Coverage Report

Created: 2025-11-11 06:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/frr/zebra/kernel_netlink.c
Line
Count
Source
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* Kernel communication using netlink interface.
3
 * Copyright (C) 1999 Kunihiro Ishiguro
4
 */
5
6
#include <zebra.h>
7
8
#if defined(HANDLE_NETLINK_FUZZING)
9
#include <stdio.h>
10
#include <string.h>
11
#include "libfrr.h"
12
#endif /* HANDLE_NETLINK_FUZZING */
13
14
#ifdef HAVE_NETLINK
15
16
#include "linklist.h"
17
#include "if.h"
18
#include "log.h"
19
#include "prefix.h"
20
#include "connected.h"
21
#include "table.h"
22
#include "memory.h"
23
#include "rib.h"
24
#include "frrevent.h"
25
#include "privs.h"
26
#include "nexthop.h"
27
#include "vrf.h"
28
#include "mpls.h"
29
#include "lib_errors.h"
30
#include "hash.h"
31
32
#include "zebra/zebra_router.h"
33
#include "zebra/zebra_ns.h"
34
#include "zebra/zebra_vrf.h"
35
#include "zebra/rt.h"
36
#include "zebra/debug.h"
37
#include "zebra/kernel_netlink.h"
38
#include "zebra/rt_netlink.h"
39
#include "zebra/if_netlink.h"
40
#include "zebra/rule_netlink.h"
41
#include "zebra/tc_netlink.h"
42
#include "zebra/netconf_netlink.h"
43
#include "zebra/zebra_errors.h"
44
45
#ifndef SO_RCVBUFFORCE
46
#define SO_RCVBUFFORCE  (33)
47
#endif
48
49
/* Hack for GNU libc version 2. */
50
#ifndef MSG_TRUNC
51
#define MSG_TRUNC      0x20
52
#endif /* MSG_TRUNC */
53
54
#ifndef NLMSG_TAIL
55
#define NLMSG_TAIL(nmsg)                                                       \
56
0
  ((struct rtattr *)(((uint8_t *)(nmsg))                                 \
57
0
         + NLMSG_ALIGN((nmsg)->nlmsg_len)))
58
#endif
59
60
#ifndef RTA_TAIL
61
#define RTA_TAIL(rta)                                                          \
62
0
  ((struct rtattr *)(((uint8_t *)(rta)) + RTA_ALIGN((rta)->rta_len)))
63
#endif
64
65
#ifndef RTNL_FAMILY_IP6MR
66
#define RTNL_FAMILY_IP6MR 129
67
#endif
68
69
#ifndef RTPROT_MROUTED
70
#define RTPROT_MROUTED 17
71
#endif
72
73
0
#define NL_DEFAULT_BATCH_BUFSIZE (16 * NL_PKT_BUF_SIZE)
74
75
/*
76
 * We limit the batch's size to a number smaller than the length of the
77
 * underlying buffer since the last message that wouldn't fit the batch would go
78
 * over the upper boundary and then it would have to be encoded again into a new
79
 * buffer. If the difference between the limit and the length of the buffer is
80
 * big enough (bigger than the biggest Netlink message) then this situation
81
 * won't occur.
82
 */
83
0
#define NL_DEFAULT_BATCH_SEND_THRESHOLD (15 * NL_PKT_BUF_SIZE)
84
85
static const struct message nlmsg_str[] = {{RTM_NEWROUTE, "RTM_NEWROUTE"},
86
             {RTM_DELROUTE, "RTM_DELROUTE"},
87
             {RTM_GETROUTE, "RTM_GETROUTE"},
88
             {RTM_NEWLINK, "RTM_NEWLINK"},
89
             {RTM_SETLINK, "RTM_SETLINK"},
90
             {RTM_DELLINK, "RTM_DELLINK"},
91
             {RTM_GETLINK, "RTM_GETLINK"},
92
             {RTM_NEWADDR, "RTM_NEWADDR"},
93
             {RTM_DELADDR, "RTM_DELADDR"},
94
             {RTM_GETADDR, "RTM_GETADDR"},
95
             {RTM_NEWNEIGH, "RTM_NEWNEIGH"},
96
             {RTM_DELNEIGH, "RTM_DELNEIGH"},
97
             {RTM_GETNEIGH, "RTM_GETNEIGH"},
98
             {RTM_NEWRULE, "RTM_NEWRULE"},
99
             {RTM_DELRULE, "RTM_DELRULE"},
100
             {RTM_GETRULE, "RTM_GETRULE"},
101
             {RTM_NEWNEXTHOP, "RTM_NEWNEXTHOP"},
102
             {RTM_DELNEXTHOP, "RTM_DELNEXTHOP"},
103
             {RTM_GETNEXTHOP, "RTM_GETNEXTHOP"},
104
             {RTM_NEWNETCONF, "RTM_NEWNETCONF"},
105
             {RTM_DELNETCONF, "RTM_DELNETCONF"},
106
             {RTM_NEWTUNNEL, "RTM_NEWTUNNEL"},
107
             {RTM_DELTUNNEL, "RTM_DELTUNNEL"},
108
             {RTM_GETTUNNEL, "RTM_GETTUNNEL"},
109
             {RTM_NEWQDISC, "RTM_NEWQDISC"},
110
             {RTM_DELQDISC, "RTM_DELQDISC"},
111
             {RTM_GETQDISC, "RTM_GETQDISC"},
112
             {RTM_NEWTCLASS, "RTM_NEWTCLASS"},
113
             {RTM_DELTCLASS, "RTM_DELTCLASS"},
114
             {RTM_GETTCLASS, "RTM_GETTCLASS"},
115
             {RTM_NEWTFILTER, "RTM_NEWTFILTER"},
116
             {RTM_DELTFILTER, "RTM_DELTFILTER"},
117
             {RTM_GETTFILTER, "RTM_GETTFILTER"},
118
             {RTM_NEWVLAN, "RTM_NEWVLAN"},
119
             {RTM_DELVLAN, "RTM_DELVLAN"},
120
             {RTM_GETVLAN, "RTM_GETVLAN"},
121
             {0}};
122
123
static const struct message rtproto_str[] = {
124
  {RTPROT_REDIRECT, "redirect"},
125
  {RTPROT_KERNEL, "kernel"},
126
  {RTPROT_BOOT, "boot"},
127
  {RTPROT_STATIC, "static"},
128
  {RTPROT_GATED, "GateD"},
129
  {RTPROT_RA, "router advertisement"},
130
  {RTPROT_MRT, "MRT"},
131
  {RTPROT_ZEBRA, "Zebra"},
132
#ifdef RTPROT_BIRD
133
  {RTPROT_BIRD, "BIRD"},
134
#endif /* RTPROT_BIRD */
135
  {RTPROT_MROUTED, "mroute"},
136
  {RTPROT_BGP, "BGP"},
137
  {RTPROT_OSPF, "OSPF"},
138
  {RTPROT_ISIS, "IS-IS"},
139
  {RTPROT_RIP, "RIP"},
140
  {RTPROT_RIPNG, "RIPNG"},
141
  {RTPROT_ZSTATIC, "static"},
142
  {0}};
143
144
static const struct message family_str[] = {{AF_INET, "ipv4"},
145
              {AF_INET6, "ipv6"},
146
              {AF_BRIDGE, "bridge"},
147
              {RTNL_FAMILY_IPMR, "ipv4MR"},
148
              {RTNL_FAMILY_IP6MR, "ipv6MR"},
149
              {0}};
150
151
static const struct message rttype_str[] = {{RTN_UNSPEC, "none"},
152
              {RTN_UNICAST, "unicast"},
153
              {RTN_LOCAL, "local"},
154
              {RTN_BROADCAST, "broadcast"},
155
              {RTN_ANYCAST, "anycast"},
156
              {RTN_MULTICAST, "multicast"},
157
              {RTN_BLACKHOLE, "blackhole"},
158
              {RTN_UNREACHABLE, "unreachable"},
159
              {RTN_PROHIBIT, "prohibited"},
160
              {RTN_THROW, "throw"},
161
              {RTN_NAT, "nat"},
162
              {RTN_XRESOLVE, "resolver"},
163
              {0}};
164
165
extern struct event_loop *master;
166
167
extern struct zebra_privs_t zserv_privs;
168
169
2
DEFINE_MTYPE_STATIC(ZEBRA, NL_BUF, "Zebra Netlink buffers");
170
2
171
2
/* Hashtable and mutex to allow lookup of nlsock structs by socket/fd value.
172
2
 * We have both the main and dplane pthreads using these structs, so we have
173
2
 * to protect the hash with a lock.
174
2
 */
175
2
static struct hash *nlsock_hash;
176
2
pthread_mutex_t nlsock_mutex;
177
2
178
2
/* Lock and unlock wrappers for nlsock hash */
179
2
#define NLSOCK_LOCK() pthread_mutex_lock(&nlsock_mutex)
180
0
#define NLSOCK_UNLOCK() pthread_mutex_unlock(&nlsock_mutex)
181
182
size_t nl_batch_tx_bufsize;
183
char *nl_batch_tx_buf;
184
185
_Atomic uint32_t nl_batch_bufsize = NL_DEFAULT_BATCH_BUFSIZE;
186
_Atomic uint32_t nl_batch_send_threshold = NL_DEFAULT_BATCH_SEND_THRESHOLD;
187
188
struct nl_batch {
189
  void *buf;
190
  size_t bufsiz;
191
  size_t limit;
192
193
  void *buf_head;
194
  size_t curlen;
195
  size_t msgcnt;
196
197
  const struct zebra_dplane_info *zns;
198
199
  struct dplane_ctx_list_head ctx_list;
200
201
  /*
202
   * Pointer to the queue of completed contexts outbound back
203
   * towards the dataplane module.
204
   */
205
  struct dplane_ctx_list_head *ctx_out_q;
206
};
207
208
int netlink_config_write_helper(struct vty *vty)
209
0
{
210
0
  uint32_t size =
211
0
    atomic_load_explicit(&nl_batch_bufsize, memory_order_relaxed);
212
0
  uint32_t threshold = atomic_load_explicit(&nl_batch_send_threshold,
213
0
              memory_order_relaxed);
214
215
0
  if (size != NL_DEFAULT_BATCH_BUFSIZE
216
0
      || threshold != NL_DEFAULT_BATCH_SEND_THRESHOLD)
217
0
    vty_out(vty, "zebra kernel netlink batch-tx-buf %u %u\n", size,
218
0
      threshold);
219
220
0
  if (if_netlink_frr_protodown_r_bit_is_set())
221
0
    vty_out(vty, "zebra protodown reason-bit %u\n",
222
0
      if_netlink_get_frr_protodown_r_bit());
223
224
0
  return 0;
225
0
}
226
227
void netlink_set_batch_buffer_size(uint32_t size, uint32_t threshold, bool set)
228
0
{
229
0
  if (!set) {
230
0
    size = NL_DEFAULT_BATCH_BUFSIZE;
231
0
    threshold = NL_DEFAULT_BATCH_SEND_THRESHOLD;
232
0
  }
233
234
0
  atomic_store_explicit(&nl_batch_bufsize, size, memory_order_relaxed);
235
0
  atomic_store_explicit(&nl_batch_send_threshold, threshold,
236
0
            memory_order_relaxed);
237
0
}
238
239
int netlink_talk_filter(struct nlmsghdr *h, ns_id_t ns_id, int startup)
240
0
{
241
  /*
242
   * This is an error condition that must be handled during
243
   * development.
244
   *
245
   * The netlink_talk_filter function is used for communication
246
   * down the netlink_cmd pipe and we are expecting
247
   * an ack being received.  So if we get here
248
   * then we did not receive the ack and instead
249
   * received some other message in an unexpected
250
   * way.
251
   */
252
0
  zlog_debug("%s: ignoring message type 0x%04x(%s) NS %u", __func__,
253
0
       h->nlmsg_type, nl_msg_type_to_str(h->nlmsg_type), ns_id);
254
0
  return 0;
255
0
}
256
257
static int netlink_recvbuf(struct nlsock *nl, uint32_t newsize)
258
0
{
259
0
  uint32_t oldsize;
260
0
  socklen_t newlen = sizeof(newsize);
261
0
  socklen_t oldlen = sizeof(oldsize);
262
0
  int ret;
263
0
264
0
  ret = getsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &oldsize, &oldlen);
265
0
  if (ret < 0) {
266
0
    flog_err_sys(EC_LIB_SOCKET,
267
0
           "Can't get %s receive buffer size: %s", nl->name,
268
0
           safe_strerror(errno));
269
0
    return -1;
270
0
  }
271
0
272
0
  /* Try force option (linux >= 2.6.14) and fall back to normal set */
273
0
  frr_with_privs(&zserv_privs) {
274
0
    ret = setsockopt(nl->sock, SOL_SOCKET, SO_RCVBUFFORCE,
275
0
         &rcvbufsize, sizeof(rcvbufsize));
276
0
  }
277
0
  if (ret < 0)
278
0
    ret = setsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &rcvbufsize,
279
0
         sizeof(rcvbufsize));
280
0
  if (ret < 0) {
281
0
    flog_err_sys(EC_LIB_SOCKET,
282
0
           "Can't set %s receive buffer size: %s", nl->name,
283
0
           safe_strerror(errno));
284
0
    return -1;
285
0
  }
286
0
287
0
  ret = getsockopt(nl->sock, SOL_SOCKET, SO_RCVBUF, &newsize, &newlen);
288
0
  if (ret < 0) {
289
0
    flog_err_sys(EC_LIB_SOCKET,
290
0
           "Can't get %s receive buffer size: %s", nl->name,
291
0
           safe_strerror(errno));
292
0
    return -1;
293
0
  }
294
0
  return 0;
295
0
}
296
297
static const char *group2str(uint32_t group)
298
0
{
299
0
  switch (group) {
300
0
  case RTNLGRP_TUNNEL:
301
0
    return "RTNLGRP_TUNNEL";
302
0
  default:
303
0
    return "UNKNOWN";
304
0
  }
305
0
}
306
307
/* Make socket for Linux netlink interface. */
308
static int netlink_socket(struct nlsock *nl, unsigned long groups,
309
        uint32_t ext_groups[], uint8_t ext_group_size,
310
        ns_id_t ns_id)
311
0
{
312
0
  int ret;
313
0
  struct sockaddr_nl snl;
314
0
  int sock;
315
0
  int namelen;
316
0
317
0
  frr_with_privs(&zserv_privs) {
318
0
    sock = ns_socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE, ns_id);
319
0
    if (sock < 0) {
320
0
      zlog_err("Can't open %s socket: %s", nl->name,
321
0
         safe_strerror(errno));
322
0
      return -1;
323
0
    }
324
0
325
0
    memset(&snl, 0, sizeof(snl));
326
0
    snl.nl_family = AF_NETLINK;
327
0
    snl.nl_groups = groups;
328
0
329
0
    if (ext_group_size) {
330
0
      uint8_t i;
331
0
332
0
      for (i = 0; i < ext_group_size; i++) {
333
0
#if defined SOL_NETLINK
334
0
        ret = setsockopt(sock, SOL_NETLINK,
335
0
             NETLINK_ADD_MEMBERSHIP,
336
0
             &ext_groups[i],
337
0
             sizeof(ext_groups[i]));
338
0
        if (ret < 0) {
339
0
          zlog_notice(
340
0
            "can't setsockopt NETLINK_ADD_MEMBERSHIP for group %s(%u), this linux kernel does not support it: %s(%d)",
341
0
            group2str(ext_groups[i]),
342
0
            ext_groups[i],
343
0
            safe_strerror(errno), errno);
344
0
        }
345
0
#else
346
0
        zlog_notice(
347
0
          "Unable to use NETLINK_ADD_MEMBERSHIP via SOL_NETLINK for %s(%u) since the linux kernel does not support the socket option",
348
0
          group2str(ext_groups[i]),
349
0
          ext_groups[i]);
350
0
#endif
351
0
      }
352
0
    }
353
0
354
0
    /* Bind the socket to the netlink structure for anything. */
355
0
    ret = bind(sock, (struct sockaddr *)&snl, sizeof(snl));
356
0
  }
357
0
358
0
  if (ret < 0) {
359
0
    zlog_err("Can't bind %s socket to group 0x%x: %s", nl->name,
360
0
       snl.nl_groups, safe_strerror(errno));
361
0
    close(sock);
362
0
    return -1;
363
0
  }
364
0
365
0
  /* multiple netlink sockets will have different nl_pid */
366
0
  namelen = sizeof(snl);
367
0
  ret = getsockname(sock, (struct sockaddr *)&snl, (socklen_t *)&namelen);
368
0
  if (ret < 0 || namelen != sizeof(snl)) {
369
0
    flog_err_sys(EC_LIB_SOCKET, "Can't get %s socket name: %s",
370
0
           nl->name, safe_strerror(errno));
371
0
    close(sock);
372
0
    return -1;
373
0
  }
374
0
375
0
  nl->snl = snl;
376
0
  nl->sock = sock;
377
0
  nl->buflen = NL_RCV_PKT_BUF_SIZE;
378
0
  nl->buf = XMALLOC(MTYPE_NL_BUF, nl->buflen);
379
0
380
0
  return ret;
381
0
}
382
383
/*
384
 * Dispatch an incoming netlink message; used by the zebra main pthread's
385
 * netlink event reader.
386
 */
387
static int netlink_information_fetch(struct nlmsghdr *h, ns_id_t ns_id,
388
             int startup)
389
0
{
390
  /*
391
   * When we handle new message types here
392
   * because we are starting to install them
393
   * then lets check the netlink_install_filter
394
   * and see if we should add the corresponding
395
   * allow through entry there.
396
   * Probably not needed to do but please
397
   * think about it.
398
   */
399
0
  switch (h->nlmsg_type) {
400
0
  case RTM_NEWROUTE:
401
0
    return netlink_route_change(h, ns_id, startup);
402
0
  case RTM_DELROUTE:
403
0
    return netlink_route_change(h, ns_id, startup);
404
0
  case RTM_NEWLINK:
405
0
    return netlink_link_change(h, ns_id, startup);
406
0
  case RTM_DELLINK:
407
0
    return netlink_link_change(h, ns_id, startup);
408
0
  case RTM_NEWNEIGH:
409
0
  case RTM_DELNEIGH:
410
0
  case RTM_GETNEIGH:
411
0
    return netlink_neigh_change(h, ns_id);
412
0
  case RTM_NEWRULE:
413
0
    return netlink_rule_change(h, ns_id, startup);
414
0
  case RTM_DELRULE:
415
0
    return netlink_rule_change(h, ns_id, startup);
416
0
  case RTM_NEWNEXTHOP:
417
0
    return netlink_nexthop_change(h, ns_id, startup);
418
0
  case RTM_DELNEXTHOP:
419
0
    return netlink_nexthop_change(h, ns_id, startup);
420
0
  case RTM_NEWQDISC:
421
0
  case RTM_DELQDISC:
422
0
    return netlink_qdisc_change(h, ns_id, startup);
423
0
  case RTM_NEWTCLASS:
424
0
  case RTM_DELTCLASS:
425
0
    return netlink_tclass_change(h, ns_id, startup);
426
0
  case RTM_NEWTFILTER:
427
0
  case RTM_DELTFILTER:
428
0
    return netlink_tfilter_change(h, ns_id, startup);
429
0
  case RTM_NEWVLAN:
430
0
    return netlink_vlan_change(h, ns_id, startup);
431
0
  case RTM_DELVLAN:
432
0
    return netlink_vlan_change(h, ns_id, startup);
433
434
  /* Messages handled in the dplane thread */
435
0
  case RTM_NEWADDR:
436
0
  case RTM_DELADDR:
437
0
  case RTM_NEWNETCONF:
438
0
  case RTM_DELNETCONF:
439
0
  case RTM_NEWTUNNEL:
440
0
  case RTM_DELTUNNEL:
441
0
  case RTM_GETTUNNEL:
442
0
    return 0;
443
0
  default:
444
    /*
445
     * If we have received this message then
446
     * we have made a mistake during development
447
     * and we need to write some code to handle
448
     * this message type or not ask for
449
     * it to be sent up to us
450
     */
451
0
    flog_err(EC_ZEBRA_UNKNOWN_NLMSG,
452
0
       "Unknown netlink nlmsg_type %s(%d) vrf %u",
453
0
       nl_msg_type_to_str(h->nlmsg_type), h->nlmsg_type,
454
0
       ns_id);
455
0
    break;
456
0
  }
457
0
  return 0;
458
0
}
459
460
/*
461
 * Dispatch an incoming netlink message; used by the dataplane pthread's
462
 * netlink event reader code.
463
 */
464
static int dplane_netlink_information_fetch(struct nlmsghdr *h, ns_id_t ns_id,
465
              int startup)
466
0
{
467
  /*
468
   * Dispatch the incoming messages that the dplane pthread handles
469
   */
470
0
  switch (h->nlmsg_type) {
471
0
  case RTM_NEWADDR:
472
0
  case RTM_DELADDR:
473
0
    return netlink_interface_addr_dplane(h, ns_id, startup);
474
475
0
  case RTM_NEWNETCONF:
476
0
  case RTM_DELNETCONF:
477
0
    return netlink_netconf_change(h, ns_id, startup);
478
479
  /* TODO -- other messages for the dplane socket and pthread */
480
481
0
  case RTM_NEWLINK:
482
0
  case RTM_DELLINK:
483
484
0
  default:
485
0
    break;
486
0
  }
487
488
0
  return 0;
489
0
}
490
491
#if defined(HANDLE_NETLINK_FUZZING)
492
/* Using globals here to avoid adding function parameters */
493
494
/* Keep distinct filenames for netlink fuzzy collection */
495
static unsigned int netlink_file_counter = 1;
496
497
/**
498
 * netlink_write_incoming() - Writes all data received from netlink to a file
499
 * @buf:        Data from netlink.
500
 * @size:       Size of data.
501
 * @counter:    Counter for keeping filenames distinct.
502
 */
503
static void netlink_write_incoming(const char *buf, const unsigned int size,
504
           unsigned int counter)
505
{
506
  char fname[MAXPATHLEN];
507
  FILE *f;
508
509
  snprintf(fname, MAXPATHLEN, "%s/%s_%u", frr_vtydir, "netlink", counter);
510
  frr_with_privs(&zserv_privs) {
511
    f = fopen(fname, "w");
512
  }
513
  if (f) {
514
    fwrite(buf, 1, size, f);
515
    fclose(f);
516
  }
517
}
518
519
#endif /* HANDLE_NETLINK_FUZZING */
520
521
static void kernel_read(struct event *thread)
522
0
{
523
0
  struct zebra_ns *zns = (struct zebra_ns *)EVENT_ARG(thread);
524
0
  struct zebra_dplane_info dp_info;
525
0
526
0
  /* Capture key info from ns struct */
527
0
  zebra_dplane_info_from_zns(&dp_info, zns, false);
528
0
529
0
  netlink_parse_info(netlink_information_fetch, &zns->netlink, &dp_info,
530
0
         5, false);
531
0
532
0
  event_add_read(zrouter.master, kernel_read, zns, zns->netlink.sock,
533
0
           &zns->t_netlink);
534
0
}
535
536
/*
537
 * Called by the dplane pthread to read incoming OS messages and dispatch them.
538
 */
539
int kernel_dplane_read(struct zebra_dplane_info *info)
540
0
{
541
0
  struct nlsock *nl = kernel_netlink_nlsock_lookup(info->sock);
542
543
0
  netlink_parse_info(dplane_netlink_information_fetch, nl, info, 5,
544
0
         false);
545
546
0
  return 0;
547
0
}
548
549
/*
550
 * Filter out messages from self that occur on listener socket,
551
 * caused by our actions on the command socket(s)
552
 *
553
 * When we add new Netlink message types we probably
554
 * do not need to add them here as that we are filtering
555
 * on the routes we actually care to receive( which is rarer
556
 * then the normal course of operations).  We are intentionally
557
 * allowing some messages from ourselves through
558
 * ( I'm looking at you Interface based netlink messages )
559
 * so that we only have to write one way to handle incoming
560
 * address add/delete and xxxNETCONF changes.
561
 */
562
static void netlink_install_filter(int sock, uint32_t pid, uint32_t dplane_pid)
563
0
{
564
0
  /*
565
0
   * BPF_JUMP instructions and where you jump to are based upon
566
0
   * 0 as being the next statement.  So count from 0.  Writing
567
0
   * this down because every time I look at this I have to
568
0
   * re-remember it.
569
0
   */
570
0
  struct sock_filter filter[] = {
571
0
    /*
572
0
     * Logic:
573
0
     *   if (nlmsg_pid == pid ||
574
0
     *       nlmsg_pid == dplane_pid) {
575
0
     *       if (the incoming nlmsg_type ==
576
0
     *           RTM_NEWADDR || RTM_DELADDR || RTM_NEWNETCONF ||
577
0
     *           RTM_DELNETCONF)
578
0
     *           keep this message
579
0
     *       else
580
0
     *           skip this message
581
0
     *   } else
582
0
     *       keep this netlink message
583
0
     */
584
0
    /*
585
0
     * 0: Load the nlmsg_pid into the BPF register
586
0
     */
587
0
    BPF_STMT(BPF_LD | BPF_ABS | BPF_W,
588
0
       offsetof(struct nlmsghdr, nlmsg_pid)),
589
0
    /*
590
0
     * 1: Compare to pid
591
0
     */
592
0
    BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(pid), 1, 0),
593
0
    /*
594
0
     * 2: Compare to dplane pid
595
0
     */
596
0
    BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htonl(dplane_pid), 0, 6),
597
0
    /*
598
0
     * 3: Load the nlmsg_type into BPF register
599
0
     */
600
0
    BPF_STMT(BPF_LD | BPF_ABS | BPF_H,
601
0
       offsetof(struct nlmsghdr, nlmsg_type)),
602
0
    /*
603
0
     * 4: Compare to RTM_NEWADDR
604
0
     */
605
0
    BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_NEWADDR), 4, 0),
606
0
    /*
607
0
     * 5: Compare to RTM_DELADDR
608
0
     */
609
0
    BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_DELADDR), 3, 0),
610
0
    /*
611
0
     * 6: Compare to RTM_NEWNETCONF
612
0
     */
613
0
    BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_NEWNETCONF), 2,
614
0
       0),
615
0
    /*
616
0
     * 7: Compare to RTM_DELNETCONF
617
0
     */
618
0
    BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, htons(RTM_DELNETCONF), 1,
619
0
       0),
620
0
    /*
621
0
     * 8: This is the end state of we want to skip the
622
0
     *    message
623
0
     */
624
0
    BPF_STMT(BPF_RET | BPF_K, 0),
625
0
    /* 9: This is the end state of we want to keep
626
0
     *     the message
627
0
     */
628
0
    BPF_STMT(BPF_RET | BPF_K, 0xffff),
629
0
  };
630
0
631
0
  struct sock_fprog prog = {
632
0
    .len = array_size(filter), .filter = filter,
633
0
  };
634
0
635
0
  if (setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &prog, sizeof(prog))
636
0
      < 0)
637
0
    flog_err_sys(EC_LIB_SOCKET, "Can't install socket filter: %s",
638
0
           safe_strerror(errno));
639
0
}
640
641
void netlink_parse_rtattr_flags(struct rtattr **tb, int max, struct rtattr *rta,
642
        int len, unsigned short flags)
643
0
{
644
0
  unsigned short type;
645
646
0
  memset(tb, 0, sizeof(struct rtattr *) * (max + 1));
647
0
  while (RTA_OK(rta, len)) {
648
0
    type = rta->rta_type & ~flags;
649
0
    if ((type <= max) && (!tb[type]))
650
0
      tb[type] = rta;
651
0
    rta = RTA_NEXT(rta, len);
652
0
  }
653
0
}
654
655
void netlink_parse_rtattr(struct rtattr **tb, int max, struct rtattr *rta,
656
        int len)
657
0
{
658
0
  memset(tb, 0, sizeof(struct rtattr *) * (max + 1));
659
0
  while (RTA_OK(rta, len)) {
660
0
    if (rta->rta_type <= max)
661
0
      tb[rta->rta_type] = rta;
662
0
    rta = RTA_NEXT(rta, len);
663
0
  }
664
0
}
665
666
/**
667
 * netlink_parse_rtattr_nested() - Parses a nested route attribute
668
 * @tb:         Pointer to array for storing rtattr in.
669
 * @max:        Max number to store.
670
 * @rta:        Pointer to rtattr to look for nested items in.
671
 */
672
void netlink_parse_rtattr_nested(struct rtattr **tb, int max,
673
         struct rtattr *rta)
674
0
{
675
0
  netlink_parse_rtattr(tb, max, RTA_DATA(rta), RTA_PAYLOAD(rta));
676
0
}
677
678
bool nl_addraw_l(struct nlmsghdr *n, unsigned int maxlen, const void *data,
679
     unsigned int len)
680
0
{
681
0
  if (NLMSG_ALIGN(n->nlmsg_len) + NLMSG_ALIGN(len) > maxlen) {
682
0
    zlog_err("ERROR message exceeded bound of %d", maxlen);
683
0
    return false;
684
0
  }
685
686
0
  memcpy(NLMSG_TAIL(n), data, len);
687
0
  memset((uint8_t *)NLMSG_TAIL(n) + len, 0, NLMSG_ALIGN(len) - len);
688
0
  n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + NLMSG_ALIGN(len);
689
690
0
  return true;
691
0
}
692
693
bool nl_attr_put(struct nlmsghdr *n, unsigned int maxlen, int type,
694
     const void *data, unsigned int alen)
695
1
{
696
1
  int len;
697
1
  struct rtattr *rta;
698
699
1
  len = RTA_LENGTH(alen);
700
701
1
  if (NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len) > maxlen)
702
0
    return false;
703
704
1
  rta = (struct rtattr *)(((char *)n) + NLMSG_ALIGN(n->nlmsg_len));
705
1
  rta->rta_type = type;
706
1
  rta->rta_len = len;
707
708
1
  if (data)
709
1
    memcpy(RTA_DATA(rta), data, alen);
710
0
  else
711
0
    assert(alen == 0);
712
713
1
  n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len);
714
715
1
  return true;
716
1
}
717
718
bool nl_attr_put8(struct nlmsghdr *n, unsigned int maxlen, int type,
719
      uint8_t data)
720
0
{
721
0
  return nl_attr_put(n, maxlen, type, &data, sizeof(uint8_t));
722
0
}
723
724
bool nl_attr_put16(struct nlmsghdr *n, unsigned int maxlen, int type,
725
       uint16_t data)
726
0
{
727
0
  return nl_attr_put(n, maxlen, type, &data, sizeof(uint16_t));
728
0
}
729
730
bool nl_attr_put32(struct nlmsghdr *n, unsigned int maxlen, int type,
731
       uint32_t data)
732
1
{
733
1
  return nl_attr_put(n, maxlen, type, &data, sizeof(uint32_t));
734
1
}
735
736
bool nl_attr_put64(struct nlmsghdr *n, unsigned int maxlen, int type,
737
       uint64_t data)
738
0
{
739
0
  return nl_attr_put(n, maxlen, type, &data, sizeof(uint64_t));
740
0
}
741
742
struct rtattr *nl_attr_nest(struct nlmsghdr *n, unsigned int maxlen, int type)
743
0
{
744
0
  struct rtattr *nest = NLMSG_TAIL(n);
745
746
0
  if (!nl_attr_put(n, maxlen, type, NULL, 0))
747
0
    return NULL;
748
749
0
  nest->rta_type |= NLA_F_NESTED;
750
0
  return nest;
751
0
}
752
753
int nl_attr_nest_end(struct nlmsghdr *n, struct rtattr *nest)
754
0
{
755
0
  nest->rta_len = (uint8_t *)NLMSG_TAIL(n) - (uint8_t *)nest;
756
0
  return n->nlmsg_len;
757
0
}
758
759
struct rtnexthop *nl_attr_rtnh(struct nlmsghdr *n, unsigned int maxlen)
760
0
{
761
0
  struct rtnexthop *rtnh = (struct rtnexthop *)NLMSG_TAIL(n);
762
763
0
  if (NLMSG_ALIGN(n->nlmsg_len) + RTNH_ALIGN(sizeof(struct rtnexthop))
764
0
      > maxlen)
765
0
    return NULL;
766
767
0
  memset(rtnh, 0, sizeof(struct rtnexthop));
768
0
  n->nlmsg_len =
769
0
    NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(sizeof(struct rtnexthop));
770
771
0
  return rtnh;
772
0
}
773
774
void nl_attr_rtnh_end(struct nlmsghdr *n, struct rtnexthop *rtnh)
775
0
{
776
0
  rtnh->rtnh_len = (uint8_t *)NLMSG_TAIL(n) - (uint8_t *)rtnh;
777
0
}
778
779
bool nl_rta_put(struct rtattr *rta, unsigned int maxlen, int type,
780
    const void *data, int alen)
781
0
{
782
0
  struct rtattr *subrta;
783
0
  int len = RTA_LENGTH(alen);
784
785
0
  if (RTA_ALIGN(rta->rta_len) + RTA_ALIGN(len) > maxlen) {
786
0
    zlog_err("ERROR max allowed bound %d exceeded for rtattr",
787
0
       maxlen);
788
0
    return false;
789
0
  }
790
0
  subrta = (struct rtattr *)(((char *)rta) + RTA_ALIGN(rta->rta_len));
791
0
  subrta->rta_type = type;
792
0
  subrta->rta_len = len;
793
0
  if (alen)
794
0
    memcpy(RTA_DATA(subrta), data, alen);
795
0
  rta->rta_len = NLMSG_ALIGN(rta->rta_len) + RTA_ALIGN(len);
796
797
0
  return true;
798
0
}
799
800
bool nl_rta_put16(struct rtattr *rta, unsigned int maxlen, int type,
801
      uint16_t data)
802
0
{
803
0
  return nl_rta_put(rta, maxlen, type, &data, sizeof(uint16_t));
804
0
}
805
806
bool nl_rta_put64(struct rtattr *rta, unsigned int maxlen, int type,
807
      uint64_t data)
808
0
{
809
0
  return nl_rta_put(rta, maxlen, type, &data, sizeof(uint64_t));
810
0
}
811
812
struct rtattr *nl_rta_nest(struct rtattr *rta, unsigned int maxlen, int type)
813
0
{
814
0
  struct rtattr *nest = RTA_TAIL(rta);
815
816
0
  if (nl_rta_put(rta, maxlen, type, NULL, 0))
817
0
    return NULL;
818
819
0
  nest->rta_type |= NLA_F_NESTED;
820
821
0
  return nest;
822
0
}
823
824
int nl_rta_nest_end(struct rtattr *rta, struct rtattr *nest)
825
0
{
826
0
  nest->rta_len = (uint8_t *)RTA_TAIL(rta) - (uint8_t *)nest;
827
828
0
  return rta->rta_len;
829
0
}
830
831
const char *nl_msg_type_to_str(uint16_t msg_type)
832
0
{
833
0
  return lookup_msg(nlmsg_str, msg_type, "");
834
0
}
835
836
const char *nl_rtproto_to_str(uint8_t rtproto)
837
0
{
838
0
  return lookup_msg(rtproto_str, rtproto, "");
839
0
}
840
841
const char *nl_family_to_str(uint8_t family)
842
0
{
843
0
  return lookup_msg(family_str, family, "");
844
0
}
845
846
const char *nl_rttype_to_str(uint8_t rttype)
847
0
{
848
0
  return lookup_msg(rttype_str, rttype, "");
849
0
}
850
851
#define NLA_OK(nla, len)                                                       \
852
0
  ((len) >= (int)sizeof(struct nlattr)                                   \
853
0
   && (nla)->nla_len >= sizeof(struct nlattr)                            \
854
0
   && (nla)->nla_len <= (len))
855
#define NLA_NEXT(nla, attrlen)                                                 \
856
0
  ((attrlen) -= NLA_ALIGN((nla)->nla_len),                               \
857
0
   (struct nlattr *)(((char *)(nla)) + NLA_ALIGN((nla)->nla_len)))
858
0
#define NLA_LENGTH(len) (NLA_ALIGN(sizeof(struct nlattr)) + (len))
859
0
#define NLA_DATA(nla) ((struct nlattr *)(((char *)(nla)) + NLA_LENGTH(0)))
860
861
#define ERR_NLA(err, inner_len)                                                \
862
0
  ((struct nlattr *)(((char *)(err))                                     \
863
0
         + NLMSG_ALIGN(sizeof(struct nlmsgerr))              \
864
0
         + NLMSG_ALIGN((inner_len))))
865
866
static void netlink_parse_nlattr(struct nlattr **tb, int max,
867
         struct nlattr *nla, int len)
868
0
{
869
0
  while (NLA_OK(nla, len)) {
870
0
    if (nla->nla_type <= max)
871
0
      tb[nla->nla_type] = nla;
872
0
    nla = NLA_NEXT(nla, len);
873
0
  }
874
0
}
875
876
static void netlink_parse_extended_ack(struct nlmsghdr *h)
877
0
{
878
0
  struct nlattr *tb[NLMSGERR_ATTR_MAX + 1] = {};
879
0
  const struct nlmsgerr *err = (const struct nlmsgerr *)NLMSG_DATA(h);
880
0
  const struct nlmsghdr *err_nlh = NULL;
881
  /* Length not including nlmsghdr */
882
0
  uint32_t len = 0;
883
  /* Inner error netlink message length */
884
0
  uint32_t inner_len = 0;
885
0
  const char *msg = NULL;
886
0
  uint32_t off = 0;
887
888
0
  if (!(h->nlmsg_flags & NLM_F_CAPPED))
889
0
    inner_len = (uint32_t)NLMSG_PAYLOAD(&err->msg, 0);
890
891
0
  len = (uint32_t)(NLMSG_PAYLOAD(h, sizeof(struct nlmsgerr)) - inner_len);
892
893
0
  netlink_parse_nlattr(tb, NLMSGERR_ATTR_MAX, ERR_NLA(err, inner_len),
894
0
           len);
895
896
0
  if (tb[NLMSGERR_ATTR_MSG])
897
0
    msg = (const char *)NLA_DATA(tb[NLMSGERR_ATTR_MSG]);
898
899
0
  if (tb[NLMSGERR_ATTR_OFFS]) {
900
0
    off = *(uint32_t *)NLA_DATA(tb[NLMSGERR_ATTR_OFFS]);
901
902
0
    if (off > h->nlmsg_len) {
903
0
      zlog_err("Invalid offset for NLMSGERR_ATTR_OFFS");
904
0
    } else if (!(h->nlmsg_flags & NLM_F_CAPPED)) {
905
      /*
906
       * Header of failed message
907
       * we are not doing anything currently with it
908
       * but noticing it for later.
909
       */
910
0
      err_nlh = &err->msg;
911
0
      zlog_debug("%s: Received %s extended Ack", __func__,
912
0
           nl_msg_type_to_str(err_nlh->nlmsg_type));
913
0
    }
914
0
  }
915
916
0
  if (msg && *msg != '\0') {
917
0
    bool is_err = !!err->error;
918
919
0
    if (is_err)
920
0
      zlog_err("Extended Error: %s", msg);
921
0
    else
922
0
      flog_warn(EC_ZEBRA_NETLINK_EXTENDED_WARNING,
923
0
          "Extended Warning: %s", msg);
924
0
  }
925
0
}
926
927
/*
928
 * netlink_send_msg - send a netlink message of a certain size.
929
 *
930
 * Returns -1 on error. Otherwise, it returns the number of bytes sent.
931
 */
932
static ssize_t netlink_send_msg(const struct nlsock *nl, void *buf,
933
        size_t buflen)
934
0
{
935
0
  struct sockaddr_nl snl = {};
936
0
  struct iovec iov = {};
937
0
  struct msghdr msg = {};
938
0
  ssize_t status;
939
0
  int save_errno = 0;
940
941
0
  iov.iov_base = buf;
942
0
  iov.iov_len = buflen;
943
0
  msg.msg_name = &snl;
944
0
  msg.msg_namelen = sizeof(snl);
945
0
  msg.msg_iov = &iov;
946
0
  msg.msg_iovlen = 1;
947
948
0
  snl.nl_family = AF_NETLINK;
949
950
  /* Send message to netlink interface. */
951
0
  frr_with_privs(&zserv_privs) {
952
0
    status = sendmsg(nl->sock, &msg, 0);
953
0
    save_errno = errno;
954
0
  }
955
956
0
  if (IS_ZEBRA_DEBUG_KERNEL_MSGDUMP_SEND) {
957
0
    zlog_debug("%s: >> netlink message dump [sent]", __func__);
958
0
#ifdef NETLINK_DEBUG
959
0
    nl_dump(buf, buflen);
960
#else
961
    zlog_hexdump(buf, buflen);
962
#endif /* NETLINK_DEBUG */
963
0
  }
964
965
0
  if (status == -1) {
966
0
    flog_err_sys(EC_LIB_SOCKET, "%s error: %s", __func__,
967
0
           safe_strerror(save_errno));
968
0
    return -1;
969
0
  }
970
971
0
  return status;
972
0
}
973
974
/*
975
 * netlink_recv_msg - receive a netlink message.
976
 *
977
 * Returns -1 on error, 0 if read would block or the number of bytes received.
978
 */
979
static int netlink_recv_msg(struct nlsock *nl, struct msghdr *msg)
980
0
{
981
0
  struct iovec iov;
982
0
  int status;
983
984
0
  iov.iov_base = nl->buf;
985
0
  iov.iov_len = nl->buflen;
986
0
  msg->msg_iov = &iov;
987
0
  msg->msg_iovlen = 1;
988
989
0
  do {
990
0
    int bytes;
991
992
0
    bytes = recv(nl->sock, NULL, 0, MSG_PEEK | MSG_TRUNC);
993
994
0
    if (bytes >= 0 && (size_t)bytes > nl->buflen) {
995
0
      nl->buf = XREALLOC(MTYPE_NL_BUF, nl->buf, bytes);
996
0
      nl->buflen = bytes;
997
0
      iov.iov_base = nl->buf;
998
0
      iov.iov_len = nl->buflen;
999
0
    }
1000
1001
0
    status = recvmsg(nl->sock, msg, 0);
1002
0
  } while (status == -1 && errno == EINTR);
1003
1004
0
  if (status == -1) {
1005
0
    if (errno == EWOULDBLOCK || errno == EAGAIN)
1006
0
      return 0;
1007
0
    flog_err(EC_ZEBRA_RECVMSG_OVERRUN, "%s recvmsg overrun: %s",
1008
0
       nl->name, safe_strerror(errno));
1009
    /*
1010
     * In this case we are screwed. There is no good way to recover
1011
     * zebra at this point.
1012
     */
1013
0
    exit(-1);
1014
0
  }
1015
1016
0
  if (status == 0) {
1017
0
    flog_err_sys(EC_LIB_SOCKET, "%s EOF", nl->name);
1018
0
    return -1;
1019
0
  }
1020
1021
0
  if (msg->msg_namelen != sizeof(struct sockaddr_nl)) {
1022
0
    flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
1023
0
       "%s sender address length error: length %d", nl->name,
1024
0
       msg->msg_namelen);
1025
0
    return -1;
1026
0
  }
1027
1028
0
  if (IS_ZEBRA_DEBUG_KERNEL_MSGDUMP_RECV) {
1029
0
    zlog_debug("%s: << netlink message dump [recv]", __func__);
1030
0
#ifdef NETLINK_DEBUG
1031
0
    nl_dump(nl->buf, status);
1032
#else
1033
    zlog_hexdump(nl->buf, status);
1034
#endif /* NETLINK_DEBUG */
1035
0
  }
1036
1037
#if defined(HANDLE_NETLINK_FUZZING)
1038
  zlog_debug("Writing incoming netlink message");
1039
  netlink_write_incoming(buf, status, netlink_file_counter++);
1040
#endif /* HANDLE_NETLINK_FUZZING */
1041
1042
0
  return status;
1043
0
}
1044
1045
/*
1046
 * netlink_parse_error - parse a netlink error message
1047
 *
1048
 * Returns 1 if this message is acknowledgement, 0 if this error should be
1049
 * ignored, -1 otherwise.
1050
 */
1051
static int netlink_parse_error(const struct nlsock *nl, struct nlmsghdr *h,
1052
             bool is_cmd, bool startup)
1053
0
{
1054
0
  struct nlmsgerr *err = (struct nlmsgerr *)NLMSG_DATA(h);
1055
0
  int errnum = err->error;
1056
0
  int msg_type = err->msg.nlmsg_type;
1057
1058
0
  if (h->nlmsg_len < NLMSG_LENGTH(sizeof(struct nlmsgerr))) {
1059
0
    flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
1060
0
       "%s error: message truncated", nl->name);
1061
0
    return -1;
1062
0
  }
1063
1064
  /*
1065
   * Parse the extended information before we actually handle it. At this
1066
   * point in time we do not do anything other than report the issue.
1067
   */
1068
0
  if (h->nlmsg_flags & NLM_F_ACK_TLVS)
1069
0
    netlink_parse_extended_ack(h);
1070
1071
  /* If the error field is zero, then this is an ACK. */
1072
0
  if (err->error == 0) {
1073
0
    if (IS_ZEBRA_DEBUG_KERNEL) {
1074
0
      zlog_debug("%s: %s ACK: type=%s(%u), seq=%u, pid=%u",
1075
0
           __func__, nl->name,
1076
0
           nl_msg_type_to_str(err->msg.nlmsg_type),
1077
0
           err->msg.nlmsg_type, err->msg.nlmsg_seq,
1078
0
           err->msg.nlmsg_pid);
1079
0
    }
1080
1081
0
    return 1;
1082
0
  }
1083
1084
  /*
1085
   * Deal with errors that occur because of races in link handling
1086
   * or types are not supported in kernel.
1087
   */
1088
0
  if (is_cmd &&
1089
0
      ((msg_type == RTM_DELROUTE &&
1090
0
        (-errnum == ENODEV || -errnum == ESRCH)) ||
1091
0
       (msg_type == RTM_NEWROUTE &&
1092
0
        (-errnum == ENETDOWN || -errnum == EEXIST)) ||
1093
0
       ((msg_type == RTM_NEWTUNNEL || msg_type == RTM_DELTUNNEL ||
1094
0
         msg_type == RTM_GETTUNNEL) &&
1095
0
        (-errnum == EOPNOTSUPP)))) {
1096
0
    if (IS_ZEBRA_DEBUG_KERNEL)
1097
0
      zlog_debug("%s: error: %s type=%s(%u), seq=%u, pid=%u",
1098
0
           nl->name, safe_strerror(-errnum),
1099
0
           nl_msg_type_to_str(msg_type), msg_type,
1100
0
           err->msg.nlmsg_seq, err->msg.nlmsg_pid);
1101
0
    return 0;
1102
0
  }
1103
1104
  /*
1105
   * We see RTM_DELNEIGH when shutting down an interface with an IPv4
1106
   * link-local.  The kernel should have already deleted the neighbor so
1107
   * do not log these as an error.
1108
   */
1109
0
  if (msg_type == RTM_DELNEIGH
1110
0
      || (is_cmd && msg_type == RTM_NEWROUTE
1111
0
    && (-errnum == ESRCH || -errnum == ENETUNREACH))) {
1112
    /*
1113
     * This is known to happen in some situations, don't log as
1114
     * error.
1115
     */
1116
0
    if (IS_ZEBRA_DEBUG_KERNEL)
1117
0
      zlog_debug("%s error: %s, type=%s(%u), seq=%u, pid=%u",
1118
0
           nl->name, safe_strerror(-errnum),
1119
0
           nl_msg_type_to_str(msg_type), msg_type,
1120
0
           err->msg.nlmsg_seq, err->msg.nlmsg_pid);
1121
0
  } else {
1122
0
    if ((msg_type != RTM_GETNEXTHOP && msg_type != RTM_GETVLAN) ||
1123
0
        !startup)
1124
0
      flog_err(EC_ZEBRA_UNEXPECTED_MESSAGE,
1125
0
         "%s error: %s, type=%s(%u), seq=%u, pid=%u",
1126
0
         nl->name, safe_strerror(-errnum),
1127
0
         nl_msg_type_to_str(msg_type), msg_type,
1128
0
         err->msg.nlmsg_seq, err->msg.nlmsg_pid);
1129
0
  }
1130
1131
0
  return -1;
1132
0
}
1133
1134
/*
1135
 * netlink_parse_info
1136
 *
1137
 * Receive message from netlink interface and pass those information
1138
 *  to the given function.
1139
 *
1140
 * filter  -> Function to call to read the results
1141
 * nl      -> netlink socket information
1142
 * zns     -> The zebra namespace data
1143
 * count   -> How many we should read in, 0 means as much as possible
1144
 * startup -> Are we reading in under startup conditions? passed to
1145
 *            the filter.
1146
 */
1147
int netlink_parse_info(int (*filter)(struct nlmsghdr *, ns_id_t, int),
1148
           struct nlsock *nl, const struct zebra_dplane_info *zns,
1149
           int count, bool startup)
1150
0
{
1151
0
  int status;
1152
0
  int ret = 0;
1153
0
  int error;
1154
0
  int read_in = 0;
1155
1156
0
  while (1) {
1157
0
    struct sockaddr_nl snl;
1158
0
    struct msghdr msg = {.msg_name = (void *)&snl,
1159
0
             .msg_namelen = sizeof(snl)};
1160
0
    struct nlmsghdr *h;
1161
1162
0
    if (count && read_in >= count)
1163
0
      return 0;
1164
1165
0
    status = netlink_recv_msg(nl, &msg);
1166
0
    if (status == -1)
1167
0
      return -1;
1168
0
    else if (status == 0)
1169
0
      break;
1170
1171
0
    read_in++;
1172
0
    for (h = (struct nlmsghdr *)nl->buf;
1173
0
         (status >= 0 && NLMSG_OK(h, (unsigned int)status));
1174
0
         h = NLMSG_NEXT(h, status)) {
1175
      /* Finish of reading. */
1176
0
      if (h->nlmsg_type == NLMSG_DONE)
1177
0
        return ret;
1178
1179
      /* Error handling. */
1180
0
      if (h->nlmsg_type == NLMSG_ERROR) {
1181
0
        int err = netlink_parse_error(
1182
0
          nl, h, zns->is_cmd, startup);
1183
1184
0
        if (err == 1) {
1185
0
          if (!(h->nlmsg_flags & NLM_F_MULTI))
1186
0
            return 0;
1187
0
          continue;
1188
0
        } else
1189
0
          return err;
1190
0
      }
1191
1192
      /*
1193
       * What is the right thing to do?  The kernel
1194
       * is telling us that the dump request was interrupted
1195
       * and we more than likely are out of luck and have
1196
       * missed data from the kernel.  At this point in time
1197
       * lets just note that this is happening.
1198
       */
1199
0
      if (h->nlmsg_flags & NLM_F_DUMP_INTR)
1200
0
        flog_err(
1201
0
          EC_ZEBRA_NETLINK_BAD_SEQUENCE,
1202
0
          "netlink recvmsg: The Dump request was interrupted");
1203
1204
      /* OK we got netlink message. */
1205
0
      if (IS_ZEBRA_DEBUG_KERNEL)
1206
0
        zlog_debug(
1207
0
          "%s: %s type %s(%u), len=%d, seq=%u, pid=%u",
1208
0
          __func__, nl->name,
1209
0
          nl_msg_type_to_str(h->nlmsg_type),
1210
0
          h->nlmsg_type, h->nlmsg_len,
1211
0
          h->nlmsg_seq, h->nlmsg_pid);
1212
1213
1214
      /*
1215
       * Ignore messages that maybe sent from
1216
       * other actors besides the kernel
1217
       */
1218
0
      if (snl.nl_pid != 0) {
1219
0
        zlog_debug("Ignoring message from pid %u",
1220
0
             snl.nl_pid);
1221
0
        continue;
1222
0
      }
1223
1224
0
      error = (*filter)(h, zns->ns_id, startup);
1225
0
      if (error < 0) {
1226
0
        zlog_debug("%s filter function error",
1227
0
             nl->name);
1228
0
        ret = error;
1229
0
      }
1230
0
    }
1231
1232
    /* After error care. */
1233
0
    if (msg.msg_flags & MSG_TRUNC) {
1234
0
      flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
1235
0
         "%s error: message truncated", nl->name);
1236
0
      continue;
1237
0
    }
1238
0
    if (status) {
1239
0
      flog_err(EC_ZEBRA_NETLINK_LENGTH_ERROR,
1240
0
         "%s error: data remnant size %d", nl->name,
1241
0
         status);
1242
0
      return -1;
1243
0
    }
1244
0
  }
1245
0
  return ret;
1246
0
}
1247
1248
/*
1249
 * netlink_talk_info
1250
 *
1251
 * sendmsg() to netlink socket then recvmsg().
1252
 * Calls netlink_parse_info to parse returned data
1253
 *
1254
 * filter   -> The filter to read final results from kernel
1255
 * nlmsghdr -> The data to send to the kernel
1256
 * dp_info -> The dataplane and netlink socket information
1257
 * startup  -> Are we reading in under startup conditions
1258
 *             This is passed through eventually to filter.
1259
 */
1260
static int netlink_talk_info(int (*filter)(struct nlmsghdr *, ns_id_t,
1261
             int startup),
1262
           struct nlmsghdr *n,
1263
           struct zebra_dplane_info *dp_info, bool startup)
1264
0
{
1265
0
  struct nlsock *nl;
1266
1267
0
  nl = kernel_netlink_nlsock_lookup(dp_info->sock);
1268
0
  n->nlmsg_seq = dp_info->seq;
1269
0
  n->nlmsg_pid = nl->snl.nl_pid;
1270
1271
0
  if (IS_ZEBRA_DEBUG_KERNEL)
1272
0
    zlog_debug(
1273
0
      "netlink_talk: %s type %s(%u), len=%d seq=%u flags 0x%x",
1274
0
      nl->name, nl_msg_type_to_str(n->nlmsg_type),
1275
0
      n->nlmsg_type, n->nlmsg_len, n->nlmsg_seq,
1276
0
      n->nlmsg_flags);
1277
1278
0
  if (netlink_send_msg(nl, n, n->nlmsg_len) == -1)
1279
0
    return -1;
1280
1281
  /*
1282
   * Get reply from netlink socket.
1283
   * The reply should either be an acknowlegement or an error.
1284
   */
1285
0
  return netlink_parse_info(filter, nl, dp_info, 0, startup);
1286
0
}
1287
1288
/*
1289
 * Synchronous version of netlink_talk_info. Converts args to suit the
1290
 * common version, which is suitable for both sync and async use.
1291
 */
1292
int netlink_talk(int (*filter)(struct nlmsghdr *, ns_id_t, int startup),
1293
     struct nlmsghdr *n, struct nlsock *nl, struct zebra_ns *zns,
1294
     bool startup)
1295
0
{
1296
0
  struct zebra_dplane_info dp_info;
1297
1298
  /* Increment sequence number before capturing snapshot of ns socket
1299
   * info.
1300
   */
1301
0
  nl->seq++;
1302
1303
  /* Capture info in intermediate info struct */
1304
0
  zebra_dplane_info_from_zns(&dp_info, zns, (nl == &(zns->netlink_cmd)));
1305
1306
0
  return netlink_talk_info(filter, n, &dp_info, startup);
1307
0
}
1308
1309
/* Issue request message to kernel via netlink socket. GET messages
1310
 * are issued through this interface.
1311
 */
1312
int netlink_request(struct nlsock *nl, void *req)
1313
7
{
1314
7
  struct nlmsghdr *n = (struct nlmsghdr *)req;
1315
1316
  /* Check netlink socket. */
1317
7
  if (nl->sock < 0) {
1318
7
    flog_err_sys(EC_LIB_SOCKET, "%s socket isn't active.",
1319
7
           nl->name);
1320
7
    return -1;
1321
7
  }
1322
1323
  /* Fill common fields for all requests. */
1324
0
  n->nlmsg_pid = nl->snl.nl_pid;
1325
0
  n->nlmsg_seq = ++nl->seq;
1326
1327
0
  if (netlink_send_msg(nl, req, n->nlmsg_len) == -1)
1328
0
    return -1;
1329
1330
0
  return 0;
1331
0
}
1332
1333
static int nl_batch_read_resp(struct nl_batch *bth)
1334
0
{
1335
0
  struct nlmsghdr *h;
1336
0
  struct sockaddr_nl snl;
1337
0
  struct msghdr msg = {};
1338
0
  int status, seq;
1339
0
  struct nlsock *nl;
1340
0
  struct zebra_dplane_ctx *ctx;
1341
0
  bool ignore_msg;
1342
1343
0
  nl = kernel_netlink_nlsock_lookup(bth->zns->sock);
1344
1345
0
  msg.msg_name = (void *)&snl;
1346
0
  msg.msg_namelen = sizeof(snl);
1347
1348
0
  status = netlink_recv_msg(nl, &msg);
1349
0
  if (status == -1 || status == 0)
1350
0
    return status;
1351
1352
0
  for (h = (struct nlmsghdr *)nl->buf;
1353
0
       (status >= 0 && NLMSG_OK(h, (unsigned int)status));
1354
0
       h = NLMSG_NEXT(h, status)) {
1355
1356
0
    ignore_msg = false;
1357
0
    seq = h->nlmsg_seq;
1358
    /*
1359
     * Find the corresponding context object. Received responses are
1360
     * in the same order as requests we sent, so we can simply
1361
     * iterate over the context list and match responses with
1362
     * requests at same time.
1363
     */
1364
0
    while (true) {
1365
0
      ctx = dplane_ctx_get_head(&(bth->ctx_list));
1366
0
      if (ctx == NULL) {
1367
        /*
1368
         * This is a situation where we have gotten
1369
         * into a bad spot.  We need to know that
1370
         * this happens( does it? )
1371
         */
1372
0
        zlog_err(
1373
0
          "%s:WARNING Received netlink Response for an error and no Contexts to associate with it",
1374
0
          __func__);
1375
0
        break;
1376
0
      }
1377
1378
      /*
1379
       * 'update' context objects take two consecutive
1380
       * sequence numbers.
1381
       */
1382
0
      if (dplane_ctx_is_update(ctx) &&
1383
0
          dplane_ctx_get_ns(ctx)->seq + 1 == seq) {
1384
        /*
1385
         * This is the situation where we get a response
1386
         * to a message that should be ignored.
1387
         */
1388
0
        ignore_msg = true;
1389
0
        break;
1390
0
      }
1391
1392
0
      ctx = dplane_ctx_dequeue(&(bth->ctx_list));
1393
0
      dplane_ctx_enqueue_tail(bth->ctx_out_q, ctx);
1394
1395
      /* We have found corresponding context object. */
1396
0
      if (dplane_ctx_get_ns(ctx)->seq == seq)
1397
0
        break;
1398
1399
0
      if (dplane_ctx_get_ns(ctx)->seq > seq)
1400
0
        zlog_warn(
1401
0
          "%s:WARNING Received %u is less than any context on the queue ctx->seq %u",
1402
0
          __func__, seq,
1403
0
          dplane_ctx_get_ns(ctx)->seq);
1404
0
    }
1405
1406
0
    if (ignore_msg) {
1407
      /*
1408
       * If we ignore the message due to an update
1409
       * above we should still fricking decode the
1410
       * message for our operator to understand
1411
       * what is going on
1412
       */
1413
0
      int err = netlink_parse_error(nl, h, bth->zns->is_cmd,
1414
0
                  false);
1415
1416
0
      zlog_debug("%s: netlink error message seq=%d %d",
1417
0
           __func__, h->nlmsg_seq, err);
1418
0
      continue;
1419
0
    }
1420
1421
    /*
1422
     * We received a message with the sequence number that isn't
1423
     * associated with any dplane context object.
1424
     */
1425
0
    if (ctx == NULL) {
1426
0
      if (IS_ZEBRA_DEBUG_KERNEL)
1427
0
        zlog_debug(
1428
0
          "%s: skipping unassociated response, seq number %d NS %u",
1429
0
          __func__, h->nlmsg_seq,
1430
0
          bth->zns->ns_id);
1431
0
      continue;
1432
0
    }
1433
1434
0
    if (h->nlmsg_type == NLMSG_ERROR) {
1435
0
      int err = netlink_parse_error(nl, h, bth->zns->is_cmd,
1436
0
                  false);
1437
1438
0
      if (err == -1)
1439
0
        dplane_ctx_set_status(
1440
0
          ctx, ZEBRA_DPLANE_REQUEST_FAILURE);
1441
1442
0
      if (IS_ZEBRA_DEBUG_KERNEL)
1443
0
        zlog_debug("%s: netlink error message seq=%d ",
1444
0
             __func__, h->nlmsg_seq);
1445
0
      continue;
1446
0
    }
1447
1448
    /*
1449
     * If we get here then we did not receive neither the ack nor
1450
     * the error and instead received some other message in an
1451
     * unexpected way.
1452
     */
1453
0
    if (IS_ZEBRA_DEBUG_KERNEL)
1454
0
      zlog_debug("%s: ignoring message type 0x%04x(%s) NS %u",
1455
0
           __func__, h->nlmsg_type,
1456
0
           nl_msg_type_to_str(h->nlmsg_type),
1457
0
           bth->zns->ns_id);
1458
0
  }
1459
1460
0
  return 0;
1461
0
}
1462
1463
static void nl_batch_reset(struct nl_batch *bth)
1464
0
{
1465
0
  bth->buf_head = bth->buf;
1466
0
  bth->curlen = 0;
1467
0
  bth->msgcnt = 0;
1468
0
  bth->zns = NULL;
1469
1470
0
  dplane_ctx_q_init(&(bth->ctx_list));
1471
0
}
1472
1473
static void nl_batch_init(struct nl_batch *bth,
1474
        struct dplane_ctx_list_head *ctx_out_q)
1475
0
{
1476
  /*
1477
   * If the size of the buffer has changed, free and then allocate a new
1478
   * one.
1479
   */
1480
0
  size_t bufsize =
1481
0
    atomic_load_explicit(&nl_batch_bufsize, memory_order_relaxed);
1482
0
  if (bufsize != nl_batch_tx_bufsize) {
1483
0
    if (nl_batch_tx_buf)
1484
0
      XFREE(MTYPE_NL_BUF, nl_batch_tx_buf);
1485
1486
0
    nl_batch_tx_buf = XCALLOC(MTYPE_NL_BUF, bufsize);
1487
0
    nl_batch_tx_bufsize = bufsize;
1488
0
  }
1489
1490
0
  bth->buf = nl_batch_tx_buf;
1491
0
  bth->bufsiz = bufsize;
1492
0
  bth->limit = atomic_load_explicit(&nl_batch_send_threshold,
1493
0
            memory_order_relaxed);
1494
1495
0
  bth->ctx_out_q = ctx_out_q;
1496
1497
0
  nl_batch_reset(bth);
1498
0
}
1499
1500
static void nl_batch_send(struct nl_batch *bth)
1501
0
{
1502
0
  struct zebra_dplane_ctx *ctx;
1503
0
  bool err = false;
1504
1505
0
  if (bth->curlen != 0 && bth->zns != NULL) {
1506
0
    struct nlsock *nl =
1507
0
      kernel_netlink_nlsock_lookup(bth->zns->sock);
1508
1509
0
    if (IS_ZEBRA_DEBUG_KERNEL)
1510
0
      zlog_debug("%s: %s, batch size=%zu, msg cnt=%zu",
1511
0
           __func__, nl->name, bth->curlen,
1512
0
           bth->msgcnt);
1513
1514
0
    if (netlink_send_msg(nl, bth->buf, bth->curlen) == -1)
1515
0
      err = true;
1516
1517
0
    if (!err) {
1518
0
      if (nl_batch_read_resp(bth) == -1)
1519
0
        err = true;
1520
0
    }
1521
0
  }
1522
1523
  /* Move remaining contexts to the outbound queue. */
1524
0
  while (true) {
1525
0
    ctx = dplane_ctx_dequeue(&(bth->ctx_list));
1526
0
    if (ctx == NULL)
1527
0
      break;
1528
1529
0
    if (err)
1530
0
      dplane_ctx_set_status(ctx,
1531
0
                ZEBRA_DPLANE_REQUEST_FAILURE);
1532
1533
0
    dplane_ctx_enqueue_tail(bth->ctx_out_q, ctx);
1534
0
  }
1535
1536
0
  nl_batch_reset(bth);
1537
0
}
1538
1539
enum netlink_msg_status netlink_batch_add_msg(
1540
  struct nl_batch *bth, struct zebra_dplane_ctx *ctx,
1541
  ssize_t (*msg_encoder)(struct zebra_dplane_ctx *, void *, size_t),
1542
  bool ignore_res)
1543
0
{
1544
0
  int seq;
1545
0
  ssize_t size;
1546
0
  struct nlmsghdr *msgh;
1547
0
  struct nlsock *nl;
1548
1549
0
  size = (*msg_encoder)(ctx, bth->buf_head, bth->bufsiz - bth->curlen);
1550
1551
  /*
1552
   * If there was an error while encoding the message (other than buffer
1553
   * overflow) then return an error.
1554
   */
1555
0
  if (size < 0)
1556
0
    return FRR_NETLINK_ERROR;
1557
1558
  /*
1559
   * If the message doesn't fit entirely in the buffer then send the batch
1560
   * and retry.
1561
   */
1562
0
  if (size == 0) {
1563
0
    nl_batch_send(bth);
1564
0
    size = (*msg_encoder)(ctx, bth->buf_head,
1565
0
              bth->bufsiz - bth->curlen);
1566
    /*
1567
     * If the message doesn't fit in the empty buffer then just
1568
     * return an error.
1569
     */
1570
0
    if (size <= 0)
1571
0
      return FRR_NETLINK_ERROR;
1572
0
  }
1573
1574
0
  seq = dplane_ctx_get_ns(ctx)->seq;
1575
0
  nl = kernel_netlink_nlsock_lookup(dplane_ctx_get_ns_sock(ctx));
1576
1577
0
  if (ignore_res)
1578
0
    seq++;
1579
1580
0
  msgh = (struct nlmsghdr *)bth->buf_head;
1581
0
  msgh->nlmsg_seq = seq;
1582
0
  msgh->nlmsg_pid = nl->snl.nl_pid;
1583
1584
0
  bth->zns = dplane_ctx_get_ns(ctx);
1585
0
  bth->buf_head = ((char *)bth->buf_head) + size;
1586
0
  bth->curlen += size;
1587
0
  bth->msgcnt++;
1588
1589
0
  return FRR_NETLINK_QUEUED;
1590
0
}
1591
1592
static enum netlink_msg_status nl_put_msg(struct nl_batch *bth,
1593
            struct zebra_dplane_ctx *ctx)
1594
0
{
1595
0
  if (dplane_ctx_is_skip_kernel(ctx))
1596
0
    return FRR_NETLINK_SUCCESS;
1597
1598
0
  switch (dplane_ctx_get_op(ctx)) {
1599
1600
0
  case DPLANE_OP_ROUTE_INSTALL:
1601
0
  case DPLANE_OP_ROUTE_UPDATE:
1602
0
  case DPLANE_OP_ROUTE_DELETE:
1603
0
    return netlink_put_route_update_msg(bth, ctx);
1604
1605
0
  case DPLANE_OP_NH_INSTALL:
1606
0
  case DPLANE_OP_NH_UPDATE:
1607
0
  case DPLANE_OP_NH_DELETE:
1608
0
    return netlink_put_nexthop_update_msg(bth, ctx);
1609
1610
0
  case DPLANE_OP_LSP_INSTALL:
1611
0
  case DPLANE_OP_LSP_UPDATE:
1612
0
  case DPLANE_OP_LSP_DELETE:
1613
0
    return netlink_put_lsp_update_msg(bth, ctx);
1614
1615
0
  case DPLANE_OP_PW_INSTALL:
1616
0
  case DPLANE_OP_PW_UNINSTALL:
1617
0
    return netlink_put_pw_update_msg(bth, ctx);
1618
1619
0
  case DPLANE_OP_ADDR_INSTALL:
1620
0
  case DPLANE_OP_ADDR_UNINSTALL:
1621
0
    return netlink_put_address_update_msg(bth, ctx);
1622
1623
0
  case DPLANE_OP_MAC_INSTALL:
1624
0
  case DPLANE_OP_MAC_DELETE:
1625
0
    return netlink_put_mac_update_msg(bth, ctx);
1626
1627
0
  case DPLANE_OP_NEIGH_INSTALL:
1628
0
  case DPLANE_OP_NEIGH_UPDATE:
1629
0
  case DPLANE_OP_NEIGH_DELETE:
1630
0
  case DPLANE_OP_VTEP_ADD:
1631
0
  case DPLANE_OP_VTEP_DELETE:
1632
0
  case DPLANE_OP_NEIGH_DISCOVER:
1633
0
  case DPLANE_OP_NEIGH_IP_INSTALL:
1634
0
  case DPLANE_OP_NEIGH_IP_DELETE:
1635
0
  case DPLANE_OP_NEIGH_TABLE_UPDATE:
1636
0
    return netlink_put_neigh_update_msg(bth, ctx);
1637
1638
0
  case DPLANE_OP_RULE_ADD:
1639
0
  case DPLANE_OP_RULE_DELETE:
1640
0
  case DPLANE_OP_RULE_UPDATE:
1641
0
    return netlink_put_rule_update_msg(bth, ctx);
1642
1643
0
  case DPLANE_OP_SYS_ROUTE_ADD:
1644
0
  case DPLANE_OP_SYS_ROUTE_DELETE:
1645
0
  case DPLANE_OP_ROUTE_NOTIFY:
1646
0
  case DPLANE_OP_LSP_NOTIFY:
1647
0
  case DPLANE_OP_BR_PORT_UPDATE:
1648
0
    return FRR_NETLINK_SUCCESS;
1649
1650
0
  case DPLANE_OP_IPTABLE_ADD:
1651
0
  case DPLANE_OP_IPTABLE_DELETE:
1652
0
  case DPLANE_OP_IPSET_ADD:
1653
0
  case DPLANE_OP_IPSET_DELETE:
1654
0
  case DPLANE_OP_IPSET_ENTRY_ADD:
1655
0
  case DPLANE_OP_IPSET_ENTRY_DELETE:
1656
0
    return FRR_NETLINK_ERROR;
1657
1658
0
  case DPLANE_OP_GRE_SET:
1659
0
    return netlink_put_gre_set_msg(bth, ctx);
1660
1661
0
  case DPLANE_OP_INTF_ADDR_ADD:
1662
0
  case DPLANE_OP_INTF_ADDR_DEL:
1663
0
  case DPLANE_OP_NONE:
1664
0
    return FRR_NETLINK_ERROR;
1665
1666
0
  case DPLANE_OP_INTF_NETCONFIG:
1667
0
    return netlink_put_intf_netconfig(bth, ctx);
1668
1669
0
  case DPLANE_OP_INTF_INSTALL:
1670
0
  case DPLANE_OP_INTF_UPDATE:
1671
0
  case DPLANE_OP_INTF_DELETE:
1672
0
    return netlink_put_intf_update_msg(bth, ctx);
1673
1674
0
  case DPLANE_OP_TC_QDISC_INSTALL:
1675
0
  case DPLANE_OP_TC_QDISC_UNINSTALL:
1676
0
    return netlink_put_tc_qdisc_update_msg(bth, ctx);
1677
0
  case DPLANE_OP_TC_CLASS_ADD:
1678
0
  case DPLANE_OP_TC_CLASS_DELETE:
1679
0
  case DPLANE_OP_TC_CLASS_UPDATE:
1680
0
    return netlink_put_tc_class_update_msg(bth, ctx);
1681
0
  case DPLANE_OP_TC_FILTER_ADD:
1682
0
  case DPLANE_OP_TC_FILTER_DELETE:
1683
0
  case DPLANE_OP_TC_FILTER_UPDATE:
1684
0
    return netlink_put_tc_filter_update_msg(bth, ctx);
1685
0
  }
1686
1687
0
  return FRR_NETLINK_ERROR;
1688
0
}
1689
1690
void kernel_update_multi(struct dplane_ctx_list_head *ctx_list)
1691
0
{
1692
0
  struct nl_batch batch;
1693
0
  struct zebra_dplane_ctx *ctx;
1694
0
  struct dplane_ctx_list_head handled_list;
1695
0
  enum netlink_msg_status res;
1696
1697
0
  dplane_ctx_q_init(&handled_list);
1698
0
  nl_batch_init(&batch, &handled_list);
1699
1700
0
  while (true) {
1701
0
    ctx = dplane_ctx_dequeue(ctx_list);
1702
0
    if (ctx == NULL)
1703
0
      break;
1704
1705
0
    if (batch.zns != NULL
1706
0
        && batch.zns->ns_id != dplane_ctx_get_ns(ctx)->ns_id)
1707
0
      nl_batch_send(&batch);
1708
1709
    /*
1710
     * Assume all messages will succeed and then mark only the ones
1711
     * that failed.
1712
     */
1713
0
    dplane_ctx_set_status(ctx, ZEBRA_DPLANE_REQUEST_SUCCESS);
1714
1715
0
    res = nl_put_msg(&batch, ctx);
1716
1717
0
    dplane_ctx_enqueue_tail(&(batch.ctx_list), ctx);
1718
0
    if (res == FRR_NETLINK_ERROR)
1719
0
      dplane_ctx_set_status(ctx,
1720
0
                ZEBRA_DPLANE_REQUEST_FAILURE);
1721
1722
0
    if (batch.curlen > batch.limit)
1723
0
      nl_batch_send(&batch);
1724
0
  }
1725
1726
0
  nl_batch_send(&batch);
1727
1728
0
  dplane_ctx_q_init(ctx_list);
1729
0
  dplane_ctx_list_append(ctx_list, &handled_list);
1730
0
}
1731
1732
struct nlsock *kernel_netlink_nlsock_lookup(int sock)
1733
0
{
1734
0
  struct nlsock lookup, *retval;
1735
1736
0
  lookup.sock = sock;
1737
1738
0
  NLSOCK_LOCK();
1739
0
  retval = hash_lookup(nlsock_hash, &lookup);
1740
0
  NLSOCK_UNLOCK();
1741
1742
0
  return retval;
1743
0
}
1744
1745
/* Insert nlsock entry into hash */
1746
static void kernel_netlink_nlsock_insert(struct nlsock *nls)
1747
0
{
1748
0
  NLSOCK_LOCK();
1749
0
  (void)hash_get(nlsock_hash, nls, hash_alloc_intern);
1750
0
  NLSOCK_UNLOCK();
1751
0
}
1752
1753
/* Remove nlsock entry from hash */
1754
static void kernel_netlink_nlsock_remove(struct nlsock *nls)
1755
0
{
1756
0
  NLSOCK_LOCK();
1757
0
  (void)hash_release(nlsock_hash, nls);
1758
0
  NLSOCK_UNLOCK();
1759
0
}
1760
1761
static uint32_t kernel_netlink_nlsock_key(const void *arg)
1762
0
{
1763
0
  const struct nlsock *nl = arg;
1764
1765
0
  return nl->sock;
1766
0
}
1767
1768
static bool kernel_netlink_nlsock_hash_equal(const void *arg1, const void *arg2)
1769
0
{
1770
0
  const struct nlsock *nl1 = arg1;
1771
0
  const struct nlsock *nl2 = arg2;
1772
1773
0
  if (nl1->sock == nl2->sock)
1774
0
    return true;
1775
1776
0
  return false;
1777
0
}
1778
1779
/* Exported interface function.  This function simply calls
1780
   netlink_socket (). */
1781
void kernel_init(struct zebra_ns *zns)
1782
1
{
1783
1
  uint32_t groups, dplane_groups, ext_groups;
1784
1
#if defined SOL_NETLINK
1785
1
  int one, ret, grp;
1786
1
#endif
1787
1788
  /*
1789
   * Initialize netlink sockets
1790
   *
1791
   * If RTMGRP_XXX exists use that, but at some point
1792
   * I think the kernel developers realized that
1793
   * keeping track of all the different values would
1794
   * lead to confusion, so we need to convert the
1795
   * RTNLGRP_XXX to a bit position for ourself
1796
   *
1797
   *
1798
   * NOTE: If the bit is >= 32, you must use setsockopt(). Those
1799
   * groups are added further below after SOL_NETLINK is verified to
1800
   * exist.
1801
   */
1802
1
  groups = RTMGRP_LINK                   |
1803
1
      RTMGRP_IPV4_ROUTE              |
1804
1
      RTMGRP_IPV4_IFADDR             |
1805
1
      RTMGRP_IPV6_ROUTE              |
1806
1
      RTMGRP_IPV6_IFADDR             |
1807
1
      RTMGRP_IPV4_MROUTE             |
1808
1
      RTMGRP_NEIGH                   |
1809
1
      ((uint32_t) 1 << (RTNLGRP_IPV4_RULE - 1)) |
1810
1
      ((uint32_t) 1 << (RTNLGRP_IPV6_RULE - 1)) |
1811
1
      ((uint32_t) 1 << (RTNLGRP_NEXTHOP - 1))   |
1812
1
      ((uint32_t) 1 << (RTNLGRP_TC - 1));
1813
1814
1
  dplane_groups = (RTMGRP_LINK            |
1815
1
       RTMGRP_IPV4_IFADDR     |
1816
1
       RTMGRP_IPV6_IFADDR     |
1817
1
       ((uint32_t) 1 << (RTNLGRP_IPV4_NETCONF - 1)) |
1818
1
       ((uint32_t) 1 << (RTNLGRP_IPV6_NETCONF - 1)) |
1819
1
       ((uint32_t) 1 << (RTNLGRP_MPLS_NETCONF - 1)));
1820
1821
  /* Use setsockopt for > 31 group */
1822
1
  ext_groups = RTNLGRP_TUNNEL;
1823
1824
1
  snprintf(zns->netlink.name, sizeof(zns->netlink.name),
1825
1
     "netlink-listen (NS %u)", zns->ns_id);
1826
1
  zns->netlink.sock = -1;
1827
#ifndef FUZZING
1828
  if (netlink_socket(&zns->netlink, groups, &ext_groups, 1, zns->ns_id) <
1829
      0) {
1830
    zlog_err("Failure to create %s socket",
1831
       zns->netlink.name);
1832
    exit(-1);
1833
  }
1834
1835
  kernel_netlink_nlsock_insert(&zns->netlink);
1836
#endif
1837
1
  snprintf(zns->netlink_cmd.name, sizeof(zns->netlink_cmd.name),
1838
1
     "netlink-cmd (NS %u)", zns->ns_id);
1839
1
  zns->netlink_cmd.sock = -1;
1840
#ifndef FUZZING
1841
  if (netlink_socket(&zns->netlink_cmd, 0, 0, 0, zns->ns_id) < 0) {
1842
    zlog_err("Failure to create %s socket",
1843
       zns->netlink_cmd.name);
1844
    exit(-1);
1845
  }
1846
1847
  kernel_netlink_nlsock_insert(&zns->netlink_cmd);
1848
#endif
1849
  /* Outbound socket for dplane programming of the host OS. */
1850
1
  snprintf(zns->netlink_dplane_out.name,
1851
1
     sizeof(zns->netlink_dplane_out.name), "netlink-dp (NS %u)",
1852
1
     zns->ns_id);
1853
1
  zns->netlink_dplane_out.sock = -1;
1854
#ifndef FUZZING
1855
  if (netlink_socket(&zns->netlink_dplane_out, 0, 0, 0, zns->ns_id) < 0) {
1856
    zlog_err("Failure to create %s socket",
1857
       zns->netlink_dplane_out.name);
1858
    exit(-1);
1859
  }
1860
1861
  kernel_netlink_nlsock_insert(&zns->netlink_dplane_out);
1862
1863
  /* Inbound socket for OS events coming to the dplane. */
1864
  snprintf(zns->netlink_dplane_in.name,
1865
     sizeof(zns->netlink_dplane_in.name), "netlink-dp-in (NS %u)",
1866
     zns->ns_id);
1867
  zns->netlink_dplane_in.sock = -1;
1868
  if (netlink_socket(&zns->netlink_dplane_in, dplane_groups, 0, 0,
1869
         zns->ns_id) < 0) {
1870
    zlog_err("Failure to create %s socket",
1871
       zns->netlink_dplane_in.name);
1872
    exit(-1);
1873
  }
1874
1875
  kernel_netlink_nlsock_insert(&zns->netlink_dplane_in);
1876
#endif
1877
#ifndef FUZZING
1878
  /*
1879
   * SOL_NETLINK is not available on all platforms yet
1880
   * apparently.  It's in bits/socket.h which I am not
1881
   * sure that we want to pull into our build system.
1882
   */
1883
#if defined SOL_NETLINK
1884
1885
  /*
1886
   * setsockopt multicast group subscriptions that don't fit in nl_groups
1887
   */
1888
  grp = RTNLGRP_BRVLAN;
1889
  ret = setsockopt(zns->netlink.sock, SOL_NETLINK, NETLINK_ADD_MEMBERSHIP,
1890
       &grp, sizeof(grp));
1891
1892
  if (ret < 0)
1893
    zlog_notice(
1894
      "Registration for RTNLGRP_BRVLAN Membership failed : %d %s",
1895
      errno, safe_strerror(errno));
1896
  /*
1897
   * Let's tell the kernel that we want to receive extended
1898
   * ACKS over our command socket(s)
1899
   */
1900
  one = 1;
1901
  ret = setsockopt(zns->netlink_cmd.sock, SOL_NETLINK, NETLINK_EXT_ACK,
1902
       &one, sizeof(one));
1903
1904
  if (ret < 0)
1905
    zlog_notice("Registration for extended cmd ACK failed : %d %s",
1906
          errno, safe_strerror(errno));
1907
1908
  one = 1;
1909
  ret = setsockopt(zns->netlink_dplane_out.sock, SOL_NETLINK,
1910
       NETLINK_EXT_ACK, &one, sizeof(one));
1911
1912
  if (ret < 0)
1913
    zlog_notice("Registration for extended dp ACK failed : %d %s",
1914
          errno, safe_strerror(errno));
1915
1916
  /*
1917
   * Trim off the payload of the original netlink message in the
1918
   * acknowledgment. This option is available since Linux 4.2, so if
1919
   * setsockopt fails, ignore the error.
1920
   */
1921
  one = 1;
1922
  ret = setsockopt(zns->netlink_dplane_out.sock, SOL_NETLINK,
1923
       NETLINK_CAP_ACK, &one, sizeof(one));
1924
  if (ret < 0)
1925
    zlog_notice(
1926
      "Registration for reduced ACK packet size failed, probably running an early kernel");
1927
#endif
1928
1929
  /* Register kernel socket. */
1930
  if (fcntl(zns->netlink.sock, F_SETFL, O_NONBLOCK) < 0)
1931
    flog_err_sys(EC_LIB_SOCKET, "Can't set %s socket flags: %s",
1932
           zns->netlink.name, safe_strerror(errno));
1933
1934
  if (fcntl(zns->netlink_cmd.sock, F_SETFL, O_NONBLOCK) < 0)
1935
    zlog_err("Can't set %s socket error: %s(%d)",
1936
       zns->netlink_cmd.name, safe_strerror(errno), errno);
1937
1938
  if (fcntl(zns->netlink_dplane_out.sock, F_SETFL, O_NONBLOCK) < 0)
1939
    zlog_err("Can't set %s socket error: %s(%d)",
1940
       zns->netlink_dplane_out.name, safe_strerror(errno),
1941
       errno);
1942
1943
  if (fcntl(zns->netlink_dplane_in.sock, F_SETFL, O_NONBLOCK) < 0)
1944
    zlog_err("Can't set %s socket error: %s(%d)",
1945
       zns->netlink_dplane_in.name, safe_strerror(errno),
1946
       errno);
1947
1948
  /* Set receive buffer size if it's set from command line */
1949
  if (rcvbufsize) {
1950
    netlink_recvbuf(&zns->netlink, rcvbufsize);
1951
#ifndef FUZZING
1952
    netlink_recvbuf(&zns->netlink_cmd, rcvbufsize);
1953
    netlink_recvbuf(&zns->netlink_dplane_out, rcvbufsize);
1954
    netlink_recvbuf(&zns->netlink_dplane_in, rcvbufsize);
1955
#endif
1956
  }
1957
1958
  /* Set filter for inbound sockets, to exclude events we've generated
1959
   * ourselves.
1960
   */
1961
  netlink_install_filter(zns->netlink.sock, zns->netlink_cmd.snl.nl_pid,
1962
             zns->netlink_dplane_out.snl.nl_pid);
1963
1964
  netlink_install_filter(zns->netlink_dplane_in.sock,
1965
             zns->netlink_cmd.snl.nl_pid,
1966
             zns->netlink_dplane_out.snl.nl_pid);
1967
1968
#endif /* FUZZING */
1969
1
  zns->t_netlink = NULL;
1970
1971
1
  event_add_read(zrouter.master, kernel_read, zns, zns->netlink.sock,
1972
1
           &zns->t_netlink);
1973
1974
1
  rt_netlink_init();
1975
1
}
1976
1977
/* Helper to clean up an nlsock */
1978
static void kernel_nlsock_fini(struct nlsock *nls)
1979
0
{
1980
0
  if (nls && nls->sock >= 0) {
1981
0
    kernel_netlink_nlsock_remove(nls);
1982
0
    close(nls->sock);
1983
0
    nls->sock = -1;
1984
0
    XFREE(MTYPE_NL_BUF, nls->buf);
1985
0
    nls->buflen = 0;
1986
0
  }
1987
0
}
1988
1989
void kernel_terminate(struct zebra_ns *zns, bool complete)
1990
0
{
1991
0
  EVENT_OFF(zns->t_netlink);
1992
1993
0
  kernel_nlsock_fini(&zns->netlink);
1994
1995
0
  kernel_nlsock_fini(&zns->netlink_cmd);
1996
1997
0
  kernel_nlsock_fini(&zns->netlink_dplane_in);
1998
1999
  /* During zebra shutdown, we need to leave the dataplane socket
2000
   * around until all work is done.
2001
   */
2002
0
  if (complete)
2003
0
    kernel_nlsock_fini(&zns->netlink_dplane_out);
2004
0
}
2005
2006
/*
2007
 * Global init for platform-/OS-specific things
2008
 */
2009
void kernel_router_init(void)
2010
1
{
2011
  /* Init nlsock hash and lock */
2012
1
  pthread_mutex_init(&nlsock_mutex, NULL);
2013
1
  nlsock_hash = hash_create_size(8, kernel_netlink_nlsock_key,
2014
1
               kernel_netlink_nlsock_hash_equal,
2015
1
               "Netlink Socket Hash");
2016
1
}
2017
2018
/*
2019
 * Global deinit for platform-/OS-specific things
2020
 */
2021
void kernel_router_terminate(void)
2022
0
{
2023
0
  pthread_mutex_destroy(&nlsock_mutex);
2024
2025
0
  hash_free(nlsock_hash);
2026
0
  nlsock_hash = NULL;
2027
0
}
2028
2029
#ifdef FUZZING
2030
void netlink_fuzz(const uint8_t *data, size_t size)
2031
0
{
2032
0
  struct nlmsghdr *h = (struct nlmsghdr *)data;
2033
2034
0
  if (!NLMSG_OK(h, size))
2035
0
    return;
2036
2037
0
  netlink_information_fetch(h, NS_DEFAULT, 0);
2038
0
}
2039
#endif /* FUZZING */
2040
2041
2042
2043
#endif /* HAVE_NETLINK */