/src/freeimage-svn/FreeImage/trunk/Source/OpenEXR/Imath/ImathFun.h
Line  | Count  | Source  | 
1  |  | ///////////////////////////////////////////////////////////////////////////  | 
2  |  | //  | 
3  |  | // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas  | 
4  |  | // Digital Ltd. LLC  | 
5  |  | //   | 
6  |  | // All rights reserved.  | 
7  |  | //   | 
8  |  | // Redistribution and use in source and binary forms, with or without  | 
9  |  | // modification, are permitted provided that the following conditions are  | 
10  |  | // met:  | 
11  |  | // *       Redistributions of source code must retain the above copyright  | 
12  |  | // notice, this list of conditions and the following disclaimer.  | 
13  |  | // *       Redistributions in binary form must reproduce the above  | 
14  |  | // copyright notice, this list of conditions and the following disclaimer  | 
15  |  | // in the documentation and/or other materials provided with the  | 
16  |  | // distribution.  | 
17  |  | // *       Neither the name of Industrial Light & Magic nor the names of  | 
18  |  | // its contributors may be used to endorse or promote products derived  | 
19  |  | // from this software without specific prior written permission.   | 
20  |  | //   | 
21  |  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS  | 
22  |  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT  | 
23  |  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR  | 
24  |  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT  | 
25  |  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,  | 
26  |  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT  | 
27  |  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,  | 
28  |  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY  | 
29  |  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  | 
30  |  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE  | 
31  |  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
32  |  | //  | 
33  |  | ///////////////////////////////////////////////////////////////////////////  | 
34  |  |  | 
35  |  |  | 
36  |  |  | 
37  |  | #ifndef INCLUDED_IMATHFUN_H  | 
38  |  | #define INCLUDED_IMATHFUN_H  | 
39  |  |  | 
40  |  | //-----------------------------------------------------------------------------  | 
41  |  | //  | 
42  |  | //  Miscellaneous utility functions  | 
43  |  | //  | 
44  |  | //-----------------------------------------------------------------------------  | 
45  |  |  | 
46  |  | #include "ImathExport.h"  | 
47  |  | #include "ImathLimits.h"  | 
48  |  | #include "ImathInt64.h"  | 
49  |  | #include "ImathNamespace.h"  | 
50  |  |  | 
51  |  | IMATH_INTERNAL_NAMESPACE_HEADER_ENTER  | 
52  |  |  | 
53  |  | template <class T>  | 
54  |  | inline T  | 
55  |  | abs (T a)  | 
56  | 0  | { | 
57  | 0  |     return (a > T(0)) ? a : -a;  | 
58  | 0  | }  | 
59  |  |  | 
60  |  |  | 
61  |  | template <class T>  | 
62  |  | inline int  | 
63  |  | sign (T a)  | 
64  |  | { | 
65  |  |     return (a > T(0))? 1 : ((a < T(0)) ? -1 : 0);  | 
66  |  | }  | 
67  |  |  | 
68  |  |  | 
69  |  | template <class T, class Q>  | 
70  |  | inline T  | 
71  |  | lerp (T a, T b, Q t)  | 
72  |  | { | 
73  |  |     return (T) (a * (1 - t) + b * t);  | 
74  |  | }  | 
75  |  |  | 
76  |  |  | 
77  |  | template <class T, class Q>  | 
78  |  | inline T  | 
79  |  | ulerp (T a, T b, Q t)  | 
80  |  | { | 
81  |  |     return (T) ((a > b)? (a - (a - b) * t): (a + (b - a) * t));  | 
82  |  | }  | 
83  |  |  | 
84  |  |  | 
85  |  | template <class T>  | 
86  |  | inline T  | 
87  |  | lerpfactor(T m, T a, T b)  | 
88  |  | { | 
89  |  |     //  | 
90  |  |     // Return how far m is between a and b, that is return t such that  | 
91  |  |     // if:  | 
92  |  |     //     t = lerpfactor(m, a, b);  | 
93  |  |     // then:  | 
94  |  |     //     m = lerp(a, b, t);  | 
95  |  |     //  | 
96  |  |     // If a==b, return 0.  | 
97  |  |     //  | 
98  |  |  | 
99  |  |     T d = b - a;  | 
100  |  |     T n = m - a;  | 
101  |  |  | 
102  |  |     if (abs(d) > T(1) || abs(n) < limits<T>::max() * abs(d))  | 
103  |  |   return n / d;  | 
104  |  |  | 
105  |  |     return T(0);  | 
106  |  | }  | 
107  |  |  | 
108  |  |  | 
109  |  | template <class T>  | 
110  |  | inline T  | 
111  |  | clamp (T a, T l, T h)  | 
112  |  | { | 
113  |  |     return (a < l)? l : ((a > h)? h : a);  | 
114  |  | }  | 
115  |  |  | 
116  |  |  | 
117  |  | template <class T>  | 
118  |  | inline int  | 
119  |  | cmp (T a, T b)  | 
120  |  | { | 
121  |  |     return IMATH_INTERNAL_NAMESPACE::sign (a - b);  | 
122  |  | }  | 
123  |  |  | 
124  |  |  | 
125  |  | template <class T>  | 
126  |  | inline int  | 
127  |  | cmpt (T a, T b, T t)  | 
128  |  | { | 
129  |  |     return (IMATH_INTERNAL_NAMESPACE::abs (a - b) <= t)? 0 : cmp (a, b);  | 
130  |  | }  | 
131  |  |  | 
132  |  |  | 
133  |  | template <class T>  | 
134  |  | inline bool  | 
135  |  | iszero (T a, T t)  | 
136  |  | { | 
137  |  |     return (IMATH_INTERNAL_NAMESPACE::abs (a) <= t) ? 1 : 0;  | 
138  |  | }  | 
139  |  |  | 
140  |  |  | 
141  |  | template <class T1, class T2, class T3>  | 
142  |  | inline bool  | 
143  |  | equal (T1 a, T2 b, T3 t)  | 
144  |  | { | 
145  |  |     return IMATH_INTERNAL_NAMESPACE::abs (a - b) <= t;  | 
146  |  | }  | 
147  |  |  | 
148  |  | template <class T>  | 
149  |  | inline int  | 
150  |  | floor (T x)  | 
151  |  | { | 
152  |  |     return (x >= 0)? int (x): -(int (-x) + (-x > int (-x)));  | 
153  |  | }  | 
154  |  |  | 
155  |  |  | 
156  |  | template <class T>  | 
157  |  | inline int  | 
158  |  | ceil (T x)  | 
159  |  | { | 
160  |  |     return -floor (-x);  | 
161  |  | }  | 
162  |  |  | 
163  |  | template <class T>  | 
164  |  | inline int  | 
165  |  | trunc (T x)  | 
166  |  | { | 
167  |  |     return (x >= 0) ? int(x) : -int(-x);  | 
168  |  | }  | 
169  |  |  | 
170  |  |  | 
171  |  | //  | 
172  |  | // Integer division and remainder where the  | 
173  |  | // remainder of x/y has the same sign as x:  | 
174  |  | //  | 
175  |  | //  divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y))  | 
176  |  | //  mods(x,y) == x - y * divs(x,y)  | 
177  |  | //  | 
178  |  |  | 
179  |  | inline int  | 
180  |  | divs (int x, int y)  | 
181  | 0  | { | 
182  | 0  |     return (x >= 0)? ((y >= 0)?  ( x / y): -( x / -y)):  | 
183  | 0  |          ((y >= 0)? -(-x / y):  (-x / -y));  | 
184  | 0  | }  | 
185  |  |  | 
186  |  |  | 
187  |  | inline int  | 
188  |  | mods (int x, int y)  | 
189  | 0  | { | 
190  | 0  |     return (x >= 0)? ((y >= 0)?  ( x % y):  ( x % -y)):  | 
191  | 0  |          ((y >= 0)? -(-x % y): -(-x % -y));  | 
192  | 0  | }  | 
193  |  |  | 
194  |  |  | 
195  |  | //  | 
196  |  | // Integer division and remainder where the  | 
197  |  | // remainder of x/y is always positive:  | 
198  |  | //  | 
199  |  | //  divp(x,y) == floor (double(x) / double (y))  | 
200  |  | //  modp(x,y) == x - y * divp(x,y)  | 
201  |  | //   | 
202  |  |  | 
203  |  | inline int  | 
204  |  | divp (int x, int y)  | 
205  | 0  | { | 
206  | 0  |     return (x >= 0)? ((y >= 0)?  (     x  / y): -(      x  / -y)):  | 
207  | 0  |          ((y >= 0)? -((y-1-x) / y):  ((-y-1-x) / -y));  | 
208  | 0  | }  | 
209  |  |  | 
210  |  |  | 
211  |  | inline int  | 
212  |  | modp (int x, int y)  | 
213  | 0  | { | 
214  | 0  |     return x - y * divp (x, y);  | 
215  | 0  | }  | 
216  |  |  | 
217  |  | //----------------------------------------------------------  | 
218  |  | // Successor and predecessor for floating-point numbers:  | 
219  |  | //  | 
220  |  | // succf(f)     returns float(f+e), where e is the smallest  | 
221  |  | //              positive number such that float(f+e) != f.  | 
222  |  | //  | 
223  |  | // predf(f)     returns float(f-e), where e is the smallest  | 
224  |  | //              positive number such that float(f-e) != f.  | 
225  |  | //   | 
226  |  | // succd(d)     returns double(d+e), where e is the smallest  | 
227  |  | //              positive number such that double(d+e) != d.  | 
228  |  | //  | 
229  |  | // predd(d)     returns double(d-e), where e is the smallest  | 
230  |  | //              positive number such that double(d-e) != d.  | 
231  |  | //  | 
232  |  | // Exceptions:  If the input value is an infinity or a nan,  | 
233  |  | //              succf(), predf(), succd(), and predd() all  | 
234  |  | //              return the input value without changing it.  | 
235  |  | //   | 
236  |  | //----------------------------------------------------------  | 
237  |  |  | 
238  |  | IMATH_EXPORT float succf (float f);  | 
239  |  | IMATH_EXPORT float predf (float f);  | 
240  |  |  | 
241  |  | IMATH_EXPORT double succd (double d);  | 
242  |  | IMATH_EXPORT double predd (double d);  | 
243  |  |  | 
244  |  | //  | 
245  |  | // Return true if the number is not a NaN or Infinity.  | 
246  |  | //  | 
247  |  |  | 
248  |  | inline bool   | 
249  |  | finitef (float f)  | 
250  | 0  | { | 
251  | 0  |     union {float f; int i;} u; | 
252  | 0  |     u.f = f;  | 
253  | 0  | 
  | 
254  | 0  |     return (u.i & 0x7f800000) != 0x7f800000;  | 
255  | 0  | }  | 
256  |  |  | 
257  |  | inline bool   | 
258  |  | finited (double d)  | 
259  | 0  | { | 
260  | 0  |     union {double d; Int64 i;} u; | 
261  | 0  |     u.d = d;  | 
262  | 0  | 
  | 
263  | 0  |     return (u.i & 0x7ff0000000000000LL) != 0x7ff0000000000000LL;  | 
264  | 0  | }  | 
265  |  |  | 
266  |  |  | 
267  |  | IMATH_INTERNAL_NAMESPACE_HEADER_EXIT  | 
268  |  |  | 
269  |  | #endif // INCLUDED_IMATHFUN_H  |