |     // that are to be Huffman-encoded.  (frq[i] contains the number  | 
284  |  |     // of occurrences of symbol i in the data.)  | 
285  |  |     //  | 
286  |  |     // The loop below does three things:  | 
287  |  |     //  | 
288  |  |     // 1) Finds the minimum and maximum indices that point  | 
289  |  |     //    to non-zero entries in frq:  | 
290  |  |     //  | 
291  |  |     //     frq[im] != 0, and frq[i] == 0 for all i < im  | 
292  |  |     //     frq[iM] != 0, and frq[i] == 0 for all i > iM  | 
293  |  |     //  | 
294  |  |     // 2) Fills array fHeap with pointers to all non-zero  | 
295  |  |     //    entries in frq.  | 
296  |  |     //  | 
297  |  |     // 3) Initializes array hlink such that hlink[i] == i  | 
298  |  |     //    for all array entries.  | 
299  |  |     //  | 
300  |  | 
  | 
301  | 0  |     AutoArray <int, HUF_ENCSIZE> hlink;  | 
302  | 0  |     AutoArray <Int64 *, HUF_ENCSIZE> fHeap;  | 
303  |  | 
  | 
304  | 0  |     *im = 0;  | 
305  |  | 
  | 
306  | 0  |     while (!frq[*im])  | 
307  | 0  |   (*im)++;  | 
308  |  | 
  | 
309  | 0  |     int nf = 0;  | 
310  |  | 
  | 
311  | 0  |     for (int i = *im; i < HUF_ENCSIZE; i++)  | 
312  | 0  |     { | 
313  | 0  |   hlink[i] = i;  | 
314  |  | 
  | 
315  | 0  |   if (frq[i])  | 
316  | 0  |   { | 
317  | 0  |       fHeap[nf] = &frq[i];  | 
318  | 0  |       nf++;  | 
319  | 0  |       *iM = i;  | 
320  | 0  |   }  | 
321  | 0  |     }  | 
322  |  |  | 
323  |  |     //  | 
324  |  |     // Add a pseudo-symbol, with a frequency count of 1, to frq;  | 
325  |  |     // adjust the fHeap and hlink array accordingly.  Function  | 
326  |  |     // hufEncode() uses the pseudo-symbol for run-length encoding.  | 
327  |  |     //  | 
328  |  | 
  | 
329  | 0  |     (*iM)++;  | 
330  | 0  |     frq[*iM] = 1;  | 
331  | 0  |     fHeap[nf] = &frq[*iM];  | 
332  | 0  |     nf++;  | 
333  |  |  | 
334  |  |     //  | 
335  |  |     // Build an array, scode, such that scode[i] contains the number  | 
336  |  |     // of bits assigned to symbol i.  Conceptually this is done by  | 
337  |  |     // constructing a tree whose leaves are the symbols with non-zero  | 
338  |  |     // frequency:  | 
339  |  |     //  | 
340  |  |     //     Make a heap that contains all symbols with a non-zero frequency,  | 
341  |  |     //     with the least frequent symbol on top.  | 
342  |  |     //  | 
343  |  |     //     Repeat until only one symbol is left on the heap:  | 
344  |  |     //  | 
345  |  |     //         Take the two least frequent symbols off the top of the heap.  | 
346  |  |     //         Create a new node that has first two nodes as children, and  | 
347  |  |     //         whose frequency is the sum of the frequencies of the first  | 
348  |  |     //         two nodes.  Put the new node back into the heap.  | 
349  |  |     //  | 
350  |  |     // The last node left on the heap is the root of the tree.  For each  | 
351  |  |     // leaf node, the distance between the root and the leaf is the length  | 
352  |  |     // of the code for the corresponding symbol.  | 
353  |  |     //  | 
354  |  |     // The loop below doesn't actually build the tree; instead we compute  | 
355  |  |     // the distances of the leaves from the root on the fly.  When a new  | 
356  |  |     // node is added to the heap, then that node's descendants are linked  | 
357  |  |     // into a single linear list that starts at the new node, and the code  | 
358  |  |     // lengths of the descendants (that is, their distance from the root  | 
359  |  |     // of the tree) are incremented by one.  | 
360  |  |     //  | 
361  |  | 
  | 
362  | 0  |     make_heap (&fHeap[0], &fHeap[nf], FHeapCompare());  | 
363  |  | 
  | 
364  | 0  |     AutoArray <Int64, HUF_ENCSIZE> scode;  | 
365  | 0  |     memset (scode, 0, sizeof (Int64) * HUF_ENCSIZE);  | 
366  |  | 
  | 
367  | 0  |     while (nf > 1)  | 
368  | 0  |     { | 
369  |  |   //  | 
370  |  |   // Find the indices, mm and m, of the two smallest non-zero frq  | 
371  |  |   // values in fHeap, add the smallest frq to the second-smallest  | 
372  |  |   // frq, and remove the smallest frq value from fHeap.  | 
373  |  |   //  | 
374  |  | 
  | 
375  | 0  |   int mm = fHeap[0] - frq;  | 
376  | 0  |   pop_heap (&fHeap[0], &fHeap[nf], FHeapCompare());  | 
377  | 0  |   --nf;  | 
378  |  | 
  | 
379  | 0  |   int m = fHeap[0] - frq;  | 
380  | 0  |   pop_heap (&fHeap[0], &fHeap[nf], FHeapCompare());  | 
381  |  | 
  | 
382  | 0  |   frq[m ] += frq[mm];  | 
383  | 0  |   push_heap (&fHeap[0], &fHeap[nf], FHeapCompare());  | 
384  |  |  | 
385  |  |   //  | 
386  |  |   // The entries in scode are linked into lists with the  | 
387  |  |   // entries in hlink serving as "next" pointers and with  | 
388  |  |   // the end of a list marked by hlink[j] == j.  | 
389  |  |   //  | 
390  |  |   // Traverse the lists that start at scode[m] and scode[mm].  | 
391  |  |   // For each element visited, increment the length of the  | 
392  |  |   // corresponding code by one bit. (If we visit scode[j]  | 
393  |  |   // during the traversal, then the code for symbol j becomes  | 
394  |  |   // one bit longer.)  | 
395  |  |   //  | 
396  |  |   // Merge the lists that start at scode[m] and scode[mm]  | 
397  |  |   // into a single list that starts at scode[m].  | 
398  |  |   //  | 
399  |  |     | 
400  |  |   //  | 
401  |  |   // Add a bit to all codes in the first list.  | 
402  |  |   //  | 
403  |  | 
  | 
404  | 0  |   for (int j = m; true; j = hlink[j])  | 
405  | 0  |   { | 
406  | 0  |       scode[j]++;  | 
407  |  | 
  | 
408  | 0  |       assert (scode[j] <= 58);  | 
409  |  |  | 
410  | 0  |       if (hlink[j] == j)  | 
411  | 0  |       { | 
412  |  |     //  | 
413  |  |     // Merge the two lists.  | 
414  |  |     //  | 
415  |  | 
  | 
416  | 0  |     hlink[j] = mm;  | 
417  | 0  |     break;  | 
418  | 0  |       }  | 
419  | 0  |   }  | 
420  |  |  | 
421  |  |   //  | 
422  |  |   // Add a bit to all codes in the second list  | 
423  |  |   //  | 
424  |  |  | 
425  | 0  |   for (int j = mm; true; j = hlink[j])  | 
426  | 0  |   { | 
427  | 0  |       scode[j]++;  | 
428  |  | 
  | 
429  | 0  |       assert (scode[j] <= 58);  | 
430  |  |  | 
431  | 0  |       if (hlink[j] == j)  | 
432  | 0  |     break;  | 
433  | 0  |   }  | 
434  | 0  |     }  | 
435  |  |  | 
436  |  |     //  | 
437  |  |     // Build a canonical Huffman code table, replacing the code  | 
438  |  |     // lengths in scode with (code, code length) pairs.  Copy the  | 
439  |  |     // code table from scode into frq.  | 
440  |  |     //  | 
441  |  |  | 
442  | 0  |     hufCanonicalCodeTable (scode);  | 
443  | 0  |     memcpy (frq, scode, sizeof (Int64) * HUF_ENCSIZE);  | 
444  | 0  | }  | 
445  |  |  | 
446  |  |  | 
447  |  | //  | 
448  |  | // Pack an encoding table:  | 
449  |  | //  - only code lengths, not actual codes, are stored  | 
450  |  | //  - runs of zeroes are compressed as follows:  | 
451  |  | //  | 
452  |  | //    unpacked    packed  | 
453  |  | //    --------------------------------  | 
454  |  | //    1 zero    0 (6 bits)  | 
455  |  | //    2 zeroes    59  | 
456  |  | //    3 zeroes    60  | 
457  |  | //    4 zeroes    61  | 
458  |  | //    5 zeroes    62  | 
459  |  | //    n zeroes (6 or more)  63 n-6  (6 + 8 bits)  | 
460  |  | //  | 
461  |  |  | 
462  |  | const int SHORT_ZEROCODE_RUN = 59;  | 
463  |  | const int LONG_ZEROCODE_RUN  = 63;  | 
464  |  | const int SHORTEST_LONG_RUN  = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;  | 
465  |  | const int LONGEST_LONG_RUN   = 255 + SHORTEST_LONG_RUN;  | 
466  |  |  | 
467  |  |  | 
468  |  | void  | 
469  |  | hufPackEncTable  | 
470  |  |     (const Int64* hcode,    // i : encoding table [HUF_ENCSIZE]  | 
471  |  |      int    im,   // i : min hcode index  | 
472  |  |      int    iM,   // i : max hcode index  | 
473  |  |      char**   pcode)    //  o: ptr to packed table (updated)  | 
474  | 0  | { | 
475  | 0  |     char *p = *pcode;  | 
476  | 0  |     Int64 c = 0;  | 
477  | 0  |     int lc = 0;  | 
478  |  | 
  | 
479  | 0  |     for (; im <= iM; im++)  | 
480  | 0  |     { | 
481  | 0  |   int l = hufLength (hcode[im]);  | 
482  |  | 
  | 
483  | 0  |   if (l == 0)  | 
484  | 0  |   { | 
485  | 0  |       int zerun = 1;  | 
486  |  | 
  | 
487  | 0  |       while ((im < iM) && (zerun < LONGEST_LONG_RUN))  | 
488  | 0  |       { | 
489  | 0  |     if (hufLength (hcode[im+1]) > 0 )     | 
490  | 0  |         break;  | 
491  | 0  |     im++;  | 
492  | 0  |     zerun++;  | 
493  | 0  |       }  | 
494  |  | 
  | 
495  | 0  |       if (zerun >= 2)  | 
496  | 0  |       { | 
497  | 0  |     if (zerun >= SHORTEST_LONG_RUN)  | 
498  | 0  |     { | 
499  | 0  |         outputBits (6, LONG_ZEROCODE_RUN, c, lc, p);  | 
500  | 0  |         outputBits (8, zerun - SHORTEST_LONG_RUN, c, lc, p);  | 
501  | 0  |     }  | 
502  | 0  |     else  | 
503  | 0  |     { | 
504  | 0  |         outputBits (6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p);  | 
505  | 0  |     }  | 
506  | 0  |     continue;  | 
507  | 0  |       }  | 
508  | 0  |   }  | 
509  |  |  | 
510  | 0  |   outputBits (6, l, c, lc, p);  | 
511  | 0  |     }  | 
512  |  | 
  | 
513  | 0  |     if (lc > 0)  | 
514  | 0  |   *p++ = (unsigned char) (c << (8 - lc));  | 
515  |  | 
  | 
516  | 0  |     *pcode = p;  | 
517  | 0  | }  | 
518  |  |  | 
519  |  |  | 
520  |  | //  | 
521  |  | // Unpack an encoding table packed by hufPackEncTable():  | 
522  |  | //  | 
523  |  |  | 
524  |  | void  | 
525  |  | hufUnpackEncTable  | 
526  |  |     (const char** pcode,    // io: ptr to packed table (updated)  | 
527  |  |      int    ni,   // i : input size (in bytes)  | 
528  |  |      int    im,   // i : min hcode index  | 
529  |  |      int    iM,   // i : max hcode index  | 
530  |  |      Int64*   hcode)    //  o: encoding table [HUF_ENCSIZE]  | 
531  | 0  | { | 
532  | 0  |     memset (hcode, 0, sizeof (Int64) * HUF_ENCSIZE);  | 
533  |  | 
  | 
534  | 0  |     const char *p = *pcode;  | 
535  | 0  |     Int64 c = 0;  | 
536  | 0  |     int lc = 0;  | 
537  |  | 
  | 
538  | 0  |     for (; im <= iM; im++)  | 
539  | 0  |     { | 
540  | 0  |   if (p - *pcode > ni)  | 
541  | 0  |       unexpectedEndOfTable();  | 
542  |  | 
  | 
543  | 0  |   Int64 l = hcode[im] = getBits (6, c, lc, p); // code length  | 
544  |  | 
  | 
545  | 0  |   if (l == (Int64) LONG_ZEROCODE_RUN)  | 
546  | 0  |   { | 
547  | 0  |       if (p - *pcode > ni)  | 
548  | 0  |     unexpectedEndOfTable();  | 
549  |  | 
  | 
550  | 0  |       int zerun = getBits (8, c, lc, p) + SHORTEST_LONG_RUN;  | 
551  |  | 
  | 
552  | 0  |       if (im + zerun > iM + 1)  | 
553  | 0  |     tableTooLong();  | 
554  |  | 
  | 
555  | 0  |       while (zerun--)  | 
556  | 0  |     hcode[im++] = 0;  | 
557  |  | 
  | 
558  | 0  |       im--;  | 
559  | 0  |   }  | 
560  | 0  |   else if (l >= (Int64) SHORT_ZEROCODE_RUN)  | 
561  | 0  |   { | 
562  | 0  |       int zerun = l - SHORT_ZEROCODE_RUN + 2;  | 
563  |  | 
  | 
564  | 0  |       if (im + zerun > iM + 1)  | 
565  | 0  |     tableTooLong();  | 
566  |  | 
  | 
567  | 0  |       while (zerun--)  | 
568  | 0  |     hcode[im++] = 0;  | 
569  |  | 
  | 
570  | 0  |       im--;  | 
571  | 0  |   }  | 
572  | 0  |     }  | 
573  |  | 
  | 
574  | 0  |     *pcode = const_cast<char *>(p);  | 
575  |  | 
  | 
576  | 0  |     hufCanonicalCodeTable (hcode);  | 
577  | 0  | }  | 
578  |  |  | 
579  |  |  | 
580  |  | //  | 
581  |  | // DECODING TABLE BUILDING  | 
582  |  | //  | 
583  |  |  | 
584  |  | //  | 
585  |  | // Clear a newly allocated decoding table so that it contains only zeroes.  | 
586  |  | //  | 
587  |  |  | 
588  |  | void  | 
589  |  | hufClearDecTable  | 
590  |  |     (HufDec *   hdecod)   // io: (allocated by caller)  | 
591  |  |               //     decoding table [HUF_DECSIZE]  | 
592  | 0  | { | 
593  | 0  |     memset (hdecod, 0, sizeof (HufDec) * HUF_DECSIZE);  | 
594  | 0  | }  | 
595  |  |  | 
596  |  |  | 
597  |  | //  | 
598  |  | // Build a decoding hash table based on the encoding table hcode:  | 
599  |  | //  - short codes (<= HUF_DECBITS) are resolved with a single table access;  | 
600  |  | //  - long code entry allocations are not optimized, because long codes are  | 
601  |  | //    unfrequent;  | 
602  |  | //  - decoding tables are used by hufDecode();  | 
603  |  | //  | 
604  |  |  | 
605  |  | void  | 
606  |  | hufBuildDecTable  | 
607  |  |     (const Int64* hcode,    // i : encoding table  | 
608  |  |      int    im,   // i : min index in hcode  | 
609  |  |      int    iM,   // i : max index in hcode  | 
610  |  |      HufDec *   hdecod)   //  o: (allocated by caller)  | 
611  |  |               //     decoding table [HUF_DECSIZE]  | 
612  | 0  | { | 
613  |  |     //  | 
614  |  |     // Init hashtable & loop on all codes.  | 
615  |  |     // Assumes that hufClearDecTable(hdecod) has already been called.  | 
616  |  |     //  | 
617  |  | 
  | 
618  | 0  |     for (; im <= iM; im++)  | 
619  | 0  |     { | 
620  | 0  |   Int64 c = hufCode (hcode[im]);  | 
621  | 0  |   int l = hufLength (hcode[im]);  | 
622  |  | 
  | 
623  | 0  |   if (c >> l)  | 
624  | 0  |   { | 
625  |  |       //  | 
626  |  |       // Error: c is supposed to be an l-bit code,  | 
627  |  |       // but c contains a value that is greater  | 
628  |  |       // than the largest l-bit number.  | 
629  |  |       //  | 
630  |  | 
  | 
631  | 0  |       invalidTableEntry();  | 
632  | 0  |   }  | 
633  |  | 
  | 
634  | 0  |   if (l > HUF_DECBITS)  | 
635  | 0  |   { | 
636  |  |       //  | 
637  |  |       // Long code: add a secondary entry  | 
638  |  |       //  | 
639  |  | 
  | 
640  | 0  |       HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));  | 
641  |  | 
  | 
642  | 0  |       if (pl->len)  | 
643  | 0  |       { | 
644  |  |     //  | 
645  |  |     // Error: a short code has already  | 
646  |  |     // been stored in table entry *pl.  | 
647  |  |     //  | 
648  |  | 
  | 
649  | 0  |     invalidTableEntry();  | 
650  | 0  |       }  | 
651  |  | 
  | 
652  | 0  |       pl->lit++;  | 
653  |  | 
  | 
654  | 0  |       if (pl->p)  | 
655  | 0  |       { | 
656  | 0  |     int *p = pl->p;  | 
657  | 0  |     pl->p = new int [pl->lit];  | 
658  |  | 
  | 
659  | 0  |     for (int i = 0; i < pl->lit - 1; ++i)  | 
660  | 0  |         pl->p[i] = p[i];  | 
661  |  | 
  | 
662  | 0  |     delete [] p;  | 
663  | 0  |       }  | 
664  | 0  |       else  | 
665  | 0  |       { | 
666  | 0  |     pl->p = new int [1];  | 
667  | 0  |       }  | 
668  |  | 
  | 
669  | 0  |       pl->p[pl->lit - 1]= im;  | 
670  | 0  |   }  | 
671  | 0  |   else if (l)  | 
672  | 0  |   { | 
673  |  |       //  | 
674  |  |       // Short code: init all primary entries  | 
675  |  |       //  | 
676  |  | 
  | 
677  | 0  |       HufDec *pl = hdecod + (c << (HUF_DECBITS - l));  | 
678  |  | 
  | 
679  | 0  |       for (Int64 i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++)  | 
680  | 0  |       { | 
681  | 0  |     if (pl->len || pl->p)  | 
682  | 0  |     { | 
683  |  |         //  | 
684  |  |         // Error: a short code or a long code has  | 
685  |  |         // already been stored in table entry *pl.  | 
686  |  |         //  | 
687  |  | 
  | 
688  | 0  |         invalidTableEntry();  | 
689  | 0  |     }  | 
690  |  | 
  | 
691  | 0  |     pl->len = l;  | 
692  | 0  |     pl->lit = im;  | 
693  | 0  |       }  | 
694  | 0  |   }  | 
695  | 0  |     }  | 
696  | 0  | }  | 
697  |  |  | 
698  |  |  | 
699  |  | //  | 
700  |  | // Free the long code entries of a decoding table built by hufBuildDecTable()  | 
701  |  | //  | 
702  |  |  | 
703  |  | void  | 
704  |  | hufFreeDecTable (HufDec *hdecod)  // io: Decoding table  | 
705  | 0  | { | 
706  | 0  |     for (int i = 0; i < HUF_DECSIZE; i++)  | 
707  | 0  |     { | 
708  | 0  |   if (hdecod[i].p)  | 
709  | 0  |   { | 
710  | 0  |       delete [] hdecod[i].p;  | 
711  | 0  |       hdecod[i].p = 0;  | 
712  | 0  |   }  | 
713  | 0  |     }  | 
714  | 0  | }  | 
715  |  |  | 
716  |  |  | 
717  |  | //  | 
718  |  | // ENCODING  | 
719  |  | //  | 
720  |  |  | 
721  |  | inline void  | 
722  |  | outputCode (Int64 code, Int64 &c, int &lc, char *&out)  | 
723  | 0  | { | 
724  | 0  |     outputBits (hufLength (code), hufCode (code), c, lc, out);  | 
725  | 0  | }  | 
726  |  |  | 
727  |  |  | 
728  |  | inline void  | 
729  |  | sendCode (Int64 sCode, int runCount, Int64 runCode,  | 
730  |  |     Int64 &c, int &lc, char *&out)  | 
731  | 0  | { | 
732  |  |     //  | 
733  |  |     // Output a run of runCount instances of the symbol sCount.  | 
734  |  |     // Output the symbols explicitly, or if that is shorter, output  | 
735  |  |     // the sCode symbol once followed by a runCode symbol and runCount  | 
736  |  |     // expressed as an 8-bit number.  | 
737  |  |     //  | 
738  |  |       | 
739  | 0  |     if (hufLength (sCode) + hufLength (runCode) + 8 <  | 
740  | 0  |         hufLength (sCode) * runCount)  | 
741  | 0  |     { | 
742  | 0  |   outputCode (sCode, c, lc, out);  | 
743  | 0  |   outputCode (runCode, c, lc, out);  | 
744  | 0  |   outputBits (8, runCount, c, lc, out);  | 
745  | 0  |     }  | 
746  | 0  |     else  | 
747  | 0  |     { | 
748  | 0  |   while (runCount-- >= 0)  | 
749  | 0  |       outputCode (sCode, c, lc, out);  | 
750  | 0  |     }  | 
751  | 0  | }  | 
752  |  |  | 
753  |  |  | 
754  |  | //  | 
755  |  | // Encode (compress) ni values based on the Huffman encoding table hcode:  | 
756  |  | //  | 
757  |  |  | 
758  |  | int  | 
759  |  | hufEncode       // return: output size (in bits)  | 
760  |  |     (const Int64*       hcode,  // i : encoding table  | 
761  |  |      const unsigned short*  in,   // i : uncompressed input buffer  | 
762  |  |      const int          ni,   // i : input buffer size (in bytes)  | 
763  |  |      int                rlc,  // i : rl code  | 
764  |  |      char*              out)  //  o: compressed output buffer  | 
765  | 0  | { | 
766  | 0  |     char *outStart = out;  | 
767  | 0  |     Int64 c = 0;  // bits not yet written to out  | 
768  | 0  |     int lc = 0;   // number of valid bits in c (LSB)  | 
769  | 0  |     int s = in[0];  | 
770  | 0  |     int cs = 0;  | 
771  |  |  | 
772  |  |     //  | 
773  |  |     // Loop on input values  | 
774  |  |     //  | 
775  |  | 
  | 
776  | 0  |     for (int i = 1; i < ni; i++)  | 
777  | 0  |     { | 
778  |  |   //  | 
779  |  |   // Count same values or send code  | 
780  |  |   //  | 
781  |  | 
  | 
782  | 0  |   if (s == in[i] && cs < 255)  | 
783  | 0  |   { | 
784  | 0  |       cs++;  | 
785  | 0  |   }  | 
786  | 0  |   else  | 
787  | 0  |   { | 
788  | 0  |       sendCode (hcode[s], cs, hcode[rlc], c, lc, out);  | 
789  | 0  |       cs=0;  | 
790  | 0  |   }  | 
791  |  | 
  | 
792  | 0  |   s = in[i];  | 
793  | 0  |     }  | 
794  |  |  | 
795  |  |     //  | 
796  |  |     // Send remaining code  | 
797  |  |     //  | 
798  |  | 
  | 
799  | 0  |     sendCode (hcode[s], cs, hcode[rlc], c, lc, out);  | 
800  |  | 
  | 
801  | 0  |     if (lc)  | 
802  | 0  |   *out = (c << (8 - lc)) & 0xff;  | 
803  |  | 
  | 
804  | 0  |     return (out - outStart) * 8 + lc;  | 
805  | 0  | }  | 
806  |  |  | 
807  |  |  | 
808  |  | //  | 
809  |  | // DECODING  | 
810  |  | //  | 
811  |  |  | 
812  |  | //  | 
813  |  | // In order to force the compiler to inline them,  | 
814  |  | // getChar() and getCode() are implemented as macros  | 
815  |  | // instead of "inline" functions.  | 
816  |  | //  | 
817  |  |  | 
818  | 0  | #define getChar(c, lc, in)      \  | 
819  | 0  | {           \ | 
820  | 0  |     c = (c << 8) | *(unsigned char *)(in++);  \  | 
821  | 0  |     lc += 8;          \  | 
822  | 0  | }  | 
823  |  |  | 
824  |  |  | 
825  | 0  | #define getCode(po, rlc, c, lc, in, out, ob, oe)\  | 
826  | 0  | {           \ | 
827  | 0  |     if (po == rlc)       \  | 
828  | 0  |     {           \ | 
829  | 0  |   if (lc < 8)       \  | 
830  | 0  |       getChar(c, lc, in);      \  | 
831  | 0  |             \  | 
832  | 0  |   lc -= 8;        \  | 
833  | 0  |             \  | 
834  | 0  |   unsigned char cs = (c >> lc);   \  | 
835  | 0  |             \  | 
836  | 0  |   if (out + cs > oe)     \  | 
837  | 0  |       tooMuchData();     \  | 
838  | 0  |   else if (out - 1 < ob)     \  | 
839  | 0  |       notEnoughData();     \  | 
840  | 0  |             \  | 
841  | 0  |   unsigned short s = out[-1];   \  | 
842  | 0  |             \  | 
843  | 0  |   while (cs-- > 0)     \  | 
844  | 0  |       *out++ = s;       \  | 
845  | 0  |     }           \  | 
846  | 0  |     else if (out < oe)       \  | 
847  | 0  |     {           \ | 
848  | 0  |   *out++ = po;        \  | 
849  | 0  |     }            \  | 
850  | 0  |     else          \  | 
851  | 0  |     {           \ | 
852  | 0  |   tooMuchData();        \  | 
853  | 0  |     }            \  | 
854  | 0  | }  | 
855  |  |  | 
856  |  |  | 
857  |  | //  | 
858  |  | // Decode (uncompress) ni bits based on encoding & decoding tables:  | 
859  |  | //  | 
860  |  |  | 
861  |  | void  | 
862  |  | hufDecode  | 
863  |  |     (const Int64 *  hcode,  // i : encoding table  | 
864  |  |      const HufDec *   hdecod, // i : decoding table  | 
865  |  |      const char*  in, // i : compressed input buffer  | 
866  |  |      int    ni, // i : input size (in bits)  | 
867  |  |      int    rlc,  // i : run-length code  | 
868  |  |      int    no, // i : expected output size (in bytes)  | 
869  |  |      unsigned short*  out)  //  o: uncompressed output buffer  | 
870  | 0  | { | 
871  | 0  |     Int64 c = 0;  | 
872  | 0  |     int lc = 0;  | 
873  | 0  |     unsigned short * outb = out;  | 
874  | 0  |     unsigned short * oe = out + no;  | 
875  | 0  |     const char * ie = in + (ni + 7) / 8; // input byte size  | 
876  |  |  | 
877  |  |     //  | 
878  |  |     // Loop on input bytes  | 
879  |  |     //  | 
880  |  | 
  | 
881  | 0  |     while (in < ie)  | 
882  | 0  |     { | 
883  | 0  |   getChar (c, lc, in);  | 
884  |  |  | 
885  |  |   //  | 
886  |  |   // Access decoding table  | 
887  |  |   //  | 
888  |  | 
  | 
889  | 0  |   while (lc >= HUF_DECBITS)  | 
890  | 0  |   { | 
891  | 0  |       const HufDec pl = hdecod[(c >> (lc-HUF_DECBITS)) & HUF_DECMASK];  | 
892  |  | 
  | 
893  | 0  |       if (pl.len)  | 
894  | 0  |       { | 
895  |  |     //  | 
896  |  |     // Get short code  | 
897  |  |     //  | 
898  |  | 
  | 
899  | 0  |     lc -= pl.len;  | 
900  | 0  |     getCode (pl.lit, rlc, c, lc, in, out, outb, oe);  | 
901  | 0  |       }  | 
902  | 0  |       else  | 
903  | 0  |       { | 
904  | 0  |     if (!pl.p)  | 
905  | 0  |         invalidCode(); // wrong code  | 
906  |  |  | 
907  |  |     //  | 
908  |  |     // Search long code  | 
909  |  |     //  | 
910  |  | 
  | 
911  | 0  |     int j;  | 
912  |  | 
  | 
913  | 0  |     for (j = 0; j < pl.lit; j++)  | 
914  | 0  |     { | 
915  | 0  |         int l = hufLength (hcode[pl.p[j]]);  | 
916  |  | 
  | 
917  | 0  |         while (lc < l && in < ie) // get more bits  | 
918  | 0  |       getChar (c, lc, in);  | 
919  |  | 
  | 
920  | 0  |         if (lc >= l)  | 
921  | 0  |         { | 
922  | 0  |       if (hufCode (hcode[pl.p[j]]) ==  | 
923  | 0  |         ((c >> (lc - l)) & ((Int64(1) << l) - 1)))  | 
924  | 0  |       { | 
925  |  |           //  | 
926  |  |           // Found : get long code  | 
927  |  |           //  | 
928  |  | 
  | 
929  | 0  |           lc -= l;  | 
930  | 0  |           getCode (pl.p[j], rlc, c, lc, in, out, outb, oe);  | 
931  | 0  |           break;  | 
932  | 0  |       }  | 
933  | 0  |         }  | 
934  | 0  |     }  | 
935  |  | 
  | 
936  | 0  |     if (j == pl.lit)  | 
937  | 0  |         invalidCode(); // Not found  | 
938  | 0  |       }  | 
939  | 0  |   }  | 
940  | 0  |     }  | 
941  |  |  | 
942  |  |     //  | 
943  |  |     // Get remaining (short) codes  | 
944  |  |     //  | 
945  |  | 
  | 
946  | 0  |     int i = (8 - ni) & 7;  | 
947  | 0  |     c >>= i;  | 
948  | 0  |     lc -= i;  | 
949  |  | 
  | 
950  | 0  |     while (lc > 0)  | 
951  | 0  |     { | 
952  | 0  |   const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];  | 
953  |  | 
  | 
954  | 0  |   if (pl.len)  | 
955  | 0  |   { | 
956  | 0  |       lc -= pl.len;  | 
957  | 0  |       getCode (pl.lit, rlc, c, lc, in, out, outb, oe);  | 
958  | 0  |   }  | 
959  | 0  |   else  | 
960  | 0  |   { | 
961  | 0  |       invalidCode(); // wrong (long) code  | 
962  | 0  |   }  | 
963  | 0  |     }  | 
964  |  | 
  | 
965  | 0  |     if (out - outb != no)  | 
966  | 0  |   notEnoughData ();  | 
967  | 0  | }  | 
968  |  |  | 
969  |  |  | 
970  |  | void  | 
971  |  | countFrequencies (Int64 freq[HUF_ENCSIZE],  | 
972  |  |       const unsigned short data[/*n*/],  | 
973  |  |       int n)  | 
974  | 0  | { | 
975  | 0  |     for (int i = 0; i < HUF_ENCSIZE; ++i)  | 
976  | 0  |   freq[i] = 0;  | 
977  |  | 
  | 
978  | 0  |     for (int i = 0; i < n; ++i)  | 
979  | 0  |   ++freq[data[i]];  | 
980  | 0  | }  | 
981  |  |  | 
982  |  |  | 
983  |  | void  | 
984  |  | writeUInt (char buf[4], unsigned int i)  | 
985  | 0  | { | 
986  | 0  |     unsigned char *b = (unsigned char *) buf;  | 
987  |  | 
  | 
988  | 0  |     b[0] = i;  | 
989  | 0  |     b[1] = i >> 8;  | 
990  | 0  |     b[2] = i >> 16;  | 
991  | 0  |     b[3] = i >> 24;  | 
992  | 0  | }  | 
993  |  |  | 
994  |  |  | 
995  |  | unsigned int  | 
996  |  | readUInt (const char buf[4])  | 
997  | 0  | { | 
998  | 0  |     const unsigned char *b = (const unsigned char *) buf;  | 
999  |  | 
  | 
1000  | 0  |     return ( b[0]        & 0x000000ff) |  | 
1001  | 0  |      ((b[1] <<  8) & 0x0000ff00) |  | 
1002  | 0  |      ((b[2] << 16) & 0x00ff0000) |  | 
1003  | 0  |      ((b[3] << 24) & 0xff000000);  | 
1004  | 0  | }  | 
1005  |  |  | 
1006  |  | } // namespace  | 
1007  |  |  | 
1008  |  |  | 
1009  |  | //  | 
1010  |  | // EXTERNAL INTERFACE  | 
1011  |  | //  | 
1012  |  |  | 
1013  |  |  | 
1014  |  | int  | 
1015  |  | hufCompress (const unsigned short raw[],  | 
1016  |  |        int nRaw,  | 
1017  |  |        char compressed[])  | 
1018  | 0  | { | 
1019  | 0  |     if (nRaw == 0)  | 
1020  | 0  |   return 0;  | 
1021  |  |  | 
1022  | 0  |     AutoArray <Int64, HUF_ENCSIZE> freq;  | 
1023  |  | 
  | 
1024  | 0  |     countFrequencies (freq, raw, nRaw);  | 
1025  |  | 
  | 
1026  | 0  |     int im = 0;  | 
1027  | 0  |     int iM = 0;  | 
1028  | 0  |     hufBuildEncTable (freq, &im, &iM);  | 
1029  |  | 
  | 
1030  | 0  |     char *tableStart = compressed + 20;  | 
1031  | 0  |     char *tableEnd   = tableStart;  | 
1032  | 0  |     hufPackEncTable (freq, im, iM, &tableEnd);  | 
1033  | 0  |     int tableLength = tableEnd - tableStart;  | 
1034  |  | 
  | 
1035  | 0  |     char *dataStart = tableEnd;  | 
1036  | 0  |     int nBits = hufEncode (freq, raw, nRaw, iM, dataStart);  | 
1037  | 0  |     int dataLength = (nBits + 7) / 8;  | 
1038  |  | 
  | 
1039  | 0  |     writeUInt (compressed,      im);  | 
1040  | 0  |     writeUInt (compressed +  4, iM);  | 
1041  | 0  |     writeUInt (compressed +  8, tableLength);  | 
1042  | 0  |     writeUInt (compressed + 12, nBits);  | 
1043  | 0  |     writeUInt (compressed + 16, 0); // room for future extensions  | 
1044  |  | 
  | 
1045  | 0  |     return dataStart + dataLength - compressed;  | 
1046  | 0  | }  | 
1047  |  |  | 
1048  |  |  | 
1049  |  | void  | 
1050  |  | hufUncompress (const char compressed[],  | 
1051  |  |          int nCompressed,  | 
1052  |  |          unsigned short raw[],  | 
1053  |  |          int nRaw)  | 
1054  | 0  | { | 
1055  | 0  |     if (nCompressed == 0)  | 
1056  | 0  |     { | 
1057  | 0  |   if (nRaw != 0)  | 
1058  | 0  |       notEnoughData();  | 
1059  |  | 
  | 
1060  | 0  |   return;  | 
1061  | 0  |     }  | 
1062  |  |  | 
1063  | 0  |     int im = readUInt (compressed);  | 
1064  | 0  |     int iM = readUInt (compressed + 4);  | 
1065  |  |     // int tableLength = readUInt (compressed + 8);  | 
1066  | 0  |     int nBits = readUInt (compressed + 12);  | 
1067  |  | 
  | 
1068  | 0  |     if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE)  | 
1069  | 0  |   invalidTableSize();  | 
1070  |  | 
  | 
1071  | 0  |     const char *ptr = compressed + 20;  | 
1072  |  |  | 
1073  |  |     //   | 
1074  |  |     // Fast decoder needs at least 2x64-bits of compressed data, and  | 
1075  |  |     // needs to be run-able on this platform. Otherwise, fall back  | 
1076  |  |     // to the original decoder  | 
1077  |  |     //  | 
1078  |  | 
  | 
1079  | 0  |     if (FastHufDecoder::enabled() && nBits > 128)  | 
1080  | 0  |     { | 
1081  | 0  |         FastHufDecoder fhd (ptr, nCompressed - (ptr - compressed), im, iM, iM);  | 
1082  | 0  |         fhd.decode ((unsigned char*)ptr, nBits, raw, nRaw);  | 
1083  | 0  |     }  | 
1084  | 0  |     else  | 
1085  | 0  |     { | 
1086  | 0  |         AutoArray <Int64, HUF_ENCSIZE> freq;  | 
1087  | 0  |         AutoArray <HufDec, HUF_DECSIZE> hdec;  | 
1088  |  | 
  | 
1089  | 0  |         hufClearDecTable (hdec);  | 
1090  |  | 
  | 
1091  | 0  |         hufUnpackEncTable (&ptr,  | 
1092  | 0  |                            nCompressed - (ptr - compressed),  | 
1093  | 0  |                            im,  | 
1094  | 0  |                            iM,  | 
1095  | 0  |                            freq);  | 
1096  |  | 
  | 
1097  | 0  |         try  | 
1098  | 0  |         { | 
1099  | 0  |             if (nBits > 8 * (nCompressed - (ptr - compressed)))  | 
1100  | 0  |                 invalidNBits();  | 
1101  |  | 
  | 
1102  | 0  |             hufBuildDecTable (freq, im, iM, hdec);  | 
1103  | 0  |             hufDecode (freq, hdec, ptr, nBits, iM, nRaw, raw);  | 
1104  | 0  |         }  | 
1105  | 0  |         catch (...)  | 
1106  | 0  |         { | 
1107  | 0  |             hufFreeDecTable (hdec);  | 
1108  | 0  |             throw;  | 
1109  | 0  |         }  | 
1110  |  |  | 
1111  | 0  |         hufFreeDecTable (hdec);  | 
1112  | 0  |     }  | 
1113  | 0  | }  | 
1114  |  |  | 
1115  |  |  | 
1116  |  | OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_EXIT  |