/src/freeimage-svn/FreeImage/trunk/Source/ZLib/adler32.c
Line  | Count  | Source  | 
1  |  | /* adler32.c -- compute the Adler-32 checksum of a data stream  | 
2  |  |  * Copyright (C) 1995-2011, 2016 Mark Adler  | 
3  |  |  * For conditions of distribution and use, see copyright notice in zlib.h  | 
4  |  |  */  | 
5  |  |  | 
6  |  | /* @(#) $Id$ */  | 
7  |  |  | 
8  |  | #include "zutil.h"  | 
9  |  |  | 
10  |  | local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));  | 
11  |  |  | 
12  | 0  | #define BASE 65521U     /* largest prime smaller than 65536 */  | 
13  | 0  | #define NMAX 5552  | 
14  |  | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */  | 
15  |  |  | 
16  | 0  | #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;} | 
17  | 0  | #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);  | 
18  | 0  | #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);  | 
19  | 0  | #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);  | 
20  | 0  | #define DO16(buf)   DO8(buf,0); DO8(buf,8);  | 
21  |  |  | 
22  |  | /* use NO_DIVIDE if your processor does not do division in hardware --  | 
23  |  |    try it both ways to see which is faster */  | 
24  |  | #ifdef NO_DIVIDE  | 
25  |  | /* note that this assumes BASE is 65521, where 65536 % 65521 == 15  | 
26  |  |    (thank you to John Reiser for pointing this out) */  | 
27  |  | #  define CHOP(a) \  | 
28  |  |     do { \ | 
29  |  |         unsigned long tmp = a >> 16; \  | 
30  |  |         a &= 0xffffUL; \  | 
31  |  |         a += (tmp << 4) - tmp; \  | 
32  |  |     } while (0)  | 
33  |  | #  define MOD28(a) \  | 
34  |  |     do { \ | 
35  |  |         CHOP(a); \  | 
36  |  |         if (a >= BASE) a -= BASE; \  | 
37  |  |     } while (0)  | 
38  |  | #  define MOD(a) \  | 
39  |  |     do { \ | 
40  |  |         CHOP(a); \  | 
41  |  |         MOD28(a); \  | 
42  |  |     } while (0)  | 
43  |  | #  define MOD63(a) \  | 
44  |  |     do { /* this assumes a is not negative */ \ | 
45  |  |         z_off64_t tmp = a >> 32; \  | 
46  |  |         a &= 0xffffffffL; \  | 
47  |  |         a += (tmp << 8) - (tmp << 5) + tmp; \  | 
48  |  |         tmp = a >> 16; \  | 
49  |  |         a &= 0xffffL; \  | 
50  |  |         a += (tmp << 4) - tmp; \  | 
51  |  |         tmp = a >> 16; \  | 
52  |  |         a &= 0xffffL; \  | 
53  |  |         a += (tmp << 4) - tmp; \  | 
54  |  |         if (a >= BASE) a -= BASE; \  | 
55  |  |     } while (0)  | 
56  |  | #else  | 
57  | 0  | #  define MOD(a) a %= BASE  | 
58  | 0  | #  define MOD28(a) a %= BASE  | 
59  | 0  | #  define MOD63(a) a %= BASE  | 
60  |  | #endif  | 
61  |  |  | 
62  |  | /* ========================================================================= */  | 
63  |  | uLong ZEXPORT adler32_z(adler, buf, len)  | 
64  |  |     uLong adler;  | 
65  |  |     const Bytef *buf;  | 
66  |  |     z_size_t len;  | 
67  | 0  | { | 
68  | 0  |     unsigned long sum2;  | 
69  | 0  |     unsigned n;  | 
70  |  |  | 
71  |  |     /* split Adler-32 into component sums */  | 
72  | 0  |     sum2 = (adler >> 16) & 0xffff;  | 
73  | 0  |     adler &= 0xffff;  | 
74  |  |  | 
75  |  |     /* in case user likes doing a byte at a time, keep it fast */  | 
76  | 0  |     if (len == 1) { | 
77  | 0  |         adler += buf[0];  | 
78  | 0  |         if (adler >= BASE)  | 
79  | 0  |             adler -= BASE;  | 
80  | 0  |         sum2 += adler;  | 
81  | 0  |         if (sum2 >= BASE)  | 
82  | 0  |             sum2 -= BASE;  | 
83  | 0  |         return adler | (sum2 << 16);  | 
84  | 0  |     }  | 
85  |  |  | 
86  |  |     /* initial Adler-32 value (deferred check for len == 1 speed) */  | 
87  | 0  |     if (buf == Z_NULL)  | 
88  | 0  |         return 1L;  | 
89  |  |  | 
90  |  |     /* in case short lengths are provided, keep it somewhat fast */  | 
91  | 0  |     if (len < 16) { | 
92  | 0  |         while (len--) { | 
93  | 0  |             adler += *buf++;  | 
94  | 0  |             sum2 += adler;  | 
95  | 0  |         }  | 
96  | 0  |         if (adler >= BASE)  | 
97  | 0  |             adler -= BASE;  | 
98  | 0  |         MOD28(sum2);            /* only added so many BASE's */  | 
99  | 0  |         return adler | (sum2 << 16);  | 
100  | 0  |     }  | 
101  |  |  | 
102  |  |     /* do length NMAX blocks -- requires just one modulo operation */  | 
103  | 0  |     while (len >= NMAX) { | 
104  | 0  |         len -= NMAX;  | 
105  | 0  |         n = NMAX / 16;          /* NMAX is divisible by 16 */  | 
106  | 0  |         do { | 
107  | 0  |             DO16(buf);          /* 16 sums unrolled */  | 
108  | 0  |             buf += 16;  | 
109  | 0  |         } while (--n);  | 
110  | 0  |         MOD(adler);  | 
111  | 0  |         MOD(sum2);  | 
112  | 0  |     }  | 
113  |  |  | 
114  |  |     /* do remaining bytes (less than NMAX, still just one modulo) */  | 
115  | 0  |     if (len) {                  /* avoid modulos if none remaining */ | 
116  | 0  |         while (len >= 16) { | 
117  | 0  |             len -= 16;  | 
118  | 0  |             DO16(buf);  | 
119  | 0  |             buf += 16;  | 
120  | 0  |         }  | 
121  | 0  |         while (len--) { | 
122  | 0  |             adler += *buf++;  | 
123  | 0  |             sum2 += adler;  | 
124  | 0  |         }  | 
125  | 0  |         MOD(adler);  | 
126  | 0  |         MOD(sum2);  | 
127  | 0  |     }  | 
128  |  |  | 
129  |  |     /* return recombined sums */  | 
130  | 0  |     return adler | (sum2 << 16);  | 
131  | 0  | }  | 
132  |  |  | 
133  |  | /* ========================================================================= */  | 
134  |  | uLong ZEXPORT adler32(adler, buf, len)  | 
135  |  |     uLong adler;  | 
136  |  |     const Bytef *buf;  | 
137  |  |     uInt len;  | 
138  | 0  | { | 
139  | 0  |     return adler32_z(adler, buf, len);  | 
140  | 0  | }  | 
141  |  |  | 
142  |  | /* ========================================================================= */  | 
143  |  | local uLong adler32_combine_(adler1, adler2, len2)  | 
144  |  |     uLong adler1;  | 
145  |  |     uLong adler2;  | 
146  |  |     z_off64_t len2;  | 
147  | 0  | { | 
148  | 0  |     unsigned long sum1;  | 
149  | 0  |     unsigned long sum2;  | 
150  | 0  |     unsigned rem;  | 
151  |  |  | 
152  |  |     /* for negative len, return invalid adler32 as a clue for debugging */  | 
153  | 0  |     if (len2 < 0)  | 
154  | 0  |         return 0xffffffffUL;  | 
155  |  |  | 
156  |  |     /* the derivation of this formula is left as an exercise for the reader */  | 
157  | 0  |     MOD63(len2);                /* assumes len2 >= 0 */  | 
158  | 0  |     rem = (unsigned)len2;  | 
159  | 0  |     sum1 = adler1 & 0xffff;  | 
160  | 0  |     sum2 = rem * sum1;  | 
161  | 0  |     MOD(sum2);  | 
162  | 0  |     sum1 += (adler2 & 0xffff) + BASE - 1;  | 
163  | 0  |     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;  | 
164  | 0  |     if (sum1 >= BASE) sum1 -= BASE;  | 
165  | 0  |     if (sum1 >= BASE) sum1 -= BASE;  | 
166  | 0  |     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);  | 
167  | 0  |     if (sum2 >= BASE) sum2 -= BASE;  | 
168  | 0  |     return sum1 | (sum2 << 16);  | 
169  | 0  | }  | 
170  |  |  | 
171  |  | /* ========================================================================= */  | 
172  |  | uLong ZEXPORT adler32_combine(adler1, adler2, len2)  | 
173  |  |     uLong adler1;  | 
174  |  |     uLong adler2;  | 
175  |  |     z_off_t len2;  | 
176  | 0  | { | 
177  | 0  |     return adler32_combine_(adler1, adler2, len2);  | 
178  | 0  | }  | 
179  |  |  | 
180  |  | uLong ZEXPORT adler32_combine64(adler1, adler2, len2)  | 
181  |  |     uLong adler1;  | 
182  |  |     uLong adler2;  | 
183  |  |     z_off64_t len2;  | 
184  | 0  | { | 
185  | 0  |     return adler32_combine_(adler1, adler2, len2);  | 
186  | 0  | }  |