Coverage Report

Created: 2025-10-23 06:55

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libyang/src/printer_lyb.c
Line
Count
Source
1
/**
2
 * @file printer_lyb.c
3
 * @author Michal Vasko <mvasko@cesnet.cz>
4
 * @brief LYB printer for libyang data structure
5
 *
6
 * Copyright (c) 2020 CESNET, z.s.p.o.
7
 *
8
 * This source code is licensed under BSD 3-Clause License (the "License").
9
 * You may not use this file except in compliance with the License.
10
 * You may obtain a copy of the License at
11
 *
12
 *     https://opensource.org/licenses/BSD-3-Clause
13
 */
14
15
#include "lyb.h"
16
17
#include <assert.h>
18
#include <stdint.h>
19
#include <stdio.h>
20
#include <stdlib.h>
21
#include <string.h>
22
23
#include "common.h"
24
#include "compat.h"
25
#include "context.h"
26
#include "hash_table.h"
27
#include "log.h"
28
#include "out.h"
29
#include "out_internal.h"
30
#include "printer_data.h"
31
#include "printer_internal.h"
32
#include "set.h"
33
#include "tree.h"
34
#include "tree_data.h"
35
#include "tree_data_internal.h"
36
#include "tree_edit.h"
37
#include "tree_schema.h"
38
#include "tree_schema_internal.h"
39
#include "xml.h"
40
41
/**
42
 * @brief Hash table equal callback for checking hash equality only.
43
 *
44
 * Implementation of ::lyht_value_equal_cb.
45
 */
46
static ly_bool
47
lyb_hash_equal_cb(void *UNUSED(val1_p), void *UNUSED(val2_p), ly_bool UNUSED(mod), void *UNUSED(cb_data))
48
0
{
49
    /* for this purpose, if hash matches, the value does also, we do not want 2 values to have the same hash */
50
0
    return 1;
51
0
}
52
53
/**
54
 * @brief Hash table equal callback for checking value pointer equality only.
55
 *
56
 * Implementation of ::lyht_value_equal_cb.
57
 */
58
static ly_bool
59
lyb_ptr_equal_cb(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *UNUSED(cb_data))
60
0
{
61
0
    struct lysc_node *val1 = *(struct lysc_node **)val1_p;
62
0
    struct lysc_node *val2 = *(struct lysc_node **)val2_p;
63
64
0
    if (val1 == val2) {
65
0
        return 1;
66
0
    }
67
0
    return 0;
68
0
}
69
70
/**
71
 * @brief Check that sibling collision hash is safe to insert into hash table.
72
 *
73
 * @param[in] ht Hash table.
74
 * @param[in] sibling Hashed sibling.
75
 * @param[in] ht_col_id Sibling hash collision ID.
76
 * @param[in] compare_col_id Last collision ID to compare with.
77
 * @return LY_SUCCESS when the whole hash sequence does not collide,
78
 * @return LY_EEXIST when the whole hash sequence sollides.
79
 */
80
static LY_ERR
81
lyb_hash_sequence_check(struct hash_table *ht, struct lysc_node *sibling, LYB_HASH ht_col_id, LYB_HASH compare_col_id)
82
0
{
83
0
    struct lysc_node **col_node;
84
85
    /* get the first node inserted with last hash col ID ht_col_id */
86
0
    if (lyht_find(ht, &sibling, lyb_get_hash(sibling, ht_col_id), (void **)&col_node)) {
87
        /* there is none. valid situation */
88
0
        return LY_SUCCESS;
89
0
    }
90
91
0
    lyht_set_cb(ht, lyb_ptr_equal_cb);
92
0
    do {
93
0
        int64_t j;
94
0
        for (j = (int64_t)compare_col_id; j > -1; --j) {
95
0
            if (lyb_get_hash(sibling, j) != lyb_get_hash(*col_node, j)) {
96
                /* one non-colliding hash */
97
0
                break;
98
0
            }
99
0
        }
100
0
        if (j == -1) {
101
            /* all whole hash sequences of nodes inserted with last hash col ID compare_col_id collide */
102
0
            lyht_set_cb(ht, lyb_hash_equal_cb);
103
0
            return LY_EEXIST;
104
0
        }
105
106
        /* get next node inserted with last hash col ID ht_col_id */
107
0
    } while (!lyht_find_next(ht, col_node, lyb_get_hash(*col_node, ht_col_id), (void **)&col_node));
108
109
0
    lyht_set_cb(ht, lyb_hash_equal_cb);
110
0
    return LY_SUCCESS;
111
0
}
112
113
/**
114
 * @brief Hash all the siblings and add them also into a separate hash table.
115
 *
116
 * @param[in] sibling Any sibling in all the siblings on one level.
117
 * @param[out] ht_p Created hash table.
118
 * @return LY_ERR value.
119
 */
120
static LY_ERR
121
lyb_hash_siblings(struct lysc_node *sibling, struct hash_table **ht_p)
122
0
{
123
0
    struct hash_table *ht;
124
0
    const struct lysc_node *parent;
125
0
    const struct lys_module *mod;
126
0
    LYB_HASH i;
127
0
    uint32_t getnext_opts;
128
129
0
    ht = lyht_new(1, sizeof(struct lysc_node *), lyb_hash_equal_cb, NULL, 1);
130
0
    LY_CHECK_ERR_RET(!ht, LOGMEM(sibling->module->ctx), LY_EMEM);
131
132
0
    getnext_opts = 0;
133
0
    if (sibling->flags & LYS_IS_OUTPUT) {
134
0
        getnext_opts = LYS_GETNEXT_OUTPUT;
135
0
    }
136
137
0
    parent = lysc_data_parent(sibling);
138
0
    mod = sibling->module;
139
140
0
    sibling = NULL;
141
0
    while ((sibling = (struct lysc_node *)lys_getnext(sibling, parent, mod->compiled, getnext_opts))) {
142
        /* find the first non-colliding hash (or specifically non-colliding hash sequence) */
143
0
        for (i = 0; i < LYB_HASH_BITS; ++i) {
144
            /* check that we are not colliding with nodes inserted with a lower collision ID than ours */
145
0
            int64_t j;
146
0
            for (j = (int64_t)i - 1; j > -1; --j) {
147
0
                if (lyb_hash_sequence_check(ht, sibling, (LYB_HASH)j, i)) {
148
0
                    break;
149
0
                }
150
0
            }
151
0
            if (j > -1) {
152
                /* some check failed, we must use a higher collision ID */
153
0
                continue;
154
0
            }
155
156
            /* try to insert node with the current collision ID */
157
0
            if (!lyht_insert_with_resize_cb(ht, &sibling, lyb_get_hash(sibling, i), lyb_ptr_equal_cb, NULL)) {
158
                /* success, no collision */
159
0
                break;
160
0
            }
161
162
            /* make sure we really cannot insert it with this hash col ID (meaning the whole hash sequence is colliding) */
163
0
            if (i && !lyb_hash_sequence_check(ht, sibling, i, i)) {
164
                /* it can be inserted after all, even though there is already a node with the same last collision ID */
165
0
                lyht_set_cb(ht, lyb_ptr_equal_cb);
166
0
                if (lyht_insert(ht, &sibling, lyb_get_hash(sibling, i), NULL)) {
167
0
                    LOGINT(sibling->module->ctx);
168
0
                    lyht_set_cb(ht, lyb_hash_equal_cb);
169
0
                    lyht_free(ht);
170
0
                    return LY_EINT;
171
0
                }
172
0
                lyht_set_cb(ht, lyb_hash_equal_cb);
173
0
                break;
174
0
            }
175
            /* there is still another colliding schema node with the same hash sequence, try higher collision ID */
176
0
        }
177
178
0
        if (i == LYB_HASH_BITS) {
179
            /* wow */
180
0
            LOGINT(sibling->module->ctx);
181
0
            lyht_free(ht);
182
0
            return LY_EINT;
183
0
        }
184
0
    }
185
186
    /* change val equal callback so that the HT is usable for finding value hashes */
187
0
    lyht_set_cb(ht, lyb_ptr_equal_cb);
188
189
0
    *ht_p = ht;
190
0
    return LY_SUCCESS;
191
0
}
192
193
/**
194
 * @brief Find node hash in a hash table.
195
 *
196
 * @param[in] ht Hash table to search in.
197
 * @param[in] node Node to find.
198
 * @param[out] hash_p First non-colliding hash found.
199
 * @return LY_ERR value.
200
 */
201
static LY_ERR
202
lyb_hash_find(struct hash_table *ht, struct lysc_node *node, LYB_HASH *hash_p)
203
0
{
204
0
    LYB_HASH hash;
205
0
    uint32_t i;
206
207
0
    for (i = 0; i < LYB_HASH_BITS; ++i) {
208
0
        hash = lyb_get_hash(node, i);
209
0
        if (!hash) {
210
0
            LOGINT_RET(node->module->ctx);
211
0
        }
212
213
0
        if (!lyht_find(ht, &node, hash, NULL)) {
214
            /* success, no collision */
215
0
            break;
216
0
        }
217
0
    }
218
    /* cannot happen, we already calculated the hash */
219
0
    if (i == LYB_HASH_BITS) {
220
0
        LOGINT_RET(node->module->ctx);
221
0
    }
222
223
0
    *hash_p = hash;
224
0
    return LY_SUCCESS;
225
0
}
226
227
/**
228
 * @brief Write LYB data fully handling the metadata.
229
 *
230
 * @param[in] out Out structure.
231
 * @param[in] buf Source buffer.
232
 * @param[in] count Number of bytes to write.
233
 * @param[in] lybctx LYB context.
234
 * @return LY_ERR value.
235
 */
236
static LY_ERR
237
lyb_write(struct ly_out *out, const uint8_t *buf, size_t count, struct lylyb_ctx *lybctx)
238
0
{
239
0
    LY_ARRAY_COUNT_TYPE u;
240
0
    struct lyd_lyb_subtree *full, *iter;
241
0
    size_t to_write;
242
0
    uint8_t meta_buf[LYB_META_BYTES];
243
244
0
    while (1) {
245
        /* check for full data chunks */
246
0
        to_write = count;
247
0
        full = NULL;
248
0
        LY_ARRAY_FOR(lybctx->subtrees, u) {
249
            /* we want the innermost chunks resolved first, so replace previous full chunks */
250
0
            if (lybctx->subtrees[u].written + to_write >= LYB_SIZE_MAX) {
251
                /* full chunk, do not write more than allowed */
252
0
                to_write = LYB_SIZE_MAX - lybctx->subtrees[u].written;
253
0
                full = &lybctx->subtrees[u];
254
0
            }
255
0
        }
256
257
0
        if (!full && !count) {
258
0
            break;
259
0
        }
260
261
        /* we are actually writing some data, not just finishing another chunk */
262
0
        if (to_write) {
263
0
            LY_CHECK_RET(ly_write_(out, (char *)buf, to_write));
264
265
0
            LY_ARRAY_FOR(lybctx->subtrees, u) {
266
                /* increase all written counters */
267
0
                lybctx->subtrees[u].written += to_write;
268
0
                assert(lybctx->subtrees[u].written <= LYB_SIZE_MAX);
269
0
            }
270
            /* decrease count/buf */
271
0
            count -= to_write;
272
0
            buf += to_write;
273
0
        }
274
275
0
        if (full) {
276
            /* write the meta information (inner chunk count and chunk size) */
277
0
            meta_buf[0] = full->written & LYB_BYTE_MASK;
278
0
            meta_buf[1] = full->inner_chunks & LYB_BYTE_MASK;
279
0
            LY_CHECK_RET(ly_write_skipped(out, full->position, (char *)meta_buf, LYB_META_BYTES));
280
281
            /* zero written and inner chunks */
282
0
            full->written = 0;
283
0
            full->inner_chunks = 0;
284
285
            /* skip space for another chunk size */
286
0
            LY_CHECK_RET(ly_write_skip(out, LYB_META_BYTES, &full->position));
287
288
            /* increase inner chunk count */
289
0
            for (iter = &lybctx->subtrees[0]; iter != full; ++iter) {
290
0
                if (iter->inner_chunks == LYB_INCHUNK_MAX) {
291
0
                    LOGINT(lybctx->ctx);
292
0
                    return LY_EINT;
293
0
                }
294
0
                ++iter->inner_chunks;
295
0
            }
296
0
        }
297
0
    }
298
299
0
    return LY_SUCCESS;
300
0
}
301
302
/**
303
 * @brief Stop the current subtree - write its final metadata.
304
 *
305
 * @param[in] out Out structure.
306
 * @param[in] lybctx LYB context.
307
 * @return LY_ERR value.
308
 */
309
static LY_ERR
310
lyb_write_stop_subtree(struct ly_out *out, struct lylyb_ctx *lybctx)
311
0
{
312
0
    uint8_t meta_buf[LYB_META_BYTES];
313
314
    /* write the meta chunk information */
315
0
    meta_buf[0] = LYB_LAST_SUBTREE(lybctx).written & LYB_BYTE_MASK;
316
0
    meta_buf[1] = LYB_LAST_SUBTREE(lybctx).inner_chunks & LYB_BYTE_MASK;
317
0
    LY_CHECK_RET(ly_write_skipped(out, LYB_LAST_SUBTREE(lybctx).position, (char *)&meta_buf, LYB_META_BYTES));
318
319
0
    LY_ARRAY_DECREMENT(lybctx->subtrees);
320
0
    return LY_SUCCESS;
321
0
}
322
323
/**
324
 * @brief Start a new subtree - skip bytes for its metadata.
325
 *
326
 * @param[in] out Out structure.
327
 * @param[in] lybctx LYB context.
328
 * @return LY_ERR value.
329
 */
330
static LY_ERR
331
lyb_write_start_subtree(struct ly_out *out, struct lylyb_ctx *lybctx)
332
0
{
333
0
    LY_ARRAY_COUNT_TYPE u;
334
335
0
    u = LY_ARRAY_COUNT(lybctx->subtrees);
336
0
    if (u == lybctx->subtree_size) {
337
0
        LY_ARRAY_CREATE_RET(lybctx->ctx, lybctx->subtrees, u + LYB_SUBTREE_STEP, LY_EMEM);
338
0
        lybctx->subtree_size = u + LYB_SUBTREE_STEP;
339
0
    }
340
341
0
    LY_ARRAY_INCREMENT(lybctx->subtrees);
342
0
    LYB_LAST_SUBTREE(lybctx).written = 0;
343
0
    LYB_LAST_SUBTREE(lybctx).inner_chunks = 0;
344
345
    /* another inner chunk */
346
0
    for (u = 0; u < LY_ARRAY_COUNT(lybctx->subtrees) - 1; ++u) {
347
0
        if (lybctx->subtrees[u].inner_chunks == LYB_INCHUNK_MAX) {
348
0
            LOGINT(lybctx->ctx);
349
0
            return LY_EINT;
350
0
        }
351
0
        ++lybctx->subtrees[u].inner_chunks;
352
0
    }
353
354
0
    LY_CHECK_RET(ly_write_skip(out, LYB_META_BYTES, &LYB_LAST_SUBTREE(lybctx).position));
355
356
0
    return LY_SUCCESS;
357
0
}
358
359
/**
360
 * @brief Write a number.
361
 *
362
 * @param[in] num Number to write.
363
 * @param[in] bytes Actual accessible bytes of @p num.
364
 * @param[in] out Out structure.
365
 * @param[in] lybctx LYB context.
366
 * @return LY_ERR value.
367
 */
368
static LY_ERR
369
lyb_write_number(uint64_t num, size_t bytes, struct ly_out *out, struct lylyb_ctx *lybctx)
370
0
{
371
    /* correct byte order */
372
0
    num = htole64(num);
373
374
0
    return lyb_write(out, (uint8_t *)&num, bytes, lybctx);
375
0
}
376
377
/**
378
 * @brief Write a string.
379
 *
380
 * @param[in] str String to write.
381
 * @param[in] str_len Length of @p str.
382
 * @param[in] with_length Whether to precede the string with its length.
383
 * @param[in] out Out structure.
384
 * @param[in] lybctx LYB context.
385
 * @return LY_ERR value.
386
 */
387
static LY_ERR
388
lyb_write_string(const char *str, size_t str_len, ly_bool with_length, struct ly_out *out, struct lylyb_ctx *lybctx)
389
0
{
390
0
    if (!str) {
391
0
        str = "";
392
0
        LY_CHECK_ERR_RET(str_len, LOGINT(lybctx->ctx), LY_EINT);
393
0
    }
394
0
    if (!str_len) {
395
0
        str_len = strlen(str);
396
0
    }
397
398
0
    if (with_length) {
399
        /* print length on 2 bytes */
400
0
        if (str_len > UINT16_MAX) {
401
0
            LOGINT(lybctx->ctx);
402
0
            return LY_EINT;
403
0
        }
404
0
        LY_CHECK_RET(lyb_write_number(str_len, 2, out, lybctx));
405
0
    }
406
407
0
    LY_CHECK_RET(lyb_write(out, (const uint8_t *)str, str_len, lybctx));
408
409
0
    return LY_SUCCESS;
410
0
}
411
412
/**
413
 * @brief Print YANG module info.
414
 *
415
 * @param[in] out Out structure.
416
 * @param[in] mod Module to print.
417
 * @param[in] lybctx LYB context.
418
 * @return LY_ERR value.
419
 */
420
static LY_ERR
421
lyb_print_model(struct ly_out *out, const struct lys_module *mod, struct lylyb_ctx *lybctx)
422
0
{
423
0
    uint16_t revision;
424
425
    /* model name length and model name */
426
0
    if (mod) {
427
0
        LY_CHECK_RET(lyb_write_string(mod->name, 0, 1, out, lybctx));
428
0
    } else {
429
0
        LY_CHECK_RET(lyb_write_string("", 0, 1, out, lybctx));
430
0
    }
431
432
    /* model revision as XXXX XXXX XXXX XXXX (2B) (year is offset from 2000)
433
     *                   YYYY YYYM MMMD DDDD */
434
0
    revision = 0;
435
0
    if (mod && mod->revision) {
436
0
        int r = atoi(mod->revision);
437
0
        r -= LYB_REV_YEAR_OFFSET;
438
0
        r <<= LYB_REV_YEAR_SHIFT;
439
440
0
        revision |= r;
441
442
0
        r = atoi(mod->revision + ly_strlen_const("YYYY-"));
443
0
        r <<= LYB_REV_MONTH_SHIFT;
444
445
0
        revision |= r;
446
447
0
        r = atoi(mod->revision + ly_strlen_const("YYYY-MM-"));
448
449
0
        revision |= r;
450
0
    }
451
0
    LY_CHECK_RET(lyb_write_number(revision, sizeof revision, out, lybctx));
452
453
0
    if (mod) {
454
        /* fill cached hashes, if not already */
455
0
        lyb_cache_module_hash(mod);
456
0
    }
457
458
0
    return LY_SUCCESS;
459
0
}
460
461
/**
462
 * @brief Print all used YANG modules.
463
 *
464
 * @param[in] out Out structure.
465
 * @param[in] root Data root.
466
 * @param[in] lybctx LYB context.
467
 * @return LY_ERR value.
468
 */
469
static LY_ERR
470
lyb_print_data_models(struct ly_out *out, const struct lyd_node *root, struct lylyb_ctx *lybctx)
471
0
{
472
0
    struct ly_set *set;
473
0
    LY_ARRAY_COUNT_TYPE u;
474
0
    LY_ERR ret = LY_SUCCESS;
475
0
    struct lys_module *mod;
476
0
    const struct lyd_node *node;
477
0
    uint32_t i;
478
479
0
    LY_CHECK_RET(ly_set_new(&set));
480
481
    /* collect all data node modules */
482
0
    LY_LIST_FOR(root, node) {
483
0
        if (!node->schema) {
484
0
            continue;
485
0
        }
486
487
0
        mod = node->schema->module;
488
0
        ret = ly_set_add(set, mod, 0, NULL);
489
0
        LY_CHECK_GOTO(ret, cleanup);
490
491
        /* add also their modules deviating or augmenting them */
492
0
        LY_ARRAY_FOR(mod->deviated_by, u) {
493
0
            ret = ly_set_add(set, mod->deviated_by[u], 0, NULL);
494
0
            LY_CHECK_GOTO(ret, cleanup);
495
0
        }
496
0
        LY_ARRAY_FOR(mod->augmented_by, u) {
497
0
            ret = ly_set_add(set, mod->augmented_by[u], 0, NULL);
498
0
            LY_CHECK_GOTO(ret, cleanup);
499
0
        }
500
0
    }
501
502
    /* now write module count on 2 bytes */
503
0
    LY_CHECK_GOTO(ret = lyb_write_number(set->count, 2, out, lybctx), cleanup);
504
505
    /* and all the used models */
506
0
    for (i = 0; i < set->count; ++i) {
507
0
        LY_CHECK_GOTO(ret = lyb_print_model(out, set->objs[i], lybctx), cleanup);
508
0
    }
509
510
0
cleanup:
511
0
    ly_set_free(set, NULL);
512
0
    return ret;
513
0
}
514
515
/**
516
 * @brief Print LYB magic number.
517
 *
518
 * @param[in] out Out structure.
519
 * @return LY_ERR value.
520
 */
521
static LY_ERR
522
lyb_print_magic_number(struct ly_out *out)
523
0
{
524
    /* 'l', 'y', 'b' - 0x6c7962 */
525
0
    char magic_number[] = {'l', 'y', 'b'};
526
527
0
    LY_CHECK_RET(ly_write_(out, magic_number, 3));
528
529
0
    return LY_SUCCESS;
530
0
}
531
532
/**
533
 * @brief Print LYB header.
534
 *
535
 * @param[in] out Out structure.
536
 * @return LY_ERR value.
537
 */
538
static LY_ERR
539
lyb_print_header(struct ly_out *out)
540
0
{
541
0
    uint8_t byte = 0;
542
543
    /* version, future flags */
544
0
    byte |= LYB_VERSION_NUM;
545
546
0
    LY_CHECK_RET(ly_write_(out, (char *)&byte, 1));
547
548
0
    return LY_SUCCESS;
549
0
}
550
551
/**
552
 * @brief Print prefix data.
553
 *
554
 * @param[in] out Out structure.
555
 * @param[in] format Value prefix format.
556
 * @param[in] prefix_data Format-specific data for resolving any prefixes (see ::ly_resolve_prefix).
557
 * @param[in] lybctx LYB context.
558
 * @return LY_ERR value.
559
 */
560
static LY_ERR
561
lyb_print_prefix_data(struct ly_out *out, LY_VALUE_FORMAT format, const void *prefix_data, struct lylyb_ctx *lybctx)
562
0
{
563
0
    const struct ly_set *set;
564
0
    const struct lyxml_ns *ns;
565
0
    uint32_t i;
566
567
0
    switch (format) {
568
0
    case LY_VALUE_XML:
569
0
        set = prefix_data;
570
0
        if (!set) {
571
            /* no prefix data */
572
0
            i = 0;
573
0
            LY_CHECK_RET(lyb_write(out, (uint8_t *)&i, 1, lybctx));
574
0
            break;
575
0
        }
576
0
        if (set->count > UINT8_MAX) {
577
0
            LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of prefixes is %u.", UINT8_MAX);
578
0
            return LY_EINT;
579
0
        }
580
581
        /* write number of prefixes on 1 byte */
582
0
        LY_CHECK_RET(lyb_write(out, (uint8_t *)&set->count, 1, lybctx));
583
584
        /* write all the prefixes */
585
0
        for (i = 0; i < set->count; ++i) {
586
0
            ns = set->objs[i];
587
588
            /* prefix */
589
0
            LY_CHECK_RET(lyb_write_string(ns->prefix, 0, 1, out, lybctx));
590
591
            /* namespace */
592
0
            LY_CHECK_RET(lyb_write_string(ns->uri, 0, 1, out, lybctx));
593
0
        }
594
0
        break;
595
0
    case LY_VALUE_JSON:
596
0
    case LY_VALUE_LYB:
597
        /* nothing to print */
598
0
        break;
599
0
    default:
600
0
        LOGINT_RET(lybctx->ctx);
601
0
    }
602
603
0
    return LY_SUCCESS;
604
0
}
605
606
/**
607
 * @brief Print opaque node.
608
 *
609
 * @param[in] opaq Node to print.
610
 * @param[in] out Out structure.
611
 * @param[in] lybctx LYB context.
612
 * @return LY_ERR value.
613
 */
614
static LY_ERR
615
lyb_print_opaq(struct lyd_node_opaq *opaq, struct ly_out *out, struct lylyb_ctx *lybctx)
616
0
{
617
    /* prefix */
618
0
    LY_CHECK_RET(lyb_write_string(opaq->name.prefix, 0, 1, out, lybctx));
619
620
    /* module reference */
621
0
    LY_CHECK_RET(lyb_write_string(opaq->name.module_name, 0, 1, out, lybctx));
622
623
    /* name */
624
0
    LY_CHECK_RET(lyb_write_string(opaq->name.name, 0, 1, out, lybctx));
625
626
    /* format */
627
0
    LY_CHECK_RET(lyb_write_number(opaq->format, 1, out, lybctx));
628
629
    /* value prefixes */
630
0
    LY_CHECK_RET(lyb_print_prefix_data(out, opaq->format, opaq->val_prefix_data, lybctx));
631
632
    /* value */
633
0
    LY_CHECK_RET(lyb_write_string(opaq->value, 0, 0, out, lybctx));
634
635
0
    return LY_SUCCESS;
636
0
}
637
638
/**
639
 * @brief Print anydata node.
640
 *
641
 * @param[in] anydata Node to print.
642
 * @param[in] out Out structure.
643
 * @param[in] lybctx LYB context.
644
 * @return LY_ERR value.
645
 */
646
static LY_ERR
647
lyb_print_anydata(struct lyd_node_any *anydata, struct ly_out *out, struct lylyb_ctx *lybctx)
648
0
{
649
0
    LY_ERR ret = LY_SUCCESS;
650
0
    LYD_ANYDATA_VALUETYPE value_type;
651
0
    int len;
652
0
    char *buf = NULL;
653
0
    const char *str;
654
0
    struct ly_out *out2 = NULL;
655
656
0
    if (anydata->value_type == LYD_ANYDATA_DATATREE) {
657
        /* will be printed as a nested LYB data tree */
658
0
        value_type = LYD_ANYDATA_LYB;
659
0
    } else {
660
0
        value_type = anydata->value_type;
661
0
    }
662
663
    /* first byte is type */
664
0
    LY_CHECK_GOTO(ret = lyb_write(out, (uint8_t *)&value_type, sizeof value_type, lybctx), cleanup);
665
666
0
    if (anydata->value_type == LYD_ANYDATA_DATATREE) {
667
        /* print LYB data tree to memory */
668
0
        LY_CHECK_GOTO(ret = ly_out_new_memory(&buf, 0, &out2), cleanup);
669
0
        LY_CHECK_GOTO(ret = lyb_print_data(out2, anydata->value.tree, LYD_PRINT_WITHSIBLINGS), cleanup);
670
671
0
        len = lyd_lyb_data_length(buf);
672
0
        assert(len != -1);
673
0
        str = buf;
674
0
    } else if (anydata->value_type == LYD_ANYDATA_LYB) {
675
0
        len = lyd_lyb_data_length(anydata->value.mem);
676
0
        assert(len != -1);
677
0
        str = anydata->value.mem;
678
0
    } else {
679
0
        len = strlen(anydata->value.str);
680
0
        str = anydata->value.str;
681
0
    }
682
683
    /* followed by the content */
684
0
    LY_CHECK_GOTO(ret = lyb_write_string(str, (size_t)len, 0, out, lybctx), cleanup);
685
686
0
cleanup:
687
0
    ly_out_free(out2, NULL, 1);
688
0
    return ret;
689
0
}
690
691
/**
692
 * @brief Print term node.
693
 *
694
 * @param[in] term Node to print.
695
 * @param[in] out Out structure.
696
 * @param[in] lybctx LYB context.
697
 * @return LY_ERR value.
698
 */
699
static LY_ERR
700
lyb_print_term(struct lyd_node_term *term, struct ly_out *out, struct lylyb_ctx *lybctx)
701
0
{
702
    /* print the value */
703
0
    return lyb_write_string(lyd_get_value(&term->node), 0, 0, out, lybctx);
704
0
}
705
706
/**
707
 * @brief Print YANG node metadata.
708
 *
709
 * @param[in] out Out structure.
710
 * @param[in] node Data node whose metadata to print.
711
 * @param[in] lybctx LYB context.
712
 * @return LY_ERR value.
713
 */
714
static LY_ERR
715
lyb_print_metadata(struct ly_out *out, const struct lyd_node *node, struct lyd_lyb_ctx *lybctx)
716
0
{
717
0
    uint8_t count = 0;
718
0
    const struct lys_module *wd_mod = NULL;
719
0
    struct lyd_meta *iter;
720
721
    /* with-defaults */
722
0
    if (node->schema->nodetype & LYD_NODE_TERM) {
723
0
        if (((node->flags & LYD_DEFAULT) && (lybctx->print_options & (LYD_PRINT_WD_ALL_TAG | LYD_PRINT_WD_IMPL_TAG))) ||
724
0
                ((lybctx->print_options & LYD_PRINT_WD_ALL_TAG) && lyd_is_default(node))) {
725
            /* we have implicit OR explicit default node, print attribute only if context include with-defaults schema */
726
0
            wd_mod = ly_ctx_get_module_latest(node->schema->module->ctx, "ietf-netconf-with-defaults");
727
0
        }
728
0
    }
729
730
    /* count metadata */
731
0
    if (wd_mod) {
732
0
        ++count;
733
0
    }
734
0
    for (iter = node->meta; iter; iter = iter->next) {
735
0
        if (count == UINT8_MAX) {
736
0
            LOGERR(lybctx->lybctx->ctx, LY_EINT, "Maximum supported number of data node metadata is %u.", UINT8_MAX);
737
0
            return LY_EINT;
738
0
        }
739
0
        ++count;
740
0
    }
741
742
    /* write number of metadata on 1 byte */
743
0
    LY_CHECK_RET(lyb_write(out, &count, 1, lybctx->lybctx));
744
745
0
    if (wd_mod) {
746
        /* write the "default" metadata */
747
0
        LY_CHECK_RET(lyb_write_start_subtree(out, lybctx->lybctx));
748
0
        LY_CHECK_RET(lyb_print_model(out, wd_mod, lybctx->lybctx));
749
0
        LY_CHECK_RET(lyb_write_string("default", 0, 1, out, lybctx->lybctx));
750
0
        LY_CHECK_RET(lyb_write_string("true", 0, 0, out, lybctx->lybctx));
751
0
        LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx->lybctx));
752
0
    }
753
754
    /* write all the node metadata */
755
0
    LY_LIST_FOR(node->meta, iter) {
756
        /* each metadata is a subtree */
757
0
        LY_CHECK_RET(lyb_write_start_subtree(out, lybctx->lybctx));
758
759
        /* model */
760
0
        LY_CHECK_RET(lyb_print_model(out, iter->annotation->module, lybctx->lybctx));
761
762
        /* annotation name with length */
763
0
        LY_CHECK_RET(lyb_write_string(iter->name, 0, 1, out, lybctx->lybctx));
764
765
        /* metadata value */
766
0
        LY_CHECK_RET(lyb_write_string(lyd_get_meta_value(iter), 0, 0, out, lybctx->lybctx));
767
768
        /* finish metadata subtree */
769
0
        LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx->lybctx));
770
0
    }
771
772
0
    return LY_SUCCESS;
773
0
}
774
775
/**
776
 * @brief Print opaque node attributes.
777
 *
778
 * @param[in] out Out structure.
779
 * @param[in] node Opaque node whose attributes to print.
780
 * @param[in] lybctx LYB context.
781
 * @return LY_ERR value.
782
 */
783
static LY_ERR
784
lyb_print_attributes(struct ly_out *out, const struct lyd_node_opaq *node, struct lylyb_ctx *lybctx)
785
0
{
786
0
    uint8_t count = 0;
787
0
    struct lyd_attr *iter;
788
789
0
    for (iter = node->attr; iter; iter = iter->next) {
790
0
        if (count == UINT8_MAX) {
791
0
            LOGERR(lybctx->ctx, LY_EINT, "Maximum supported number of data node attributes is %u.", UINT8_MAX);
792
0
            return LY_EINT;
793
0
        }
794
0
        ++count;
795
0
    }
796
797
    /* write number of attributes on 1 byte */
798
0
    LY_CHECK_RET(lyb_write(out, &count, 1, lybctx));
799
800
    /* write all the attributes */
801
0
    LY_LIST_FOR(node->attr, iter) {
802
        /* each attribute is a subtree */
803
0
        LY_CHECK_RET(lyb_write_start_subtree(out, lybctx));
804
805
        /* prefix */
806
0
        LY_CHECK_RET(lyb_write_string(iter->name.prefix, 0, 1, out, lybctx));
807
808
        /* namespace */
809
0
        LY_CHECK_RET(lyb_write_string(iter->name.module_name, 0, 1, out, lybctx));
810
811
        /* name */
812
0
        LY_CHECK_RET(lyb_write_string(iter->name.name, 0, 1, out, lybctx));
813
814
        /* format */
815
0
        LY_CHECK_RET(lyb_write_number(iter->format, 1, out, lybctx));
816
817
        /* value prefixes */
818
0
        LY_CHECK_RET(lyb_print_prefix_data(out, iter->format, iter->val_prefix_data, lybctx));
819
820
        /* value */
821
0
        LY_CHECK_RET(lyb_write_string(iter->value, 0, 0, out, lybctx));
822
823
        /* finish attribute subtree */
824
0
        LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx));
825
0
    }
826
827
0
    return LY_SUCCESS;
828
0
}
829
830
/**
831
 * @brief Print schema node hash.
832
 *
833
 * @param[in] out Out structure.
834
 * @param[in] schema Schema node whose hash to print.
835
 * @param[in,out] sibling_ht Cached hash table for these siblings, created if NULL.
836
 * @param[in] lybctx LYB context.
837
 * @return LY_ERR value.
838
 */
839
static LY_ERR
840
lyb_print_schema_hash(struct ly_out *out, struct lysc_node *schema, struct hash_table **sibling_ht, struct lylyb_ctx *lybctx)
841
0
{
842
0
    LY_ARRAY_COUNT_TYPE u;
843
0
    uint32_t i;
844
0
    LYB_HASH hash;
845
0
    struct lyd_lyb_sib_ht *sib_ht;
846
0
    struct lysc_node *first_sibling;
847
848
0
    if (!schema) {
849
        /* opaque node, write empty hash */
850
0
        hash = 0;
851
0
        LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
852
0
        return LY_SUCCESS;
853
0
    }
854
855
    /* create whole sibling HT if not already created and saved */
856
0
    if (!*sibling_ht) {
857
        /* get first schema data sibling */
858
0
        first_sibling = (struct lysc_node *)lys_getnext(NULL, lysc_data_parent(schema), schema->module->compiled,
859
0
                (schema->flags & LYS_IS_OUTPUT) ? LYS_GETNEXT_OUTPUT : 0);
860
0
        LY_ARRAY_FOR(lybctx->sib_hts, u) {
861
0
            if (lybctx->sib_hts[u].first_sibling == first_sibling) {
862
                /* we have already created a hash table for these siblings */
863
0
                *sibling_ht = lybctx->sib_hts[u].ht;
864
0
                break;
865
0
            }
866
0
        }
867
868
0
        if (!*sibling_ht) {
869
            /* we must create sibling hash table */
870
0
            LY_CHECK_RET(lyb_hash_siblings(first_sibling, sibling_ht));
871
872
            /* and save it */
873
0
            LY_ARRAY_NEW_RET(lybctx->ctx, lybctx->sib_hts, sib_ht, LY_EMEM);
874
875
0
            sib_ht->first_sibling = first_sibling;
876
0
            sib_ht->ht = *sibling_ht;
877
0
        }
878
0
    }
879
880
    /* get our hash */
881
0
    LY_CHECK_RET(lyb_hash_find(*sibling_ht, schema, &hash));
882
883
    /* write the hash */
884
0
    LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
885
886
0
    if (hash & LYB_HASH_COLLISION_ID) {
887
        /* no collision for this hash, we are done */
888
0
        return LY_SUCCESS;
889
0
    }
890
891
    /* written hash was a collision, write also all the preceding hashes */
892
0
    for (i = 0; !(hash & (LYB_HASH_COLLISION_ID >> i)); ++i) {}
893
894
0
    for ( ; i; --i) {
895
0
        hash = lyb_get_hash(schema, i - 1);
896
0
        if (!hash) {
897
0
            return LY_EINT;
898
0
        }
899
0
        assert(hash & (LYB_HASH_COLLISION_ID >> (i - 1)));
900
901
0
        LY_CHECK_RET(lyb_write(out, &hash, sizeof hash, lybctx));
902
0
    }
903
904
0
    return LY_SUCCESS;
905
0
}
906
907
/**
908
 * @brief Print data subtree.
909
 *
910
 * @param[in] out Out structure.
911
 * @param[in] node Root node of the subtree to print.
912
 * @param[in,out] sibling_ht Cached hash table for these data siblings, created if NULL.
913
 * @param[in] lybctx LYB context.
914
 * @return LY_ERR value.
915
 */
916
static LY_ERR
917
lyb_print_subtree(struct ly_out *out, const struct lyd_node *node, struct hash_table **sibling_ht, struct lyd_lyb_ctx *lybctx)
918
0
{
919
0
    struct hash_table *child_ht = NULL;
920
921
    /* register a new subtree */
922
0
    LY_CHECK_RET(lyb_write_start_subtree(out, lybctx->lybctx));
923
924
    /* write model info first */
925
0
    if (!node->schema && !lyd_parent(node)) {
926
0
        LY_CHECK_RET(lyb_print_model(out, NULL, lybctx->lybctx));
927
0
    } else if (node->schema && !lysc_data_parent(node->schema)) {
928
0
        LY_CHECK_RET(lyb_print_model(out, node->schema->module, lybctx->lybctx));
929
0
    }
930
931
    /* write schema hash */
932
0
    LY_CHECK_RET(lyb_print_schema_hash(out, (struct lysc_node *)node->schema, sibling_ht, lybctx->lybctx));
933
934
    /* write any metadata/attributes */
935
0
    if (node->schema) {
936
0
        LY_CHECK_RET(lyb_print_metadata(out, node, lybctx));
937
0
    } else {
938
0
        LY_CHECK_RET(lyb_print_attributes(out, (struct lyd_node_opaq *)node, lybctx->lybctx));
939
0
    }
940
941
    /* write node flags */
942
0
    LY_CHECK_RET(lyb_write_number(node->flags, sizeof node->flags, out, lybctx->lybctx));
943
944
    /* write node content */
945
0
    if (!node->schema) {
946
0
        LY_CHECK_RET(lyb_print_opaq((struct lyd_node_opaq *)node, out, lybctx->lybctx));
947
0
    } else if (node->schema->nodetype & LYD_NODE_INNER) {
948
        /* nothing to write */
949
0
    } else if (node->schema->nodetype & LYD_NODE_TERM) {
950
0
        LY_CHECK_RET(lyb_print_term((struct lyd_node_term *)node, out, lybctx->lybctx));
951
0
    } else if (node->schema->nodetype & LYD_NODE_ANY) {
952
0
        LY_CHECK_RET(lyb_print_anydata((struct lyd_node_any *)node, out, lybctx->lybctx));
953
0
    } else {
954
0
        LOGINT_RET(lybctx->lybctx->ctx);
955
0
    }
956
957
    /* recursively write all the descendants */
958
0
    LY_LIST_FOR(lyd_child(node), node) {
959
0
        LY_CHECK_RET(lyb_print_subtree(out, node, &child_ht, lybctx));
960
0
    }
961
962
    /* finish this subtree */
963
0
    LY_CHECK_RET(lyb_write_stop_subtree(out, lybctx->lybctx));
964
965
0
    return LY_SUCCESS;
966
0
}
967
968
LY_ERR
969
lyb_print_data(struct ly_out *out, const struct lyd_node *root, uint32_t options)
970
0
{
971
0
    LY_ERR ret = LY_SUCCESS;
972
0
    uint8_t zero = 0;
973
0
    struct hash_table *top_sibling_ht = NULL;
974
0
    const struct lys_module *prev_mod = NULL;
975
0
    struct lyd_lyb_ctx *lybctx;
976
0
    const struct ly_ctx *ctx = root ? LYD_CTX(root) : NULL;
977
978
0
    lybctx = calloc(1, sizeof *lybctx);
979
0
    LY_CHECK_ERR_RET(!lybctx, LOGMEM(ctx), LY_EMEM);
980
0
    lybctx->lybctx = calloc(1, sizeof *lybctx->lybctx);
981
0
    LY_CHECK_ERR_RET(!lybctx, LOGMEM(ctx), LY_EMEM);
982
983
0
    lybctx->print_options = options;
984
0
    if (root) {
985
0
        lybctx->lybctx->ctx = ctx;
986
987
0
        if (root->schema && lysc_data_parent(root->schema)) {
988
0
            LOGERR(lybctx->lybctx->ctx, LY_EINVAL, "LYB printer supports only printing top-level nodes.");
989
0
            ret = LY_EINVAL;
990
0
            goto cleanup;
991
0
        }
992
0
    }
993
994
    /* LYB magic number */
995
0
    LY_CHECK_GOTO(ret = lyb_print_magic_number(out), cleanup);
996
997
    /* LYB header */
998
0
    LY_CHECK_GOTO(ret = lyb_print_header(out), cleanup);
999
1000
    /* all used models */
1001
0
    LY_CHECK_GOTO(ret = lyb_print_data_models(out, root, lybctx->lybctx), cleanup);
1002
1003
0
    LY_LIST_FOR(root, root) {
1004
        /* do not reuse sibling hash tables from different modules */
1005
0
        if (!root->schema || (root->schema->module != prev_mod)) {
1006
0
            top_sibling_ht = NULL;
1007
0
            prev_mod = root->schema ? root->schema->module : NULL;
1008
0
        }
1009
1010
0
        LY_CHECK_GOTO(ret = lyb_print_subtree(out, root, &top_sibling_ht, lybctx), cleanup);
1011
1012
0
        if (!(options & LYD_PRINT_WITHSIBLINGS)) {
1013
0
            break;
1014
0
        }
1015
0
    }
1016
1017
    /* ending zero byte */
1018
0
    LY_CHECK_GOTO(ret = lyb_write(out, &zero, sizeof zero, lybctx->lybctx), cleanup);
1019
1020
0
cleanup:
1021
0
    lyd_lyb_ctx_free((struct lyd_ctx *)lybctx);
1022
0
    return ret;
1023
0
}