/src/FreeRDP/libfreerdp/codec/neon/rfx_neon.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | FreeRDP: A Remote Desktop Protocol Implementation |
3 | | RemoteFX Codec Library - NEON Optimizations |
4 | | |
5 | | Copyright 2011 Martin Fleisz <martin.fleisz@thincast.com> |
6 | | |
7 | | Licensed under the Apache License, Version 2.0 (the "License"); |
8 | | you may not use this file except in compliance with the License. |
9 | | You may obtain a copy of the License at |
10 | | |
11 | | http://www.apache.org/licenses/LICENSE-2.0 |
12 | | |
13 | | Unless required by applicable law or agreed to in writing, software |
14 | | distributed under the License is distributed on an "AS IS" BASIS, |
15 | | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
16 | | See the License for the specific language governing permissions and |
17 | | limitations under the License. |
18 | | */ |
19 | | |
20 | | #include <winpr/platform.h> |
21 | | #include <freerdp/config.h> |
22 | | #include <freerdp/log.h> |
23 | | |
24 | | #include "../rfx_types.h" |
25 | | #include "rfx_neon.h" |
26 | | |
27 | | #include "../../core/simd.h" |
28 | | |
29 | | #if defined(NEON_INTRINSICS_ENABLED) |
30 | | |
31 | | #include <stdio.h> |
32 | | #include <stdlib.h> |
33 | | #include <string.h> |
34 | | #include <arm_neon.h> |
35 | | #include <winpr/sysinfo.h> |
36 | | |
37 | | /* rfx_decode_YCbCr_to_RGB_NEON code now resides in the primitives library. */ |
38 | | |
39 | | static __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
40 | | rfx_quantization_decode_block_NEON(INT16* buffer, const size_t buffer_size, const UINT32 factor) |
41 | | { |
42 | | int16x8_t quantFactors = vdupq_n_s16(factor); |
43 | | int16x8_t* buf = (int16x8_t*)buffer; |
44 | | int16x8_t* buf_end = (int16x8_t*)(buffer + buffer_size); |
45 | | |
46 | | do |
47 | | { |
48 | | int16x8_t val = vld1q_s16((INT16*)buf); |
49 | | val = vshlq_s16(val, quantFactors); |
50 | | vst1q_s16((INT16*)buf, val); |
51 | | buf++; |
52 | | } while (buf < buf_end); |
53 | | } |
54 | | |
55 | | static void rfx_quantization_decode_NEON(INT16* buffer, const UINT32* WINPR_RESTRICT quantVals) |
56 | | { |
57 | | WINPR_ASSERT(buffer); |
58 | | WINPR_ASSERT(quantVals); |
59 | | |
60 | | rfx_quantization_decode_block_NEON(&buffer[0], 1024, quantVals[8] - 1); /* HL1 */ |
61 | | rfx_quantization_decode_block_NEON(&buffer[1024], 1024, quantVals[7] - 1); /* LH1 */ |
62 | | rfx_quantization_decode_block_NEON(&buffer[2048], 1024, quantVals[9] - 1); /* HH1 */ |
63 | | rfx_quantization_decode_block_NEON(&buffer[3072], 256, quantVals[5] - 1); /* HL2 */ |
64 | | rfx_quantization_decode_block_NEON(&buffer[3328], 256, quantVals[4] - 1); /* LH2 */ |
65 | | rfx_quantization_decode_block_NEON(&buffer[3584], 256, quantVals[6] - 1); /* HH2 */ |
66 | | rfx_quantization_decode_block_NEON(&buffer[3840], 64, quantVals[2] - 1); /* HL3 */ |
67 | | rfx_quantization_decode_block_NEON(&buffer[3904], 64, quantVals[1] - 1); /* LH3 */ |
68 | | rfx_quantization_decode_block_NEON(&buffer[3968], 64, quantVals[3] - 1); /* HH3 */ |
69 | | rfx_quantization_decode_block_NEON(&buffer[4032], 64, quantVals[0] - 1); /* LL3 */ |
70 | | } |
71 | | |
72 | | static __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
73 | | rfx_dwt_2d_decode_block_horiz_NEON(INT16* WINPR_RESTRICT l, INT16* WINPR_RESTRICT h, |
74 | | INT16* WINPR_RESTRICT dst, size_t subband_width) |
75 | | { |
76 | | INT16* l_ptr = l; |
77 | | INT16* h_ptr = h; |
78 | | INT16* dst_ptr = dst; |
79 | | |
80 | | for (size_t y = 0; y < subband_width; y++) |
81 | | { |
82 | | /* Even coefficients */ |
83 | | for (size_t n = 0; n < subband_width; n += 8) |
84 | | { |
85 | | // dst[2n] = l[n] - ((h[n-1] + h[n] + 1) >> 1); |
86 | | int16x8_t l_n = vld1q_s16(l_ptr); |
87 | | int16x8_t h_n = vld1q_s16(h_ptr); |
88 | | int16x8_t h_n_m = vld1q_s16(h_ptr - 1); |
89 | | |
90 | | if (n == 0) |
91 | | { |
92 | | int16_t first = vgetq_lane_s16(h_n_m, 1); |
93 | | h_n_m = vsetq_lane_s16(first, h_n_m, 0); |
94 | | } |
95 | | |
96 | | int16x8_t tmp_n = vaddq_s16(h_n, h_n_m); |
97 | | tmp_n = vaddq_s16(tmp_n, vdupq_n_s16(1)); |
98 | | tmp_n = vshrq_n_s16(tmp_n, 1); |
99 | | int16x8_t dst_n = vsubq_s16(l_n, tmp_n); |
100 | | vst1q_s16(l_ptr, dst_n); |
101 | | l_ptr += 8; |
102 | | h_ptr += 8; |
103 | | } |
104 | | |
105 | | l_ptr -= subband_width; |
106 | | h_ptr -= subband_width; |
107 | | |
108 | | /* Odd coefficients */ |
109 | | for (size_t n = 0; n < subband_width; n += 8) |
110 | | { |
111 | | // dst[2n + 1] = (h[n] << 1) + ((dst[2n] + dst[2n + 2]) >> 1); |
112 | | int16x8_t h_n = vld1q_s16(h_ptr); |
113 | | h_n = vshlq_n_s16(h_n, 1); |
114 | | int16x8x2_t dst_n; |
115 | | dst_n.val[0] = vld1q_s16(l_ptr); |
116 | | int16x8_t dst_n_p = vld1q_s16(l_ptr + 1); |
117 | | |
118 | | if (n == subband_width - 8) |
119 | | { |
120 | | int16_t last = vgetq_lane_s16(dst_n_p, 6); |
121 | | dst_n_p = vsetq_lane_s16(last, dst_n_p, 7); |
122 | | } |
123 | | |
124 | | dst_n.val[1] = vaddq_s16(dst_n_p, dst_n.val[0]); |
125 | | dst_n.val[1] = vshrq_n_s16(dst_n.val[1], 1); |
126 | | dst_n.val[1] = vaddq_s16(dst_n.val[1], h_n); |
127 | | vst2q_s16(dst_ptr, dst_n); |
128 | | l_ptr += 8; |
129 | | h_ptr += 8; |
130 | | dst_ptr += 16; |
131 | | } |
132 | | } |
133 | | } |
134 | | |
135 | | static __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
136 | | rfx_dwt_2d_decode_block_vert_NEON(INT16* WINPR_RESTRICT l, INT16* WINPR_RESTRICT h, |
137 | | INT16* WINPR_RESTRICT dst, size_t subband_width) |
138 | | { |
139 | | INT16* l_ptr = l; |
140 | | INT16* h_ptr = h; |
141 | | INT16* dst_ptr = dst; |
142 | | const size_t total_width = subband_width + subband_width; |
143 | | |
144 | | /* Even coefficients */ |
145 | | for (size_t n = 0; n < subband_width; n++) |
146 | | { |
147 | | for (size_t x = 0; x < total_width; x += 8) |
148 | | { |
149 | | // dst[2n] = l[n] - ((h[n-1] + h[n] + 1) >> 1); |
150 | | int16x8_t l_n = vld1q_s16(l_ptr); |
151 | | int16x8_t h_n = vld1q_s16(h_ptr); |
152 | | int16x8_t tmp_n = vaddq_s16(h_n, vdupq_n_s16(1)); |
153 | | |
154 | | if (n == 0) |
155 | | tmp_n = vaddq_s16(tmp_n, h_n); |
156 | | else |
157 | | { |
158 | | int16x8_t h_n_m = vld1q_s16((h_ptr - total_width)); |
159 | | tmp_n = vaddq_s16(tmp_n, h_n_m); |
160 | | } |
161 | | |
162 | | tmp_n = vshrq_n_s16(tmp_n, 1); |
163 | | int16x8_t dst_n = vsubq_s16(l_n, tmp_n); |
164 | | vst1q_s16(dst_ptr, dst_n); |
165 | | l_ptr += 8; |
166 | | h_ptr += 8; |
167 | | dst_ptr += 8; |
168 | | } |
169 | | |
170 | | dst_ptr += total_width; |
171 | | } |
172 | | |
173 | | h_ptr = h; |
174 | | dst_ptr = dst + total_width; |
175 | | |
176 | | /* Odd coefficients */ |
177 | | for (size_t n = 0; n < subband_width; n++) |
178 | | { |
179 | | for (size_t x = 0; x < total_width; x += 8) |
180 | | { |
181 | | // dst[2n + 1] = (h[n] << 1) + ((dst[2n] + dst[2n + 2]) >> 1); |
182 | | int16x8_t h_n = vld1q_s16(h_ptr); |
183 | | int16x8_t dst_n_m = vld1q_s16(dst_ptr - total_width); |
184 | | h_n = vshlq_n_s16(h_n, 1); |
185 | | int16x8_t tmp_n = dst_n_m; |
186 | | |
187 | | if (n == subband_width - 1) |
188 | | tmp_n = vaddq_s16(tmp_n, dst_n_m); |
189 | | else |
190 | | { |
191 | | int16x8_t dst_n_p = vld1q_s16((dst_ptr + total_width)); |
192 | | tmp_n = vaddq_s16(tmp_n, dst_n_p); |
193 | | } |
194 | | |
195 | | tmp_n = vshrq_n_s16(tmp_n, 1); |
196 | | int16x8_t dst_n = vaddq_s16(tmp_n, h_n); |
197 | | vst1q_s16(dst_ptr, dst_n); |
198 | | h_ptr += 8; |
199 | | dst_ptr += 8; |
200 | | } |
201 | | |
202 | | dst_ptr += total_width; |
203 | | } |
204 | | } |
205 | | |
206 | | static __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
207 | | rfx_dwt_2d_decode_block_NEON(INT16* WINPR_RESTRICT buffer, INT16* WINPR_RESTRICT idwt, |
208 | | size_t subband_width) |
209 | | { |
210 | | INT16 *hl, *lh, *hh, *ll; |
211 | | INT16 *l_dst, *h_dst; |
212 | | /* Inverse DWT in horizontal direction, results in 2 sub-bands in L, H order in tmp buffer idwt. |
213 | | */ |
214 | | /* The 4 sub-bands are stored in HL(0), LH(1), HH(2), LL(3) order. */ |
215 | | /* The lower part L uses LL(3) and HL(0). */ |
216 | | /* The higher part H uses LH(1) and HH(2). */ |
217 | | ll = buffer + subband_width * subband_width * 3; |
218 | | hl = buffer; |
219 | | l_dst = idwt; |
220 | | rfx_dwt_2d_decode_block_horiz_NEON(ll, hl, l_dst, subband_width); |
221 | | lh = buffer + subband_width * subband_width; |
222 | | hh = buffer + subband_width * subband_width * 2; |
223 | | h_dst = idwt + subband_width * subband_width * 2; |
224 | | rfx_dwt_2d_decode_block_horiz_NEON(lh, hh, h_dst, subband_width); |
225 | | /* Inverse DWT in vertical direction, results are stored in original buffer. */ |
226 | | rfx_dwt_2d_decode_block_vert_NEON(l_dst, h_dst, buffer, subband_width); |
227 | | } |
228 | | |
229 | | static void rfx_dwt_2d_decode_NEON(INT16* buffer, INT16* dwt_buffer) |
230 | | { |
231 | | rfx_dwt_2d_decode_block_NEON(buffer + 3840, dwt_buffer, 8); |
232 | | rfx_dwt_2d_decode_block_NEON(buffer + 3072, dwt_buffer, 16); |
233 | | rfx_dwt_2d_decode_block_NEON(buffer, dwt_buffer, 32); |
234 | | } |
235 | | |
236 | | static INLINE void rfx_idwt_extrapolate_horiz_neon(INT16* restrict pLowBand, size_t nLowStep, |
237 | | const INT16* restrict pHighBand, |
238 | | size_t nHighStep, INT16* restrict pDstBand, |
239 | | size_t nDstStep, size_t nLowCount, |
240 | | size_t nHighCount, size_t nDstCount) |
241 | | { |
242 | | WINPR_ASSERT(pLowBand); |
243 | | WINPR_ASSERT(pHighBand); |
244 | | WINPR_ASSERT(pDstBand); |
245 | | |
246 | | INT16* l_ptr = pLowBand; |
247 | | const INT16* h_ptr = pHighBand; |
248 | | INT16* dst_ptr = pDstBand; |
249 | | size_t batchSize = (nLowCount + nHighCount) >> 1; |
250 | | |
251 | | for (size_t y = 0; y < nDstCount; y++) |
252 | | { |
253 | | /* Even coefficients */ |
254 | | size_t n = 0; |
255 | | for (; n < batchSize; n += 8) |
256 | | { |
257 | | // dst[2n] = l[n] - ((h[n-1] + h[n] + 1) >> 1); |
258 | | int16x8_t l_n = vld1q_s16(l_ptr); |
259 | | int16x8_t h_n = vld1q_s16(h_ptr); |
260 | | int16x8_t h_n_m = vld1q_s16(h_ptr - 1); |
261 | | |
262 | | if (n == 0) |
263 | | { |
264 | | int16_t first = vgetq_lane_s16(h_n_m, 1); |
265 | | h_n_m = vsetq_lane_s16(first, h_n_m, 0); |
266 | | } |
267 | | else if (n == 24) |
268 | | h_n = vsetq_lane_s16(0, h_n, 7); |
269 | | |
270 | | int16x8_t tmp_n = vaddq_s16(h_n, h_n_m); |
271 | | tmp_n = vaddq_s16(tmp_n, vdupq_n_s16(1)); |
272 | | tmp_n = vshrq_n_s16(tmp_n, 1); |
273 | | int16x8_t dst_n = vsubq_s16(l_n, tmp_n); |
274 | | vst1q_s16(l_ptr, dst_n); |
275 | | l_ptr += 8; |
276 | | h_ptr += 8; |
277 | | } |
278 | | if (n < 32) |
279 | | *l_ptr -= *(h_ptr - 1); |
280 | | |
281 | | l_ptr -= batchSize; |
282 | | h_ptr -= batchSize; |
283 | | |
284 | | /* Odd coefficients */ |
285 | | n = 0; |
286 | | for (; n < batchSize; n += 8) |
287 | | { |
288 | | // dst[2n + 1] = (h[n] << 1) + ((dst[2n] + dst[2n + 2]) >> 1); |
289 | | int16x8_t h_n = vld1q_s16(h_ptr); |
290 | | h_n = vshlq_n_s16(h_n, 1); |
291 | | int16x8x2_t dst_n; |
292 | | dst_n.val[0] = vld1q_s16(l_ptr); |
293 | | int16x8_t dst_n_p = vld1q_s16(l_ptr + 1); |
294 | | |
295 | | if (n == 24) |
296 | | h_n = vsetq_lane_s16(0, h_n, 7); |
297 | | |
298 | | dst_n.val[1] = vaddq_s16(dst_n_p, dst_n.val[0]); |
299 | | dst_n.val[1] = vshrq_n_s16(dst_n.val[1], 1); |
300 | | dst_n.val[1] = vaddq_s16(dst_n.val[1], h_n); |
301 | | vst2q_s16(dst_ptr, dst_n); |
302 | | l_ptr += 8; |
303 | | h_ptr += 8; |
304 | | dst_ptr += 16; |
305 | | } |
306 | | if (n == 32) |
307 | | { |
308 | | h_ptr -= 1; |
309 | | l_ptr += 1; |
310 | | } |
311 | | else |
312 | | { |
313 | | *dst_ptr = *l_ptr; |
314 | | l_ptr += 1; |
315 | | dst_ptr += 1; |
316 | | } |
317 | | } |
318 | | } |
319 | | |
320 | | static INLINE void rfx_idwt_extrapolate_vert_neon(const INT16* restrict pLowBand, size_t nLowStep, |
321 | | const INT16* restrict pHighBand, size_t nHighStep, |
322 | | INT16* restrict pDstBand, size_t nDstStep, |
323 | | size_t nLowCount, size_t nHighCount, |
324 | | size_t nDstCount) |
325 | | { |
326 | | WINPR_ASSERT(pLowBand); |
327 | | WINPR_ASSERT(pHighBand); |
328 | | WINPR_ASSERT(pDstBand); |
329 | | |
330 | | const INT16* l_ptr = pLowBand; |
331 | | const INT16* h_ptr = pHighBand; |
332 | | INT16* dst_ptr = pDstBand; |
333 | | size_t batchSize = (nDstCount >> 3) << 3; |
334 | | size_t forceBandSize = (nLowCount + nHighCount) >> 1; |
335 | | |
336 | | /* Even coefficients */ |
337 | | for (size_t n = 0; n < forceBandSize; n++) |
338 | | { |
339 | | for (size_t x = 0; x < batchSize; x += 8) |
340 | | { |
341 | | // dst[2n] = l[n] - ((h[n-1] + h[n] + 1) >> 1); |
342 | | int16x8_t l_n = vld1q_s16(l_ptr); |
343 | | int16x8_t h_n = vld1q_s16((n == 31) ? (h_ptr - nHighStep) : h_ptr); |
344 | | int16x8_t tmp_n = vaddq_s16(h_n, vdupq_n_s16(1)); |
345 | | |
346 | | if (n == 0) |
347 | | tmp_n = vaddq_s16(tmp_n, h_n); |
348 | | else if (n < 31) |
349 | | { |
350 | | int16x8_t h_n_m = vld1q_s16((h_ptr - nHighStep)); |
351 | | tmp_n = vaddq_s16(tmp_n, h_n_m); |
352 | | } |
353 | | |
354 | | tmp_n = vshrq_n_s16(tmp_n, 1); |
355 | | int16x8_t dst_n = vsubq_s16(l_n, tmp_n); |
356 | | vst1q_s16(dst_ptr, dst_n); |
357 | | l_ptr += 8; |
358 | | h_ptr += 8; |
359 | | dst_ptr += 8; |
360 | | } |
361 | | |
362 | | if (nDstCount > batchSize) |
363 | | { |
364 | | int16_t h_n = (n == 31) ? *(h_ptr - nHighStep) : *h_ptr; |
365 | | int16_t tmp_n = h_n + 1; |
366 | | if (n == 0) |
367 | | tmp_n += h_n; |
368 | | else if (n < 31) |
369 | | tmp_n += *(h_ptr - nHighStep); |
370 | | tmp_n >>= 1; |
371 | | *dst_ptr = *l_ptr - tmp_n; |
372 | | l_ptr += 1; |
373 | | h_ptr += 1; |
374 | | dst_ptr += 1; |
375 | | } |
376 | | |
377 | | dst_ptr += nDstStep; |
378 | | } |
379 | | |
380 | | if (forceBandSize < 32) |
381 | | { |
382 | | for (size_t x = 0; x < batchSize; x += 8) |
383 | | { |
384 | | int16x8_t l_n = vld1q_s16(l_ptr); |
385 | | int16x8_t h_n = vld1q_s16(h_ptr - nHighStep); |
386 | | int16x8_t tmp_n = vsubq_s16(l_n, h_n); |
387 | | vst1q_s16(dst_ptr, tmp_n); |
388 | | l_ptr += 8; |
389 | | h_ptr += 8; |
390 | | dst_ptr += 8; |
391 | | } |
392 | | |
393 | | if (nDstCount > batchSize) |
394 | | { |
395 | | *dst_ptr = *l_ptr - *(h_ptr - nHighStep); |
396 | | l_ptr += 1; |
397 | | h_ptr += 1; |
398 | | dst_ptr += 1; |
399 | | } |
400 | | } |
401 | | |
402 | | h_ptr = pHighBand; |
403 | | dst_ptr = pDstBand + nDstStep; |
404 | | |
405 | | /* Odd coefficients */ |
406 | | for (size_t n = 0; n < forceBandSize; n++) |
407 | | { |
408 | | for (size_t x = 0; x < batchSize; x += 8) |
409 | | { |
410 | | // dst[2n + 1] = (h[n] << 1) + ((dst[2n] + dst[2n + 2]) >> 1); |
411 | | int16x8_t tmp_n = vld1q_s16(dst_ptr - nDstStep); |
412 | | if (n == 31) |
413 | | { |
414 | | int16x8_t dst_n_p = vld1q_s16(l_ptr); |
415 | | l_ptr += 8; |
416 | | tmp_n = vaddq_s16(tmp_n, dst_n_p); |
417 | | tmp_n = vshrq_n_s16(tmp_n, 1); |
418 | | } |
419 | | else |
420 | | { |
421 | | int16x8_t dst_n_p = vld1q_s16(dst_ptr + nDstStep); |
422 | | tmp_n = vaddq_s16(tmp_n, dst_n_p); |
423 | | tmp_n = vshrq_n_s16(tmp_n, 1); |
424 | | int16x8_t h_n = vld1q_s16(h_ptr); |
425 | | h_n = vshlq_n_s16(h_n, 1); |
426 | | tmp_n = vaddq_s16(tmp_n, h_n); |
427 | | } |
428 | | vst1q_s16(dst_ptr, tmp_n); |
429 | | h_ptr += 8; |
430 | | dst_ptr += 8; |
431 | | } |
432 | | |
433 | | if (nDstCount > batchSize) |
434 | | { |
435 | | int16_t tmp_n = *(dst_ptr - nDstStep); |
436 | | if (n == 31) |
437 | | { |
438 | | int16_t dst_n_p = *l_ptr; |
439 | | l_ptr += 1; |
440 | | tmp_n += dst_n_p; |
441 | | tmp_n >>= 1; |
442 | | } |
443 | | else |
444 | | { |
445 | | int16_t dst_n_p = *(dst_ptr + nDstStep); |
446 | | tmp_n += dst_n_p; |
447 | | tmp_n >>= 1; |
448 | | int16_t h_n = *h_ptr; |
449 | | h_n <<= 1; |
450 | | tmp_n += h_n; |
451 | | } |
452 | | *dst_ptr = tmp_n; |
453 | | h_ptr += 1; |
454 | | dst_ptr += 1; |
455 | | } |
456 | | |
457 | | dst_ptr += nDstStep; |
458 | | } |
459 | | } |
460 | | |
461 | | static INLINE size_t prfx_get_band_l_count(size_t level) |
462 | | { |
463 | | return (64 >> level) + 1; |
464 | | } |
465 | | |
466 | | static INLINE size_t prfx_get_band_h_count(size_t level) |
467 | | { |
468 | | if (level == 1) |
469 | | return (64 >> 1) - 1; |
470 | | else |
471 | | return (64 + (1 << (level - 1))) >> level; |
472 | | } |
473 | | |
474 | | static INLINE void rfx_dwt_2d_decode_extrapolate_block_neon(INT16* buffer, INT16* temp, |
475 | | size_t level) |
476 | | { |
477 | | size_t nDstStepX; |
478 | | size_t nDstStepY; |
479 | | INT16 *HL, *LH; |
480 | | INT16 *HH, *LL; |
481 | | INT16 *L, *H, *LLx; |
482 | | |
483 | | const size_t nBandL = prfx_get_band_l_count(level); |
484 | | const size_t nBandH = prfx_get_band_h_count(level); |
485 | | size_t offset = 0; |
486 | | |
487 | | WINPR_ASSERT(buffer); |
488 | | WINPR_ASSERT(temp); |
489 | | |
490 | | HL = &buffer[offset]; |
491 | | offset += (nBandH * nBandL); |
492 | | LH = &buffer[offset]; |
493 | | offset += (nBandL * nBandH); |
494 | | HH = &buffer[offset]; |
495 | | offset += (nBandH * nBandH); |
496 | | LL = &buffer[offset]; |
497 | | nDstStepX = (nBandL + nBandH); |
498 | | nDstStepY = (nBandL + nBandH); |
499 | | offset = 0; |
500 | | L = &temp[offset]; |
501 | | offset += (nBandL * nDstStepX); |
502 | | H = &temp[offset]; |
503 | | LLx = &buffer[0]; |
504 | | |
505 | | /* horizontal (LL + HL -> L) */ |
506 | | rfx_idwt_extrapolate_horiz_neon(LL, nBandL, HL, nBandH, L, nDstStepX, nBandL, nBandH, nBandL); |
507 | | |
508 | | /* horizontal (LH + HH -> H) */ |
509 | | rfx_idwt_extrapolate_horiz_neon(LH, nBandL, HH, nBandH, H, nDstStepX, nBandL, nBandH, nBandH); |
510 | | |
511 | | /* vertical (L + H -> LL) */ |
512 | | rfx_idwt_extrapolate_vert_neon(L, nDstStepX, H, nDstStepX, LLx, nDstStepY, nBandL, nBandH, |
513 | | nBandL + nBandH); |
514 | | } |
515 | | |
516 | | static void rfx_dwt_2d_extrapolate_decode_neon(INT16* buffer, INT16* temp) |
517 | | { |
518 | | WINPR_ASSERT(buffer); |
519 | | WINPR_ASSERT(temp); |
520 | | rfx_dwt_2d_decode_extrapolate_block_neon(&buffer[3807], temp, 3); |
521 | | rfx_dwt_2d_decode_extrapolate_block_neon(&buffer[3007], temp, 2); |
522 | | rfx_dwt_2d_decode_extrapolate_block_neon(&buffer[0], temp, 1); |
523 | | } |
524 | | #endif // NEON_INTRINSICS_ENABLED |
525 | | |
526 | | void rfx_init_neon_int(RFX_CONTEXT* WINPR_RESTRICT context) |
527 | 0 | { |
528 | | #if defined(NEON_INTRINSICS_ENABLED) |
529 | | WLog_VRB(PRIM_TAG, "NEON optimizations"); |
530 | | PROFILER_RENAME(context->priv->prof_rfx_ycbcr_to_rgb, "rfx_decode_YCbCr_to_RGB_NEON"); |
531 | | PROFILER_RENAME(context->priv->prof_rfx_quantization_decode, "rfx_quantization_decode_NEON"); |
532 | | PROFILER_RENAME(context->priv->prof_rfx_dwt_2d_decode, "rfx_dwt_2d_decode_NEON"); |
533 | | context->quantization_decode = rfx_quantization_decode_NEON; |
534 | | context->dwt_2d_decode = rfx_dwt_2d_decode_NEON; |
535 | | context->dwt_2d_extrapolate_decode = rfx_dwt_2d_extrapolate_decode_neon; |
536 | | #else |
537 | 0 | WLog_VRB(PRIM_TAG, "undefined WITH_SIMD or NEON intrinsics not available"); |
538 | 0 | WINPR_UNUSED(context); |
539 | 0 | #endif |
540 | 0 | } |