Line  | Count  | Source  | 
1  |  | // SPDX-License-Identifier: GPL-2.0-or-later  | 
2  |  | /*  | 
3  |  |  * Prefix related functions.  | 
4  |  |  * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro  | 
5  |  |  */  | 
6  |  |  | 
7  |  | #include <zebra.h>  | 
8  |  |  | 
9  |  | #include "command.h"  | 
10  |  | #include "prefix.h"  | 
11  |  | #include "ipaddr.h"  | 
12  |  | #include "vty.h"  | 
13  |  | #include "sockunion.h"  | 
14  |  | #include "memory.h"  | 
15  |  | #include "log.h"  | 
16  |  | #include "jhash.h"  | 
17  |  | #include "lib_errors.h"  | 
18  |  | #include "printfrr.h"  | 
19  |  | #include "vxlan.h"  | 
20  |  |  | 
21  | 8  | DEFINE_MTYPE_STATIC(LIB, PREFIX, "Prefix");  | 
22  | 8  | DEFINE_MTYPE_STATIC(LIB, PREFIX_FLOWSPEC, "Prefix Flowspec");  | 
23  | 8  |  | 
24  | 8  | /* Maskbit. */  | 
25  | 8  | static const uint8_t maskbit[] = {0x00, 0x80, 0xc0, 0xe0, 0xf0, | 
26  | 8  |           0xf8, 0xfc, 0xfe, 0xff};  | 
27  | 8  |  | 
28  | 8  | /* Number of bits in prefix type. */  | 
29  | 8  | #ifndef PNBBY  | 
30  | 116M  | #define PNBBY 8  | 
31  |  | #endif /* PNBBY */  | 
32  |  |  | 
33  |  | #define MASKBIT(offset)  ((0xff << (PNBBY - (offset))) & 0xff)  | 
34  |  |  | 
35  |  | int is_zero_mac(const struct ethaddr *mac)  | 
36  | 56  | { | 
37  | 56  |   int i = 0;  | 
38  |  |  | 
39  | 392  |   for (i = 0; i < ETH_ALEN; i++) { | 
40  | 336  |     if (mac->octet[i])  | 
41  | 0  |       return 0;  | 
42  | 336  |   }  | 
43  |  |  | 
44  | 56  |   return 1;  | 
45  | 56  | }  | 
46  |  |  | 
47  |  | bool is_bcast_mac(const struct ethaddr *mac)  | 
48  | 56  | { | 
49  | 56  |   int i = 0;  | 
50  |  |  | 
51  | 56  |   for (i = 0; i < ETH_ALEN; i++)  | 
52  | 56  |     if (mac->octet[i] != 0xFF)  | 
53  | 56  |       return false;  | 
54  |  |  | 
55  | 0  |   return true;  | 
56  | 56  | }  | 
57  |  |  | 
58  |  | bool is_mcast_mac(const struct ethaddr *mac)  | 
59  | 56  | { | 
60  | 56  |   if ((mac->octet[0] & 0x01) == 0x01)  | 
61  | 0  |     return true;  | 
62  |  |  | 
63  | 56  |   return false;  | 
64  | 56  | }  | 
65  |  |  | 
66  |  | unsigned int prefix_bit(const uint8_t *prefix, const uint16_t bit_index)  | 
67  | 41.5M  | { | 
68  | 41.5M  |   unsigned int offset = bit_index / 8;  | 
69  | 41.5M  |   unsigned int shift = 7 - (bit_index % 8);  | 
70  |  |  | 
71  | 41.5M  |   return (prefix[offset] >> shift) & 1;  | 
72  | 41.5M  | }  | 
73  |  |  | 
74  |  | int str2family(const char *string)  | 
75  | 0  | { | 
76  | 0  |   if (!strcmp("ipv4", string)) | 
77  | 0  |     return AF_INET;  | 
78  | 0  |   else if (!strcmp("ipv6", string)) | 
79  | 0  |     return AF_INET6;  | 
80  | 0  |   else if (!strcmp("ethernet", string)) | 
81  | 0  |     return AF_ETHERNET;  | 
82  | 0  |   else if (!strcmp("evpn", string)) | 
83  | 0  |     return AF_EVPN;  | 
84  | 0  |   return -1;  | 
85  | 0  | }  | 
86  |  |  | 
87  |  | const char *family2str(int family)  | 
88  | 0  | { | 
89  | 0  |   switch (family) { | 
90  | 0  |   case AF_INET:  | 
91  | 0  |     return "IPv4";  | 
92  | 0  |   case AF_INET6:  | 
93  | 0  |     return "IPv6";  | 
94  | 0  |   case AF_ETHERNET:  | 
95  | 0  |     return "Ethernet";  | 
96  | 0  |   case AF_EVPN:  | 
97  | 0  |     return "Evpn";  | 
98  | 0  |   }  | 
99  | 0  |   return "?";  | 
100  | 0  | }  | 
101  |  |  | 
102  |  | /* Address Family Identifier to Address Family converter. */  | 
103  |  | int afi2family(afi_t afi)  | 
104  | 7.49k  | { | 
105  | 7.49k  |   if (afi == AFI_IP)  | 
106  | 4.84k  |     return AF_INET;  | 
107  | 2.64k  |   else if (afi == AFI_IP6)  | 
108  | 2.50k  |     return AF_INET6;  | 
109  | 144  |   else if (afi == AFI_L2VPN)  | 
110  | 144  |     return AF_ETHERNET;  | 
111  |  |   /* NOTE: EVPN code should NOT use this interface. */  | 
112  | 0  |   return 0;  | 
113  | 7.49k  | }  | 
114  |  |  | 
115  |  | afi_t family2afi(int family)  | 
116  | 6.10k  | { | 
117  | 6.10k  |   if (family == AF_INET)  | 
118  | 4.18k  |     return AFI_IP;  | 
119  | 1.92k  |   else if (family == AF_INET6)  | 
120  | 1.92k  |     return AFI_IP6;  | 
121  | 0  |   else if (family == AF_ETHERNET || family == AF_EVPN)  | 
122  | 0  |     return AFI_L2VPN;  | 
123  | 0  |   return 0;  | 
124  | 6.10k  | }  | 
125  |  |  | 
126  |  | const char *afi2str_lower(afi_t afi)  | 
127  | 0  | { | 
128  | 0  |   switch (afi) { | 
129  | 0  |   case AFI_IP:  | 
130  | 0  |     return "ipv4";  | 
131  | 0  |   case AFI_IP6:  | 
132  | 0  |     return "ipv6";  | 
133  | 0  |   case AFI_L2VPN:  | 
134  | 0  |     return "l2vpn";  | 
135  | 0  |   case AFI_MAX:  | 
136  | 0  |   case AFI_UNSPEC:  | 
137  | 0  |     return "bad-value";  | 
138  | 0  |   }  | 
139  |  |  | 
140  | 0  |   assert(!"Reached end of function we should never reach");  | 
141  | 0  | }  | 
142  |  |  | 
143  |  | const char *afi2str(afi_t afi)  | 
144  | 0  | { | 
145  | 0  |   switch (afi) { | 
146  | 0  |   case AFI_IP:  | 
147  | 0  |     return "IPv4";  | 
148  | 0  |   case AFI_IP6:  | 
149  | 0  |     return "IPv6";  | 
150  | 0  |   case AFI_L2VPN:  | 
151  | 0  |     return "l2vpn";  | 
152  | 0  |   case AFI_MAX:  | 
153  | 0  |   case AFI_UNSPEC:  | 
154  | 0  |     return "bad-value";  | 
155  | 0  |   }  | 
156  |  |  | 
157  | 0  |   assert(!"Reached end of function we should never reach");  | 
158  | 0  | }  | 
159  |  |  | 
160  |  | const char *safi2str(safi_t safi)  | 
161  | 0  | { | 
162  | 0  |   switch (safi) { | 
163  | 0  |   case SAFI_UNICAST:  | 
164  | 0  |     return "unicast";  | 
165  | 0  |   case SAFI_MULTICAST:  | 
166  | 0  |     return "multicast";  | 
167  | 0  |   case SAFI_MPLS_VPN:  | 
168  | 0  |     return "vpn";  | 
169  | 0  |   case SAFI_ENCAP:  | 
170  | 0  |     return "encap";  | 
171  | 0  |   case SAFI_EVPN:  | 
172  | 0  |     return "evpn";  | 
173  | 0  |   case SAFI_LABELED_UNICAST:  | 
174  | 0  |     return "labeled-unicast";  | 
175  | 0  |   case SAFI_FLOWSPEC:  | 
176  | 0  |     return "flowspec";  | 
177  | 0  |   case SAFI_UNSPEC:  | 
178  | 0  |   case SAFI_MAX:  | 
179  | 0  |     return "unknown";  | 
180  | 0  |   }  | 
181  |  |  | 
182  | 0  |   assert(!"Reached end of function we should never reach");  | 
183  | 0  | }  | 
184  |  |  | 
185  |  | /* If n includes p prefix then return 1 else return 0. */  | 
186  |  | int prefix_match(union prefixconstptr unet, union prefixconstptr upfx)  | 
187  | 58.0M  | { | 
188  | 58.0M  |   const struct prefix *n = unet.p;  | 
189  | 58.0M  |   const struct prefix *p = upfx.p;  | 
190  | 58.0M  |   int offset;  | 
191  | 58.0M  |   int shift;  | 
192  | 58.0M  |   const uint8_t *np, *pp;  | 
193  |  |  | 
194  |  |   /* If n's prefix is longer than p's one return 0. */  | 
195  | 58.0M  |   if (n->prefixlen > p->prefixlen)  | 
196  | 1.40k  |     return 0;  | 
197  |  |  | 
198  | 58.0M  |   if (n->family == AF_FLOWSPEC) { | 
199  |  |     /* prefixlen is unused. look at fs prefix len */  | 
200  | 0  |     if (n->u.prefix_flowspec.family !=  | 
201  | 0  |         p->u.prefix_flowspec.family)  | 
202  | 0  |       return 0;  | 
203  |  |  | 
204  | 0  |     if (n->u.prefix_flowspec.prefixlen >  | 
205  | 0  |         p->u.prefix_flowspec.prefixlen)  | 
206  | 0  |       return 0;  | 
207  |  |  | 
208  |  |     /* Set both prefix's head pointer. */  | 
209  | 0  |     np = (const uint8_t *)&n->u.prefix_flowspec.ptr;  | 
210  | 0  |     pp = (const uint8_t *)&p->u.prefix_flowspec.ptr;  | 
211  |  | 
  | 
212  | 0  |     offset = n->u.prefix_flowspec.prefixlen;  | 
213  |  | 
  | 
214  | 0  |     while (offset--)  | 
215  | 0  |       if (np[offset] != pp[offset])  | 
216  | 0  |         return 0;  | 
217  | 0  |     return 1;  | 
218  | 0  |   }  | 
219  |  |  | 
220  |  |   /* Set both prefix's head pointer. */  | 
221  | 58.0M  |   np = n->u.val;  | 
222  | 58.0M  |   pp = p->u.val;  | 
223  |  |  | 
224  | 58.0M  |   offset = n->prefixlen / PNBBY;  | 
225  | 58.0M  |   shift = n->prefixlen % PNBBY;  | 
226  |  |  | 
227  | 58.0M  |   if (shift)  | 
228  | 53.8M  |     if (maskbit[shift] & (np[offset] ^ pp[offset]))  | 
229  | 14.7M  |       return 0;  | 
230  |  |  | 
231  | 53.3M  |   while (offset--)  | 
232  | 11.7M  |     if (np[offset] != pp[offset])  | 
233  | 1.57M  |       return 0;  | 
234  | 41.6M  |   return 1;  | 
235  |  |  | 
236  | 43.2M  | }  | 
237  |  |  | 
238  |  | /*  | 
239  |  |  * n is a type5 evpn prefix. This function tries to see if there is an  | 
240  |  |  * ip-prefix within n which matches prefix p  | 
241  |  |  * If n includes p prefix then return 1 else return 0.  | 
242  |  |  */  | 
243  |  | int evpn_type5_prefix_match(const struct prefix *n, const struct prefix *p)  | 
244  | 0  | { | 
245  | 0  |   int offset;  | 
246  | 0  |   int shift;  | 
247  | 0  |   int prefixlen;  | 
248  | 0  |   const uint8_t *np, *pp;  | 
249  | 0  |   struct prefix_evpn *evp;  | 
250  |  | 
  | 
251  | 0  |   if (n->family != AF_EVPN)  | 
252  | 0  |     return 0;  | 
253  |  |  | 
254  | 0  |   evp = (struct prefix_evpn *)n;  | 
255  | 0  |   pp = p->u.val;  | 
256  |  | 
  | 
257  | 0  |   if ((evp->prefix.route_type != 5) ||  | 
258  | 0  |       (p->family == AF_INET6 && !is_evpn_prefix_ipaddr_v6(evp)) ||  | 
259  | 0  |       (p->family == AF_INET && !is_evpn_prefix_ipaddr_v4(evp)) ||  | 
260  | 0  |       (is_evpn_prefix_ipaddr_none(evp)))  | 
261  | 0  |     return 0;  | 
262  |  |  | 
263  | 0  |   prefixlen = evp->prefix.prefix_addr.ip_prefix_length;  | 
264  | 0  |   np = &evp->prefix.prefix_addr.ip.ip.addr;  | 
265  |  |  | 
266  |  |   /* If n's prefix is longer than p's one return 0. */  | 
267  | 0  |   if (prefixlen > p->prefixlen)  | 
268  | 0  |     return 0;  | 
269  |  |  | 
270  | 0  |   offset = prefixlen / PNBBY;  | 
271  | 0  |   shift = prefixlen % PNBBY;  | 
272  |  | 
  | 
273  | 0  |   if (shift)  | 
274  | 0  |     if (maskbit[shift] & (np[offset] ^ pp[offset]))  | 
275  | 0  |       return 0;  | 
276  |  |  | 
277  | 0  |   while (offset--)  | 
278  | 0  |     if (np[offset] != pp[offset])  | 
279  | 0  |       return 0;  | 
280  | 0  |   return 1;  | 
281  |  | 
  | 
282  | 0  | }  | 
283  |  |  | 
284  |  | /* If n includes p then return 1 else return 0. Prefix mask is not considered */  | 
285  |  | int prefix_match_network_statement(union prefixconstptr unet,  | 
286  |  |            union prefixconstptr upfx)  | 
287  | 0  | { | 
288  | 0  |   const struct prefix *n = unet.p;  | 
289  | 0  |   const struct prefix *p = upfx.p;  | 
290  | 0  |   int offset;  | 
291  | 0  |   int shift;  | 
292  | 0  |   const uint8_t *np, *pp;  | 
293  |  |  | 
294  |  |   /* Set both prefix's head pointer. */  | 
295  | 0  |   np = n->u.val;  | 
296  | 0  |   pp = p->u.val;  | 
297  |  | 
  | 
298  | 0  |   offset = n->prefixlen / PNBBY;  | 
299  | 0  |   shift = n->prefixlen % PNBBY;  | 
300  |  | 
  | 
301  | 0  |   if (shift)  | 
302  | 0  |     if (maskbit[shift] & (np[offset] ^ pp[offset]))  | 
303  | 0  |       return 0;  | 
304  |  |  | 
305  | 0  |   while (offset--)  | 
306  | 0  |     if (np[offset] != pp[offset])  | 
307  | 0  |       return 0;  | 
308  | 0  |   return 1;  | 
309  | 0  | }  | 
310  |  |  | 
311  |  | #ifdef __clang_analyzer__  | 
312  |  | #undef prefix_copy  /* cf. prefix.h */  | 
313  |  | #endif  | 
314  |  |  | 
315  |  | void prefix_copy(union prefixptr udest, union prefixconstptr usrc)  | 
316  | 929k  | { | 
317  | 929k  |   struct prefix *dest = udest.p;  | 
318  | 929k  |   const struct prefix *src = usrc.p;  | 
319  |  |  | 
320  | 929k  |   dest->family = src->family;  | 
321  | 929k  |   dest->prefixlen = src->prefixlen;  | 
322  |  |  | 
323  | 929k  |   if (src->family == AF_INET)  | 
324  | 786k  |     dest->u.prefix4 = src->u.prefix4;  | 
325  | 143k  |   else if (src->family == AF_INET6)  | 
326  | 12.2k  |     dest->u.prefix6 = src->u.prefix6;  | 
327  | 130k  |   else if (src->family == AF_ETHERNET) { | 
328  | 0  |     memcpy(&dest->u.prefix_eth, &src->u.prefix_eth,  | 
329  | 0  |            sizeof(struct ethaddr));  | 
330  | 130k  |   } else if (src->family == AF_EVPN) { | 
331  | 183  |     memcpy(&dest->u.prefix_evpn, &src->u.prefix_evpn,  | 
332  | 183  |            sizeof(struct evpn_addr));  | 
333  | 130k  |   } else if (src->family == AF_UNSPEC) { | 
334  | 130k  |     dest->u.lp.id = src->u.lp.id;  | 
335  | 130k  |     dest->u.lp.adv_router = src->u.lp.adv_router;  | 
336  | 130k  |   } else if (src->family == AF_FLOWSPEC) { | 
337  | 0  |     void *temp;  | 
338  | 0  |     int len;  | 
339  |  | 
  | 
340  | 0  |     len = src->u.prefix_flowspec.prefixlen;  | 
341  | 0  |     dest->u.prefix_flowspec.prefixlen =  | 
342  | 0  |       src->u.prefix_flowspec.prefixlen;  | 
343  | 0  |     dest->u.prefix_flowspec.family =  | 
344  | 0  |       src->u.prefix_flowspec.family;  | 
345  | 0  |     dest->family = src->family;  | 
346  | 0  |     temp = XCALLOC(MTYPE_PREFIX_FLOWSPEC, len);  | 
347  | 0  |     dest->u.prefix_flowspec.ptr = (uintptr_t)temp;  | 
348  | 0  |     memcpy((void *)dest->u.prefix_flowspec.ptr,  | 
349  | 0  |            (void *)src->u.prefix_flowspec.ptr, len);  | 
350  | 0  |   } else { | 
351  | 0  |     flog_err(EC_LIB_DEVELOPMENT,  | 
352  | 0  |        "prefix_copy(): Unknown address family %d",  | 
353  | 0  |        src->family);  | 
354  | 0  |     assert(0);  | 
355  | 0  |   }  | 
356  | 929k  | }  | 
357  |  |  | 
358  |  | /*  | 
359  |  |  * Return 1 if the address/netmask contained in the prefix structure  | 
360  |  |  * is the same, and else return 0.  For this routine, 'same' requires  | 
361  |  |  * that not only the prefix length and the network part be the same,  | 
362  |  |  * but also the host part.  Thus, 10.0.0.1/8 and 10.0.0.2/8 are not  | 
363  |  |  * the same.  Note that this routine has the same return value sense  | 
364  |  |  * as '==' (which is different from prefix_cmp).  | 
365  |  |  */  | 
366  |  | int prefix_same(union prefixconstptr up1, union prefixconstptr up2)  | 
367  | 327k  | { | 
368  | 327k  |   const struct prefix *p1 = up1.p;  | 
369  | 327k  |   const struct prefix *p2 = up2.p;  | 
370  |  |  | 
371  | 327k  |   if ((p1 && !p2) || (!p1 && p2))  | 
372  | 932  |     return 0;  | 
373  |  |  | 
374  | 326k  |   if (!p1 && !p2)  | 
375  | 0  |     return 1;  | 
376  |  |  | 
377  | 326k  |   if (p1->family == p2->family && p1->prefixlen == p2->prefixlen) { | 
378  | 222k  |     if (p1->family == AF_INET)  | 
379  | 217k  |       if (IPV4_ADDR_SAME(&p1->u.prefix4, &p2->u.prefix4))  | 
380  | 63.4k  |         return 1;  | 
381  | 158k  |     if (p1->family == AF_INET6)  | 
382  | 5.09k  |       if (IPV6_ADDR_SAME(&p1->u.prefix6.s6_addr,  | 
383  | 5.09k  |              &p2->u.prefix6.s6_addr))  | 
384  | 4.17k  |         return 1;  | 
385  | 154k  |     if (p1->family == AF_ETHERNET)  | 
386  | 0  |       if (!memcmp(&p1->u.prefix_eth, &p2->u.prefix_eth,  | 
387  | 0  |             sizeof(struct ethaddr)))  | 
388  | 0  |         return 1;  | 
389  | 154k  |     if (p1->family == AF_EVPN)  | 
390  | 0  |       if (!memcmp(&p1->u.prefix_evpn, &p2->u.prefix_evpn,  | 
391  | 0  |             sizeof(struct evpn_addr)))  | 
392  | 0  |         return 1;  | 
393  | 154k  |     if (p1->family == AF_FLOWSPEC) { | 
394  | 0  |       if (p1->u.prefix_flowspec.family !=  | 
395  | 0  |           p2->u.prefix_flowspec.family)  | 
396  | 0  |         return 0;  | 
397  | 0  |       if (p1->u.prefix_flowspec.prefixlen !=  | 
398  | 0  |           p2->u.prefix_flowspec.prefixlen)  | 
399  | 0  |         return 0;  | 
400  | 0  |       if (!memcmp(&p1->u.prefix_flowspec.ptr,  | 
401  | 0  |             &p2->u.prefix_flowspec.ptr,  | 
402  | 0  |             p2->u.prefix_flowspec.prefixlen))  | 
403  | 0  |         return 1;  | 
404  | 0  |     }  | 
405  | 154k  |   }  | 
406  | 259k  |   return 0;  | 
407  | 326k  | }  | 
408  |  |  | 
409  |  | /*  | 
410  |  |  * Return -1/0/1 comparing the prefixes in a way that gives a full/linear  | 
411  |  |  * order.  | 
412  |  |  *  | 
413  |  |  * Network prefixes are considered the same if the prefix lengths are equal  | 
414  |  |  * and the network parts are the same.  Host bits (which are considered masked  | 
415  |  |  * by the prefix length) are not significant.  Thus, 10.0.0.1/8 and  | 
416  |  |  * 10.0.0.2/8 are considered equivalent by this routine.  Note that  | 
417  |  |  * this routine has the same return sense as strcmp (which is different  | 
418  |  |  * from prefix_same).  | 
419  |  |  */  | 
420  |  | int prefix_cmp(union prefixconstptr up1, union prefixconstptr up2)  | 
421  | 368k  | { | 
422  | 368k  |   const struct prefix *p1 = up1.p;  | 
423  | 368k  |   const struct prefix *p2 = up2.p;  | 
424  | 368k  |   int offset;  | 
425  | 368k  |   int shift;  | 
426  | 368k  |   int i;  | 
427  |  |  | 
428  |  |   /* Set both prefix's head pointer. */  | 
429  | 368k  |   const uint8_t *pp1;  | 
430  | 368k  |   const uint8_t *pp2;  | 
431  |  |  | 
432  | 368k  |   if (p1->family != p2->family)  | 
433  | 361  |     return numcmp(p1->family, p2->family);  | 
434  | 368k  |   if (p1->family == AF_FLOWSPEC) { | 
435  | 0  |     pp1 = (const uint8_t *)p1->u.prefix_flowspec.ptr;  | 
436  | 0  |     pp2 = (const uint8_t *)p2->u.prefix_flowspec.ptr;  | 
437  |  | 
  | 
438  | 0  |     if (p1->u.prefix_flowspec.family !=  | 
439  | 0  |         p2->u.prefix_flowspec.family)  | 
440  | 0  |       return 1;  | 
441  |  |  | 
442  | 0  |     if (p1->u.prefix_flowspec.prefixlen !=  | 
443  | 0  |         p2->u.prefix_flowspec.prefixlen)  | 
444  | 0  |       return numcmp(p1->u.prefix_flowspec.prefixlen,  | 
445  | 0  |               p2->u.prefix_flowspec.prefixlen);  | 
446  |  |  | 
447  | 0  |     offset = p1->u.prefix_flowspec.prefixlen;  | 
448  | 0  |     while (offset--)  | 
449  | 0  |       if (pp1[offset] != pp2[offset])  | 
450  | 0  |         return numcmp(pp1[offset], pp2[offset]);  | 
451  | 0  |     return 0;  | 
452  | 0  |   }  | 
453  | 368k  |   pp1 = p1->u.val;  | 
454  | 368k  |   pp2 = p2->u.val;  | 
455  |  |  | 
456  | 368k  |   if (p1->prefixlen != p2->prefixlen)  | 
457  | 12.7k  |     return numcmp(p1->prefixlen, p2->prefixlen);  | 
458  | 355k  |   offset = p1->prefixlen / PNBBY;  | 
459  | 355k  |   shift = p1->prefixlen % PNBBY;  | 
460  |  |  | 
461  | 355k  |   i = memcmp(pp1, pp2, offset);  | 
462  | 355k  |   if (i)  | 
463  | 10.7k  |     return i;  | 
464  |  |  | 
465  |  |   /*  | 
466  |  |    * At this point offset was the same, if we have shift  | 
467  |  |    * that means we still have data to compare, if shift is  | 
468  |  |    * 0 then we are at the end of the data structure  | 
469  |  |    * and should just return, as that we will be accessing  | 
470  |  |    * memory beyond the end of the party zone  | 
471  |  |    */  | 
472  | 344k  |   if (shift)  | 
473  | 273k  |     return numcmp(pp1[offset] & maskbit[shift],  | 
474  | 344k  |             pp2[offset] & maskbit[shift]);  | 
475  |  |  | 
476  | 71.2k  |   return 0;  | 
477  | 344k  | }  | 
478  |  |  | 
479  |  | /*  | 
480  |  |  * Count the number of common bits in 2 prefixes. The prefix length is  | 
481  |  |  * ignored for this function; the whole prefix is compared. If the prefix  | 
482  |  |  * address families don't match, return -1; otherwise the return value is  | 
483  |  |  * in range 0 ... maximum prefix length for the address family.  | 
484  |  |  */  | 
485  |  | int prefix_common_bits(union prefixconstptr ua, union prefixconstptr ub)  | 
486  | 0  | { | 
487  | 0  |   const struct prefix *p1 = ua.p;  | 
488  | 0  |   const struct prefix *p2 = ub.p;  | 
489  | 0  |   int pos, bit;  | 
490  | 0  |   int length = 0;  | 
491  | 0  |   uint8_t xor ;  | 
492  |  |  | 
493  |  |   /* Set both prefix's head pointer. */  | 
494  | 0  |   const uint8_t *pp1 = p1->u.val;  | 
495  | 0  |   const uint8_t *pp2 = p2->u.val;  | 
496  |  | 
  | 
497  | 0  |   if (p1->family == AF_INET)  | 
498  | 0  |     length = IPV4_MAX_BYTELEN;  | 
499  | 0  |   if (p1->family == AF_INET6)  | 
500  | 0  |     length = IPV6_MAX_BYTELEN;  | 
501  | 0  |   if (p1->family == AF_ETHERNET)  | 
502  | 0  |     length = ETH_ALEN;  | 
503  | 0  |   if (p1->family == AF_EVPN)  | 
504  | 0  |     length = 8 * sizeof(struct evpn_addr);  | 
505  |  | 
  | 
506  | 0  |   if (p1->family != p2->family || !length)  | 
507  | 0  |     return -1;  | 
508  |  |  | 
509  | 0  |   for (pos = 0; pos < length; pos++)  | 
510  | 0  |     if (pp1[pos] != pp2[pos])  | 
511  | 0  |       break;  | 
512  | 0  |   if (pos == length)  | 
513  | 0  |     return pos * 8;  | 
514  |  |  | 
515  | 0  |   xor = pp1[pos] ^ pp2[pos];  | 
516  | 0  |   for (bit = 0; bit < 8; bit++)  | 
517  | 0  |     if (xor&(1 << (7 - bit)))  | 
518  | 0  |       break;  | 
519  |  | 
  | 
520  | 0  |   return pos * 8 + bit;  | 
521  | 0  | }  | 
522  |  |  | 
523  |  | /* Return prefix family type string. */  | 
524  |  | const char *prefix_family_str(union prefixconstptr pu)  | 
525  | 0  | { | 
526  | 0  |   const struct prefix *p = pu.p;  | 
527  |  | 
  | 
528  | 0  |   if (p->family == AF_INET)  | 
529  | 0  |     return "inet";  | 
530  | 0  |   if (p->family == AF_INET6)  | 
531  | 0  |     return "inet6";  | 
532  | 0  |   if (p->family == AF_ETHERNET)  | 
533  | 0  |     return "ether";  | 
534  | 0  |   if (p->family == AF_EVPN)  | 
535  | 0  |     return "evpn";  | 
536  | 0  |   return "unspec";  | 
537  | 0  | }  | 
538  |  |  | 
539  |  | /* Allocate new prefix_ipv4 structure. */  | 
540  |  | struct prefix_ipv4 *prefix_ipv4_new(void)  | 
541  | 0  | { | 
542  | 0  |   struct prefix_ipv4 *p;  | 
543  |  |  | 
544  |  |   /* Call prefix_new to allocate a full-size struct prefix to avoid  | 
545  |  |      problems  | 
546  |  |      where the struct prefix_ipv4 is cast to struct prefix and unallocated  | 
547  |  |      bytes were being referenced (e.g. in structure assignments). */  | 
548  | 0  |   p = (struct prefix_ipv4 *)prefix_new();  | 
549  | 0  |   p->family = AF_INET;  | 
550  | 0  |   return p;  | 
551  | 0  | }  | 
552  |  |  | 
553  |  | /* Free prefix_ipv4 structure. */  | 
554  |  | void prefix_ipv4_free(struct prefix_ipv4 **p)  | 
555  | 0  | { | 
556  | 0  |   prefix_free((struct prefix **)p);  | 
557  | 0  | }  | 
558  |  |  | 
559  |  | /* If given string is valid return 1 else return 0 */  | 
560  |  | int str2prefix_ipv4(const char *str, struct prefix_ipv4 *p)  | 
561  | 100k  | { | 
562  | 100k  |   int ret;  | 
563  | 100k  |   int plen;  | 
564  | 100k  |   char *pnt;  | 
565  | 100k  |   char *cp;  | 
566  |  |  | 
567  |  |   /* Find slash inside string. */  | 
568  | 100k  |   pnt = strchr(str, '/');  | 
569  |  |  | 
570  |  |   /* String doesn't contail slash. */  | 
571  | 100k  |   if (pnt == NULL) { | 
572  |  |     /* Convert string to prefix. */  | 
573  | 0  |     ret = inet_pton(AF_INET, str, &p->prefix);  | 
574  | 0  |     if (ret == 0)  | 
575  | 0  |       return 0;  | 
576  |  |  | 
577  |  |     /* If address doesn't contain slash we assume it host address.  | 
578  |  |      */  | 
579  | 0  |     p->family = AF_INET;  | 
580  | 0  |     p->prefixlen = IPV4_MAX_BITLEN;  | 
581  |  | 
  | 
582  | 0  |     return ret;  | 
583  | 100k  |   } else { | 
584  | 100k  |     cp = XMALLOC(MTYPE_TMP, (pnt - str) + 1);  | 
585  | 100k  |     memcpy(cp, str, pnt - str);  | 
586  | 100k  |     *(cp + (pnt - str)) = '\0';  | 
587  | 100k  |     ret = inet_pton(AF_INET, cp, &p->prefix);  | 
588  | 100k  |     XFREE(MTYPE_TMP, cp);  | 
589  | 100k  |     if (ret == 0)  | 
590  | 0  |       return 0;  | 
591  |  |  | 
592  |  |     /* Get prefix length. */  | 
593  | 100k  |     plen = (uint8_t)atoi(++pnt);  | 
594  | 100k  |     if (plen > IPV4_MAX_BITLEN)  | 
595  | 0  |       return 0;  | 
596  |  |  | 
597  | 100k  |     p->family = AF_INET;  | 
598  | 100k  |     p->prefixlen = plen;  | 
599  | 100k  |   }  | 
600  |  |  | 
601  | 100k  |   return ret;  | 
602  | 100k  | }  | 
603  |  |  | 
604  |  | /* When string format is invalid return 0. */  | 
605  |  | int str2prefix_eth(const char *str, struct prefix_eth *p)  | 
606  | 0  | { | 
607  | 0  |   int ret = 0;  | 
608  | 0  |   int plen = 48;  | 
609  | 0  |   char *pnt;  | 
610  | 0  |   char *cp = NULL;  | 
611  | 0  |   const char *str_addr = str;  | 
612  | 0  |   unsigned int a[6];  | 
613  | 0  |   int i;  | 
614  | 0  |   bool slash = false;  | 
615  |  | 
  | 
616  | 0  |   if (!strcmp(str, "any")) { | 
617  | 0  |     memset(p, 0, sizeof(*p));  | 
618  | 0  |     p->family = AF_ETHERNET;  | 
619  | 0  |     return 1;  | 
620  | 0  |   }  | 
621  |  |  | 
622  |  |   /* Find slash inside string. */  | 
623  | 0  |   pnt = strchr(str, '/');  | 
624  |  | 
  | 
625  | 0  |   if (pnt) { | 
626  |  |     /* Get prefix length. */  | 
627  | 0  |     plen = (uint8_t)atoi(++pnt);  | 
628  | 0  |     if (plen > 48) { | 
629  | 0  |       ret = 0;  | 
630  | 0  |       goto done;  | 
631  | 0  |     }  | 
632  |  |  | 
633  | 0  |     cp = XMALLOC(MTYPE_TMP, (pnt - str) + 1);  | 
634  | 0  |     memcpy(cp, str, pnt - str);  | 
635  | 0  |     *(cp + (pnt - str)) = '\0';  | 
636  |  | 
  | 
637  | 0  |     str_addr = cp;  | 
638  | 0  |     slash = true;  | 
639  | 0  |   }  | 
640  |  |  | 
641  |  |   /* Convert string to prefix. */  | 
642  | 0  |   if (sscanf(str_addr, "%2x:%2x:%2x:%2x:%2x:%2x", a + 0, a + 1, a + 2,  | 
643  | 0  |        a + 3, a + 4, a + 5)  | 
644  | 0  |       != 6) { | 
645  | 0  |     ret = 0;  | 
646  | 0  |     goto done;  | 
647  | 0  |   }  | 
648  | 0  |   for (i = 0; i < 6; ++i) { | 
649  | 0  |     p->eth_addr.octet[i] = a[i] & 0xff;  | 
650  | 0  |   }  | 
651  | 0  |   p->prefixlen = plen;  | 
652  | 0  |   p->family = AF_ETHERNET;  | 
653  |  |  | 
654  |  |   /*  | 
655  |  |    * special case to allow old configurations to work  | 
656  |  |    * Since all zero's is implicitly meant to allow  | 
657  |  |    * a comparison to zero, let's assume  | 
658  |  |    */  | 
659  | 0  |   if (!slash && is_zero_mac(&(p->eth_addr)))  | 
660  | 0  |     p->prefixlen = 0;  | 
661  |  | 
  | 
662  | 0  |   ret = 1;  | 
663  |  | 
  | 
664  | 0  | done:  | 
665  | 0  |   XFREE(MTYPE_TMP, cp);  | 
666  |  | 
  | 
667  | 0  |   return ret;  | 
668  | 0  | }  | 
669  |  |  | 
670  |  | /* Convert masklen into IP address's netmask (network byte order). */  | 
671  |  | void masklen2ip(const int masklen, struct in_addr *netmask)  | 
672  | 358k  | { | 
673  | 358k  |   assert(masklen >= 0 && masklen <= IPV4_MAX_BITLEN);  | 
674  |  |  | 
675  |  |   /* left shift is only defined for less than the size of the type.  | 
676  |  |    * we unconditionally use long long in case the target platform  | 
677  |  |    * has defined behaviour for << 32 (or has a 64-bit left shift) */  | 
678  |  |  | 
679  | 358k  |   if (sizeof(unsigned long long) > 4)  | 
680  | 358k  |     netmask->s_addr =  | 
681  | 358k  |       htonl((uint32_t)(0xffffffffULL << (32 - masklen)));  | 
682  | 0  |   else  | 
683  | 0  |     netmask->s_addr =  | 
684  | 0  |       htonl(masklen ? 0xffffffffU << (32 - masklen) : 0);  | 
685  | 358k  | }  | 
686  |  |  | 
687  |  | /* Convert IP address's netmask into integer. We assume netmask is  | 
688  |  |  * sequential one. Argument netmask should be network byte order. */  | 
689  |  | uint8_t ip_masklen(struct in_addr netmask)  | 
690  | 676  | { | 
691  | 676  |   uint32_t tmp = ~ntohl(netmask.s_addr);  | 
692  |  |  | 
693  |  |   /*  | 
694  |  |    * clz: count leading zeroes. sadly, the behaviour of this builtin is  | 
695  |  |    * undefined for a 0 argument, even though most CPUs give 32  | 
696  |  |    */  | 
697  | 676  |   return tmp ? __builtin_clz(tmp) : 32;  | 
698  | 676  | }  | 
699  |  |  | 
700  |  | /* Apply mask to IPv4 prefix (network byte order). */  | 
701  |  | void apply_mask_ipv4(struct prefix_ipv4 *p)  | 
702  | 355k  | { | 
703  | 355k  |   struct in_addr mask;  | 
704  | 355k  |   masklen2ip(p->prefixlen, &mask);  | 
705  | 355k  |   p->prefix.s_addr &= mask.s_addr;  | 
706  | 355k  | }  | 
707  |  |  | 
708  |  | /* If prefix is 0.0.0.0/0 then return 1 else return 0. */  | 
709  |  | int prefix_ipv4_any(const struct prefix_ipv4 *p)  | 
710  | 0  | { | 
711  | 0  |   return (p->prefix.s_addr == INADDR_ANY && p->prefixlen == 0);  | 
712  | 0  | }  | 
713  |  |  | 
714  |  | /* Allocate a new ip version 6 route */  | 
715  |  | struct prefix_ipv6 *prefix_ipv6_new(void)  | 
716  | 0  | { | 
717  | 0  |   struct prefix_ipv6 *p;  | 
718  |  |  | 
719  |  |   /* Allocate a full-size struct prefix to avoid problems with structure  | 
720  |  |      size mismatches. */  | 
721  | 0  |   p = (struct prefix_ipv6 *)prefix_new();  | 
722  | 0  |   p->family = AF_INET6;  | 
723  | 0  |   return p;  | 
724  | 0  | }  | 
725  |  |  | 
726  |  | /* Free prefix for IPv6. */  | 
727  |  | void prefix_ipv6_free(struct prefix_ipv6 **p)  | 
728  | 0  | { | 
729  | 0  |   prefix_free((struct prefix **)p);  | 
730  | 0  | }  | 
731  |  |  | 
732  |  | /* If given string is valid return 1 else return 0 */  | 
733  |  | int str2prefix_ipv6(const char *str, struct prefix_ipv6 *p)  | 
734  | 0  | { | 
735  | 0  |   char *pnt;  | 
736  | 0  |   char *cp;  | 
737  | 0  |   int ret;  | 
738  |  | 
  | 
739  | 0  |   pnt = strchr(str, '/');  | 
740  |  |  | 
741  |  |   /* If string doesn't contain `/' treat it as host route. */  | 
742  | 0  |   if (pnt == NULL) { | 
743  | 0  |     ret = inet_pton(AF_INET6, str, &p->prefix);  | 
744  | 0  |     if (ret == 0)  | 
745  | 0  |       return 0;  | 
746  | 0  |     p->prefixlen = IPV6_MAX_BITLEN;  | 
747  | 0  |   } else { | 
748  | 0  |     int plen;  | 
749  |  | 
  | 
750  | 0  |     cp = XMALLOC(MTYPE_TMP, (pnt - str) + 1);  | 
751  | 0  |     memcpy(cp, str, pnt - str);  | 
752  | 0  |     *(cp + (pnt - str)) = '\0';  | 
753  | 0  |     ret = inet_pton(AF_INET6, cp, &p->prefix);  | 
754  | 0  |     XFREE(MTYPE_TMP, cp);  | 
755  | 0  |     if (ret == 0)  | 
756  | 0  |       return 0;  | 
757  | 0  |     plen = (uint8_t)atoi(++pnt);  | 
758  | 0  |     if (plen > IPV6_MAX_BITLEN)  | 
759  | 0  |       return 0;  | 
760  | 0  |     p->prefixlen = plen;  | 
761  | 0  |   }  | 
762  | 0  |   p->family = AF_INET6;  | 
763  |  | 
  | 
764  | 0  |   return ret;  | 
765  | 0  | }  | 
766  |  |  | 
767  |  | /* Convert struct in6_addr netmask into integer.  | 
768  |  |  * FIXME return uint8_t as ip_maskleni() does. */  | 
769  |  | int ip6_masklen(struct in6_addr netmask)  | 
770  | 0  | { | 
771  | 0  |   if (netmask.s6_addr32[0] != 0xffffffffU)  | 
772  | 0  |     return __builtin_clz(~ntohl(netmask.s6_addr32[0]));  | 
773  | 0  |   if (netmask.s6_addr32[1] != 0xffffffffU)  | 
774  | 0  |     return __builtin_clz(~ntohl(netmask.s6_addr32[1])) + 32;  | 
775  | 0  |   if (netmask.s6_addr32[2] != 0xffffffffU)  | 
776  | 0  |     return __builtin_clz(~ntohl(netmask.s6_addr32[2])) + 64;  | 
777  | 0  |   if (netmask.s6_addr32[3] != 0xffffffffU)  | 
778  | 0  |     return __builtin_clz(~ntohl(netmask.s6_addr32[3])) + 96;  | 
779  |  |   /* note __builtin_clz(0) is undefined */  | 
780  | 0  |   return 128;  | 
781  | 0  | }  | 
782  |  |  | 
783  |  | void masklen2ip6(const int masklen, struct in6_addr *netmask)  | 
784  | 0  | { | 
785  | 0  |   assert(masklen >= 0 && masklen <= IPV6_MAX_BITLEN);  | 
786  |  | 
  | 
787  | 0  |   if (masklen == 0) { | 
788  |  |     /* note << 32 is undefined */  | 
789  | 0  |     memset(netmask, 0, sizeof(*netmask));  | 
790  | 0  |   } else if (masklen <= 32) { | 
791  | 0  |     netmask->s6_addr32[0] = htonl(0xffffffffU << (32 - masklen));  | 
792  | 0  |     netmask->s6_addr32[1] = 0;  | 
793  | 0  |     netmask->s6_addr32[2] = 0;  | 
794  | 0  |     netmask->s6_addr32[3] = 0;  | 
795  | 0  |   } else if (masklen <= 64) { | 
796  | 0  |     netmask->s6_addr32[0] = 0xffffffffU;  | 
797  | 0  |     netmask->s6_addr32[1] = htonl(0xffffffffU << (64 - masklen));  | 
798  | 0  |     netmask->s6_addr32[2] = 0;  | 
799  | 0  |     netmask->s6_addr32[3] = 0;  | 
800  | 0  |   } else if (masklen <= 96) { | 
801  | 0  |     netmask->s6_addr32[0] = 0xffffffffU;  | 
802  | 0  |     netmask->s6_addr32[1] = 0xffffffffU;  | 
803  | 0  |     netmask->s6_addr32[2] = htonl(0xffffffffU << (96 - masklen));  | 
804  | 0  |     netmask->s6_addr32[3] = 0;  | 
805  | 0  |   } else { | 
806  | 0  |     netmask->s6_addr32[0] = 0xffffffffU;  | 
807  | 0  |     netmask->s6_addr32[1] = 0xffffffffU;  | 
808  | 0  |     netmask->s6_addr32[2] = 0xffffffffU;  | 
809  | 0  |     netmask->s6_addr32[3] = htonl(0xffffffffU << (128 - masklen));  | 
810  | 0  |   }  | 
811  | 0  | }  | 
812  |  |  | 
813  |  | void apply_mask_ipv6(struct prefix_ipv6 *p)  | 
814  | 4.84k  | { | 
815  | 4.84k  |   uint8_t *pnt;  | 
816  | 4.84k  |   int index;  | 
817  | 4.84k  |   int offset;  | 
818  |  |  | 
819  | 4.84k  |   index = p->prefixlen / 8;  | 
820  |  |  | 
821  | 4.84k  |   if (index < 16) { | 
822  | 4.81k  |     pnt = (uint8_t *)&p->prefix;  | 
823  | 4.81k  |     offset = p->prefixlen % 8;  | 
824  |  |  | 
825  | 4.81k  |     pnt[index] &= maskbit[offset];  | 
826  | 4.81k  |     index++;  | 
827  |  |  | 
828  | 63.9k  |     while (index < 16)  | 
829  | 59.1k  |       pnt[index++] = 0;  | 
830  | 4.81k  |   }  | 
831  | 4.84k  | }  | 
832  |  |  | 
833  |  | void apply_mask(union prefixptr pu)  | 
834  | 414k  | { | 
835  | 414k  |   struct prefix *p = pu.p;  | 
836  |  |  | 
837  | 414k  |   switch (p->family) { | 
838  | 355k  |   case AF_INET:  | 
839  | 355k  |     apply_mask_ipv4(pu.p4);  | 
840  | 355k  |     break;  | 
841  | 4.84k  |   case AF_INET6:  | 
842  | 4.84k  |     apply_mask_ipv6(pu.p6);  | 
843  | 4.84k  |     break;  | 
844  | 54.0k  |   default:  | 
845  | 54.0k  |     break;  | 
846  | 414k  |   }  | 
847  | 414k  |   return;  | 
848  | 414k  | }  | 
849  |  |  | 
850  |  | /* Utility function of convert between struct prefix <=> union sockunion. */  | 
851  |  | struct prefix *sockunion2hostprefix(const union sockunion *su,  | 
852  |  |             struct prefix *prefix)  | 
853  | 0  | { | 
854  | 0  |   if (su->sa.sa_family == AF_INET) { | 
855  | 0  |     struct prefix_ipv4 *p;  | 
856  |  | 
  | 
857  | 0  |     p = prefix ? (struct prefix_ipv4 *)prefix : prefix_ipv4_new();  | 
858  | 0  |     p->family = AF_INET;  | 
859  | 0  |     p->prefix = su->sin.sin_addr;  | 
860  | 0  |     p->prefixlen = IPV4_MAX_BITLEN;  | 
861  | 0  |     return (struct prefix *)p;  | 
862  | 0  |   }  | 
863  | 0  |   if (su->sa.sa_family == AF_INET6) { | 
864  | 0  |     struct prefix_ipv6 *p;  | 
865  |  | 
  | 
866  | 0  |     p = prefix ? (struct prefix_ipv6 *)prefix : prefix_ipv6_new();  | 
867  | 0  |     p->family = AF_INET6;  | 
868  | 0  |     p->prefixlen = IPV6_MAX_BITLEN;  | 
869  | 0  |     memcpy(&p->prefix, &su->sin6.sin6_addr,  | 
870  | 0  |            sizeof(struct in6_addr));  | 
871  | 0  |     return (struct prefix *)p;  | 
872  | 0  |   }  | 
873  | 0  |   return NULL;  | 
874  | 0  | }  | 
875  |  |  | 
876  |  | void prefix2sockunion(const struct prefix *p, union sockunion *su)  | 
877  | 0  | { | 
878  | 0  |   memset(su, 0, sizeof(*su));  | 
879  |  | 
  | 
880  | 0  |   su->sa.sa_family = p->family;  | 
881  | 0  |   if (p->family == AF_INET)  | 
882  | 0  |     su->sin.sin_addr = p->u.prefix4;  | 
883  | 0  |   if (p->family == AF_INET6)  | 
884  | 0  |     memcpy(&su->sin6.sin6_addr, &p->u.prefix6,  | 
885  | 0  |            sizeof(struct in6_addr));  | 
886  | 0  | }  | 
887  |  |  | 
888  |  | int prefix_blen(union prefixconstptr pu)  | 
889  | 11.7k  | { | 
890  | 11.7k  |   const struct prefix *p = pu.p;  | 
891  |  |  | 
892  | 11.7k  |   switch (p->family) { | 
893  | 7.33k  |   case AF_INET:  | 
894  | 7.33k  |     return IPV4_MAX_BYTELEN;  | 
895  | 4.14k  |   case AF_INET6:  | 
896  | 4.14k  |     return IPV6_MAX_BYTELEN;  | 
897  | 163  |   case AF_ETHERNET:  | 
898  | 163  |     return ETH_ALEN;  | 
899  | 11.7k  |   }  | 
900  | 75  |   return 0;  | 
901  | 11.7k  | }  | 
902  |  |  | 
903  |  | /* Generic function for conversion string to struct prefix. */  | 
904  |  | int str2prefix(const char *str, struct prefix *p)  | 
905  | 100k  | { | 
906  | 100k  |   int ret;  | 
907  |  |  | 
908  | 100k  |   if (!str || !p)  | 
909  | 0  |     return 0;  | 
910  |  |  | 
911  |  |   /* First we try to convert string to struct prefix_ipv4. */  | 
912  | 100k  |   ret = str2prefix_ipv4(str, (struct prefix_ipv4 *)p);  | 
913  | 100k  |   if (ret)  | 
914  | 100k  |     return ret;  | 
915  |  |  | 
916  |  |   /* Next we try to convert string to struct prefix_ipv6. */  | 
917  | 0  |   ret = str2prefix_ipv6(str, (struct prefix_ipv6 *)p);  | 
918  | 0  |   if (ret)  | 
919  | 0  |     return ret;  | 
920  |  |  | 
921  |  |   /* Next we try to convert string to struct prefix_eth. */  | 
922  | 0  |   ret = str2prefix_eth(str, (struct prefix_eth *)p);  | 
923  | 0  |   if (ret)  | 
924  | 0  |     return ret;  | 
925  |  |  | 
926  | 0  |   return 0;  | 
927  | 0  | }  | 
928  |  |  | 
929  |  | static const char *prefixevpn_ead2str(const struct prefix_evpn *p, char *str,  | 
930  |  |               int size)  | 
931  | 0  | { | 
932  | 0  |   uint8_t family;  | 
933  | 0  |   char buf[ESI_STR_LEN];  | 
934  | 0  |   char buf1[INET6_ADDRSTRLEN];  | 
935  |  | 
  | 
936  | 0  |   family = IS_IPADDR_V4(&p->prefix.ead_addr.ip) ? AF_INET : AF_INET6;  | 
937  | 0  |   snprintf(str, size, "[%d]:[%u]:[%s]:[%d]:[%s]:[%u]",  | 
938  | 0  |      p->prefix.route_type, p->prefix.ead_addr.eth_tag,  | 
939  | 0  |      esi_to_str(&p->prefix.ead_addr.esi, buf, sizeof(buf)),  | 
940  | 0  |      (family == AF_INET) ? IPV4_MAX_BITLEN : IPV6_MAX_BITLEN,  | 
941  | 0  |      inet_ntop(family, &p->prefix.ead_addr.ip.ipaddr_v4, buf1,  | 
942  | 0  |          sizeof(buf1)),  | 
943  | 0  |      p->prefix.ead_addr.frag_id);  | 
944  | 0  |   return str;  | 
945  | 0  | }  | 
946  |  |  | 
947  |  | static const char *prefixevpn_macip2str(const struct prefix_evpn *p, char *str,  | 
948  |  |           int size)  | 
949  | 0  | { | 
950  | 0  |   uint8_t family;  | 
951  | 0  |   char buf1[ETHER_ADDR_STRLEN];  | 
952  | 0  |   char buf2[PREFIX2STR_BUFFER];  | 
953  |  | 
  | 
954  | 0  |   if (is_evpn_prefix_ipaddr_none(p))  | 
955  | 0  |     snprintf(str, size, "[%d]:[%d]:[%d]:[%s]", p->prefix.route_type,  | 
956  | 0  |        p->prefix.macip_addr.eth_tag, 8 * ETH_ALEN,  | 
957  | 0  |        prefix_mac2str(&p->prefix.macip_addr.mac, buf1,  | 
958  | 0  |           sizeof(buf1)));  | 
959  | 0  |   else { | 
960  | 0  |     family = is_evpn_prefix_ipaddr_v4(p) ? AF_INET : AF_INET6;  | 
961  | 0  |     snprintf(str, size, "[%d]:[%d]:[%d]:[%s]:[%d]:[%s]",  | 
962  | 0  |        p->prefix.route_type, p->prefix.macip_addr.eth_tag,  | 
963  | 0  |        8 * ETH_ALEN,  | 
964  | 0  |        prefix_mac2str(&p->prefix.macip_addr.mac, buf1,  | 
965  | 0  |           sizeof(buf1)),  | 
966  | 0  |        family == AF_INET ? IPV4_MAX_BITLEN : IPV6_MAX_BITLEN,  | 
967  | 0  |        inet_ntop(family, &p->prefix.macip_addr.ip.ip.addr,  | 
968  | 0  |            buf2, PREFIX2STR_BUFFER));  | 
969  | 0  |   }  | 
970  | 0  |   return str;  | 
971  | 0  | }  | 
972  |  |  | 
973  |  | static const char *prefixevpn_imet2str(const struct prefix_evpn *p, char *str,  | 
974  |  |                int size)  | 
975  | 0  | { | 
976  | 0  |   uint8_t family;  | 
977  | 0  |   char buf[INET6_ADDRSTRLEN];  | 
978  |  | 
  | 
979  | 0  |   family = IS_IPADDR_V4(&p->prefix.imet_addr.ip) ? AF_INET : AF_INET6;  | 
980  | 0  |   snprintf(str, size, "[%d]:[%d]:[%d]:[%s]", p->prefix.route_type,  | 
981  | 0  |      p->prefix.imet_addr.eth_tag,  | 
982  | 0  |      (family == AF_INET) ? IPV4_MAX_BITLEN : IPV6_MAX_BITLEN,  | 
983  | 0  |      inet_ntop(family, &p->prefix.imet_addr.ip.ipaddr_v4, buf,  | 
984  | 0  |          sizeof(buf)));  | 
985  |  | 
  | 
986  | 0  |   return str;  | 
987  | 0  | }  | 
988  |  |  | 
989  |  | static const char *prefixevpn_es2str(const struct prefix_evpn *p, char *str,  | 
990  |  |              int size)  | 
991  | 0  | { | 
992  | 0  |   uint8_t family;  | 
993  | 0  |   char buf[ESI_STR_LEN];  | 
994  | 0  |   char buf1[INET6_ADDRSTRLEN];  | 
995  |  | 
  | 
996  | 0  |   family = IS_IPADDR_V4(&p->prefix.es_addr.ip) ? AF_INET : AF_INET6;  | 
997  | 0  |   snprintf(str, size, "[%d]:[%s]:[%d]:[%s]", p->prefix.route_type,  | 
998  | 0  |      esi_to_str(&p->prefix.es_addr.esi, buf, sizeof(buf)),  | 
999  | 0  |      (family == AF_INET) ? IPV4_MAX_BITLEN : IPV6_MAX_BITLEN,  | 
1000  | 0  |      inet_ntop(family, &p->prefix.es_addr.ip.ipaddr_v4, buf1,  | 
1001  | 0  |          sizeof(buf1)));  | 
1002  |  | 
  | 
1003  | 0  |   return str;  | 
1004  | 0  | }  | 
1005  |  |  | 
1006  |  | static const char *prefixevpn_prefix2str(const struct prefix_evpn *p, char *str,  | 
1007  |  |            int size)  | 
1008  | 0  | { | 
1009  | 0  |   uint8_t family;  | 
1010  | 0  |   char buf[INET6_ADDRSTRLEN];  | 
1011  |  | 
  | 
1012  | 0  |   family = IS_IPADDR_V4(&p->prefix.prefix_addr.ip) ? AF_INET : AF_INET6;  | 
1013  | 0  |   snprintf(str, size, "[%d]:[%d]:[%d]:[%s]", p->prefix.route_type,  | 
1014  | 0  |      p->prefix.prefix_addr.eth_tag,  | 
1015  | 0  |      p->prefix.prefix_addr.ip_prefix_length,  | 
1016  | 0  |      inet_ntop(family, &p->prefix.prefix_addr.ip.ipaddr_v4, buf,  | 
1017  | 0  |          sizeof(buf)));  | 
1018  | 0  |   return str;  | 
1019  | 0  | }  | 
1020  |  |  | 
1021  |  | static const char *prefixevpn2str(const struct prefix_evpn *p, char *str,  | 
1022  |  |           int size)  | 
1023  | 0  | { | 
1024  | 0  |   switch (p->prefix.route_type) { | 
1025  | 0  |   case BGP_EVPN_AD_ROUTE:  | 
1026  | 0  |     return prefixevpn_ead2str(p, str, size);  | 
1027  | 0  |   case BGP_EVPN_MAC_IP_ROUTE:  | 
1028  | 0  |     return prefixevpn_macip2str(p, str, size);  | 
1029  | 0  |   case BGP_EVPN_IMET_ROUTE:  | 
1030  | 0  |     return prefixevpn_imet2str(p, str, size);  | 
1031  | 0  |   case BGP_EVPN_ES_ROUTE:  | 
1032  | 0  |     return prefixevpn_es2str(p, str, size);  | 
1033  | 0  |   case BGP_EVPN_IP_PREFIX_ROUTE:  | 
1034  | 0  |     return prefixevpn_prefix2str(p, str, size);  | 
1035  | 0  |   default:  | 
1036  | 0  |     snprintf(str, size, "Unsupported EVPN prefix");  | 
1037  | 0  |     break;  | 
1038  | 0  |   }  | 
1039  | 0  |   return str;  | 
1040  | 0  | }  | 
1041  |  |  | 
1042  |  | const char *prefix2str(union prefixconstptr pu, char *str, int size)  | 
1043  | 0  | { | 
1044  | 0  |   const struct prefix *p = pu.p;  | 
1045  | 0  |   char buf[PREFIX2STR_BUFFER];  | 
1046  | 0  |   int byte, tmp, a, b;  | 
1047  | 0  |   bool z = false;  | 
1048  | 0  |   size_t l;  | 
1049  |  | 
  | 
1050  | 0  |   switch (p->family) { | 
1051  | 0  |   case AF_INET:  | 
1052  | 0  |   case AF_INET6:  | 
1053  | 0  |     inet_ntop(p->family, &p->u.prefix, buf, sizeof(buf));  | 
1054  | 0  |     l = strlen(buf);  | 
1055  | 0  |     buf[l++] = '/';  | 
1056  | 0  |     byte = p->prefixlen;  | 
1057  | 0  |     tmp = p->prefixlen - 100;  | 
1058  | 0  |     if (tmp >= 0) { | 
1059  | 0  |       buf[l++] = '1';  | 
1060  | 0  |       z = true;  | 
1061  | 0  |       byte = tmp;  | 
1062  | 0  |     }  | 
1063  | 0  |     b = byte % 10;  | 
1064  | 0  |     a = byte / 10;  | 
1065  | 0  |     if (a || z)  | 
1066  | 0  |       buf[l++] = '0' + a;  | 
1067  | 0  |     buf[l++] = '0' + b;  | 
1068  | 0  |     buf[l] = '\0';  | 
1069  | 0  |     strlcpy(str, buf, size);  | 
1070  | 0  |     break;  | 
1071  |  |  | 
1072  | 0  |   case AF_ETHERNET:  | 
1073  | 0  |     snprintf(str, size, "%s/%d",  | 
1074  | 0  |        prefix_mac2str(&p->u.prefix_eth, buf, sizeof(buf)),  | 
1075  | 0  |        p->prefixlen);  | 
1076  | 0  |     break;  | 
1077  |  |  | 
1078  | 0  |   case AF_EVPN:  | 
1079  | 0  |     prefixevpn2str((const struct prefix_evpn *)p, str, size);  | 
1080  | 0  |     break;  | 
1081  |  |  | 
1082  | 0  |   case AF_FLOWSPEC:  | 
1083  | 0  |     strlcpy(str, "FS prefix", size);  | 
1084  | 0  |     break;  | 
1085  |  |  | 
1086  | 0  |   default:  | 
1087  | 0  |     strlcpy(str, "UNK prefix", size);  | 
1088  | 0  |     break;  | 
1089  | 0  |   }  | 
1090  |  |  | 
1091  | 0  |   return str;  | 
1092  | 0  | }  | 
1093  |  |  | 
1094  |  | static ssize_t prefixhost2str(struct fbuf *fbuf, union prefixconstptr pu)  | 
1095  | 0  | { | 
1096  | 0  |   const struct prefix *p = pu.p;  | 
1097  | 0  |   char buf[PREFIX2STR_BUFFER];  | 
1098  |  | 
  | 
1099  | 0  |   switch (p->family) { | 
1100  | 0  |   case AF_INET:  | 
1101  | 0  |   case AF_INET6:  | 
1102  | 0  |     inet_ntop(p->family, &p->u.prefix, buf, sizeof(buf));  | 
1103  | 0  |     return bputs(fbuf, buf);  | 
1104  |  |  | 
1105  | 0  |   case AF_ETHERNET:  | 
1106  | 0  |     prefix_mac2str(&p->u.prefix_eth, buf, sizeof(buf));  | 
1107  | 0  |     return bputs(fbuf, buf);  | 
1108  |  |  | 
1109  | 0  |   default:  | 
1110  | 0  |     return bprintfrr(fbuf, "{prefix.af=%dPF}", p->family); | 
1111  | 0  |   }  | 
1112  | 0  | }  | 
1113  |  |  | 
1114  |  | void prefix_mcast_inet4_dump(const char *onfail, struct in_addr addr,  | 
1115  |  |     char *buf, int buf_size)  | 
1116  | 0  | { | 
1117  | 0  |   int save_errno = errno;  | 
1118  |  | 
  | 
1119  | 0  |   if (addr.s_addr == INADDR_ANY)  | 
1120  | 0  |     strlcpy(buf, "*", buf_size);  | 
1121  | 0  |   else { | 
1122  | 0  |     if (!inet_ntop(AF_INET, &addr, buf, buf_size)) { | 
1123  | 0  |       if (onfail)  | 
1124  | 0  |         snprintf(buf, buf_size, "%s", onfail);  | 
1125  | 0  |     }  | 
1126  | 0  |   }  | 
1127  |  | 
  | 
1128  | 0  |   errno = save_errno;  | 
1129  | 0  | }  | 
1130  |  |  | 
1131  |  | const char *prefix_sg2str(const struct prefix_sg *sg, char *sg_str)  | 
1132  | 0  | { | 
1133  | 0  |   char src_str[INET_ADDRSTRLEN];  | 
1134  | 0  |   char grp_str[INET_ADDRSTRLEN];  | 
1135  |  | 
  | 
1136  | 0  |   prefix_mcast_inet4_dump("<src?>", sg->src, src_str, sizeof(src_str)); | 
1137  | 0  |   prefix_mcast_inet4_dump("<grp?>", sg->grp, grp_str, sizeof(grp_str)); | 
1138  | 0  |   snprintf(sg_str, PREFIX_SG_STR_LEN, "(%s,%s)", src_str, grp_str);  | 
1139  |  | 
  | 
1140  | 0  |   return sg_str;  | 
1141  | 0  | }  | 
1142  |  |  | 
1143  |  | struct prefix *prefix_new(void)  | 
1144  | 1.75k  | { | 
1145  | 1.75k  |   struct prefix *p;  | 
1146  |  |  | 
1147  | 1.75k  |   p = XCALLOC(MTYPE_PREFIX, sizeof(*p));  | 
1148  | 1.75k  |   return p;  | 
1149  | 1.75k  | }  | 
1150  |  |  | 
1151  |  | void prefix_free_lists(void *arg)  | 
1152  | 1.09k  | { | 
1153  | 1.09k  |   struct prefix *p = arg;  | 
1154  |  |  | 
1155  | 1.09k  |   prefix_free(&p);  | 
1156  | 1.09k  | }  | 
1157  |  |  | 
1158  |  | /* Free prefix structure. */  | 
1159  |  | void prefix_free(struct prefix **p)  | 
1160  | 1.40k  | { | 
1161  | 1.40k  |   XFREE(MTYPE_PREFIX, *p);  | 
1162  | 1.40k  | }  | 
1163  |  |  | 
1164  |  | /* Utility function to convert ipv4 prefixes to Classful prefixes */  | 
1165  |  | void apply_classful_mask_ipv4(struct prefix_ipv4 *p)  | 
1166  | 0  | { | 
1167  |  | 
  | 
1168  | 0  |   uint32_t destination;  | 
1169  |  | 
  | 
1170  | 0  |   destination = ntohl(p->prefix.s_addr);  | 
1171  |  | 
  | 
1172  | 0  |   if (p->prefixlen == IPV4_MAX_BITLEN)  | 
1173  | 0  |     ;  | 
1174  |  |   /* do nothing for host routes */  | 
1175  | 0  |   else if (IN_CLASSC(destination)) { | 
1176  | 0  |     p->prefixlen = 24;  | 
1177  | 0  |     apply_mask_ipv4(p);  | 
1178  | 0  |   } else if (IN_CLASSB(destination)) { | 
1179  | 0  |     p->prefixlen = 16;  | 
1180  | 0  |     apply_mask_ipv4(p);  | 
1181  | 0  |   } else { | 
1182  | 0  |     p->prefixlen = 8;  | 
1183  | 0  |     apply_mask_ipv4(p);  | 
1184  | 0  |   }  | 
1185  | 0  | }  | 
1186  |  |  | 
1187  |  | in_addr_t ipv4_broadcast_addr(in_addr_t hostaddr, int masklen)  | 
1188  | 0  | { | 
1189  | 0  |   struct in_addr mask;  | 
1190  |  | 
  | 
1191  | 0  |   masklen2ip(masklen, &mask);  | 
1192  | 0  |   return (masklen != IPV4_MAX_BITLEN - 1)  | 
1193  | 0  |            ?  | 
1194  |  |            /* normal case */  | 
1195  | 0  |            (hostaddr | ~mask.s_addr)  | 
1196  | 0  |            :  | 
1197  |  |            /* For prefix 31 return 255.255.255.255 (RFC3021) */  | 
1198  | 0  |            htonl(0xFFFFFFFF);  | 
1199  | 0  | }  | 
1200  |  |  | 
1201  |  | /* Utility function to convert ipv4 netmask to prefixes  | 
1202  |  |    ex.) "1.1.0.0" "255.255.0.0" => "1.1.0.0/16"  | 
1203  |  |    ex.) "1.0.0.0" NULL => "1.0.0.0/8"                   */  | 
1204  |  | int netmask_str2prefix_str(const char *net_str, const char *mask_str,  | 
1205  |  |          char *prefix_str, size_t prefix_str_len)  | 
1206  | 0  | { | 
1207  | 0  |   struct in_addr network;  | 
1208  | 0  |   struct in_addr mask;  | 
1209  | 0  |   uint8_t prefixlen;  | 
1210  | 0  |   uint32_t destination;  | 
1211  | 0  |   int ret;  | 
1212  |  | 
  | 
1213  | 0  |   ret = inet_aton(net_str, &network);  | 
1214  | 0  |   if (!ret)  | 
1215  | 0  |     return 0;  | 
1216  |  |  | 
1217  | 0  |   if (mask_str) { | 
1218  | 0  |     ret = inet_aton(mask_str, &mask);  | 
1219  | 0  |     if (!ret)  | 
1220  | 0  |       return 0;  | 
1221  |  |  | 
1222  | 0  |     prefixlen = ip_masklen(mask);  | 
1223  | 0  |   } else { | 
1224  | 0  |     destination = ntohl(network.s_addr);  | 
1225  |  | 
  | 
1226  | 0  |     if (network.s_addr == INADDR_ANY)  | 
1227  | 0  |       prefixlen = 0;  | 
1228  | 0  |     else if (IN_CLASSC(destination))  | 
1229  | 0  |       prefixlen = 24;  | 
1230  | 0  |     else if (IN_CLASSB(destination))  | 
1231  | 0  |       prefixlen = 16;  | 
1232  | 0  |     else if (IN_CLASSA(destination))  | 
1233  | 0  |       prefixlen = 8;  | 
1234  | 0  |     else  | 
1235  | 0  |       return 0;  | 
1236  | 0  |   }  | 
1237  |  |  | 
1238  | 0  |   snprintf(prefix_str, prefix_str_len, "%s/%d", net_str, prefixlen);  | 
1239  |  | 
  | 
1240  | 0  |   return 1;  | 
1241  | 0  | }  | 
1242  |  |  | 
1243  |  | /* converts to internal representation of mac address  | 
1244  |  |  * returns 1 on success, 0 otherwise  | 
1245  |  |  * format accepted: AA:BB:CC:DD:EE:FF  | 
1246  |  |  * if mac parameter is null, then check only  | 
1247  |  |  */  | 
1248  |  | int prefix_str2mac(const char *str, struct ethaddr *mac)  | 
1249  | 0  | { | 
1250  | 0  |   unsigned int a[6];  | 
1251  | 0  |   int i;  | 
1252  |  | 
  | 
1253  | 0  |   if (!str)  | 
1254  | 0  |     return 0;  | 
1255  |  |  | 
1256  | 0  |   if (sscanf(str, "%2x:%2x:%2x:%2x:%2x:%2x", a + 0, a + 1, a + 2, a + 3,  | 
1257  | 0  |        a + 4, a + 5)  | 
1258  | 0  |       != 6) { | 
1259  |  |     /* error in incoming str length */  | 
1260  | 0  |     return 0;  | 
1261  | 0  |   }  | 
1262  |  |   /* valid mac address */  | 
1263  | 0  |   if (!mac)  | 
1264  | 0  |     return 1;  | 
1265  | 0  |   for (i = 0; i < 6; ++i)  | 
1266  | 0  |     mac->octet[i] = a[i] & 0xff;  | 
1267  | 0  |   return 1;  | 
1268  | 0  | }  | 
1269  |  |  | 
1270  |  | char *prefix_mac2str(const struct ethaddr *mac, char *buf, int size)  | 
1271  | 0  | { | 
1272  | 0  |   char *ptr;  | 
1273  |  | 
  | 
1274  | 0  |   if (!mac)  | 
1275  | 0  |     return NULL;  | 
1276  | 0  |   if (!buf)  | 
1277  | 0  |     ptr = XMALLOC(MTYPE_TMP, ETHER_ADDR_STRLEN * sizeof(char));  | 
1278  | 0  |   else { | 
1279  | 0  |     assert(size >= ETHER_ADDR_STRLEN);  | 
1280  | 0  |     ptr = buf;  | 
1281  | 0  |   }  | 
1282  | 0  |   snprintf(ptr, (ETHER_ADDR_STRLEN), "%02x:%02x:%02x:%02x:%02x:%02x",  | 
1283  | 0  |      (uint8_t)mac->octet[0], (uint8_t)mac->octet[1],  | 
1284  | 0  |      (uint8_t)mac->octet[2], (uint8_t)mac->octet[3],  | 
1285  | 0  |      (uint8_t)mac->octet[4], (uint8_t)mac->octet[5]);  | 
1286  | 0  |   return ptr;  | 
1287  | 0  | }  | 
1288  |  |  | 
1289  |  | unsigned prefix_hash_key(const void *pp)  | 
1290  | 429k  | { | 
1291  | 429k  |   struct prefix copy;  | 
1292  |  |  | 
1293  | 429k  |   if (((struct prefix *)pp)->family == AF_FLOWSPEC) { | 
1294  | 0  |     uint32_t len;  | 
1295  | 0  |     void *temp;  | 
1296  |  |  | 
1297  |  |     /* make sure *all* unused bits are zero,  | 
1298  |  |      * particularly including alignment /  | 
1299  |  |      * padding and unused prefix bytes.  | 
1300  |  |      */  | 
1301  | 0  |     memset(©, 0, sizeof(copy));  | 
1302  | 0  |     prefix_copy(©, (struct prefix *)pp);  | 
1303  | 0  |     len = jhash((void *)copy.u.prefix_flowspec.ptr,  | 
1304  | 0  |           copy.u.prefix_flowspec.prefixlen,  | 
1305  | 0  |           0x55aa5a5a);  | 
1306  | 0  |     temp = (void *)copy.u.prefix_flowspec.ptr;  | 
1307  | 0  |     XFREE(MTYPE_PREFIX_FLOWSPEC, temp);  | 
1308  | 0  |     copy.u.prefix_flowspec.ptr = (uintptr_t)NULL;  | 
1309  | 0  |     return len;  | 
1310  | 0  |   }  | 
1311  |  |   /* make sure *all* unused bits are zero, particularly including  | 
1312  |  |    * alignment /  | 
1313  |  |    * padding and unused prefix bytes. */  | 
1314  | 429k  |   memset(©, 0, sizeof(copy));  | 
1315  | 429k  |   prefix_copy(©, (struct prefix *)pp);  | 
1316  | 429k  |   return jhash(©,  | 
1317  | 429k  |          offsetof(struct prefix, u.prefix) + PSIZE(copy.prefixlen),  | 
1318  | 429k  |          0x55aa5a5a);  | 
1319  | 429k  | }  | 
1320  |  |  | 
1321  |  | /* converts to internal representation of esi  | 
1322  |  |  * returns 1 on success, 0 otherwise  | 
1323  |  |  * format accepted: aa:aa:aa:aa:aa:aa:aa:aa:aa:aa  | 
1324  |  |  * if esi parameter is null, then check only  | 
1325  |  |  */  | 
1326  |  | int str_to_esi(const char *str, esi_t *esi)  | 
1327  | 0  | { | 
1328  | 0  |   int i;  | 
1329  | 0  |   unsigned int a[ESI_BYTES];  | 
1330  |  | 
  | 
1331  | 0  |   if (!str)  | 
1332  | 0  |     return 0;  | 
1333  |  |  | 
1334  | 0  |   if (sscanf(str, "%2x:%2x:%2x:%2x:%2x:%2x:%2x:%2x:%2x:%2x",  | 
1335  | 0  |        a + 0, a + 1, a + 2, a + 3,  | 
1336  | 0  |        a + 4, a + 5, a + 6, a + 7,  | 
1337  | 0  |        a + 8, a + 9)  | 
1338  | 0  |       != ESI_BYTES) { | 
1339  |  |     /* error in incoming str length */  | 
1340  | 0  |     return 0;  | 
1341  | 0  |   }  | 
1342  |  |  | 
1343  |  |   /* valid ESI */  | 
1344  | 0  |   if (!esi)  | 
1345  | 0  |     return 1;  | 
1346  | 0  |   for (i = 0; i < ESI_BYTES; ++i)  | 
1347  | 0  |     esi->val[i] = a[i] & 0xff;  | 
1348  | 0  |   return 1;  | 
1349  | 0  | }  | 
1350  |  |  | 
1351  |  | char *esi_to_str(const esi_t *esi, char *buf, int size)  | 
1352  | 0  | { | 
1353  | 0  |   char *ptr;  | 
1354  |  | 
  | 
1355  | 0  |   if (!esi)  | 
1356  | 0  |     return NULL;  | 
1357  | 0  |   if (!buf)  | 
1358  | 0  |     ptr = XMALLOC(MTYPE_TMP, ESI_STR_LEN * sizeof(char));  | 
1359  | 0  |   else { | 
1360  | 0  |     assert(size >= ESI_STR_LEN);  | 
1361  | 0  |     ptr = buf;  | 
1362  | 0  |   }  | 
1363  |  | 
  | 
1364  | 0  |   snprintf(ptr, ESI_STR_LEN,  | 
1365  | 0  |      "%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",  | 
1366  | 0  |      esi->val[0], esi->val[1], esi->val[2],  | 
1367  | 0  |      esi->val[3], esi->val[4], esi->val[5],  | 
1368  | 0  |      esi->val[6], esi->val[7], esi->val[8],  | 
1369  | 0  |      esi->val[9]);  | 
1370  | 0  |   return ptr;  | 
1371  | 0  | }  | 
1372  |  |  | 
1373  |  | char *evpn_es_df_alg2str(uint8_t df_alg, char *buf, int buf_len)  | 
1374  | 0  | { | 
1375  | 0  |   switch (df_alg) { | 
1376  | 0  |   case EVPN_MH_DF_ALG_SERVICE_CARVING:  | 
1377  | 0  |     snprintf(buf, buf_len, "service-carving");  | 
1378  | 0  |     break;  | 
1379  |  |  | 
1380  | 0  |   case EVPN_MH_DF_ALG_HRW:  | 
1381  | 0  |     snprintf(buf, buf_len, "HRW");  | 
1382  | 0  |     break;  | 
1383  |  |  | 
1384  | 0  |   case EVPN_MH_DF_ALG_PREF:  | 
1385  | 0  |     snprintf(buf, buf_len, "preference");  | 
1386  | 0  |     break;  | 
1387  |  |  | 
1388  | 0  |   default:  | 
1389  | 0  |     snprintf(buf, buf_len, "unknown %u", df_alg);  | 
1390  | 0  |     break;  | 
1391  | 0  |   }  | 
1392  |  |  | 
1393  | 0  |   return buf;  | 
1394  | 0  | }  | 
1395  |  |  | 
1396  |  | bool ipv4_unicast_valid(const struct in_addr *addr)  | 
1397  | 1.67k  | { | 
1398  | 1.67k  |   in_addr_t ip = ntohl(addr->s_addr);  | 
1399  |  |  | 
1400  | 1.67k  |   if (IPV4_CLASS_D(ip))  | 
1401  | 368  |     return false;  | 
1402  |  |  | 
1403  | 1.30k  |   if (IPV4_NET0(ip) || IPV4_NET127(ip) || IPV4_CLASS_E(ip)) { | 
1404  | 1.03k  |     if (cmd_allow_reserved_ranges_get())  | 
1405  | 0  |       return true;  | 
1406  | 1.03k  |     else  | 
1407  | 1.03k  |       return false;  | 
1408  | 1.03k  |   }  | 
1409  |  |  | 
1410  | 267  |   return true;  | 
1411  | 1.30k  | }  | 
1412  |  |  | 
1413  |  | static int ipaddr2prefix(const struct ipaddr *ip, uint16_t prefixlen,  | 
1414  |  |        struct prefix *p)  | 
1415  | 0  | { | 
1416  | 0  |   switch (ip->ipa_type) { | 
1417  | 0  |   case (IPADDR_V4):  | 
1418  | 0  |     p->family = AF_INET;  | 
1419  | 0  |     p->u.prefix4 = ip->ipaddr_v4;  | 
1420  | 0  |     p->prefixlen = prefixlen;  | 
1421  | 0  |     break;  | 
1422  | 0  |   case (IPADDR_V6):  | 
1423  | 0  |     p->family = AF_INET6;  | 
1424  | 0  |     p->u.prefix6 = ip->ipaddr_v6;  | 
1425  | 0  |     p->prefixlen = prefixlen;  | 
1426  | 0  |     break;  | 
1427  | 0  |   case (IPADDR_NONE):  | 
1428  | 0  |     p->family = AF_UNSPEC;  | 
1429  | 0  |     break;  | 
1430  | 0  |   }  | 
1431  |  |  | 
1432  | 0  |   return 0;  | 
1433  | 0  | }  | 
1434  |  |  | 
1435  |  | /*  | 
1436  |  |  * Convert type-2 and type-5 evpn route prefixes into the more  | 
1437  |  |  * general ipv4/ipv6 prefix types so we can match prefix lists  | 
1438  |  |  * and such.  | 
1439  |  |  */  | 
1440  |  | int evpn_prefix2prefix(const struct prefix *evpn, struct prefix *to)  | 
1441  | 0  | { | 
1442  | 0  |   const struct evpn_addr *addr;  | 
1443  |  | 
  | 
1444  | 0  |   if (evpn->family != AF_EVPN)  | 
1445  | 0  |     return -1;  | 
1446  |  |  | 
1447  | 0  |   addr = &evpn->u.prefix_evpn;  | 
1448  |  | 
  | 
1449  | 0  |   switch (addr->route_type) { | 
1450  | 0  |   case BGP_EVPN_MAC_IP_ROUTE:  | 
1451  | 0  |     if (IS_IPADDR_V4(&addr->macip_addr.ip))  | 
1452  | 0  |       ipaddr2prefix(&addr->macip_addr.ip, IPV4_MAX_BITLEN,  | 
1453  | 0  |               to);  | 
1454  | 0  |     else if (IS_IPADDR_V6(&addr->macip_addr.ip))  | 
1455  | 0  |       ipaddr2prefix(&addr->macip_addr.ip, IPV6_MAX_BITLEN,  | 
1456  | 0  |               to);  | 
1457  | 0  |     else  | 
1458  | 0  |       return -1; /* mac only? */  | 
1459  |  |  | 
1460  | 0  |     break;  | 
1461  | 0  |   case BGP_EVPN_IP_PREFIX_ROUTE:  | 
1462  | 0  |     ipaddr2prefix(&addr->prefix_addr.ip,  | 
1463  | 0  |             addr->prefix_addr.ip_prefix_length, to);  | 
1464  | 0  |     break;  | 
1465  | 0  |   default:  | 
1466  | 0  |     return -1;  | 
1467  | 0  |   }  | 
1468  |  |  | 
1469  | 0  |   return 0;  | 
1470  | 0  | }  | 
1471  |  |  | 
1472  |  | printfrr_ext_autoreg_p("EA", printfrr_ea); | 
1473  |  | static ssize_t printfrr_ea(struct fbuf *buf, struct printfrr_eargs *ea,  | 
1474  |  |          const void *ptr)  | 
1475  | 0  | { | 
1476  | 0  |   const struct ethaddr *mac = ptr;  | 
1477  | 0  |   char cbuf[ETHER_ADDR_STRLEN];  | 
1478  |  | 
  | 
1479  | 0  |   if (!mac)  | 
1480  | 0  |     return bputs(buf, "(null)");  | 
1481  |  |  | 
1482  |  |   /* need real length even if buffer is too short */  | 
1483  | 0  |   prefix_mac2str(mac, cbuf, sizeof(cbuf));  | 
1484  | 0  |   return bputs(buf, cbuf);  | 
1485  | 0  | }  | 
1486  |  |  | 
1487  |  | printfrr_ext_autoreg_p("IA", printfrr_ia); | 
1488  |  | static ssize_t printfrr_ia(struct fbuf *buf, struct printfrr_eargs *ea,  | 
1489  |  |          const void *ptr)  | 
1490  | 0  | { | 
1491  | 0  |   const struct ipaddr *ipa = ptr;  | 
1492  | 0  |   char cbuf[INET6_ADDRSTRLEN];  | 
1493  | 0  |   bool use_star = false;  | 
1494  |  | 
  | 
1495  | 0  |   if (ea->fmt[0] == 's') { | 
1496  | 0  |     use_star = true;  | 
1497  | 0  |     ea->fmt++;  | 
1498  | 0  |   }  | 
1499  |  | 
  | 
1500  | 0  |   if (!ipa || !ipa->ipa_type)  | 
1501  | 0  |     return bputs(buf, "(null)");  | 
1502  |  |  | 
1503  | 0  |   if (use_star) { | 
1504  | 0  |     struct in_addr zero4 = {}; | 
1505  | 0  |     struct in6_addr zero6 = {}; | 
1506  |  | 
  | 
1507  | 0  |     switch (ipa->ipa_type) { | 
1508  | 0  |     case IPADDR_V4:  | 
1509  | 0  |       if (!memcmp(&ipa->ip.addr, &zero4, sizeof(zero4)))  | 
1510  | 0  |         return bputch(buf, '*');  | 
1511  | 0  |       break;  | 
1512  |  |  | 
1513  | 0  |     case IPADDR_V6:  | 
1514  | 0  |       if (!memcmp(&ipa->ip.addr, &zero6, sizeof(zero6)))  | 
1515  | 0  |         return bputch(buf, '*');  | 
1516  | 0  |       break;  | 
1517  |  |  | 
1518  | 0  |     case IPADDR_NONE:  | 
1519  | 0  |       break;  | 
1520  | 0  |     }  | 
1521  | 0  |   }  | 
1522  |  |  | 
1523  | 0  |   ipaddr2str(ipa, cbuf, sizeof(cbuf));  | 
1524  | 0  |   return bputs(buf, cbuf);  | 
1525  | 0  | }  | 
1526  |  |  | 
1527  |  | printfrr_ext_autoreg_p("I4", printfrr_i4); | 
1528  |  | static ssize_t printfrr_i4(struct fbuf *buf, struct printfrr_eargs *ea,  | 
1529  |  |          const void *ptr)  | 
1530  | 186k  | { | 
1531  | 186k  |   char cbuf[INET_ADDRSTRLEN];  | 
1532  | 186k  |   bool use_star = false;  | 
1533  | 186k  |   struct in_addr zero = {}; | 
1534  |  |  | 
1535  | 186k  |   if (ea->fmt[0] == 's') { | 
1536  | 0  |     use_star = true;  | 
1537  | 0  |     ea->fmt++;  | 
1538  | 0  |   }  | 
1539  |  |  | 
1540  | 186k  |   if (!ptr)  | 
1541  | 0  |     return bputs(buf, "(null)");  | 
1542  |  |  | 
1543  | 186k  |   if (use_star && !memcmp(ptr, &zero, sizeof(zero)))  | 
1544  | 0  |     return bputch(buf, '*');  | 
1545  |  |  | 
1546  | 186k  |   inet_ntop(AF_INET, ptr, cbuf, sizeof(cbuf));  | 
1547  | 186k  |   return bputs(buf, cbuf);  | 
1548  | 186k  | }  | 
1549  |  |  | 
1550  |  | printfrr_ext_autoreg_p("I6", printfrr_i6); | 
1551  |  | static ssize_t printfrr_i6(struct fbuf *buf, struct printfrr_eargs *ea,  | 
1552  |  |          const void *ptr)  | 
1553  | 29  | { | 
1554  | 29  |   char cbuf[INET6_ADDRSTRLEN];  | 
1555  | 29  |   bool use_star = false;  | 
1556  | 29  |   struct in6_addr zero = {}; | 
1557  |  |  | 
1558  | 29  |   if (ea->fmt[0] == 's') { | 
1559  | 0  |     use_star = true;  | 
1560  | 0  |     ea->fmt++;  | 
1561  | 0  |   }  | 
1562  |  |  | 
1563  | 29  |   if (!ptr)  | 
1564  | 0  |     return bputs(buf, "(null)");  | 
1565  |  |  | 
1566  | 29  |   if (use_star && !memcmp(ptr, &zero, sizeof(zero)))  | 
1567  | 0  |     return bputch(buf, '*');  | 
1568  |  |  | 
1569  | 29  |   inet_ntop(AF_INET6, ptr, cbuf, sizeof(cbuf));  | 
1570  | 29  |   return bputs(buf, cbuf);  | 
1571  | 29  | }  | 
1572  |  |  | 
1573  |  | printfrr_ext_autoreg_p("FX", printfrr_pfx); | 
1574  |  | static ssize_t printfrr_pfx(struct fbuf *buf, struct printfrr_eargs *ea,  | 
1575  |  |           const void *ptr)  | 
1576  | 0  | { | 
1577  | 0  |   bool host_only = false;  | 
1578  |  | 
  | 
1579  | 0  |   if (ea->fmt[0] == 'h') { | 
1580  | 0  |     ea->fmt++;  | 
1581  | 0  |     host_only = true;  | 
1582  | 0  |   }  | 
1583  |  | 
  | 
1584  | 0  |   if (!ptr)  | 
1585  | 0  |     return bputs(buf, "(null)");  | 
1586  |  |  | 
1587  | 0  |   if (host_only)  | 
1588  | 0  |     return prefixhost2str(buf, (struct prefix *)ptr);  | 
1589  | 0  |   else { | 
1590  | 0  |     char cbuf[PREFIX_STRLEN];  | 
1591  |  | 
  | 
1592  | 0  |     prefix2str(ptr, cbuf, sizeof(cbuf));  | 
1593  | 0  |     return bputs(buf, cbuf);  | 
1594  | 0  |   }  | 
1595  | 0  | }  | 
1596  |  |  | 
1597  |  | printfrr_ext_autoreg_p("PSG4", printfrr_psg); | 
1598  |  | static ssize_t printfrr_psg(struct fbuf *buf, struct printfrr_eargs *ea,  | 
1599  |  |           const void *ptr)  | 
1600  | 0  | { | 
1601  | 0  |   const struct prefix_sg *sg = ptr;  | 
1602  | 0  |   ssize_t ret = 0;  | 
1603  |  | 
  | 
1604  | 0  |   if (!sg)  | 
1605  | 0  |     return bputs(buf, "(null)");  | 
1606  |  |  | 
1607  | 0  |   if (sg->src.s_addr == INADDR_ANY)  | 
1608  | 0  |     ret += bputs(buf, "(*,");  | 
1609  | 0  |   else  | 
1610  | 0  |     ret += bprintfrr(buf, "(%pI4,", &sg->src);  | 
1611  |  | 
  | 
1612  | 0  |   if (sg->grp.s_addr == INADDR_ANY)  | 
1613  | 0  |     ret += bputs(buf, "*)");  | 
1614  | 0  |   else  | 
1615  | 0  |     ret += bprintfrr(buf, "%pI4)", &sg->grp);  | 
1616  |  | 
  | 
1617  | 0  |   return ret;  | 
1618  | 0  | }  |