Coverage Report

Created: 2025-06-22 06:29

/src/glib/glib/gvariant.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright © 2007, 2008 Ryan Lortie
3
 * Copyright © 2010 Codethink Limited
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2.1 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public
16
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
17
 *
18
 * Author: Ryan Lortie <desrt@desrt.ca>
19
 */
20
21
/* Prologue {{{1 */
22
23
#include "config.h"
24
25
#include <glib/gvariant-serialiser.h>
26
#include "gvariant-internal.h"
27
#include <glib/gvariant-core.h>
28
#include <glib/gtestutils.h>
29
#include <glib/gstrfuncs.h>
30
#include <glib/gslice.h>
31
#include <glib/ghash.h>
32
#include <glib/gmem.h>
33
34
#include <string.h>
35
36
37
/**
38
 * SECTION:gvariant
39
 * @title: GVariant
40
 * @short_description: strongly typed value datatype
41
 * @see_also: GVariantType
42
 *
43
 * #GVariant is a variant datatype; it can contain one or more values
44
 * along with information about the type of the values.
45
 *
46
 * A #GVariant may contain simple types, like an integer, or a boolean value;
47
 * or complex types, like an array of two strings, or a dictionary of key
48
 * value pairs. A #GVariant is also immutable: once it's been created neither
49
 * its type nor its content can be modified further.
50
 *
51
 * GVariant is useful whenever data needs to be serialized, for example when
52
 * sending method parameters in D-Bus, or when saving settings using GSettings.
53
 *
54
 * When creating a new #GVariant, you pass the data you want to store in it
55
 * along with a string representing the type of data you wish to pass to it.
56
 *
57
 * For instance, if you want to create a #GVariant holding an integer value you
58
 * can use:
59
 *
60
 * |[<!-- language="C" -->
61
 *   GVariant *v = g_variant_new ("u", 40);
62
 * ]|
63
 *
64
 * The string "u" in the first argument tells #GVariant that the data passed to
65
 * the constructor (40) is going to be an unsigned integer.
66
 *
67
 * More advanced examples of #GVariant in use can be found in documentation for
68
 * [GVariant format strings][gvariant-format-strings-pointers].
69
 *
70
 * The range of possible values is determined by the type.
71
 *
72
 * The type system used by #GVariant is #GVariantType. 
73
 *
74
 * #GVariant instances always have a type and a value (which are given
75
 * at construction time).  The type and value of a #GVariant instance
76
 * can never change other than by the #GVariant itself being
77
 * destroyed.  A #GVariant cannot contain a pointer.
78
 *
79
 * #GVariant is reference counted using g_variant_ref() and
80
 * g_variant_unref().  #GVariant also has floating reference counts --
81
 * see g_variant_ref_sink().
82
 *
83
 * #GVariant is completely threadsafe.  A #GVariant instance can be
84
 * concurrently accessed in any way from any number of threads without
85
 * problems.
86
 *
87
 * #GVariant is heavily optimised for dealing with data in serialised
88
 * form.  It works particularly well with data located in memory-mapped
89
 * files.  It can perform nearly all deserialisation operations in a
90
 * small constant time, usually touching only a single memory page.
91
 * Serialised #GVariant data can also be sent over the network.
92
 *
93
 * #GVariant is largely compatible with D-Bus.  Almost all types of
94
 * #GVariant instances can be sent over D-Bus.  See #GVariantType for
95
 * exceptions.  (However, #GVariant's serialisation format is not the same
96
 * as the serialisation format of a D-Bus message body: use #GDBusMessage,
97
 * in the gio library, for those.)
98
 *
99
 * For space-efficiency, the #GVariant serialisation format does not
100
 * automatically include the variant's length, type or endianness,
101
 * which must either be implied from context (such as knowledge that a
102
 * particular file format always contains a little-endian
103
 * %G_VARIANT_TYPE_VARIANT which occupies the whole length of the file)
104
 * or supplied out-of-band (for instance, a length, type and/or endianness
105
 * indicator could be placed at the beginning of a file, network message
106
 * or network stream).
107
 *
108
 * A #GVariant's size is limited mainly by any lower level operating
109
 * system constraints, such as the number of bits in #gsize.  For
110
 * example, it is reasonable to have a 2GB file mapped into memory
111
 * with #GMappedFile, and call g_variant_new_from_data() on it.
112
 *
113
 * For convenience to C programmers, #GVariant features powerful
114
 * varargs-based value construction and destruction.  This feature is
115
 * designed to be embedded in other libraries.
116
 *
117
 * There is a Python-inspired text language for describing #GVariant
118
 * values.  #GVariant includes a printer for this language and a parser
119
 * with type inferencing.
120
 *
121
 * ## Memory Use
122
 *
123
 * #GVariant tries to be quite efficient with respect to memory use.
124
 * This section gives a rough idea of how much memory is used by the
125
 * current implementation.  The information here is subject to change
126
 * in the future.
127
 *
128
 * The memory allocated by #GVariant can be grouped into 4 broad
129
 * purposes: memory for serialised data, memory for the type
130
 * information cache, buffer management memory and memory for the
131
 * #GVariant structure itself.
132
 *
133
 * ## Serialised Data Memory
134
 *
135
 * This is the memory that is used for storing GVariant data in
136
 * serialised form.  This is what would be sent over the network or
137
 * what would end up on disk, not counting any indicator of the
138
 * endianness, or of the length or type of the top-level variant.
139
 *
140
 * The amount of memory required to store a boolean is 1 byte. 16,
141
 * 32 and 64 bit integers and double precision floating point numbers
142
 * use their "natural" size.  Strings (including object path and
143
 * signature strings) are stored with a nul terminator, and as such
144
 * use the length of the string plus 1 byte.
145
 *
146
 * Maybe types use no space at all to represent the null value and
147
 * use the same amount of space (sometimes plus one byte) as the
148
 * equivalent non-maybe-typed value to represent the non-null case.
149
 *
150
 * Arrays use the amount of space required to store each of their
151
 * members, concatenated.  Additionally, if the items stored in an
152
 * array are not of a fixed-size (ie: strings, other arrays, etc)
153
 * then an additional framing offset is stored for each item.  The
154
 * size of this offset is either 1, 2 or 4 bytes depending on the
155
 * overall size of the container.  Additionally, extra padding bytes
156
 * are added as required for alignment of child values.
157
 *
158
 * Tuples (including dictionary entries) use the amount of space
159
 * required to store each of their members, concatenated, plus one
160
 * framing offset (as per arrays) for each non-fixed-sized item in
161
 * the tuple, except for the last one.  Additionally, extra padding
162
 * bytes are added as required for alignment of child values.
163
 *
164
 * Variants use the same amount of space as the item inside of the
165
 * variant, plus 1 byte, plus the length of the type string for the
166
 * item inside the variant.
167
 *
168
 * As an example, consider a dictionary mapping strings to variants.
169
 * In the case that the dictionary is empty, 0 bytes are required for
170
 * the serialisation.
171
 *
172
 * If we add an item "width" that maps to the int32 value of 500 then
173
 * we will use 4 byte to store the int32 (so 6 for the variant
174
 * containing it) and 6 bytes for the string.  The variant must be
175
 * aligned to 8 after the 6 bytes of the string, so that's 2 extra
176
 * bytes.  6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
177
 * for the dictionary entry.  An additional 1 byte is added to the
178
 * array as a framing offset making a total of 15 bytes.
179
 *
180
 * If we add another entry, "title" that maps to a nullable string
181
 * that happens to have a value of null, then we use 0 bytes for the
182
 * null value (and 3 bytes for the variant to contain it along with
183
 * its type string) plus 6 bytes for the string.  Again, we need 2
184
 * padding bytes.  That makes a total of 6 + 2 + 3 = 11 bytes.
185
 *
186
 * We now require extra padding between the two items in the array.
187
 * After the 14 bytes of the first item, that's 2 bytes required.
188
 * We now require 2 framing offsets for an extra two
189
 * bytes. 14 + 2 + 11 + 2 = 29 bytes to encode the entire two-item
190
 * dictionary.
191
 *
192
 * ## Type Information Cache
193
 *
194
 * For each GVariant type that currently exists in the program a type
195
 * information structure is kept in the type information cache.  The
196
 * type information structure is required for rapid deserialisation.
197
 *
198
 * Continuing with the above example, if a #GVariant exists with the
199
 * type "a{sv}" then a type information struct will exist for
200
 * "a{sv}", "{sv}", "s", and "v".  Multiple uses of the same type
201
 * will share the same type information.  Additionally, all
202
 * single-digit types are stored in read-only static memory and do
203
 * not contribute to the writable memory footprint of a program using
204
 * #GVariant.
205
 *
206
 * Aside from the type information structures stored in read-only
207
 * memory, there are two forms of type information.  One is used for
208
 * container types where there is a single element type: arrays and
209
 * maybe types.  The other is used for container types where there
210
 * are multiple element types: tuples and dictionary entries.
211
 *
212
 * Array type info structures are 6 * sizeof (void *), plus the
213
 * memory required to store the type string itself.  This means that
214
 * on 32-bit systems, the cache entry for "a{sv}" would require 30
215
 * bytes of memory (plus malloc overhead).
216
 *
217
 * Tuple type info structures are 6 * sizeof (void *), plus 4 *
218
 * sizeof (void *) for each item in the tuple, plus the memory
219
 * required to store the type string itself.  A 2-item tuple, for
220
 * example, would have a type information structure that consumed
221
 * writable memory in the size of 14 * sizeof (void *) (plus type
222
 * string)  This means that on 32-bit systems, the cache entry for
223
 * "{sv}" would require 61 bytes of memory (plus malloc overhead).
224
 *
225
 * This means that in total, for our "a{sv}" example, 91 bytes of
226
 * type information would be allocated.
227
 * 
228
 * The type information cache, additionally, uses a #GHashTable to
229
 * store and look up the cached items and stores a pointer to this
230
 * hash table in static storage.  The hash table is freed when there
231
 * are zero items in the type cache.
232
 *
233
 * Although these sizes may seem large it is important to remember
234
 * that a program will probably only have a very small number of
235
 * different types of values in it and that only one type information
236
 * structure is required for many different values of the same type.
237
 *
238
 * ## Buffer Management Memory
239
 *
240
 * #GVariant uses an internal buffer management structure to deal
241
 * with the various different possible sources of serialised data
242
 * that it uses.  The buffer is responsible for ensuring that the
243
 * correct call is made when the data is no longer in use by
244
 * #GVariant.  This may involve a g_free() or a g_slice_free() or
245
 * even g_mapped_file_unref().
246
 *
247
 * One buffer management structure is used for each chunk of
248
 * serialised data.  The size of the buffer management structure
249
 * is 4 * (void *).  On 32-bit systems, that's 16 bytes.
250
 *
251
 * ## GVariant structure
252
 *
253
 * The size of a #GVariant structure is 6 * (void *).  On 32-bit
254
 * systems, that's 24 bytes.
255
 *
256
 * #GVariant structures only exist if they are explicitly created
257
 * with API calls.  For example, if a #GVariant is constructed out of
258
 * serialised data for the example given above (with the dictionary)
259
 * then although there are 9 individual values that comprise the
260
 * entire dictionary (two keys, two values, two variants containing
261
 * the values, two dictionary entries, plus the dictionary itself),
262
 * only 1 #GVariant instance exists -- the one referring to the
263
 * dictionary.
264
 *
265
 * If calls are made to start accessing the other values then
266
 * #GVariant instances will exist for those values only for as long
267
 * as they are in use (ie: until you call g_variant_unref()).  The
268
 * type information is shared.  The serialised data and the buffer
269
 * management structure for that serialised data is shared by the
270
 * child.
271
 *
272
 * ## Summary
273
 *
274
 * To put the entire example together, for our dictionary mapping
275
 * strings to variants (with two entries, as given above), we are
276
 * using 91 bytes of memory for type information, 29 bytes of memory
277
 * for the serialised data, 16 bytes for buffer management and 24
278
 * bytes for the #GVariant instance, or a total of 160 bytes, plus
279
 * malloc overhead.  If we were to use g_variant_get_child_value() to
280
 * access the two dictionary entries, we would use an additional 48
281
 * bytes.  If we were to have other dictionaries of the same type, we
282
 * would use more memory for the serialised data and buffer
283
 * management for those dictionaries, but the type information would
284
 * be shared.
285
 */
286
287
/* definition of GVariant structure is in gvariant-core.c */
288
289
/* this is a g_return_val_if_fail() for making
290
 * sure a (GVariant *) has the required type.
291
 */
292
#define TYPE_CHECK(value, TYPE, val) \
293
0
  if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) {           \
294
0
    g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC,            \
295
0
                              "g_variant_is_of_type (" #value     \
296
0
                              ", " #TYPE ")");                    \
297
0
    return val;                                                   \
298
0
  }
299
300
/* Numeric Type Constructor/Getters {{{1 */
301
/* < private >
302
 * g_variant_new_from_trusted:
303
 * @type: the #GVariantType
304
 * @data: the data to use
305
 * @size: the size of @data
306
 *
307
 * Constructs a new trusted #GVariant instance from the provided data.
308
 * This is used to implement g_variant_new_* for all the basic types.
309
 *
310
 * Note: @data must be backed by memory that is aligned appropriately for the
311
 * @type being loaded. Otherwise this function will internally create a copy of
312
 * the memory (since GLib 2.60) or (in older versions) fail and exit the
313
 * process.
314
 *
315
 * Returns: a new floating #GVariant
316
 */
317
static GVariant *
318
g_variant_new_from_trusted (const GVariantType *type,
319
                            gconstpointer       data,
320
                            gsize               size)
321
0
{
322
0
  GVariant *value;
323
0
  GBytes *bytes;
324
325
0
  bytes = g_bytes_new (data, size);
326
0
  value = g_variant_new_from_bytes (type, bytes, TRUE);
327
0
  g_bytes_unref (bytes);
328
329
0
  return value;
330
0
}
331
332
/**
333
 * g_variant_new_boolean:
334
 * @value: a #gboolean value
335
 *
336
 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
337
 *
338
 * Returns: (transfer none): a floating reference to a new boolean #GVariant instance
339
 *
340
 * Since: 2.24
341
 **/
342
GVariant *
343
g_variant_new_boolean (gboolean value)
344
0
{
345
0
  guchar v = value;
346
347
0
  return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
348
0
}
349
350
/**
351
 * g_variant_get_boolean:
352
 * @value: a boolean #GVariant instance
353
 *
354
 * Returns the boolean value of @value.
355
 *
356
 * It is an error to call this function with a @value of any type
357
 * other than %G_VARIANT_TYPE_BOOLEAN.
358
 *
359
 * Returns: %TRUE or %FALSE
360
 *
361
 * Since: 2.24
362
 **/
363
gboolean
364
g_variant_get_boolean (GVariant *value)
365
0
{
366
0
  const guchar *data;
367
368
0
  TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
369
370
0
  data = g_variant_get_data (value);
371
372
0
  return data != NULL ? *data != 0 : FALSE;
373
0
}
374
375
/* the constructors and accessors for byte, int{16,32,64}, handles and
376
 * doubles all look pretty much exactly the same, so we reduce
377
 * copy/pasting here.
378
 */
379
#define NUMERIC_TYPE(TYPE, type, ctype) \
380
0
  GVariant *g_variant_new_##type (ctype value) {                \
381
0
    return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE,   \
382
0
                                       &value, sizeof value);   \
383
0
  }                                                             \
Unexecuted instantiation: g_variant_new_byte
Unexecuted instantiation: g_variant_new_int16
Unexecuted instantiation: g_variant_new_uint16
Unexecuted instantiation: g_variant_new_int32
Unexecuted instantiation: g_variant_new_uint32
Unexecuted instantiation: g_variant_new_int64
Unexecuted instantiation: g_variant_new_uint64
Unexecuted instantiation: g_variant_new_handle
Unexecuted instantiation: g_variant_new_double
384
0
  ctype g_variant_get_##type (GVariant *value) {                \
385
0
    const ctype *data;                                          \
386
0
    TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0);             \
387
0
    data = g_variant_get_data (value);                          \
388
0
    return data != NULL ? *data : 0;                            \
389
0
  }
Unexecuted instantiation: g_variant_get_byte
Unexecuted instantiation: g_variant_get_int16
Unexecuted instantiation: g_variant_get_uint16
Unexecuted instantiation: g_variant_get_int32
Unexecuted instantiation: g_variant_get_uint32
Unexecuted instantiation: g_variant_get_int64
Unexecuted instantiation: g_variant_get_uint64
Unexecuted instantiation: g_variant_get_handle
Unexecuted instantiation: g_variant_get_double
390
391
392
/**
393
 * g_variant_new_byte:
394
 * @value: a #guint8 value
395
 *
396
 * Creates a new byte #GVariant instance.
397
 *
398
 * Returns: (transfer none): a floating reference to a new byte #GVariant instance
399
 *
400
 * Since: 2.24
401
 **/
402
/**
403
 * g_variant_get_byte:
404
 * @value: a byte #GVariant instance
405
 *
406
 * Returns the byte value of @value.
407
 *
408
 * It is an error to call this function with a @value of any type
409
 * other than %G_VARIANT_TYPE_BYTE.
410
 *
411
 * Returns: a #guint8
412
 *
413
 * Since: 2.24
414
 **/
415
NUMERIC_TYPE (BYTE, byte, guint8)
416
417
/**
418
 * g_variant_new_int16:
419
 * @value: a #gint16 value
420
 *
421
 * Creates a new int16 #GVariant instance.
422
 *
423
 * Returns: (transfer none): a floating reference to a new int16 #GVariant instance
424
 *
425
 * Since: 2.24
426
 **/
427
/**
428
 * g_variant_get_int16:
429
 * @value: an int16 #GVariant instance
430
 *
431
 * Returns the 16-bit signed integer value of @value.
432
 *
433
 * It is an error to call this function with a @value of any type
434
 * other than %G_VARIANT_TYPE_INT16.
435
 *
436
 * Returns: a #gint16
437
 *
438
 * Since: 2.24
439
 **/
440
NUMERIC_TYPE (INT16, int16, gint16)
441
442
/**
443
 * g_variant_new_uint16:
444
 * @value: a #guint16 value
445
 *
446
 * Creates a new uint16 #GVariant instance.
447
 *
448
 * Returns: (transfer none): a floating reference to a new uint16 #GVariant instance
449
 *
450
 * Since: 2.24
451
 **/
452
/**
453
 * g_variant_get_uint16:
454
 * @value: a uint16 #GVariant instance
455
 *
456
 * Returns the 16-bit unsigned integer value of @value.
457
 *
458
 * It is an error to call this function with a @value of any type
459
 * other than %G_VARIANT_TYPE_UINT16.
460
 *
461
 * Returns: a #guint16
462
 *
463
 * Since: 2.24
464
 **/
465
NUMERIC_TYPE (UINT16, uint16, guint16)
466
467
/**
468
 * g_variant_new_int32:
469
 * @value: a #gint32 value
470
 *
471
 * Creates a new int32 #GVariant instance.
472
 *
473
 * Returns: (transfer none): a floating reference to a new int32 #GVariant instance
474
 *
475
 * Since: 2.24
476
 **/
477
/**
478
 * g_variant_get_int32:
479
 * @value: an int32 #GVariant instance
480
 *
481
 * Returns the 32-bit signed integer value of @value.
482
 *
483
 * It is an error to call this function with a @value of any type
484
 * other than %G_VARIANT_TYPE_INT32.
485
 *
486
 * Returns: a #gint32
487
 *
488
 * Since: 2.24
489
 **/
490
NUMERIC_TYPE (INT32, int32, gint32)
491
492
/**
493
 * g_variant_new_uint32:
494
 * @value: a #guint32 value
495
 *
496
 * Creates a new uint32 #GVariant instance.
497
 *
498
 * Returns: (transfer none): a floating reference to a new uint32 #GVariant instance
499
 *
500
 * Since: 2.24
501
 **/
502
/**
503
 * g_variant_get_uint32:
504
 * @value: a uint32 #GVariant instance
505
 *
506
 * Returns the 32-bit unsigned integer value of @value.
507
 *
508
 * It is an error to call this function with a @value of any type
509
 * other than %G_VARIANT_TYPE_UINT32.
510
 *
511
 * Returns: a #guint32
512
 *
513
 * Since: 2.24
514
 **/
515
NUMERIC_TYPE (UINT32, uint32, guint32)
516
517
/**
518
 * g_variant_new_int64:
519
 * @value: a #gint64 value
520
 *
521
 * Creates a new int64 #GVariant instance.
522
 *
523
 * Returns: (transfer none): a floating reference to a new int64 #GVariant instance
524
 *
525
 * Since: 2.24
526
 **/
527
/**
528
 * g_variant_get_int64:
529
 * @value: an int64 #GVariant instance
530
 *
531
 * Returns the 64-bit signed integer value of @value.
532
 *
533
 * It is an error to call this function with a @value of any type
534
 * other than %G_VARIANT_TYPE_INT64.
535
 *
536
 * Returns: a #gint64
537
 *
538
 * Since: 2.24
539
 **/
540
NUMERIC_TYPE (INT64, int64, gint64)
541
542
/**
543
 * g_variant_new_uint64:
544
 * @value: a #guint64 value
545
 *
546
 * Creates a new uint64 #GVariant instance.
547
 *
548
 * Returns: (transfer none): a floating reference to a new uint64 #GVariant instance
549
 *
550
 * Since: 2.24
551
 **/
552
/**
553
 * g_variant_get_uint64:
554
 * @value: a uint64 #GVariant instance
555
 *
556
 * Returns the 64-bit unsigned integer value of @value.
557
 *
558
 * It is an error to call this function with a @value of any type
559
 * other than %G_VARIANT_TYPE_UINT64.
560
 *
561
 * Returns: a #guint64
562
 *
563
 * Since: 2.24
564
 **/
565
NUMERIC_TYPE (UINT64, uint64, guint64)
566
567
/**
568
 * g_variant_new_handle:
569
 * @value: a #gint32 value
570
 *
571
 * Creates a new handle #GVariant instance.
572
 *
573
 * By convention, handles are indexes into an array of file descriptors
574
 * that are sent alongside a D-Bus message.  If you're not interacting
575
 * with D-Bus, you probably don't need them.
576
 *
577
 * Returns: (transfer none): a floating reference to a new handle #GVariant instance
578
 *
579
 * Since: 2.24
580
 **/
581
/**
582
 * g_variant_get_handle:
583
 * @value: a handle #GVariant instance
584
 *
585
 * Returns the 32-bit signed integer value of @value.
586
 *
587
 * It is an error to call this function with a @value of any type other
588
 * than %G_VARIANT_TYPE_HANDLE.
589
 *
590
 * By convention, handles are indexes into an array of file descriptors
591
 * that are sent alongside a D-Bus message.  If you're not interacting
592
 * with D-Bus, you probably don't need them.
593
 *
594
 * Returns: a #gint32
595
 *
596
 * Since: 2.24
597
 **/
598
NUMERIC_TYPE (HANDLE, handle, gint32)
599
600
/**
601
 * g_variant_new_double:
602
 * @value: a #gdouble floating point value
603
 *
604
 * Creates a new double #GVariant instance.
605
 *
606
 * Returns: (transfer none): a floating reference to a new double #GVariant instance
607
 *
608
 * Since: 2.24
609
 **/
610
/**
611
 * g_variant_get_double:
612
 * @value: a double #GVariant instance
613
 *
614
 * Returns the double precision floating point value of @value.
615
 *
616
 * It is an error to call this function with a @value of any type
617
 * other than %G_VARIANT_TYPE_DOUBLE.
618
 *
619
 * Returns: a #gdouble
620
 *
621
 * Since: 2.24
622
 **/
623
NUMERIC_TYPE (DOUBLE, double, gdouble)
624
625
/* Container type Constructor / Deconstructors {{{1 */
626
/**
627
 * g_variant_new_maybe:
628
 * @child_type: (nullable): the #GVariantType of the child, or %NULL
629
 * @child: (nullable): the child value, or %NULL
630
 *
631
 * Depending on if @child is %NULL, either wraps @child inside of a
632
 * maybe container or creates a Nothing instance for the given @type.
633
 *
634
 * At least one of @child_type and @child must be non-%NULL.
635
 * If @child_type is non-%NULL then it must be a definite type.
636
 * If they are both non-%NULL then @child_type must be the type
637
 * of @child.
638
 *
639
 * If @child is a floating reference (see g_variant_ref_sink()), the new
640
 * instance takes ownership of @child.
641
 *
642
 * Returns: (transfer none): a floating reference to a new #GVariant maybe instance
643
 *
644
 * Since: 2.24
645
 **/
646
GVariant *
647
g_variant_new_maybe (const GVariantType *child_type,
648
                     GVariant           *child)
649
0
{
650
0
  GVariantType *maybe_type;
651
0
  GVariant *value;
652
653
0
  g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
654
0
                        (child_type), 0);
655
0
  g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
656
0
  g_return_val_if_fail (child_type == NULL || child == NULL ||
657
0
                        g_variant_is_of_type (child, child_type),
658
0
                        NULL);
659
660
0
  if (child_type == NULL)
661
0
    child_type = g_variant_get_type (child);
662
663
0
  maybe_type = g_variant_type_new_maybe (child_type);
664
665
0
  if (child != NULL)
666
0
    {
667
0
      GVariant **children;
668
0
      gboolean trusted;
669
670
0
      children = g_new (GVariant *, 1);
671
0
      children[0] = g_variant_ref_sink (child);
672
0
      trusted = g_variant_is_trusted (children[0]);
673
674
0
      value = g_variant_new_from_children (maybe_type, children, 1, trusted);
675
0
    }
676
0
  else
677
0
    value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
678
679
0
  g_variant_type_free (maybe_type);
680
681
0
  return value;
682
0
}
683
684
/**
685
 * g_variant_get_maybe:
686
 * @value: a maybe-typed value
687
 *
688
 * Given a maybe-typed #GVariant instance, extract its value.  If the
689
 * value is Nothing, then this function returns %NULL.
690
 *
691
 * Returns: (nullable) (transfer full): the contents of @value, or %NULL
692
 *
693
 * Since: 2.24
694
 **/
695
GVariant *
696
g_variant_get_maybe (GVariant *value)
697
0
{
698
0
  TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
699
700
0
  if (g_variant_n_children (value))
701
0
    return g_variant_get_child_value (value, 0);
702
703
0
  return NULL;
704
0
}
705
706
/**
707
 * g_variant_new_variant: (constructor)
708
 * @value: a #GVariant instance
709
 *
710
 * Boxes @value.  The result is a #GVariant instance representing a
711
 * variant containing the original value.
712
 *
713
 * If @child is a floating reference (see g_variant_ref_sink()), the new
714
 * instance takes ownership of @child.
715
 *
716
 * Returns: (transfer none): a floating reference to a new variant #GVariant instance
717
 *
718
 * Since: 2.24
719
 **/
720
GVariant *
721
g_variant_new_variant (GVariant *value)
722
0
{
723
0
  g_return_val_if_fail (value != NULL, NULL);
724
725
0
  g_variant_ref_sink (value);
726
727
0
  return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
728
0
                                      g_memdup2 (&value, sizeof value),
729
0
                                      1, g_variant_is_trusted (value));
730
0
}
731
732
/**
733
 * g_variant_get_variant:
734
 * @value: a variant #GVariant instance
735
 *
736
 * Unboxes @value.  The result is the #GVariant instance that was
737
 * contained in @value.
738
 *
739
 * Returns: (transfer full): the item contained in the variant
740
 *
741
 * Since: 2.24
742
 **/
743
GVariant *
744
g_variant_get_variant (GVariant *value)
745
0
{
746
0
  TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
747
748
0
  return g_variant_get_child_value (value, 0);
749
0
}
750
751
/**
752
 * g_variant_new_array:
753
 * @child_type: (nullable): the element type of the new array
754
 * @children: (nullable) (array length=n_children): an array of
755
 *            #GVariant pointers, the children
756
 * @n_children: the length of @children
757
 *
758
 * Creates a new #GVariant array from @children.
759
 *
760
 * @child_type must be non-%NULL if @n_children is zero.  Otherwise, the
761
 * child type is determined by inspecting the first element of the
762
 * @children array.  If @child_type is non-%NULL then it must be a
763
 * definite type.
764
 *
765
 * The items of the array are taken from the @children array.  No entry
766
 * in the @children array may be %NULL.
767
 *
768
 * All items in the array must have the same type, which must be the
769
 * same as @child_type, if given.
770
 *
771
 * If the @children are floating references (see g_variant_ref_sink()), the
772
 * new instance takes ownership of them as if via g_variant_ref_sink().
773
 *
774
 * Returns: (transfer none): a floating reference to a new #GVariant array
775
 *
776
 * Since: 2.24
777
 **/
778
GVariant *
779
g_variant_new_array (const GVariantType *child_type,
780
                     GVariant * const   *children,
781
                     gsize               n_children)
782
0
{
783
0
  GVariantType *array_type;
784
0
  GVariant **my_children;
785
0
  gboolean trusted;
786
0
  GVariant *value;
787
0
  gsize i;
788
789
0
  g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
790
0
  g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
791
0
  g_return_val_if_fail (child_type == NULL ||
792
0
                        g_variant_type_is_definite (child_type), NULL);
793
794
0
  my_children = g_new (GVariant *, n_children);
795
0
  trusted = TRUE;
796
797
0
  if (child_type == NULL)
798
0
    child_type = g_variant_get_type (children[0]);
799
0
  array_type = g_variant_type_new_array (child_type);
800
801
0
  for (i = 0; i < n_children; i++)
802
0
    {
803
0
      TYPE_CHECK (children[i], child_type, NULL);
804
0
      my_children[i] = g_variant_ref_sink (children[i]);
805
0
      trusted &= g_variant_is_trusted (children[i]);
806
0
    }
807
808
0
  value = g_variant_new_from_children (array_type, my_children,
809
0
                                       n_children, trusted);
810
0
  g_variant_type_free (array_type);
811
812
0
  return value;
813
0
}
814
815
/*< private >
816
 * g_variant_make_tuple_type:
817
 * @children: (array length=n_children): an array of GVariant *
818
 * @n_children: the length of @children
819
 *
820
 * Return the type of a tuple containing @children as its items.
821
 **/
822
static GVariantType *
823
g_variant_make_tuple_type (GVariant * const *children,
824
                           gsize             n_children)
825
0
{
826
0
  const GVariantType **types;
827
0
  GVariantType *type;
828
0
  gsize i;
829
830
0
  types = g_new (const GVariantType *, n_children);
831
832
0
  for (i = 0; i < n_children; i++)
833
0
    types[i] = g_variant_get_type (children[i]);
834
835
0
  type = g_variant_type_new_tuple (types, n_children);
836
0
  g_free (types);
837
838
0
  return type;
839
0
}
840
841
/**
842
 * g_variant_new_tuple:
843
 * @children: (array length=n_children): the items to make the tuple out of
844
 * @n_children: the length of @children
845
 *
846
 * Creates a new tuple #GVariant out of the items in @children.  The
847
 * type is determined from the types of @children.  No entry in the
848
 * @children array may be %NULL.
849
 *
850
 * If @n_children is 0 then the unit tuple is constructed.
851
 *
852
 * If the @children are floating references (see g_variant_ref_sink()), the
853
 * new instance takes ownership of them as if via g_variant_ref_sink().
854
 *
855
 * Returns: (transfer none): a floating reference to a new #GVariant tuple
856
 *
857
 * Since: 2.24
858
 **/
859
GVariant *
860
g_variant_new_tuple (GVariant * const *children,
861
                     gsize             n_children)
862
0
{
863
0
  GVariantType *tuple_type;
864
0
  GVariant **my_children;
865
0
  gboolean trusted;
866
0
  GVariant *value;
867
0
  gsize i;
868
869
0
  g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
870
871
0
  my_children = g_new (GVariant *, n_children);
872
0
  trusted = TRUE;
873
874
0
  for (i = 0; i < n_children; i++)
875
0
    {
876
0
      my_children[i] = g_variant_ref_sink (children[i]);
877
0
      trusted &= g_variant_is_trusted (children[i]);
878
0
    }
879
880
0
  tuple_type = g_variant_make_tuple_type (children, n_children);
881
0
  value = g_variant_new_from_children (tuple_type, my_children,
882
0
                                       n_children, trusted);
883
0
  g_variant_type_free (tuple_type);
884
885
0
  return value;
886
0
}
887
888
/*< private >
889
 * g_variant_make_dict_entry_type:
890
 * @key: a #GVariant, the key
891
 * @val: a #GVariant, the value
892
 *
893
 * Return the type of a dictionary entry containing @key and @val as its
894
 * children.
895
 **/
896
static GVariantType *
897
g_variant_make_dict_entry_type (GVariant *key,
898
                                GVariant *val)
899
0
{
900
0
  return g_variant_type_new_dict_entry (g_variant_get_type (key),
901
0
                                        g_variant_get_type (val));
902
0
}
903
904
/**
905
 * g_variant_new_dict_entry: (constructor)
906
 * @key: a basic #GVariant, the key
907
 * @value: a #GVariant, the value
908
 *
909
 * Creates a new dictionary entry #GVariant. @key and @value must be
910
 * non-%NULL. @key must be a value of a basic type (ie: not a container).
911
 *
912
 * If the @key or @value are floating references (see g_variant_ref_sink()),
913
 * the new instance takes ownership of them as if via g_variant_ref_sink().
914
 *
915
 * Returns: (transfer none): a floating reference to a new dictionary entry #GVariant
916
 *
917
 * Since: 2.24
918
 **/
919
GVariant *
920
g_variant_new_dict_entry (GVariant *key,
921
                          GVariant *value)
922
0
{
923
0
  GVariantType *dict_type;
924
0
  GVariant **children;
925
0
  gboolean trusted;
926
927
0
  g_return_val_if_fail (key != NULL && value != NULL, NULL);
928
0
  g_return_val_if_fail (!g_variant_is_container (key), NULL);
929
930
0
  children = g_new (GVariant *, 2);
931
0
  children[0] = g_variant_ref_sink (key);
932
0
  children[1] = g_variant_ref_sink (value);
933
0
  trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
934
935
0
  dict_type = g_variant_make_dict_entry_type (key, value);
936
0
  value = g_variant_new_from_children (dict_type, children, 2, trusted);
937
0
  g_variant_type_free (dict_type);
938
939
0
  return value;
940
0
}
941
942
/**
943
 * g_variant_lookup: (skip)
944
 * @dictionary: a dictionary #GVariant
945
 * @key: the key to look up in the dictionary
946
 * @format_string: a GVariant format string
947
 * @...: the arguments to unpack the value into
948
 *
949
 * Looks up a value in a dictionary #GVariant.
950
 *
951
 * This function is a wrapper around g_variant_lookup_value() and
952
 * g_variant_get().  In the case that %NULL would have been returned,
953
 * this function returns %FALSE.  Otherwise, it unpacks the returned
954
 * value and returns %TRUE.
955
 *
956
 * @format_string determines the C types that are used for unpacking
957
 * the values and also determines if the values are copied or borrowed,
958
 * see the section on
959
 * [GVariant format strings][gvariant-format-strings-pointers].
960
 *
961
 * This function is currently implemented with a linear scan.  If you
962
 * plan to do many lookups then #GVariantDict may be more efficient.
963
 *
964
 * Returns: %TRUE if a value was unpacked
965
 *
966
 * Since: 2.28
967
 */
968
gboolean
969
g_variant_lookup (GVariant    *dictionary,
970
                  const gchar *key,
971
                  const gchar *format_string,
972
                  ...)
973
0
{
974
0
  GVariantType *type;
975
0
  GVariant *value;
976
977
  /* flatten */
978
0
  g_variant_get_data (dictionary);
979
980
0
  type = g_variant_format_string_scan_type (format_string, NULL, NULL);
981
0
  value = g_variant_lookup_value (dictionary, key, type);
982
0
  g_variant_type_free (type);
983
984
0
  if (value)
985
0
    {
986
0
      va_list ap;
987
988
0
      va_start (ap, format_string);
989
0
      g_variant_get_va (value, format_string, NULL, &ap);
990
0
      g_variant_unref (value);
991
0
      va_end (ap);
992
993
0
      return TRUE;
994
0
    }
995
996
0
  else
997
0
    return FALSE;
998
0
}
999
1000
/**
1001
 * g_variant_lookup_value:
1002
 * @dictionary: a dictionary #GVariant
1003
 * @key: the key to look up in the dictionary
1004
 * @expected_type: (nullable): a #GVariantType, or %NULL
1005
 *
1006
 * Looks up a value in a dictionary #GVariant.
1007
 *
1008
 * This function works with dictionaries of the type a{s*} (and equally
1009
 * well with type a{o*}, but we only further discuss the string case
1010
 * for sake of clarity).
1011
 *
1012
 * In the event that @dictionary has the type a{sv}, the @expected_type
1013
 * string specifies what type of value is expected to be inside of the
1014
 * variant. If the value inside the variant has a different type then
1015
 * %NULL is returned. In the event that @dictionary has a value type other
1016
 * than v then @expected_type must directly match the value type and it is
1017
 * used to unpack the value directly or an error occurs.
1018
 *
1019
 * In either case, if @key is not found in @dictionary, %NULL is returned.
1020
 *
1021
 * If the key is found and the value has the correct type, it is
1022
 * returned.  If @expected_type was specified then any non-%NULL return
1023
 * value will have this type.
1024
 *
1025
 * This function is currently implemented with a linear scan.  If you
1026
 * plan to do many lookups then #GVariantDict may be more efficient.
1027
 *
1028
 * Returns: (transfer full): the value of the dictionary key, or %NULL
1029
 *
1030
 * Since: 2.28
1031
 */
1032
GVariant *
1033
g_variant_lookup_value (GVariant           *dictionary,
1034
                        const gchar        *key,
1035
                        const GVariantType *expected_type)
1036
0
{
1037
0
  GVariantIter iter;
1038
0
  GVariant *entry;
1039
0
  GVariant *value;
1040
1041
0
  g_return_val_if_fail (g_variant_is_of_type (dictionary,
1042
0
                                              G_VARIANT_TYPE ("a{s*}")) ||
1043
0
                        g_variant_is_of_type (dictionary,
1044
0
                                              G_VARIANT_TYPE ("a{o*}")),
1045
0
                        NULL);
1046
1047
0
  g_variant_iter_init (&iter, dictionary);
1048
1049
0
  while ((entry = g_variant_iter_next_value (&iter)))
1050
0
    {
1051
0
      GVariant *entry_key;
1052
0
      gboolean matches;
1053
1054
0
      entry_key = g_variant_get_child_value (entry, 0);
1055
0
      matches = strcmp (g_variant_get_string (entry_key, NULL), key) == 0;
1056
0
      g_variant_unref (entry_key);
1057
1058
0
      if (matches)
1059
0
        break;
1060
1061
0
      g_variant_unref (entry);
1062
0
    }
1063
1064
0
  if (entry == NULL)
1065
0
    return NULL;
1066
1067
0
  value = g_variant_get_child_value (entry, 1);
1068
0
  g_variant_unref (entry);
1069
1070
0
  if (g_variant_is_of_type (value, G_VARIANT_TYPE_VARIANT))
1071
0
    {
1072
0
      GVariant *tmp;
1073
1074
0
      tmp = g_variant_get_variant (value);
1075
0
      g_variant_unref (value);
1076
1077
0
      if (expected_type && !g_variant_is_of_type (tmp, expected_type))
1078
0
        {
1079
0
          g_variant_unref (tmp);
1080
0
          tmp = NULL;
1081
0
        }
1082
1083
0
      value = tmp;
1084
0
    }
1085
1086
0
  g_return_val_if_fail (expected_type == NULL || value == NULL ||
1087
0
                        g_variant_is_of_type (value, expected_type), NULL);
1088
1089
0
  return value;
1090
0
}
1091
1092
/**
1093
 * g_variant_get_fixed_array:
1094
 * @value: a #GVariant array with fixed-sized elements
1095
 * @n_elements: (out): a pointer to the location to store the number of items
1096
 * @element_size: the size of each element
1097
 *
1098
 * Provides access to the serialised data for an array of fixed-sized
1099
 * items.
1100
 *
1101
 * @value must be an array with fixed-sized elements.  Numeric types are
1102
 * fixed-size, as are tuples containing only other fixed-sized types.
1103
 *
1104
 * @element_size must be the size of a single element in the array,
1105
 * as given by the section on
1106
 * [serialized data memory][gvariant-serialised-data-memory].
1107
 *
1108
 * In particular, arrays of these fixed-sized types can be interpreted
1109
 * as an array of the given C type, with @element_size set to the size
1110
 * the appropriate type:
1111
 * - %G_VARIANT_TYPE_INT16 (etc.): #gint16 (etc.)
1112
 * - %G_VARIANT_TYPE_BOOLEAN: #guchar (not #gboolean!)
1113
 * - %G_VARIANT_TYPE_BYTE: #guint8
1114
 * - %G_VARIANT_TYPE_HANDLE: #guint32
1115
 * - %G_VARIANT_TYPE_DOUBLE: #gdouble
1116
 *
1117
 * For example, if calling this function for an array of 32-bit integers,
1118
 * you might say `sizeof(gint32)`. This value isn't used except for the purpose
1119
 * of a double-check that the form of the serialised data matches the caller's
1120
 * expectation.
1121
 *
1122
 * @n_elements, which must be non-%NULL, is set equal to the number of
1123
 * items in the array.
1124
 *
1125
 * Returns: (array length=n_elements) (transfer none): a pointer to
1126
 *     the fixed array
1127
 *
1128
 * Since: 2.24
1129
 **/
1130
gconstpointer
1131
g_variant_get_fixed_array (GVariant *value,
1132
                           gsize    *n_elements,
1133
                           gsize     element_size)
1134
0
{
1135
0
  GVariantTypeInfo *array_info;
1136
0
  gsize array_element_size;
1137
0
  gconstpointer data;
1138
0
  gsize size;
1139
1140
0
  TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
1141
1142
0
  g_return_val_if_fail (n_elements != NULL, NULL);
1143
0
  g_return_val_if_fail (element_size > 0, NULL);
1144
1145
0
  array_info = g_variant_get_type_info (value);
1146
0
  g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1147
1148
0
  g_return_val_if_fail (array_element_size, NULL);
1149
1150
0
  if G_UNLIKELY (array_element_size != element_size)
1151
0
    {
1152
0
      if (array_element_size)
1153
0
        g_critical ("g_variant_get_fixed_array: assertion "
1154
0
                    "'g_variant_array_has_fixed_size (value, element_size)' "
1155
0
                    "failed: array size %"G_GSIZE_FORMAT" does not match "
1156
0
                    "given element_size %"G_GSIZE_FORMAT".",
1157
0
                    array_element_size, element_size);
1158
0
      else
1159
0
        g_critical ("g_variant_get_fixed_array: assertion "
1160
0
                    "'g_variant_array_has_fixed_size (value, element_size)' "
1161
0
                    "failed: array does not have fixed size.");
1162
0
    }
1163
1164
0
  data = g_variant_get_data (value);
1165
0
  size = g_variant_get_size (value);
1166
1167
0
  if (size % element_size)
1168
0
    *n_elements = 0;
1169
0
  else
1170
0
    *n_elements = size / element_size;
1171
1172
0
  if (*n_elements)
1173
0
    return data;
1174
1175
0
  return NULL;
1176
0
}
1177
1178
/**
1179
 * g_variant_new_fixed_array:
1180
 * @element_type: the #GVariantType of each element
1181
 * @elements: a pointer to the fixed array of contiguous elements
1182
 * @n_elements: the number of elements
1183
 * @element_size: the size of each element
1184
 *
1185
 * Constructs a new array #GVariant instance, where the elements are
1186
 * of @element_type type.
1187
 *
1188
 * @elements must be an array with fixed-sized elements.  Numeric types are
1189
 * fixed-size as are tuples containing only other fixed-sized types.
1190
 *
1191
 * @element_size must be the size of a single element in the array.
1192
 * For example, if calling this function for an array of 32-bit integers,
1193
 * you might say sizeof(gint32). This value isn't used except for the purpose
1194
 * of a double-check that the form of the serialised data matches the caller's
1195
 * expectation.
1196
 *
1197
 * @n_elements must be the length of the @elements array.
1198
 *
1199
 * Returns: (transfer none): a floating reference to a new array #GVariant instance
1200
 *
1201
 * Since: 2.32
1202
 **/
1203
GVariant *
1204
g_variant_new_fixed_array (const GVariantType  *element_type,
1205
                           gconstpointer        elements,
1206
                           gsize                n_elements,
1207
                           gsize                element_size)
1208
0
{
1209
0
  GVariantType *array_type;
1210
0
  gsize array_element_size;
1211
0
  GVariantTypeInfo *array_info;
1212
0
  GVariant *value;
1213
0
  gpointer data;
1214
1215
0
  g_return_val_if_fail (g_variant_type_is_definite (element_type), NULL);
1216
0
  g_return_val_if_fail (element_size > 0, NULL);
1217
1218
0
  array_type = g_variant_type_new_array (element_type);
1219
0
  array_info = g_variant_type_info_get (array_type);
1220
0
  g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1221
0
  if G_UNLIKELY (array_element_size != element_size)
1222
0
    {
1223
0
      if (array_element_size)
1224
0
        g_critical ("g_variant_new_fixed_array: array size %" G_GSIZE_FORMAT
1225
0
                    " does not match given element_size %" G_GSIZE_FORMAT ".",
1226
0
                    array_element_size, element_size);
1227
0
      else
1228
0
        g_critical ("g_variant_get_fixed_array: array does not have fixed size.");
1229
0
      return NULL;
1230
0
    }
1231
1232
0
  data = g_memdup2 (elements, n_elements * element_size);
1233
0
  value = g_variant_new_from_data (array_type, data,
1234
0
                                   n_elements * element_size,
1235
0
                                   FALSE, g_free, data);
1236
1237
0
  g_variant_type_free (array_type);
1238
0
  g_variant_type_info_unref (array_info);
1239
1240
0
  return value;
1241
0
}
1242
1243
/* String type constructor/getters/validation {{{1 */
1244
/**
1245
 * g_variant_new_string:
1246
 * @string: a normal UTF-8 nul-terminated string
1247
 *
1248
 * Creates a string #GVariant with the contents of @string.
1249
 *
1250
 * @string must be valid UTF-8, and must not be %NULL. To encode
1251
 * potentially-%NULL strings, use g_variant_new() with `ms` as the
1252
 * [format string][gvariant-format-strings-maybe-types].
1253
 *
1254
 * Returns: (transfer none): a floating reference to a new string #GVariant instance
1255
 *
1256
 * Since: 2.24
1257
 **/
1258
GVariant *
1259
g_variant_new_string (const gchar *string)
1260
0
{
1261
0
  g_return_val_if_fail (string != NULL, NULL);
1262
0
  g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1263
1264
0
  return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
1265
0
                                     string, strlen (string) + 1);
1266
0
}
1267
1268
/**
1269
 * g_variant_new_take_string: (skip)
1270
 * @string: a normal UTF-8 nul-terminated string
1271
 *
1272
 * Creates a string #GVariant with the contents of @string.
1273
 *
1274
 * @string must be valid UTF-8, and must not be %NULL. To encode
1275
 * potentially-%NULL strings, use this with g_variant_new_maybe().
1276
 *
1277
 * This function consumes @string.  g_free() will be called on @string
1278
 * when it is no longer required.
1279
 *
1280
 * You must not modify or access @string in any other way after passing
1281
 * it to this function.  It is even possible that @string is immediately
1282
 * freed.
1283
 *
1284
 * Returns: (transfer none): a floating reference to a new string
1285
 *   #GVariant instance
1286
 *
1287
 * Since: 2.38
1288
 **/
1289
GVariant *
1290
g_variant_new_take_string (gchar *string)
1291
0
{
1292
0
  GVariant *value;
1293
0
  GBytes *bytes;
1294
1295
0
  g_return_val_if_fail (string != NULL, NULL);
1296
0
  g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1297
1298
0
  bytes = g_bytes_new_take (string, strlen (string) + 1);
1299
0
  value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
1300
0
  g_bytes_unref (bytes);
1301
1302
0
  return value;
1303
0
}
1304
1305
/**
1306
 * g_variant_new_printf: (skip)
1307
 * @format_string: a printf-style format string
1308
 * @...: arguments for @format_string
1309
 *
1310
 * Creates a string-type GVariant using printf formatting.
1311
 *
1312
 * This is similar to calling g_strdup_printf() and then
1313
 * g_variant_new_string() but it saves a temporary variable and an
1314
 * unnecessary copy.
1315
 *
1316
 * Returns: (transfer none): a floating reference to a new string
1317
 *   #GVariant instance
1318
 *
1319
 * Since: 2.38
1320
 **/
1321
GVariant *
1322
g_variant_new_printf (const gchar *format_string,
1323
                      ...)
1324
0
{
1325
0
  GVariant *value;
1326
0
  GBytes *bytes;
1327
0
  gchar *string;
1328
0
  va_list ap;
1329
1330
0
  g_return_val_if_fail (format_string != NULL, NULL);
1331
1332
0
  va_start (ap, format_string);
1333
0
  string = g_strdup_vprintf (format_string, ap);
1334
0
  va_end (ap);
1335
1336
0
  bytes = g_bytes_new_take (string, strlen (string) + 1);
1337
0
  value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
1338
0
  g_bytes_unref (bytes);
1339
1340
0
  return value;
1341
0
}
1342
1343
/**
1344
 * g_variant_new_object_path:
1345
 * @object_path: a normal C nul-terminated string
1346
 *
1347
 * Creates a D-Bus object path #GVariant with the contents of @string.
1348
 * @string must be a valid D-Bus object path.  Use
1349
 * g_variant_is_object_path() if you're not sure.
1350
 *
1351
 * Returns: (transfer none): a floating reference to a new object path #GVariant instance
1352
 *
1353
 * Since: 2.24
1354
 **/
1355
GVariant *
1356
g_variant_new_object_path (const gchar *object_path)
1357
0
{
1358
0
  g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
1359
1360
0
  return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
1361
0
                                     object_path, strlen (object_path) + 1);
1362
0
}
1363
1364
/**
1365
 * g_variant_is_object_path:
1366
 * @string: a normal C nul-terminated string
1367
 *
1368
 * Determines if a given string is a valid D-Bus object path.  You
1369
 * should ensure that a string is a valid D-Bus object path before
1370
 * passing it to g_variant_new_object_path().
1371
 *
1372
 * A valid object path starts with `/` followed by zero or more
1373
 * sequences of characters separated by `/` characters.  Each sequence
1374
 * must contain only the characters `[A-Z][a-z][0-9]_`.  No sequence
1375
 * (including the one following the final `/` character) may be empty.
1376
 *
1377
 * Returns: %TRUE if @string is a D-Bus object path
1378
 *
1379
 * Since: 2.24
1380
 **/
1381
gboolean
1382
g_variant_is_object_path (const gchar *string)
1383
0
{
1384
0
  g_return_val_if_fail (string != NULL, FALSE);
1385
1386
0
  return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
1387
0
}
1388
1389
/**
1390
 * g_variant_new_signature:
1391
 * @signature: a normal C nul-terminated string
1392
 *
1393
 * Creates a D-Bus type signature #GVariant with the contents of
1394
 * @string.  @string must be a valid D-Bus type signature.  Use
1395
 * g_variant_is_signature() if you're not sure.
1396
 *
1397
 * Returns: (transfer none): a floating reference to a new signature #GVariant instance
1398
 *
1399
 * Since: 2.24
1400
 **/
1401
GVariant *
1402
g_variant_new_signature (const gchar *signature)
1403
0
{
1404
0
  g_return_val_if_fail (g_variant_is_signature (signature), NULL);
1405
1406
0
  return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
1407
0
                                     signature, strlen (signature) + 1);
1408
0
}
1409
1410
/**
1411
 * g_variant_is_signature:
1412
 * @string: a normal C nul-terminated string
1413
 *
1414
 * Determines if a given string is a valid D-Bus type signature.  You
1415
 * should ensure that a string is a valid D-Bus type signature before
1416
 * passing it to g_variant_new_signature().
1417
 *
1418
 * D-Bus type signatures consist of zero or more definite #GVariantType
1419
 * strings in sequence.
1420
 *
1421
 * Returns: %TRUE if @string is a D-Bus type signature
1422
 *
1423
 * Since: 2.24
1424
 **/
1425
gboolean
1426
g_variant_is_signature (const gchar *string)
1427
0
{
1428
0
  g_return_val_if_fail (string != NULL, FALSE);
1429
1430
0
  return g_variant_serialiser_is_signature (string, strlen (string) + 1);
1431
0
}
1432
1433
/**
1434
 * g_variant_get_string:
1435
 * @value: a string #GVariant instance
1436
 * @length: (optional) (default 0) (out): a pointer to a #gsize,
1437
 *          to store the length
1438
 *
1439
 * Returns the string value of a #GVariant instance with a string
1440
 * type.  This includes the types %G_VARIANT_TYPE_STRING,
1441
 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1442
 *
1443
 * The string will always be UTF-8 encoded, will never be %NULL, and will never
1444
 * contain nul bytes.
1445
 *
1446
 * If @length is non-%NULL then the length of the string (in bytes) is
1447
 * returned there.  For trusted values, this information is already
1448
 * known.  Untrusted values will be validated and, if valid, a strlen() will be
1449
 * performed. If invalid, a default value will be returned — for
1450
 * %G_VARIANT_TYPE_OBJECT_PATH, this is `"/"`, and for other types it is the
1451
 * empty string.
1452
 *
1453
 * It is an error to call this function with a @value of any type
1454
 * other than those three.
1455
 *
1456
 * The return value remains valid as long as @value exists.
1457
 *
1458
 * Returns: (transfer none): the constant string, UTF-8 encoded
1459
 *
1460
 * Since: 2.24
1461
 **/
1462
const gchar *
1463
g_variant_get_string (GVariant *value,
1464
                      gsize    *length)
1465
0
{
1466
0
  gconstpointer data;
1467
0
  gsize size;
1468
1469
0
  g_return_val_if_fail (value != NULL, NULL);
1470
0
  g_return_val_if_fail (
1471
0
    g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
1472
0
    g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
1473
0
    g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
1474
1475
0
  data = g_variant_get_data (value);
1476
0
  size = g_variant_get_size (value);
1477
1478
0
  if (!g_variant_is_trusted (value))
1479
0
    {
1480
0
      switch (g_variant_classify (value))
1481
0
        {
1482
0
        case G_VARIANT_CLASS_STRING:
1483
0
          if (g_variant_serialiser_is_string (data, size))
1484
0
            break;
1485
1486
0
          data = "";
1487
0
          size = 1;
1488
0
          break;
1489
1490
0
        case G_VARIANT_CLASS_OBJECT_PATH:
1491
0
          if (g_variant_serialiser_is_object_path (data, size))
1492
0
            break;
1493
1494
0
          data = "/";
1495
0
          size = 2;
1496
0
          break;
1497
1498
0
        case G_VARIANT_CLASS_SIGNATURE:
1499
0
          if (g_variant_serialiser_is_signature (data, size))
1500
0
            break;
1501
1502
0
          data = "";
1503
0
          size = 1;
1504
0
          break;
1505
1506
0
        default:
1507
0
          g_assert_not_reached ();
1508
0
        }
1509
0
    }
1510
1511
0
  if (length)
1512
0
    *length = size - 1;
1513
1514
0
  return data;
1515
0
}
1516
1517
/**
1518
 * g_variant_dup_string:
1519
 * @value: a string #GVariant instance
1520
 * @length: (out): a pointer to a #gsize, to store the length
1521
 *
1522
 * Similar to g_variant_get_string() except that instead of returning
1523
 * a constant string, the string is duplicated.
1524
 *
1525
 * The string will always be UTF-8 encoded.
1526
 *
1527
 * The return value must be freed using g_free().
1528
 *
1529
 * Returns: (transfer full): a newly allocated string, UTF-8 encoded
1530
 *
1531
 * Since: 2.24
1532
 **/
1533
gchar *
1534
g_variant_dup_string (GVariant *value,
1535
                      gsize    *length)
1536
0
{
1537
0
  return g_strdup (g_variant_get_string (value, length));
1538
0
}
1539
1540
/**
1541
 * g_variant_new_strv:
1542
 * @strv: (array length=length) (element-type utf8): an array of strings
1543
 * @length: the length of @strv, or -1
1544
 *
1545
 * Constructs an array of strings #GVariant from the given array of
1546
 * strings.
1547
 *
1548
 * If @length is -1 then @strv is %NULL-terminated.
1549
 *
1550
 * Returns: (transfer none): a new floating #GVariant instance
1551
 *
1552
 * Since: 2.24
1553
 **/
1554
GVariant *
1555
g_variant_new_strv (const gchar * const *strv,
1556
                    gssize               length)
1557
0
{
1558
0
  GVariant **strings;
1559
0
  gsize i, length_unsigned;
1560
1561
0
  g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1562
1563
0
  if (length < 0)
1564
0
    length = g_strv_length ((gchar **) strv);
1565
0
  length_unsigned = length;
1566
1567
0
  strings = g_new (GVariant *, length_unsigned);
1568
0
  for (i = 0; i < length_unsigned; i++)
1569
0
    strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
1570
1571
0
  return g_variant_new_from_children (G_VARIANT_TYPE_STRING_ARRAY,
1572
0
                                      strings, length_unsigned, TRUE);
1573
0
}
1574
1575
/**
1576
 * g_variant_get_strv:
1577
 * @value: an array of strings #GVariant
1578
 * @length: (out) (optional): the length of the result, or %NULL
1579
 *
1580
 * Gets the contents of an array of strings #GVariant.  This call
1581
 * makes a shallow copy; the return result should be released with
1582
 * g_free(), but the individual strings must not be modified.
1583
 *
1584
 * If @length is non-%NULL then the number of elements in the result
1585
 * is stored there.  In any case, the resulting array will be
1586
 * %NULL-terminated.
1587
 *
1588
 * For an empty array, @length will be set to 0 and a pointer to a
1589
 * %NULL pointer will be returned.
1590
 *
1591
 * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1592
 *
1593
 * Since: 2.24
1594
 **/
1595
const gchar **
1596
g_variant_get_strv (GVariant *value,
1597
                    gsize    *length)
1598
0
{
1599
0
  const gchar **strv;
1600
0
  gsize n;
1601
0
  gsize i;
1602
1603
0
  TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1604
1605
0
  g_variant_get_data (value);
1606
0
  n = g_variant_n_children (value);
1607
0
  strv = g_new (const gchar *, n + 1);
1608
1609
0
  for (i = 0; i < n; i++)
1610
0
    {
1611
0
      GVariant *string;
1612
1613
0
      string = g_variant_get_child_value (value, i);
1614
0
      strv[i] = g_variant_get_string (string, NULL);
1615
0
      g_variant_unref (string);
1616
0
    }
1617
0
  strv[i] = NULL;
1618
1619
0
  if (length)
1620
0
    *length = n;
1621
1622
0
  return strv;
1623
0
}
1624
1625
/**
1626
 * g_variant_dup_strv:
1627
 * @value: an array of strings #GVariant
1628
 * @length: (out) (optional): the length of the result, or %NULL
1629
 *
1630
 * Gets the contents of an array of strings #GVariant.  This call
1631
 * makes a deep copy; the return result should be released with
1632
 * g_strfreev().
1633
 *
1634
 * If @length is non-%NULL then the number of elements in the result
1635
 * is stored there.  In any case, the resulting array will be
1636
 * %NULL-terminated.
1637
 *
1638
 * For an empty array, @length will be set to 0 and a pointer to a
1639
 * %NULL pointer will be returned.
1640
 *
1641
 * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1642
 *
1643
 * Since: 2.24
1644
 **/
1645
gchar **
1646
g_variant_dup_strv (GVariant *value,
1647
                    gsize    *length)
1648
0
{
1649
0
  gchar **strv;
1650
0
  gsize n;
1651
0
  gsize i;
1652
1653
0
  TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1654
1655
0
  n = g_variant_n_children (value);
1656
0
  strv = g_new (gchar *, n + 1);
1657
1658
0
  for (i = 0; i < n; i++)
1659
0
    {
1660
0
      GVariant *string;
1661
1662
0
      string = g_variant_get_child_value (value, i);
1663
0
      strv[i] = g_variant_dup_string (string, NULL);
1664
0
      g_variant_unref (string);
1665
0
    }
1666
0
  strv[i] = NULL;
1667
1668
0
  if (length)
1669
0
    *length = n;
1670
1671
0
  return strv;
1672
0
}
1673
1674
/**
1675
 * g_variant_new_objv:
1676
 * @strv: (array length=length) (element-type utf8): an array of strings
1677
 * @length: the length of @strv, or -1
1678
 *
1679
 * Constructs an array of object paths #GVariant from the given array of
1680
 * strings.
1681
 *
1682
 * Each string must be a valid #GVariant object path; see
1683
 * g_variant_is_object_path().
1684
 *
1685
 * If @length is -1 then @strv is %NULL-terminated.
1686
 *
1687
 * Returns: (transfer none): a new floating #GVariant instance
1688
 *
1689
 * Since: 2.30
1690
 **/
1691
GVariant *
1692
g_variant_new_objv (const gchar * const *strv,
1693
                    gssize               length)
1694
0
{
1695
0
  GVariant **strings;
1696
0
  gsize i, length_unsigned;
1697
1698
0
  g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1699
1700
0
  if (length < 0)
1701
0
    length = g_strv_length ((gchar **) strv);
1702
0
  length_unsigned = length;
1703
1704
0
  strings = g_new (GVariant *, length_unsigned);
1705
0
  for (i = 0; i < length_unsigned; i++)
1706
0
    strings[i] = g_variant_ref_sink (g_variant_new_object_path (strv[i]));
1707
1708
0
  return g_variant_new_from_children (G_VARIANT_TYPE_OBJECT_PATH_ARRAY,
1709
0
                                      strings, length_unsigned, TRUE);
1710
0
}
1711
1712
/**
1713
 * g_variant_get_objv:
1714
 * @value: an array of object paths #GVariant
1715
 * @length: (out) (optional): the length of the result, or %NULL
1716
 *
1717
 * Gets the contents of an array of object paths #GVariant.  This call
1718
 * makes a shallow copy; the return result should be released with
1719
 * g_free(), but the individual strings must not be modified.
1720
 *
1721
 * If @length is non-%NULL then the number of elements in the result
1722
 * is stored there.  In any case, the resulting array will be
1723
 * %NULL-terminated.
1724
 *
1725
 * For an empty array, @length will be set to 0 and a pointer to a
1726
 * %NULL pointer will be returned.
1727
 *
1728
 * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1729
 *
1730
 * Since: 2.30
1731
 **/
1732
const gchar **
1733
g_variant_get_objv (GVariant *value,
1734
                    gsize    *length)
1735
0
{
1736
0
  const gchar **strv;
1737
0
  gsize n;
1738
0
  gsize i;
1739
1740
0
  TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1741
1742
0
  g_variant_get_data (value);
1743
0
  n = g_variant_n_children (value);
1744
0
  strv = g_new (const gchar *, n + 1);
1745
1746
0
  for (i = 0; i < n; i++)
1747
0
    {
1748
0
      GVariant *string;
1749
1750
0
      string = g_variant_get_child_value (value, i);
1751
0
      strv[i] = g_variant_get_string (string, NULL);
1752
0
      g_variant_unref (string);
1753
0
    }
1754
0
  strv[i] = NULL;
1755
1756
0
  if (length)
1757
0
    *length = n;
1758
1759
0
  return strv;
1760
0
}
1761
1762
/**
1763
 * g_variant_dup_objv:
1764
 * @value: an array of object paths #GVariant
1765
 * @length: (out) (optional): the length of the result, or %NULL
1766
 *
1767
 * Gets the contents of an array of object paths #GVariant.  This call
1768
 * makes a deep copy; the return result should be released with
1769
 * g_strfreev().
1770
 *
1771
 * If @length is non-%NULL then the number of elements in the result
1772
 * is stored there.  In any case, the resulting array will be
1773
 * %NULL-terminated.
1774
 *
1775
 * For an empty array, @length will be set to 0 and a pointer to a
1776
 * %NULL pointer will be returned.
1777
 *
1778
 * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1779
 *
1780
 * Since: 2.30
1781
 **/
1782
gchar **
1783
g_variant_dup_objv (GVariant *value,
1784
                    gsize    *length)
1785
0
{
1786
0
  gchar **strv;
1787
0
  gsize n;
1788
0
  gsize i;
1789
1790
0
  TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1791
1792
0
  n = g_variant_n_children (value);
1793
0
  strv = g_new (gchar *, n + 1);
1794
1795
0
  for (i = 0; i < n; i++)
1796
0
    {
1797
0
      GVariant *string;
1798
1799
0
      string = g_variant_get_child_value (value, i);
1800
0
      strv[i] = g_variant_dup_string (string, NULL);
1801
0
      g_variant_unref (string);
1802
0
    }
1803
0
  strv[i] = NULL;
1804
1805
0
  if (length)
1806
0
    *length = n;
1807
1808
0
  return strv;
1809
0
}
1810
1811
1812
/**
1813
 * g_variant_new_bytestring:
1814
 * @string: (array zero-terminated=1) (element-type guint8): a normal
1815
 *          nul-terminated string in no particular encoding
1816
 *
1817
 * Creates an array-of-bytes #GVariant with the contents of @string.
1818
 * This function is just like g_variant_new_string() except that the
1819
 * string need not be valid UTF-8.
1820
 *
1821
 * The nul terminator character at the end of the string is stored in
1822
 * the array.
1823
 *
1824
 * Returns: (transfer none): a floating reference to a new bytestring #GVariant instance
1825
 *
1826
 * Since: 2.26
1827
 **/
1828
GVariant *
1829
g_variant_new_bytestring (const gchar *string)
1830
0
{
1831
0
  g_return_val_if_fail (string != NULL, NULL);
1832
1833
0
  return g_variant_new_from_trusted (G_VARIANT_TYPE_BYTESTRING,
1834
0
                                     string, strlen (string) + 1);
1835
0
}
1836
1837
/**
1838
 * g_variant_get_bytestring:
1839
 * @value: an array-of-bytes #GVariant instance
1840
 *
1841
 * Returns the string value of a #GVariant instance with an
1842
 * array-of-bytes type.  The string has no particular encoding.
1843
 *
1844
 * If the array does not end with a nul terminator character, the empty
1845
 * string is returned.  For this reason, you can always trust that a
1846
 * non-%NULL nul-terminated string will be returned by this function.
1847
 *
1848
 * If the array contains a nul terminator character somewhere other than
1849
 * the last byte then the returned string is the string, up to the first
1850
 * such nul character.
1851
 *
1852
 * g_variant_get_fixed_array() should be used instead if the array contains
1853
 * arbitrary data that could not be nul-terminated or could contain nul bytes.
1854
 *
1855
 * It is an error to call this function with a @value that is not an
1856
 * array of bytes.
1857
 *
1858
 * The return value remains valid as long as @value exists.
1859
 *
1860
 * Returns: (transfer none) (array zero-terminated=1) (element-type guint8):
1861
 *          the constant string
1862
 *
1863
 * Since: 2.26
1864
 **/
1865
const gchar *
1866
g_variant_get_bytestring (GVariant *value)
1867
0
{
1868
0
  const gchar *string;
1869
0
  gsize size;
1870
1871
0
  TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING, NULL);
1872
1873
  /* Won't be NULL since this is an array type */
1874
0
  string = g_variant_get_data (value);
1875
0
  size = g_variant_get_size (value);
1876
1877
0
  if (size && string[size - 1] == '\0')
1878
0
    return string;
1879
0
  else
1880
0
    return "";
1881
0
}
1882
1883
/**
1884
 * g_variant_dup_bytestring:
1885
 * @value: an array-of-bytes #GVariant instance
1886
 * @length: (out) (optional) (default NULL): a pointer to a #gsize, to store
1887
 *          the length (not including the nul terminator)
1888
 *
1889
 * Similar to g_variant_get_bytestring() except that instead of
1890
 * returning a constant string, the string is duplicated.
1891
 *
1892
 * The return value must be freed using g_free().
1893
 *
1894
 * Returns: (transfer full) (array zero-terminated=1 length=length) (element-type guint8):
1895
 *          a newly allocated string
1896
 *
1897
 * Since: 2.26
1898
 **/
1899
gchar *
1900
g_variant_dup_bytestring (GVariant *value,
1901
                          gsize    *length)
1902
0
{
1903
0
  const gchar *original = g_variant_get_bytestring (value);
1904
0
  gsize size;
1905
1906
  /* don't crash in case get_bytestring() had an assert failure */
1907
0
  if (original == NULL)
1908
0
    return NULL;
1909
1910
0
  size = strlen (original);
1911
1912
0
  if (length)
1913
0
    *length = size;
1914
1915
0
  return g_memdup2 (original, size + 1);
1916
0
}
1917
1918
/**
1919
 * g_variant_new_bytestring_array:
1920
 * @strv: (array length=length): an array of strings
1921
 * @length: the length of @strv, or -1
1922
 *
1923
 * Constructs an array of bytestring #GVariant from the given array of
1924
 * strings.
1925
 *
1926
 * If @length is -1 then @strv is %NULL-terminated.
1927
 *
1928
 * Returns: (transfer none): a new floating #GVariant instance
1929
 *
1930
 * Since: 2.26
1931
 **/
1932
GVariant *
1933
g_variant_new_bytestring_array (const gchar * const *strv,
1934
                                gssize               length)
1935
0
{
1936
0
  GVariant **strings;
1937
0
  gsize i, length_unsigned;
1938
1939
0
  g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1940
1941
0
  if (length < 0)
1942
0
    length = g_strv_length ((gchar **) strv);
1943
0
  length_unsigned = length;
1944
1945
0
  strings = g_new (GVariant *, length_unsigned);
1946
0
  for (i = 0; i < length_unsigned; i++)
1947
0
    strings[i] = g_variant_ref_sink (g_variant_new_bytestring (strv[i]));
1948
1949
0
  return g_variant_new_from_children (G_VARIANT_TYPE_BYTESTRING_ARRAY,
1950
0
                                      strings, length_unsigned, TRUE);
1951
0
}
1952
1953
/**
1954
 * g_variant_get_bytestring_array:
1955
 * @value: an array of array of bytes #GVariant ('aay')
1956
 * @length: (out) (optional): the length of the result, or %NULL
1957
 *
1958
 * Gets the contents of an array of array of bytes #GVariant.  This call
1959
 * makes a shallow copy; the return result should be released with
1960
 * g_free(), but the individual strings must not be modified.
1961
 *
1962
 * If @length is non-%NULL then the number of elements in the result is
1963
 * stored there.  In any case, the resulting array will be
1964
 * %NULL-terminated.
1965
 *
1966
 * For an empty array, @length will be set to 0 and a pointer to a
1967
 * %NULL pointer will be returned.
1968
 *
1969
 * Returns: (array length=length) (transfer container): an array of constant strings
1970
 *
1971
 * Since: 2.26
1972
 **/
1973
const gchar **
1974
g_variant_get_bytestring_array (GVariant *value,
1975
                                gsize    *length)
1976
0
{
1977
0
  const gchar **strv;
1978
0
  gsize n;
1979
0
  gsize i;
1980
1981
0
  TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1982
1983
0
  g_variant_get_data (value);
1984
0
  n = g_variant_n_children (value);
1985
0
  strv = g_new (const gchar *, n + 1);
1986
1987
0
  for (i = 0; i < n; i++)
1988
0
    {
1989
0
      GVariant *string;
1990
1991
0
      string = g_variant_get_child_value (value, i);
1992
0
      strv[i] = g_variant_get_bytestring (string);
1993
0
      g_variant_unref (string);
1994
0
    }
1995
0
  strv[i] = NULL;
1996
1997
0
  if (length)
1998
0
    *length = n;
1999
2000
0
  return strv;
2001
0
}
2002
2003
/**
2004
 * g_variant_dup_bytestring_array:
2005
 * @value: an array of array of bytes #GVariant ('aay')
2006
 * @length: (out) (optional): the length of the result, or %NULL
2007
 *
2008
 * Gets the contents of an array of array of bytes #GVariant.  This call
2009
 * makes a deep copy; the return result should be released with
2010
 * g_strfreev().
2011
 *
2012
 * If @length is non-%NULL then the number of elements in the result is
2013
 * stored there.  In any case, the resulting array will be
2014
 * %NULL-terminated.
2015
 *
2016
 * For an empty array, @length will be set to 0 and a pointer to a
2017
 * %NULL pointer will be returned.
2018
 *
2019
 * Returns: (array length=length) (transfer full): an array of strings
2020
 *
2021
 * Since: 2.26
2022
 **/
2023
gchar **
2024
g_variant_dup_bytestring_array (GVariant *value,
2025
                                gsize    *length)
2026
0
{
2027
0
  gchar **strv;
2028
0
  gsize n;
2029
0
  gsize i;
2030
2031
0
  TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
2032
2033
0
  g_variant_get_data (value);
2034
0
  n = g_variant_n_children (value);
2035
0
  strv = g_new (gchar *, n + 1);
2036
2037
0
  for (i = 0; i < n; i++)
2038
0
    {
2039
0
      GVariant *string;
2040
2041
0
      string = g_variant_get_child_value (value, i);
2042
0
      strv[i] = g_variant_dup_bytestring (string, NULL);
2043
0
      g_variant_unref (string);
2044
0
    }
2045
0
  strv[i] = NULL;
2046
2047
0
  if (length)
2048
0
    *length = n;
2049
2050
0
  return strv;
2051
0
}
2052
2053
/* Type checking and querying {{{1 */
2054
/**
2055
 * g_variant_get_type:
2056
 * @value: a #GVariant
2057
 *
2058
 * Determines the type of @value.
2059
 *
2060
 * The return value is valid for the lifetime of @value and must not
2061
 * be freed.
2062
 *
2063
 * Returns: a #GVariantType
2064
 *
2065
 * Since: 2.24
2066
 **/
2067
const GVariantType *
2068
g_variant_get_type (GVariant *value)
2069
0
{
2070
0
  GVariantTypeInfo *type_info;
2071
2072
0
  g_return_val_if_fail (value != NULL, NULL);
2073
2074
0
  type_info = g_variant_get_type_info (value);
2075
2076
0
  return (GVariantType *) g_variant_type_info_get_type_string (type_info);
2077
0
}
2078
2079
/**
2080
 * g_variant_get_type_string:
2081
 * @value: a #GVariant
2082
 *
2083
 * Returns the type string of @value.  Unlike the result of calling
2084
 * g_variant_type_peek_string(), this string is nul-terminated.  This
2085
 * string belongs to #GVariant and must not be freed.
2086
 *
2087
 * Returns: the type string for the type of @value
2088
 *
2089
 * Since: 2.24
2090
 **/
2091
const gchar *
2092
g_variant_get_type_string (GVariant *value)
2093
0
{
2094
0
  GVariantTypeInfo *type_info;
2095
2096
0
  g_return_val_if_fail (value != NULL, NULL);
2097
2098
0
  type_info = g_variant_get_type_info (value);
2099
2100
0
  return g_variant_type_info_get_type_string (type_info);
2101
0
}
2102
2103
/**
2104
 * g_variant_is_of_type:
2105
 * @value: a #GVariant instance
2106
 * @type: a #GVariantType
2107
 *
2108
 * Checks if a value has a type matching the provided type.
2109
 *
2110
 * Returns: %TRUE if the type of @value matches @type
2111
 *
2112
 * Since: 2.24
2113
 **/
2114
gboolean
2115
g_variant_is_of_type (GVariant           *value,
2116
                      const GVariantType *type)
2117
0
{
2118
0
  return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
2119
0
}
2120
2121
/**
2122
 * g_variant_is_container:
2123
 * @value: a #GVariant instance
2124
 *
2125
 * Checks if @value is a container.
2126
 *
2127
 * Returns: %TRUE if @value is a container
2128
 *
2129
 * Since: 2.24
2130
 */
2131
gboolean
2132
g_variant_is_container (GVariant *value)
2133
0
{
2134
0
  return g_variant_type_is_container (g_variant_get_type (value));
2135
0
}
2136
2137
2138
/**
2139
 * g_variant_classify:
2140
 * @value: a #GVariant
2141
 *
2142
 * Classifies @value according to its top-level type.
2143
 *
2144
 * Returns: the #GVariantClass of @value
2145
 *
2146
 * Since: 2.24
2147
 **/
2148
/**
2149
 * GVariantClass:
2150
 * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
2151
 * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
2152
 * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
2153
 * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
2154
 * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
2155
 * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
2156
 * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
2157
 * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
2158
 * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
2159
 * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating 
2160
 *                          point value.
2161
 * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
2162
 * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a D-Bus object path 
2163
 *                               string.
2164
 * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a D-Bus signature string.
2165
 * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
2166
 * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
2167
 * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
2168
 * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
2169
 * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
2170
 *
2171
 * The range of possible top-level types of #GVariant instances.
2172
 *
2173
 * Since: 2.24
2174
 **/
2175
GVariantClass
2176
g_variant_classify (GVariant *value)
2177
0
{
2178
0
  g_return_val_if_fail (value != NULL, 0);
2179
2180
0
  return *g_variant_get_type_string (value);
2181
0
}
2182
2183
/* Pretty printer {{{1 */
2184
/* This function is not introspectable because if @string is NULL,
2185
   @returns is (transfer full), otherwise it is (transfer none), which
2186
   is not supported by GObjectIntrospection */
2187
/**
2188
 * g_variant_print_string: (skip)
2189
 * @value: a #GVariant
2190
 * @string: (nullable) (default NULL): a #GString, or %NULL
2191
 * @type_annotate: %TRUE if type information should be included in
2192
 *                 the output
2193
 *
2194
 * Behaves as g_variant_print(), but operates on a #GString.
2195
 *
2196
 * If @string is non-%NULL then it is appended to and returned.  Else,
2197
 * a new empty #GString is allocated and it is returned.
2198
 *
2199
 * Returns: a #GString containing the string
2200
 *
2201
 * Since: 2.24
2202
 **/
2203
GString *
2204
g_variant_print_string (GVariant *value,
2205
                        GString  *string,
2206
                        gboolean  type_annotate)
2207
0
{
2208
0
  if G_UNLIKELY (string == NULL)
2209
0
    string = g_string_new (NULL);
2210
2211
0
  switch (g_variant_classify (value))
2212
0
    {
2213
0
    case G_VARIANT_CLASS_MAYBE:
2214
0
      if (type_annotate)
2215
0
        g_string_append_printf (string, "@%s ",
2216
0
                                g_variant_get_type_string (value));
2217
2218
0
      if (g_variant_n_children (value))
2219
0
        {
2220
0
          gchar *printed_child;
2221
0
          GVariant *element;
2222
2223
          /* Nested maybes:
2224
           *
2225
           * Consider the case of the type "mmi".  In this case we could
2226
           * write "just just 4", but "4" alone is totally unambiguous,
2227
           * so we try to drop "just" where possible.
2228
           *
2229
           * We have to be careful not to always drop "just", though,
2230
           * since "nothing" needs to be distinguishable from "just
2231
           * nothing".  The case where we need to ensure we keep the
2232
           * "just" is actually exactly the case where we have a nested
2233
           * Nothing.
2234
           *
2235
           * Instead of searching for that nested Nothing, we just print
2236
           * the contained value into a separate string and see if we
2237
           * end up with "nothing" at the end of it.  If so, we need to
2238
           * add "just" at our level.
2239
           */
2240
0
          element = g_variant_get_child_value (value, 0);
2241
0
          printed_child = g_variant_print (element, FALSE);
2242
0
          g_variant_unref (element);
2243
2244
0
          if (g_str_has_suffix (printed_child, "nothing"))
2245
0
            g_string_append (string, "just ");
2246
0
          g_string_append (string, printed_child);
2247
0
          g_free (printed_child);
2248
0
        }
2249
0
      else
2250
0
        g_string_append (string, "nothing");
2251
2252
0
      break;
2253
2254
0
    case G_VARIANT_CLASS_ARRAY:
2255
      /* it's an array so the first character of the type string is 'a'
2256
       *
2257
       * if the first two characters are 'ay' then it's a bytestring.
2258
       * under certain conditions we print those as strings.
2259
       */
2260
0
      if (g_variant_get_type_string (value)[1] == 'y')
2261
0
        {
2262
0
          const gchar *str;
2263
0
          gsize size;
2264
0
          gsize i;
2265
2266
          /* first determine if it is a byte string.
2267
           * that's when there's a single nul character: at the end.
2268
           */
2269
0
          str = g_variant_get_data (value);
2270
0
          size = g_variant_get_size (value);
2271
2272
0
          for (i = 0; i < size; i++)
2273
0
            if (str[i] == '\0')
2274
0
              break;
2275
2276
          /* first nul byte is the last byte -> it's a byte string. */
2277
0
          if (i == size - 1)
2278
0
            {
2279
0
              gchar *escaped = g_strescape (str, NULL);
2280
2281
              /* use double quotes only if a ' is in the string */
2282
0
              if (strchr (str, '\''))
2283
0
                g_string_append_printf (string, "b\"%s\"", escaped);
2284
0
              else
2285
0
                g_string_append_printf (string, "b'%s'", escaped);
2286
2287
0
              g_free (escaped);
2288
0
              break;
2289
0
            }
2290
2291
0
          else
2292
0
            {
2293
              /* fall through and handle normally... */
2294
0
            }
2295
0
        }
2296
2297
      /*
2298
       * if the first two characters are 'a{' then it's an array of
2299
       * dictionary entries (ie: a dictionary) so we print that
2300
       * differently.
2301
       */
2302
0
      if (g_variant_get_type_string (value)[1] == '{')
2303
        /* dictionary */
2304
0
        {
2305
0
          const gchar *comma = "";
2306
0
          gsize n, i;
2307
2308
0
          if ((n = g_variant_n_children (value)) == 0)
2309
0
            {
2310
0
              if (type_annotate)
2311
0
                g_string_append_printf (string, "@%s ",
2312
0
                                        g_variant_get_type_string (value));
2313
0
              g_string_append (string, "{}");
2314
0
              break;
2315
0
            }
2316
2317
0
          g_string_append_c (string, '{');
2318
0
          for (i = 0; i < n; i++)
2319
0
            {
2320
0
              GVariant *entry, *key, *val;
2321
2322
0
              g_string_append (string, comma);
2323
0
              comma = ", ";
2324
2325
0
              entry = g_variant_get_child_value (value, i);
2326
0
              key = g_variant_get_child_value (entry, 0);
2327
0
              val = g_variant_get_child_value (entry, 1);
2328
0
              g_variant_unref (entry);
2329
2330
0
              g_variant_print_string (key, string, type_annotate);
2331
0
              g_variant_unref (key);
2332
0
              g_string_append (string, ": ");
2333
0
              g_variant_print_string (val, string, type_annotate);
2334
0
              g_variant_unref (val);
2335
0
              type_annotate = FALSE;
2336
0
            }
2337
0
          g_string_append_c (string, '}');
2338
0
        }
2339
0
      else
2340
        /* normal (non-dictionary) array */
2341
0
        {
2342
0
          const gchar *comma = "";
2343
0
          gsize n, i;
2344
2345
0
          if ((n = g_variant_n_children (value)) == 0)
2346
0
            {
2347
0
              if (type_annotate)
2348
0
                g_string_append_printf (string, "@%s ",
2349
0
                                        g_variant_get_type_string (value));
2350
0
              g_string_append (string, "[]");
2351
0
              break;
2352
0
            }
2353
2354
0
          g_string_append_c (string, '[');
2355
0
          for (i = 0; i < n; i++)
2356
0
            {
2357
0
              GVariant *element;
2358
2359
0
              g_string_append (string, comma);
2360
0
              comma = ", ";
2361
2362
0
              element = g_variant_get_child_value (value, i);
2363
2364
0
              g_variant_print_string (element, string, type_annotate);
2365
0
              g_variant_unref (element);
2366
0
              type_annotate = FALSE;
2367
0
            }
2368
0
          g_string_append_c (string, ']');
2369
0
        }
2370
2371
0
      break;
2372
2373
0
    case G_VARIANT_CLASS_TUPLE:
2374
0
      {
2375
0
        gsize n, i;
2376
2377
0
        n = g_variant_n_children (value);
2378
2379
0
        g_string_append_c (string, '(');
2380
0
        for (i = 0; i < n; i++)
2381
0
          {
2382
0
            GVariant *element;
2383
2384
0
            element = g_variant_get_child_value (value, i);
2385
0
            g_variant_print_string (element, string, type_annotate);
2386
0
            g_string_append (string, ", ");
2387
0
            g_variant_unref (element);
2388
0
          }
2389
2390
        /* for >1 item:  remove final ", "
2391
         * for 1 item:   remove final " ", but leave the ","
2392
         * for 0 items:  there is only "(", so remove nothing
2393
         */
2394
0
        g_string_truncate (string, string->len - (n > 0) - (n > 1));
2395
0
        g_string_append_c (string, ')');
2396
0
      }
2397
0
      break;
2398
2399
0
    case G_VARIANT_CLASS_DICT_ENTRY:
2400
0
      {
2401
0
        GVariant *element;
2402
2403
0
        g_string_append_c (string, '{');
2404
2405
0
        element = g_variant_get_child_value (value, 0);
2406
0
        g_variant_print_string (element, string, type_annotate);
2407
0
        g_variant_unref (element);
2408
2409
0
        g_string_append (string, ", ");
2410
2411
0
        element = g_variant_get_child_value (value, 1);
2412
0
        g_variant_print_string (element, string, type_annotate);
2413
0
        g_variant_unref (element);
2414
2415
0
        g_string_append_c (string, '}');
2416
0
      }
2417
0
      break;
2418
2419
0
    case G_VARIANT_CLASS_VARIANT:
2420
0
      {
2421
0
        GVariant *child = g_variant_get_variant (value);
2422
2423
        /* Always annotate types in nested variants, because they are
2424
         * (by nature) of variable type.
2425
         */
2426
0
        g_string_append_c (string, '<');
2427
0
        g_variant_print_string (child, string, TRUE);
2428
0
        g_string_append_c (string, '>');
2429
2430
0
        g_variant_unref (child);
2431
0
      }
2432
0
      break;
2433
2434
0
    case G_VARIANT_CLASS_BOOLEAN:
2435
0
      if (g_variant_get_boolean (value))
2436
0
        g_string_append (string, "true");
2437
0
      else
2438
0
        g_string_append (string, "false");
2439
0
      break;
2440
2441
0
    case G_VARIANT_CLASS_STRING:
2442
0
      {
2443
0
        const gchar *str = g_variant_get_string (value, NULL);
2444
0
        gunichar quote = strchr (str, '\'') ? '"' : '\'';
2445
2446
0
        g_string_append_c (string, quote);
2447
2448
0
        while (*str)
2449
0
          {
2450
0
            gunichar c = g_utf8_get_char (str);
2451
2452
0
            if (c == quote || c == '\\')
2453
0
              g_string_append_c (string, '\\');
2454
2455
0
            if (g_unichar_isprint (c))
2456
0
              g_string_append_unichar (string, c);
2457
2458
0
            else
2459
0
              {
2460
0
                g_string_append_c (string, '\\');
2461
0
                if (c < 0x10000)
2462
0
                  switch (c)
2463
0
                    {
2464
0
                    case '\a':
2465
0
                      g_string_append_c (string, 'a');
2466
0
                      break;
2467
2468
0
                    case '\b':
2469
0
                      g_string_append_c (string, 'b');
2470
0
                      break;
2471
2472
0
                    case '\f':
2473
0
                      g_string_append_c (string, 'f');
2474
0
                      break;
2475
2476
0
                    case '\n':
2477
0
                      g_string_append_c (string, 'n');
2478
0
                      break;
2479
2480
0
                    case '\r':
2481
0
                      g_string_append_c (string, 'r');
2482
0
                      break;
2483
2484
0
                    case '\t':
2485
0
                      g_string_append_c (string, 't');
2486
0
                      break;
2487
2488
0
                    case '\v':
2489
0
                      g_string_append_c (string, 'v');
2490
0
                      break;
2491
2492
0
                    default:
2493
0
                      g_string_append_printf (string, "u%04x", c);
2494
0
                      break;
2495
0
                    }
2496
0
                 else
2497
0
                   g_string_append_printf (string, "U%08x", c);
2498
0
              }
2499
2500
0
            str = g_utf8_next_char (str);
2501
0
          }
2502
2503
0
        g_string_append_c (string, quote);
2504
0
      }
2505
0
      break;
2506
2507
0
    case G_VARIANT_CLASS_BYTE:
2508
0
      if (type_annotate)
2509
0
        g_string_append (string, "byte ");
2510
0
      g_string_append_printf (string, "0x%02x",
2511
0
                              g_variant_get_byte (value));
2512
0
      break;
2513
2514
0
    case G_VARIANT_CLASS_INT16:
2515
0
      if (type_annotate)
2516
0
        g_string_append (string, "int16 ");
2517
0
      g_string_append_printf (string, "%"G_GINT16_FORMAT,
2518
0
                              g_variant_get_int16 (value));
2519
0
      break;
2520
2521
0
    case G_VARIANT_CLASS_UINT16:
2522
0
      if (type_annotate)
2523
0
        g_string_append (string, "uint16 ");
2524
0
      g_string_append_printf (string, "%"G_GUINT16_FORMAT,
2525
0
                              g_variant_get_uint16 (value));
2526
0
      break;
2527
2528
0
    case G_VARIANT_CLASS_INT32:
2529
      /* Never annotate this type because it is the default for numbers
2530
       * (and this is a *pretty* printer)
2531
       */
2532
0
      g_string_append_printf (string, "%"G_GINT32_FORMAT,
2533
0
                              g_variant_get_int32 (value));
2534
0
      break;
2535
2536
0
    case G_VARIANT_CLASS_HANDLE:
2537
0
      if (type_annotate)
2538
0
        g_string_append (string, "handle ");
2539
0
      g_string_append_printf (string, "%"G_GINT32_FORMAT,
2540
0
                              g_variant_get_handle (value));
2541
0
      break;
2542
2543
0
    case G_VARIANT_CLASS_UINT32:
2544
0
      if (type_annotate)
2545
0
        g_string_append (string, "uint32 ");
2546
0
      g_string_append_printf (string, "%"G_GUINT32_FORMAT,
2547
0
                              g_variant_get_uint32 (value));
2548
0
      break;
2549
2550
0
    case G_VARIANT_CLASS_INT64:
2551
0
      if (type_annotate)
2552
0
        g_string_append (string, "int64 ");
2553
0
      g_string_append_printf (string, "%"G_GINT64_FORMAT,
2554
0
                              g_variant_get_int64 (value));
2555
0
      break;
2556
2557
0
    case G_VARIANT_CLASS_UINT64:
2558
0
      if (type_annotate)
2559
0
        g_string_append (string, "uint64 ");
2560
0
      g_string_append_printf (string, "%"G_GUINT64_FORMAT,
2561
0
                              g_variant_get_uint64 (value));
2562
0
      break;
2563
2564
0
    case G_VARIANT_CLASS_DOUBLE:
2565
0
      {
2566
0
        gchar buffer[100];
2567
0
        gint i;
2568
2569
0
        g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
2570
2571
0
        for (i = 0; buffer[i]; i++)
2572
0
          if (buffer[i] == '.' || buffer[i] == 'e' ||
2573
0
              buffer[i] == 'n' || buffer[i] == 'N')
2574
0
            break;
2575
2576
        /* if there is no '.' or 'e' in the float then add one */
2577
0
        if (buffer[i] == '\0')
2578
0
          {
2579
0
            buffer[i++] = '.';
2580
0
            buffer[i++] = '0';
2581
0
            buffer[i++] = '\0';
2582
0
          }
2583
2584
0
        g_string_append (string, buffer);
2585
0
      }
2586
0
      break;
2587
2588
0
    case G_VARIANT_CLASS_OBJECT_PATH:
2589
0
      if (type_annotate)
2590
0
        g_string_append (string, "objectpath ");
2591
0
      g_string_append_printf (string, "\'%s\'",
2592
0
                              g_variant_get_string (value, NULL));
2593
0
      break;
2594
2595
0
    case G_VARIANT_CLASS_SIGNATURE:
2596
0
      if (type_annotate)
2597
0
        g_string_append (string, "signature ");
2598
0
      g_string_append_printf (string, "\'%s\'",
2599
0
                              g_variant_get_string (value, NULL));
2600
0
      break;
2601
2602
0
    default:
2603
0
      g_assert_not_reached ();
2604
0
  }
2605
2606
0
  return string;
2607
0
}
2608
2609
/**
2610
 * g_variant_print:
2611
 * @value: a #GVariant
2612
 * @type_annotate: %TRUE if type information should be included in
2613
 *                 the output
2614
 *
2615
 * Pretty-prints @value in the format understood by g_variant_parse().
2616
 *
2617
 * The format is described [here][gvariant-text].
2618
 *
2619
 * If @type_annotate is %TRUE, then type information is included in
2620
 * the output.
2621
 *
2622
 * Returns: (transfer full): a newly-allocated string holding the result.
2623
 *
2624
 * Since: 2.24
2625
 */
2626
gchar *
2627
g_variant_print (GVariant *value,
2628
                 gboolean  type_annotate)
2629
0
{
2630
0
  return g_string_free (g_variant_print_string (value, NULL, type_annotate),
2631
0
                        FALSE);
2632
0
}
2633
2634
/* Hash, Equal, Compare {{{1 */
2635
/**
2636
 * g_variant_hash:
2637
 * @value: (type GVariant): a basic #GVariant value as a #gconstpointer
2638
 *
2639
 * Generates a hash value for a #GVariant instance.
2640
 *
2641
 * The output of this function is guaranteed to be the same for a given
2642
 * value only per-process.  It may change between different processor
2643
 * architectures or even different versions of GLib.  Do not use this
2644
 * function as a basis for building protocols or file formats.
2645
 *
2646
 * The type of @value is #gconstpointer only to allow use of this
2647
 * function with #GHashTable.  @value must be a #GVariant.
2648
 *
2649
 * Returns: a hash value corresponding to @value
2650
 *
2651
 * Since: 2.24
2652
 **/
2653
guint
2654
g_variant_hash (gconstpointer value_)
2655
0
{
2656
0
  GVariant *value = (GVariant *) value_;
2657
2658
0
  switch (g_variant_classify (value))
2659
0
    {
2660
0
    case G_VARIANT_CLASS_STRING:
2661
0
    case G_VARIANT_CLASS_OBJECT_PATH:
2662
0
    case G_VARIANT_CLASS_SIGNATURE:
2663
0
      return g_str_hash (g_variant_get_string (value, NULL));
2664
2665
0
    case G_VARIANT_CLASS_BOOLEAN:
2666
      /* this is a very odd thing to hash... */
2667
0
      return g_variant_get_boolean (value);
2668
2669
0
    case G_VARIANT_CLASS_BYTE:
2670
0
      return g_variant_get_byte (value);
2671
2672
0
    case G_VARIANT_CLASS_INT16:
2673
0
    case G_VARIANT_CLASS_UINT16:
2674
0
      {
2675
0
        const guint16 *ptr;
2676
2677
0
        ptr = g_variant_get_data (value);
2678
2679
0
        if (ptr)
2680
0
          return *ptr;
2681
0
        else
2682
0
          return 0;
2683
0
      }
2684
2685
0
    case G_VARIANT_CLASS_INT32:
2686
0
    case G_VARIANT_CLASS_UINT32:
2687
0
    case G_VARIANT_CLASS_HANDLE:
2688
0
      {
2689
0
        const guint *ptr;
2690
2691
0
        ptr = g_variant_get_data (value);
2692
2693
0
        if (ptr)
2694
0
          return *ptr;
2695
0
        else
2696
0
          return 0;
2697
0
      }
2698
2699
0
    case G_VARIANT_CLASS_INT64:
2700
0
    case G_VARIANT_CLASS_UINT64:
2701
0
    case G_VARIANT_CLASS_DOUBLE:
2702
      /* need a separate case for these guys because otherwise
2703
       * performance could be quite bad on big endian systems
2704
       */
2705
0
      {
2706
0
        const guint *ptr;
2707
2708
0
        ptr = g_variant_get_data (value);
2709
2710
0
        if (ptr)
2711
0
          return ptr[0] + ptr[1];
2712
0
        else
2713
0
          return 0;
2714
0
      }
2715
2716
0
    default:
2717
0
      g_return_val_if_fail (!g_variant_is_container (value), 0);
2718
0
      g_assert_not_reached ();
2719
0
    }
2720
0
}
2721
2722
/**
2723
 * g_variant_equal:
2724
 * @one: (type GVariant): a #GVariant instance
2725
 * @two: (type GVariant): a #GVariant instance
2726
 *
2727
 * Checks if @one and @two have the same type and value.
2728
 *
2729
 * The types of @one and @two are #gconstpointer only to allow use of
2730
 * this function with #GHashTable.  They must each be a #GVariant.
2731
 *
2732
 * Returns: %TRUE if @one and @two are equal
2733
 *
2734
 * Since: 2.24
2735
 **/
2736
gboolean
2737
g_variant_equal (gconstpointer one,
2738
                 gconstpointer two)
2739
0
{
2740
0
  gboolean equal;
2741
2742
0
  g_return_val_if_fail (one != NULL && two != NULL, FALSE);
2743
2744
0
  if (g_variant_get_type_info ((GVariant *) one) !=
2745
0
      g_variant_get_type_info ((GVariant *) two))
2746
0
    return FALSE;
2747
2748
  /* if both values are trusted to be in their canonical serialised form
2749
   * then a simple memcmp() of their serialised data will answer the
2750
   * question.
2751
   *
2752
   * if not, then this might generate a false negative (since it is
2753
   * possible for two different byte sequences to represent the same
2754
   * value).  for now we solve this by pretty-printing both values and
2755
   * comparing the result.
2756
   */
2757
0
  if (g_variant_is_trusted ((GVariant *) one) &&
2758
0
      g_variant_is_trusted ((GVariant *) two))
2759
0
    {
2760
0
      gconstpointer data_one, data_two;
2761
0
      gsize size_one, size_two;
2762
2763
0
      size_one = g_variant_get_size ((GVariant *) one);
2764
0
      size_two = g_variant_get_size ((GVariant *) two);
2765
2766
0
      if (size_one != size_two)
2767
0
        return FALSE;
2768
2769
0
      data_one = g_variant_get_data ((GVariant *) one);
2770
0
      data_two = g_variant_get_data ((GVariant *) two);
2771
2772
0
      if (size_one)
2773
0
        equal = memcmp (data_one, data_two, size_one) == 0;
2774
0
      else
2775
0
        equal = TRUE;
2776
0
    }
2777
0
  else
2778
0
    {
2779
0
      gchar *strone, *strtwo;
2780
2781
0
      strone = g_variant_print ((GVariant *) one, FALSE);
2782
0
      strtwo = g_variant_print ((GVariant *) two, FALSE);
2783
0
      equal = strcmp (strone, strtwo) == 0;
2784
0
      g_free (strone);
2785
0
      g_free (strtwo);
2786
0
    }
2787
2788
0
  return equal;
2789
0
}
2790
2791
/**
2792
 * g_variant_compare:
2793
 * @one: (type GVariant): a basic-typed #GVariant instance
2794
 * @two: (type GVariant): a #GVariant instance of the same type
2795
 *
2796
 * Compares @one and @two.
2797
 *
2798
 * The types of @one and @two are #gconstpointer only to allow use of
2799
 * this function with #GTree, #GPtrArray, etc.  They must each be a
2800
 * #GVariant.
2801
 *
2802
 * Comparison is only defined for basic types (ie: booleans, numbers,
2803
 * strings).  For booleans, %FALSE is less than %TRUE.  Numbers are
2804
 * ordered in the usual way.  Strings are in ASCII lexographical order.
2805
 *
2806
 * It is a programmer error to attempt to compare container values or
2807
 * two values that have types that are not exactly equal.  For example,
2808
 * you cannot compare a 32-bit signed integer with a 32-bit unsigned
2809
 * integer.  Also note that this function is not particularly
2810
 * well-behaved when it comes to comparison of doubles; in particular,
2811
 * the handling of incomparable values (ie: NaN) is undefined.
2812
 *
2813
 * If you only require an equality comparison, g_variant_equal() is more
2814
 * general.
2815
 *
2816
 * Returns: negative value if a < b;
2817
 *          zero if a = b;
2818
 *          positive value if a > b.
2819
 *
2820
 * Since: 2.26
2821
 **/
2822
gint
2823
g_variant_compare (gconstpointer one,
2824
                   gconstpointer two)
2825
0
{
2826
0
  GVariant *a = (GVariant *) one;
2827
0
  GVariant *b = (GVariant *) two;
2828
2829
0
  g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
2830
2831
0
  switch (g_variant_classify (a))
2832
0
    {
2833
0
    case G_VARIANT_CLASS_BOOLEAN:
2834
0
      return g_variant_get_boolean (a) -
2835
0
             g_variant_get_boolean (b);
2836
2837
0
    case G_VARIANT_CLASS_BYTE:
2838
0
      return ((gint) g_variant_get_byte (a)) -
2839
0
             ((gint) g_variant_get_byte (b));
2840
2841
0
    case G_VARIANT_CLASS_INT16:
2842
0
      return ((gint) g_variant_get_int16 (a)) -
2843
0
             ((gint) g_variant_get_int16 (b));
2844
2845
0
    case G_VARIANT_CLASS_UINT16:
2846
0
      return ((gint) g_variant_get_uint16 (a)) -
2847
0
             ((gint) g_variant_get_uint16 (b));
2848
2849
0
    case G_VARIANT_CLASS_INT32:
2850
0
      {
2851
0
        gint32 a_val = g_variant_get_int32 (a);
2852
0
        gint32 b_val = g_variant_get_int32 (b);
2853
2854
0
        return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2855
0
      }
2856
2857
0
    case G_VARIANT_CLASS_UINT32:
2858
0
      {
2859
0
        guint32 a_val = g_variant_get_uint32 (a);
2860
0
        guint32 b_val = g_variant_get_uint32 (b);
2861
2862
0
        return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2863
0
      }
2864
2865
0
    case G_VARIANT_CLASS_INT64:
2866
0
      {
2867
0
        gint64 a_val = g_variant_get_int64 (a);
2868
0
        gint64 b_val = g_variant_get_int64 (b);
2869
2870
0
        return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2871
0
      }
2872
2873
0
    case G_VARIANT_CLASS_UINT64:
2874
0
      {
2875
0
        guint64 a_val = g_variant_get_uint64 (a);
2876
0
        guint64 b_val = g_variant_get_uint64 (b);
2877
2878
0
        return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2879
0
      }
2880
2881
0
    case G_VARIANT_CLASS_DOUBLE:
2882
0
      {
2883
0
        gdouble a_val = g_variant_get_double (a);
2884
0
        gdouble b_val = g_variant_get_double (b);
2885
2886
0
        return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2887
0
      }
2888
2889
0
    case G_VARIANT_CLASS_STRING:
2890
0
    case G_VARIANT_CLASS_OBJECT_PATH:
2891
0
    case G_VARIANT_CLASS_SIGNATURE:
2892
0
      return strcmp (g_variant_get_string (a, NULL),
2893
0
                     g_variant_get_string (b, NULL));
2894
2895
0
    default:
2896
0
      g_return_val_if_fail (!g_variant_is_container (a), 0);
2897
0
      g_assert_not_reached ();
2898
0
    }
2899
0
}
2900
2901
/* GVariantIter {{{1 */
2902
/**
2903
 * GVariantIter: (skip)
2904
 *
2905
 * #GVariantIter is an opaque data structure and can only be accessed
2906
 * using the following functions.
2907
 **/
2908
struct stack_iter
2909
{
2910
  GVariant *value;
2911
  gssize n, i;
2912
2913
  const gchar *loop_format;
2914
2915
  gsize padding[3];
2916
  gsize magic;
2917
};
2918
2919
G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
2920
2921
struct heap_iter
2922
{
2923
  struct stack_iter iter;
2924
2925
  GVariant *value_ref;
2926
  gsize magic;
2927
};
2928
2929
0
#define GVSI(i)                 ((struct stack_iter *) (i))
2930
0
#define GVHI(i)                 ((struct heap_iter *) (i))
2931
0
#define GVSI_MAGIC              ((gsize) 3579507750u)
2932
0
#define GVHI_MAGIC              ((gsize) 1450270775u)
2933
#define is_valid_iter(i)        (i != NULL && \
2934
                                 GVSI(i)->magic == GVSI_MAGIC)
2935
#define is_valid_heap_iter(i)   (is_valid_iter(i) && \
2936
                                 GVHI(i)->magic == GVHI_MAGIC)
2937
2938
/**
2939
 * g_variant_iter_new:
2940
 * @value: a container #GVariant
2941
 *
2942
 * Creates a heap-allocated #GVariantIter for iterating over the items
2943
 * in @value.
2944
 *
2945
 * Use g_variant_iter_free() to free the return value when you no longer
2946
 * need it.
2947
 *
2948
 * A reference is taken to @value and will be released only when
2949
 * g_variant_iter_free() is called.
2950
 *
2951
 * Returns: (transfer full): a new heap-allocated #GVariantIter
2952
 *
2953
 * Since: 2.24
2954
 **/
2955
GVariantIter *
2956
g_variant_iter_new (GVariant *value)
2957
0
{
2958
0
  GVariantIter *iter;
2959
2960
0
  iter = (GVariantIter *) g_slice_new (struct heap_iter);
2961
0
  GVHI(iter)->value_ref = g_variant_ref (value);
2962
0
  GVHI(iter)->magic = GVHI_MAGIC;
2963
2964
0
  g_variant_iter_init (iter, value);
2965
2966
0
  return iter;
2967
0
}
2968
2969
/**
2970
 * g_variant_iter_init: (skip)
2971
 * @iter: a pointer to a #GVariantIter
2972
 * @value: a container #GVariant
2973
 *
2974
 * Initialises (without allocating) a #GVariantIter.  @iter may be
2975
 * completely uninitialised prior to this call; its old value is
2976
 * ignored.
2977
 *
2978
 * The iterator remains valid for as long as @value exists, and need not
2979
 * be freed in any way.
2980
 *
2981
 * Returns: the number of items in @value
2982
 *
2983
 * Since: 2.24
2984
 **/
2985
gsize
2986
g_variant_iter_init (GVariantIter *iter,
2987
                     GVariant     *value)
2988
0
{
2989
0
  GVSI(iter)->magic = GVSI_MAGIC;
2990
0
  GVSI(iter)->value = value;
2991
0
  GVSI(iter)->n = g_variant_n_children (value);
2992
0
  GVSI(iter)->i = -1;
2993
0
  GVSI(iter)->loop_format = NULL;
2994
2995
0
  return GVSI(iter)->n;
2996
0
}
2997
2998
/**
2999
 * g_variant_iter_copy:
3000
 * @iter: a #GVariantIter
3001
 *
3002
 * Creates a new heap-allocated #GVariantIter to iterate over the
3003
 * container that was being iterated over by @iter.  Iteration begins on
3004
 * the new iterator from the current position of the old iterator but
3005
 * the two copies are independent past that point.
3006
 *
3007
 * Use g_variant_iter_free() to free the return value when you no longer
3008
 * need it.
3009
 *
3010
 * A reference is taken to the container that @iter is iterating over
3011
 * and will be related only when g_variant_iter_free() is called.
3012
 *
3013
 * Returns: (transfer full): a new heap-allocated #GVariantIter
3014
 *
3015
 * Since: 2.24
3016
 **/
3017
GVariantIter *
3018
g_variant_iter_copy (GVariantIter *iter)
3019
0
{
3020
0
  GVariantIter *copy;
3021
3022
0
  g_return_val_if_fail (is_valid_iter (iter), 0);
3023
3024
0
  copy = g_variant_iter_new (GVSI(iter)->value);
3025
0
  GVSI(copy)->i = GVSI(iter)->i;
3026
3027
0
  return copy;
3028
0
}
3029
3030
/**
3031
 * g_variant_iter_n_children:
3032
 * @iter: a #GVariantIter
3033
 *
3034
 * Queries the number of child items in the container that we are
3035
 * iterating over.  This is the total number of items -- not the number
3036
 * of items remaining.
3037
 *
3038
 * This function might be useful for preallocation of arrays.
3039
 *
3040
 * Returns: the number of children in the container
3041
 *
3042
 * Since: 2.24
3043
 **/
3044
gsize
3045
g_variant_iter_n_children (GVariantIter *iter)
3046
0
{
3047
0
  g_return_val_if_fail (is_valid_iter (iter), 0);
3048
3049
0
  return GVSI(iter)->n;
3050
0
}
3051
3052
/**
3053
 * g_variant_iter_free:
3054
 * @iter: (transfer full): a heap-allocated #GVariantIter
3055
 *
3056
 * Frees a heap-allocated #GVariantIter.  Only call this function on
3057
 * iterators that were returned by g_variant_iter_new() or
3058
 * g_variant_iter_copy().
3059
 *
3060
 * Since: 2.24
3061
 **/
3062
void
3063
g_variant_iter_free (GVariantIter *iter)
3064
0
{
3065
0
  g_return_if_fail (is_valid_heap_iter (iter));
3066
3067
0
  g_variant_unref (GVHI(iter)->value_ref);
3068
0
  GVHI(iter)->magic = 0;
3069
3070
0
  g_slice_free (struct heap_iter, GVHI(iter));
3071
0
}
3072
3073
/**
3074
 * g_variant_iter_next_value:
3075
 * @iter: a #GVariantIter
3076
 *
3077
 * Gets the next item in the container.  If no more items remain then
3078
 * %NULL is returned.
3079
 *
3080
 * Use g_variant_unref() to drop your reference on the return value when
3081
 * you no longer need it.
3082
 *
3083
 * Here is an example for iterating with g_variant_iter_next_value():
3084
 * |[<!-- language="C" --> 
3085
 *   // recursively iterate a container
3086
 *   void
3087
 *   iterate_container_recursive (GVariant *container)
3088
 *   {
3089
 *     GVariantIter iter;
3090
 *     GVariant *child;
3091
 *
3092
 *     g_variant_iter_init (&iter, container);
3093
 *     while ((child = g_variant_iter_next_value (&iter)))
3094
 *       {
3095
 *         g_print ("type '%s'\n", g_variant_get_type_string (child));
3096
 *
3097
 *         if (g_variant_is_container (child))
3098
 *           iterate_container_recursive (child);
3099
 *
3100
 *         g_variant_unref (child);
3101
 *       }
3102
 *   }
3103
 * ]|
3104
 *
3105
 * Returns: (nullable) (transfer full): a #GVariant, or %NULL
3106
 *
3107
 * Since: 2.24
3108
 **/
3109
GVariant *
3110
g_variant_iter_next_value (GVariantIter *iter)
3111
0
{
3112
0
  g_return_val_if_fail (is_valid_iter (iter), FALSE);
3113
3114
0
  if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
3115
0
    {
3116
0
      g_critical ("g_variant_iter_next_value: must not be called again "
3117
0
                  "after NULL has already been returned.");
3118
0
      return NULL;
3119
0
    }
3120
3121
0
  GVSI(iter)->i++;
3122
3123
0
  if (GVSI(iter)->i < GVSI(iter)->n)
3124
0
    return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
3125
3126
0
  return NULL;
3127
0
}
3128
3129
/* GVariantBuilder {{{1 */
3130
/**
3131
 * GVariantBuilder:
3132
 *
3133
 * A utility type for constructing container-type #GVariant instances.
3134
 *
3135
 * This is an opaque structure and may only be accessed using the
3136
 * following functions.
3137
 *
3138
 * #GVariantBuilder is not threadsafe in any way.  Do not attempt to
3139
 * access it from more than one thread.
3140
 **/
3141
3142
struct stack_builder
3143
{
3144
  GVariantBuilder *parent;
3145
  GVariantType *type;
3146
3147
  /* type constraint explicitly specified by 'type'.
3148
   * for tuple types, this moves along as we add more items.
3149
   */
3150
  const GVariantType *expected_type;
3151
3152
  /* type constraint implied by previous array item.
3153
   */
3154
  const GVariantType *prev_item_type;
3155
3156
  /* constraints on the number of children.  max = -1 for unlimited. */
3157
  gsize min_items;
3158
  gsize max_items;
3159
3160
  /* dynamically-growing pointer array */
3161
  GVariant **children;
3162
  gsize allocated_children;
3163
  gsize offset;
3164
3165
  /* set to '1' if all items in the container will have the same type
3166
   * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
3167
   */
3168
  guint uniform_item_types : 1;
3169
3170
  /* set to '1' initially and changed to '0' if an untrusted value is
3171
   * added
3172
   */
3173
  guint trusted : 1;
3174
3175
  gsize magic;
3176
};
3177
3178
G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
3179
3180
struct heap_builder
3181
{
3182
  GVariantBuilder builder;
3183
  gsize magic;
3184
3185
  gint ref_count;
3186
};
3187
3188
0
#define GVSB(b)                  ((struct stack_builder *) (b))
3189
0
#define GVHB(b)                  ((struct heap_builder *) (b))
3190
0
#define GVSB_MAGIC               ((gsize) 1033660112u)
3191
0
#define GVSB_MAGIC_PARTIAL       ((gsize) 2942751021u)
3192
0
#define GVHB_MAGIC               ((gsize) 3087242682u)
3193
0
#define is_valid_builder(b)      (b != NULL && \
3194
0
                                  GVSB(b)->magic == GVSB_MAGIC)
3195
#define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
3196
3197
/* Just to make sure that by adding a union to GVariantBuilder, we
3198
 * didn't accidentally change ABI. */
3199
G_STATIC_ASSERT (sizeof (GVariantBuilder) == sizeof (gsize[16]));
3200
3201
static gboolean
3202
ensure_valid_builder (GVariantBuilder *builder)
3203
0
{
3204
0
  if (is_valid_builder (builder))
3205
0
    return TRUE;
3206
0
  if (builder->u.s.partial_magic == GVSB_MAGIC_PARTIAL)
3207
0
    {
3208
0
      static GVariantBuilder cleared_builder;
3209
3210
      /* Make sure that only first two fields were set and the rest is
3211
       * zeroed to avoid messing up the builder that had parent
3212
       * address equal to GVSB_MAGIC_PARTIAL. */
3213
0
      if (memcmp (cleared_builder.u.s.y, builder->u.s.y, sizeof cleared_builder.u.s.y))
3214
0
        return FALSE;
3215
3216
0
      g_variant_builder_init (builder, builder->u.s.type);
3217
0
    }
3218
0
  return is_valid_builder (builder);
3219
0
}
3220
3221
/**
3222
 * g_variant_builder_new:
3223
 * @type: a container type
3224
 *
3225
 * Allocates and initialises a new #GVariantBuilder.
3226
 *
3227
 * You should call g_variant_builder_unref() on the return value when it
3228
 * is no longer needed.  The memory will not be automatically freed by
3229
 * any other call.
3230
 *
3231
 * In most cases it is easier to place a #GVariantBuilder directly on
3232
 * the stack of the calling function and initialise it with
3233
 * g_variant_builder_init().
3234
 *
3235
 * Returns: (transfer full): a #GVariantBuilder
3236
 *
3237
 * Since: 2.24
3238
 **/
3239
GVariantBuilder *
3240
g_variant_builder_new (const GVariantType *type)
3241
0
{
3242
0
  GVariantBuilder *builder;
3243
3244
0
  builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
3245
0
  g_variant_builder_init (builder, type);
3246
0
  GVHB(builder)->magic = GVHB_MAGIC;
3247
0
  GVHB(builder)->ref_count = 1;
3248
3249
0
  return builder;
3250
0
}
3251
3252
/**
3253
 * g_variant_builder_unref:
3254
 * @builder: (transfer full): a #GVariantBuilder allocated by g_variant_builder_new()
3255
 *
3256
 * Decreases the reference count on @builder.
3257
 *
3258
 * In the event that there are no more references, releases all memory
3259
 * associated with the #GVariantBuilder.
3260
 *
3261
 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3262
 * things will happen.
3263
 *
3264
 * Since: 2.24
3265
 **/
3266
void
3267
g_variant_builder_unref (GVariantBuilder *builder)
3268
0
{
3269
0
  g_return_if_fail (is_valid_heap_builder (builder));
3270
3271
0
  if (--GVHB(builder)->ref_count)
3272
0
    return;
3273
3274
0
  g_variant_builder_clear (builder);
3275
0
  GVHB(builder)->magic = 0;
3276
3277
0
  g_slice_free (struct heap_builder, GVHB(builder));
3278
0
}
3279
3280
/**
3281
 * g_variant_builder_ref:
3282
 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
3283
 *
3284
 * Increases the reference count on @builder.
3285
 *
3286
 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3287
 * things will happen.
3288
 *
3289
 * Returns: (transfer full): a new reference to @builder
3290
 *
3291
 * Since: 2.24
3292
 **/
3293
GVariantBuilder *
3294
g_variant_builder_ref (GVariantBuilder *builder)
3295
0
{
3296
0
  g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
3297
3298
0
  GVHB(builder)->ref_count++;
3299
3300
0
  return builder;
3301
0
}
3302
3303
/**
3304
 * g_variant_builder_clear: (skip)
3305
 * @builder: a #GVariantBuilder
3306
 *
3307
 * Releases all memory associated with a #GVariantBuilder without
3308
 * freeing the #GVariantBuilder structure itself.
3309
 *
3310
 * It typically only makes sense to do this on a stack-allocated
3311
 * #GVariantBuilder if you want to abort building the value part-way
3312
 * through.  This function need not be called if you call
3313
 * g_variant_builder_end() and it also doesn't need to be called on
3314
 * builders allocated with g_variant_builder_new() (see
3315
 * g_variant_builder_unref() for that).
3316
 *
3317
 * This function leaves the #GVariantBuilder structure set to all-zeros.
3318
 * It is valid to call this function on either an initialised
3319
 * #GVariantBuilder or one that is set to all-zeros but it is not valid
3320
 * to call this function on uninitialised memory.
3321
 *
3322
 * Since: 2.24
3323
 **/
3324
void
3325
g_variant_builder_clear (GVariantBuilder *builder)
3326
0
{
3327
0
  gsize i;
3328
3329
0
  if (GVSB(builder)->magic == 0)
3330
    /* all-zeros or partial case */
3331
0
    return;
3332
3333
0
  g_return_if_fail (ensure_valid_builder (builder));
3334
3335
0
  g_variant_type_free (GVSB(builder)->type);
3336
3337
0
  for (i = 0; i < GVSB(builder)->offset; i++)
3338
0
    g_variant_unref (GVSB(builder)->children[i]);
3339
3340
0
  g_free (GVSB(builder)->children);
3341
3342
0
  if (GVSB(builder)->parent)
3343
0
    {
3344
0
      g_variant_builder_clear (GVSB(builder)->parent);
3345
0
      g_slice_free (GVariantBuilder, GVSB(builder)->parent);
3346
0
    }
3347
3348
0
  memset (builder, 0, sizeof (GVariantBuilder));
3349
0
}
3350
3351
/**
3352
 * g_variant_builder_init: (skip)
3353
 * @builder: a #GVariantBuilder
3354
 * @type: a container type
3355
 *
3356
 * Initialises a #GVariantBuilder structure.
3357
 *
3358
 * @type must be non-%NULL.  It specifies the type of container to
3359
 * construct.  It can be an indefinite type such as
3360
 * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
3361
 * Maybe, array, tuple, dictionary entry and variant-typed values may be
3362
 * constructed.
3363
 *
3364
 * After the builder is initialised, values are added using
3365
 * g_variant_builder_add_value() or g_variant_builder_add().
3366
 *
3367
 * After all the child values are added, g_variant_builder_end() frees
3368
 * the memory associated with the builder and returns the #GVariant that
3369
 * was created.
3370
 *
3371
 * This function completely ignores the previous contents of @builder.
3372
 * On one hand this means that it is valid to pass in completely
3373
 * uninitialised memory.  On the other hand, this means that if you are
3374
 * initialising over top of an existing #GVariantBuilder you need to
3375
 * first call g_variant_builder_clear() in order to avoid leaking
3376
 * memory.
3377
 *
3378
 * You must not call g_variant_builder_ref() or
3379
 * g_variant_builder_unref() on a #GVariantBuilder that was initialised
3380
 * with this function.  If you ever pass a reference to a
3381
 * #GVariantBuilder outside of the control of your own code then you
3382
 * should assume that the person receiving that reference may try to use
3383
 * reference counting; you should use g_variant_builder_new() instead of
3384
 * this function.
3385
 *
3386
 * Since: 2.24
3387
 **/
3388
void
3389
g_variant_builder_init (GVariantBuilder    *builder,
3390
                        const GVariantType *type)
3391
0
{
3392
0
  g_return_if_fail (type != NULL);
3393
0
  g_return_if_fail (g_variant_type_is_container (type));
3394
3395
0
  memset (builder, 0, sizeof (GVariantBuilder));
3396
3397
0
  GVSB(builder)->type = g_variant_type_copy (type);
3398
0
  GVSB(builder)->magic = GVSB_MAGIC;
3399
0
  GVSB(builder)->trusted = TRUE;
3400
3401
0
  switch (*(const gchar *) type)
3402
0
    {
3403
0
    case G_VARIANT_CLASS_VARIANT:
3404
0
      GVSB(builder)->uniform_item_types = TRUE;
3405
0
      GVSB(builder)->allocated_children = 1;
3406
0
      GVSB(builder)->expected_type = NULL;
3407
0
      GVSB(builder)->min_items = 1;
3408
0
      GVSB(builder)->max_items = 1;
3409
0
      break;
3410
3411
0
    case G_VARIANT_CLASS_ARRAY:
3412
0
      GVSB(builder)->uniform_item_types = TRUE;
3413
0
      GVSB(builder)->allocated_children = 8;
3414
0
      GVSB(builder)->expected_type =
3415
0
        g_variant_type_element (GVSB(builder)->type);
3416
0
      GVSB(builder)->min_items = 0;
3417
0
      GVSB(builder)->max_items = -1;
3418
0
      break;
3419
3420
0
    case G_VARIANT_CLASS_MAYBE:
3421
0
      GVSB(builder)->uniform_item_types = TRUE;
3422
0
      GVSB(builder)->allocated_children = 1;
3423
0
      GVSB(builder)->expected_type =
3424
0
        g_variant_type_element (GVSB(builder)->type);
3425
0
      GVSB(builder)->min_items = 0;
3426
0
      GVSB(builder)->max_items = 1;
3427
0
      break;
3428
3429
0
    case G_VARIANT_CLASS_DICT_ENTRY:
3430
0
      GVSB(builder)->uniform_item_types = FALSE;
3431
0
      GVSB(builder)->allocated_children = 2;
3432
0
      GVSB(builder)->expected_type =
3433
0
        g_variant_type_key (GVSB(builder)->type);
3434
0
      GVSB(builder)->min_items = 2;
3435
0
      GVSB(builder)->max_items = 2;
3436
0
      break;
3437
3438
0
    case 'r': /* G_VARIANT_TYPE_TUPLE was given */
3439
0
      GVSB(builder)->uniform_item_types = FALSE;
3440
0
      GVSB(builder)->allocated_children = 8;
3441
0
      GVSB(builder)->expected_type = NULL;
3442
0
      GVSB(builder)->min_items = 0;
3443
0
      GVSB(builder)->max_items = -1;
3444
0
      break;
3445
3446
0
    case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
3447
0
      GVSB(builder)->allocated_children = g_variant_type_n_items (type);
3448
0
      GVSB(builder)->expected_type =
3449
0
        g_variant_type_first (GVSB(builder)->type);
3450
0
      GVSB(builder)->min_items = GVSB(builder)->allocated_children;
3451
0
      GVSB(builder)->max_items = GVSB(builder)->allocated_children;
3452
0
      GVSB(builder)->uniform_item_types = FALSE;
3453
0
      break;
3454
3455
0
    default:
3456
0
      g_assert_not_reached ();
3457
0
   }
3458
3459
0
  GVSB(builder)->children = g_new (GVariant *,
3460
0
                                   GVSB(builder)->allocated_children);
3461
0
}
3462
3463
static void
3464
g_variant_builder_make_room (struct stack_builder *builder)
3465
0
{
3466
0
  if (builder->offset == builder->allocated_children)
3467
0
    {
3468
0
      builder->allocated_children *= 2;
3469
0
      builder->children = g_renew (GVariant *, builder->children,
3470
0
                                   builder->allocated_children);
3471
0
    }
3472
0
}
3473
3474
/**
3475
 * g_variant_builder_add_value:
3476
 * @builder: a #GVariantBuilder
3477
 * @value: a #GVariant
3478
 *
3479
 * Adds @value to @builder.
3480
 *
3481
 * It is an error to call this function in any way that would create an
3482
 * inconsistent value to be constructed.  Some examples of this are
3483
 * putting different types of items into an array, putting the wrong
3484
 * types or number of items in a tuple, putting more than one value into
3485
 * a variant, etc.
3486
 *
3487
 * If @value is a floating reference (see g_variant_ref_sink()),
3488
 * the @builder instance takes ownership of @value.
3489
 *
3490
 * Since: 2.24
3491
 **/
3492
void
3493
g_variant_builder_add_value (GVariantBuilder *builder,
3494
                             GVariant        *value)
3495
0
{
3496
0
  g_return_if_fail (ensure_valid_builder (builder));
3497
0
  g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3498
0
  g_return_if_fail (!GVSB(builder)->expected_type ||
3499
0
                    g_variant_is_of_type (value,
3500
0
                                          GVSB(builder)->expected_type));
3501
0
  g_return_if_fail (!GVSB(builder)->prev_item_type ||
3502
0
                    g_variant_is_of_type (value,
3503
0
                                          GVSB(builder)->prev_item_type));
3504
3505
0
  GVSB(builder)->trusted &= g_variant_is_trusted (value);
3506
3507
0
  if (!GVSB(builder)->uniform_item_types)
3508
0
    {
3509
      /* advance our expected type pointers */
3510
0
      if (GVSB(builder)->expected_type)
3511
0
        GVSB(builder)->expected_type =
3512
0
          g_variant_type_next (GVSB(builder)->expected_type);
3513
3514
0
      if (GVSB(builder)->prev_item_type)
3515
0
        GVSB(builder)->prev_item_type =
3516
0
          g_variant_type_next (GVSB(builder)->prev_item_type);
3517
0
    }
3518
0
  else
3519
0
    GVSB(builder)->prev_item_type = g_variant_get_type (value);
3520
3521
0
  g_variant_builder_make_room (GVSB(builder));
3522
3523
0
  GVSB(builder)->children[GVSB(builder)->offset++] =
3524
0
    g_variant_ref_sink (value);
3525
0
}
3526
3527
/**
3528
 * g_variant_builder_open:
3529
 * @builder: a #GVariantBuilder
3530
 * @type: the #GVariantType of the container
3531
 *
3532
 * Opens a subcontainer inside the given @builder.  When done adding
3533
 * items to the subcontainer, g_variant_builder_close() must be called. @type
3534
 * is the type of the container: so to build a tuple of several values, @type
3535
 * must include the tuple itself.
3536
 *
3537
 * It is an error to call this function in any way that would cause an
3538
 * inconsistent value to be constructed (ie: adding too many values or
3539
 * a value of an incorrect type).
3540
 *
3541
 * Example of building a nested variant:
3542
 * |[<!-- language="C" -->
3543
 * GVariantBuilder builder;
3544
 * guint32 some_number = get_number ();
3545
 * g_autoptr (GHashTable) some_dict = get_dict ();
3546
 * GHashTableIter iter;
3547
 * const gchar *key;
3548
 * const GVariant *value;
3549
 * g_autoptr (GVariant) output = NULL;
3550
 *
3551
 * g_variant_builder_init (&builder, G_VARIANT_TYPE ("(ua{sv})"));
3552
 * g_variant_builder_add (&builder, "u", some_number);
3553
 * g_variant_builder_open (&builder, G_VARIANT_TYPE ("a{sv}"));
3554
 *
3555
 * g_hash_table_iter_init (&iter, some_dict);
3556
 * while (g_hash_table_iter_next (&iter, (gpointer *) &key, (gpointer *) &value))
3557
 *   {
3558
 *     g_variant_builder_open (&builder, G_VARIANT_TYPE ("{sv}"));
3559
 *     g_variant_builder_add (&builder, "s", key);
3560
 *     g_variant_builder_add (&builder, "v", value);
3561
 *     g_variant_builder_close (&builder);
3562
 *   }
3563
 *
3564
 * g_variant_builder_close (&builder);
3565
 *
3566
 * output = g_variant_builder_end (&builder);
3567
 * ]|
3568
 *
3569
 * Since: 2.24
3570
 **/
3571
void
3572
g_variant_builder_open (GVariantBuilder    *builder,
3573
                        const GVariantType *type)
3574
0
{
3575
0
  GVariantBuilder *parent;
3576
3577
0
  g_return_if_fail (ensure_valid_builder (builder));
3578
0
  g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3579
0
  g_return_if_fail (!GVSB(builder)->expected_type ||
3580
0
                    g_variant_type_is_subtype_of (type,
3581
0
                                                  GVSB(builder)->expected_type));
3582
0
  g_return_if_fail (!GVSB(builder)->prev_item_type ||
3583
0
                    g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
3584
0
                                                  type));
3585
3586
0
  parent = g_slice_dup (GVariantBuilder, builder);
3587
0
  g_variant_builder_init (builder, type);
3588
0
  GVSB(builder)->parent = parent;
3589
3590
  /* push the prev_item_type down into the subcontainer */
3591
0
  if (GVSB(parent)->prev_item_type)
3592
0
    {
3593
0
      if (!GVSB(builder)->uniform_item_types)
3594
        /* tuples and dict entries */
3595
0
        GVSB(builder)->prev_item_type =
3596
0
          g_variant_type_first (GVSB(parent)->prev_item_type);
3597
3598
0
      else if (!g_variant_type_is_variant (GVSB(builder)->type))
3599
        /* maybes and arrays */
3600
0
        GVSB(builder)->prev_item_type =
3601
0
          g_variant_type_element (GVSB(parent)->prev_item_type);
3602
0
    }
3603
0
}
3604
3605
/**
3606
 * g_variant_builder_close:
3607
 * @builder: a #GVariantBuilder
3608
 *
3609
 * Closes the subcontainer inside the given @builder that was opened by
3610
 * the most recent call to g_variant_builder_open().
3611
 *
3612
 * It is an error to call this function in any way that would create an
3613
 * inconsistent value to be constructed (ie: too few values added to the
3614
 * subcontainer).
3615
 *
3616
 * Since: 2.24
3617
 **/
3618
void
3619
g_variant_builder_close (GVariantBuilder *builder)
3620
0
{
3621
0
  GVariantBuilder *parent;
3622
3623
0
  g_return_if_fail (ensure_valid_builder (builder));
3624
0
  g_return_if_fail (GVSB(builder)->parent != NULL);
3625
3626
0
  parent = GVSB(builder)->parent;
3627
0
  GVSB(builder)->parent = NULL;
3628
3629
0
  g_variant_builder_add_value (parent, g_variant_builder_end (builder));
3630
0
  *builder = *parent;
3631
3632
0
  g_slice_free (GVariantBuilder, parent);
3633
0
}
3634
3635
/*< private >
3636
 * g_variant_make_maybe_type:
3637
 * @element: a #GVariant
3638
 *
3639
 * Return the type of a maybe containing @element.
3640
 */
3641
static GVariantType *
3642
g_variant_make_maybe_type (GVariant *element)
3643
0
{
3644
0
  return g_variant_type_new_maybe (g_variant_get_type (element));
3645
0
}
3646
3647
/*< private >
3648
 * g_variant_make_array_type:
3649
 * @element: a #GVariant
3650
 *
3651
 * Return the type of an array containing @element.
3652
 */
3653
static GVariantType *
3654
g_variant_make_array_type (GVariant *element)
3655
0
{
3656
0
  return g_variant_type_new_array (g_variant_get_type (element));
3657
0
}
3658
3659
/**
3660
 * g_variant_builder_end:
3661
 * @builder: a #GVariantBuilder
3662
 *
3663
 * Ends the builder process and returns the constructed value.
3664
 *
3665
 * It is not permissible to use @builder in any way after this call
3666
 * except for reference counting operations (in the case of a
3667
 * heap-allocated #GVariantBuilder) or by reinitialising it with
3668
 * g_variant_builder_init() (in the case of stack-allocated). This
3669
 * means that for the stack-allocated builders there is no need to
3670
 * call g_variant_builder_clear() after the call to
3671
 * g_variant_builder_end().
3672
 *
3673
 * It is an error to call this function in any way that would create an
3674
 * inconsistent value to be constructed (ie: insufficient number of
3675
 * items added to a container with a specific number of children
3676
 * required).  It is also an error to call this function if the builder
3677
 * was created with an indefinite array or maybe type and no children
3678
 * have been added; in this case it is impossible to infer the type of
3679
 * the empty array.
3680
 *
3681
 * Returns: (transfer none): a new, floating, #GVariant
3682
 *
3683
 * Since: 2.24
3684
 **/
3685
GVariant *
3686
g_variant_builder_end (GVariantBuilder *builder)
3687
0
{
3688
0
  GVariantType *my_type;
3689
0
  GVariant *value;
3690
3691
0
  g_return_val_if_fail (ensure_valid_builder (builder), NULL);
3692
0
  g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
3693
0
                        NULL);
3694
0
  g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
3695
0
                        GVSB(builder)->prev_item_type != NULL ||
3696
0
                        g_variant_type_is_definite (GVSB(builder)->type),
3697
0
                        NULL);
3698
3699
0
  if (g_variant_type_is_definite (GVSB(builder)->type))
3700
0
    my_type = g_variant_type_copy (GVSB(builder)->type);
3701
3702
0
  else if (g_variant_type_is_maybe (GVSB(builder)->type))
3703
0
    my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
3704
3705
0
  else if (g_variant_type_is_array (GVSB(builder)->type))
3706
0
    my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
3707
3708
0
  else if (g_variant_type_is_tuple (GVSB(builder)->type))
3709
0
    my_type = g_variant_make_tuple_type (GVSB(builder)->children,
3710
0
                                         GVSB(builder)->offset);
3711
3712
0
  else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
3713
0
    my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
3714
0
                                              GVSB(builder)->children[1]);
3715
0
  else
3716
0
    g_assert_not_reached ();
3717
3718
0
  value = g_variant_new_from_children (my_type,
3719
0
                                       g_renew (GVariant *,
3720
0
                                                GVSB(builder)->children,
3721
0
                                                GVSB(builder)->offset),
3722
0
                                       GVSB(builder)->offset,
3723
0
                                       GVSB(builder)->trusted);
3724
0
  GVSB(builder)->children = NULL;
3725
0
  GVSB(builder)->offset = 0;
3726
3727
0
  g_variant_builder_clear (builder);
3728
0
  g_variant_type_free (my_type);
3729
3730
0
  return value;
3731
0
}
3732
3733
/* GVariantDict {{{1 */
3734
3735
/**
3736
 * GVariantDict:
3737
 *
3738
 * #GVariantDict is a mutable interface to #GVariant dictionaries.
3739
 *
3740
 * It can be used for doing a sequence of dictionary lookups in an
3741
 * efficient way on an existing #GVariant dictionary or it can be used
3742
 * to construct new dictionaries with a hashtable-like interface.  It
3743
 * can also be used for taking existing dictionaries and modifying them
3744
 * in order to create new ones.
3745
 *
3746
 * #GVariantDict can only be used with %G_VARIANT_TYPE_VARDICT
3747
 * dictionaries.
3748
 *
3749
 * It is possible to use #GVariantDict allocated on the stack or on the
3750
 * heap.  When using a stack-allocated #GVariantDict, you begin with a
3751
 * call to g_variant_dict_init() and free the resources with a call to
3752
 * g_variant_dict_clear().
3753
 *
3754
 * Heap-allocated #GVariantDict follows normal refcounting rules: you
3755
 * allocate it with g_variant_dict_new() and use g_variant_dict_ref()
3756
 * and g_variant_dict_unref().
3757
 *
3758
 * g_variant_dict_end() is used to convert the #GVariantDict back into a
3759
 * dictionary-type #GVariant.  When used with stack-allocated instances,
3760
 * this also implicitly frees all associated memory, but for
3761
 * heap-allocated instances, you must still call g_variant_dict_unref()
3762
 * afterwards.
3763
 *
3764
 * You will typically want to use a heap-allocated #GVariantDict when
3765
 * you expose it as part of an API.  For most other uses, the
3766
 * stack-allocated form will be more convenient.
3767
 *
3768
 * Consider the following two examples that do the same thing in each
3769
 * style: take an existing dictionary and look up the "count" uint32
3770
 * key, adding 1 to it if it is found, or returning an error if the
3771
 * key is not found.  Each returns the new dictionary as a floating
3772
 * #GVariant.
3773
 *
3774
 * ## Using a stack-allocated GVariantDict
3775
 *
3776
 * |[<!-- language="C" -->
3777
 *   GVariant *
3778
 *   add_to_count (GVariant  *orig,
3779
 *                 GError   **error)
3780
 *   {
3781
 *     GVariantDict dict;
3782
 *     guint32 count;
3783
 *
3784
 *     g_variant_dict_init (&dict, orig);
3785
 *     if (!g_variant_dict_lookup (&dict, "count", "u", &count))
3786
 *       {
3787
 *         g_set_error (...);
3788
 *         g_variant_dict_clear (&dict);
3789
 *         return NULL;
3790
 *       }
3791
 *
3792
 *     g_variant_dict_insert (&dict, "count", "u", count + 1);
3793
 *
3794
 *     return g_variant_dict_end (&dict);
3795
 *   }
3796
 * ]|
3797
 *
3798
 * ## Using heap-allocated GVariantDict
3799
 *
3800
 * |[<!-- language="C" -->
3801
 *   GVariant *
3802
 *   add_to_count (GVariant  *orig,
3803
 *                 GError   **error)
3804
 *   {
3805
 *     GVariantDict *dict;
3806
 *     GVariant *result;
3807
 *     guint32 count;
3808
 *
3809
 *     dict = g_variant_dict_new (orig);
3810
 *
3811
 *     if (g_variant_dict_lookup (dict, "count", "u", &count))
3812
 *       {
3813
 *         g_variant_dict_insert (dict, "count", "u", count + 1);
3814
 *         result = g_variant_dict_end (dict);
3815
 *       }
3816
 *     else
3817
 *       {
3818
 *         g_set_error (...);
3819
 *         result = NULL;
3820
 *       }
3821
 *
3822
 *     g_variant_dict_unref (dict);
3823
 *
3824
 *     return result;
3825
 *   }
3826
 * ]|
3827
 *
3828
 * Since: 2.40
3829
 **/
3830
struct stack_dict
3831
{
3832
  GHashTable *values;
3833
  gsize magic;
3834
};
3835
3836
G_STATIC_ASSERT (sizeof (struct stack_dict) <= sizeof (GVariantDict));
3837
3838
struct heap_dict
3839
{
3840
  struct stack_dict dict;
3841
  gint ref_count;
3842
  gsize magic;
3843
};
3844
3845
0
#define GVSD(d)                 ((struct stack_dict *) (d))
3846
0
#define GVHD(d)                 ((struct heap_dict *) (d))
3847
0
#define GVSD_MAGIC              ((gsize) 2579507750u)
3848
0
#define GVSD_MAGIC_PARTIAL      ((gsize) 3488698669u)
3849
0
#define GVHD_MAGIC              ((gsize) 2450270775u)
3850
0
#define is_valid_dict(d)        (d != NULL && \
3851
0
                                 GVSD(d)->magic == GVSD_MAGIC)
3852
#define is_valid_heap_dict(d)   (GVHD(d)->magic == GVHD_MAGIC)
3853
3854
/* Just to make sure that by adding a union to GVariantDict, we didn't
3855
 * accidentally change ABI. */
3856
G_STATIC_ASSERT (sizeof (GVariantDict) == sizeof (gsize[16]));
3857
3858
static gboolean
3859
ensure_valid_dict (GVariantDict *dict)
3860
0
{
3861
0
  if (is_valid_dict (dict))
3862
0
    return TRUE;
3863
0
  if (dict->u.s.partial_magic == GVSD_MAGIC_PARTIAL)
3864
0
    {
3865
0
      static GVariantDict cleared_dict;
3866
3867
      /* Make sure that only first two fields were set and the rest is
3868
       * zeroed to avoid messing up the builder that had parent
3869
       * address equal to GVSB_MAGIC_PARTIAL. */
3870
0
      if (memcmp (cleared_dict.u.s.y, dict->u.s.y, sizeof cleared_dict.u.s.y))
3871
0
        return FALSE;
3872
3873
0
      g_variant_dict_init (dict, dict->u.s.asv);
3874
0
    }
3875
0
  return is_valid_dict (dict);
3876
0
}
3877
3878
/**
3879
 * g_variant_dict_new:
3880
 * @from_asv: (nullable): the #GVariant with which to initialise the
3881
 *   dictionary
3882
 *
3883
 * Allocates and initialises a new #GVariantDict.
3884
 *
3885
 * You should call g_variant_dict_unref() on the return value when it
3886
 * is no longer needed.  The memory will not be automatically freed by
3887
 * any other call.
3888
 *
3889
 * In some cases it may be easier to place a #GVariantDict directly on
3890
 * the stack of the calling function and initialise it with
3891
 * g_variant_dict_init().  This is particularly useful when you are
3892
 * using #GVariantDict to construct a #GVariant.
3893
 *
3894
 * Returns: (transfer full): a #GVariantDict
3895
 *
3896
 * Since: 2.40
3897
 **/
3898
GVariantDict *
3899
g_variant_dict_new (GVariant *from_asv)
3900
0
{
3901
0
  GVariantDict *dict;
3902
3903
0
  dict = g_slice_alloc (sizeof (struct heap_dict));
3904
0
  g_variant_dict_init (dict, from_asv);
3905
0
  GVHD(dict)->magic = GVHD_MAGIC;
3906
0
  GVHD(dict)->ref_count = 1;
3907
3908
0
  return dict;
3909
0
}
3910
3911
/**
3912
 * g_variant_dict_init: (skip)
3913
 * @dict: a #GVariantDict
3914
 * @from_asv: (nullable): the initial value for @dict
3915
 *
3916
 * Initialises a #GVariantDict structure.
3917
 *
3918
 * If @from_asv is given, it is used to initialise the dictionary.
3919
 *
3920
 * This function completely ignores the previous contents of @dict.  On
3921
 * one hand this means that it is valid to pass in completely
3922
 * uninitialised memory.  On the other hand, this means that if you are
3923
 * initialising over top of an existing #GVariantDict you need to first
3924
 * call g_variant_dict_clear() in order to avoid leaking memory.
3925
 *
3926
 * You must not call g_variant_dict_ref() or g_variant_dict_unref() on a
3927
 * #GVariantDict that was initialised with this function.  If you ever
3928
 * pass a reference to a #GVariantDict outside of the control of your
3929
 * own code then you should assume that the person receiving that
3930
 * reference may try to use reference counting; you should use
3931
 * g_variant_dict_new() instead of this function.
3932
 *
3933
 * Since: 2.40
3934
 **/
3935
void
3936
g_variant_dict_init (GVariantDict *dict,
3937
                     GVariant     *from_asv)
3938
0
{
3939
0
  GVariantIter iter;
3940
0
  gchar *key;
3941
0
  GVariant *value;
3942
3943
0
  GVSD(dict)->values = g_hash_table_new_full (g_str_hash, g_str_equal, g_free, (GDestroyNotify) g_variant_unref);
3944
0
  GVSD(dict)->magic = GVSD_MAGIC;
3945
3946
0
  if (from_asv)
3947
0
    {
3948
0
      g_variant_iter_init (&iter, from_asv);
3949
0
      while (g_variant_iter_next (&iter, "{sv}", &key, &value))
3950
0
        g_hash_table_insert (GVSD(dict)->values, key, value);
3951
0
    }
3952
0
}
3953
3954
/**
3955
 * g_variant_dict_lookup:
3956
 * @dict: a #GVariantDict
3957
 * @key: the key to look up in the dictionary
3958
 * @format_string: a GVariant format string
3959
 * @...: the arguments to unpack the value into
3960
 *
3961
 * Looks up a value in a #GVariantDict.
3962
 *
3963
 * This function is a wrapper around g_variant_dict_lookup_value() and
3964
 * g_variant_get().  In the case that %NULL would have been returned,
3965
 * this function returns %FALSE.  Otherwise, it unpacks the returned
3966
 * value and returns %TRUE.
3967
 *
3968
 * @format_string determines the C types that are used for unpacking the
3969
 * values and also determines if the values are copied or borrowed, see the
3970
 * section on [GVariant format strings][gvariant-format-strings-pointers].
3971
 *
3972
 * Returns: %TRUE if a value was unpacked
3973
 *
3974
 * Since: 2.40
3975
 **/
3976
gboolean
3977
g_variant_dict_lookup (GVariantDict *dict,
3978
                       const gchar  *key,
3979
                       const gchar  *format_string,
3980
                       ...)
3981
0
{
3982
0
  GVariant *value;
3983
0
  va_list ap;
3984
3985
0
  g_return_val_if_fail (ensure_valid_dict (dict), FALSE);
3986
0
  g_return_val_if_fail (key != NULL, FALSE);
3987
0
  g_return_val_if_fail (format_string != NULL, FALSE);
3988
3989
0
  value = g_hash_table_lookup (GVSD(dict)->values, key);
3990
3991
0
  if (value == NULL || !g_variant_check_format_string (value, format_string, FALSE))
3992
0
    return FALSE;
3993
3994
0
  va_start (ap, format_string);
3995
0
  g_variant_get_va (value, format_string, NULL, &ap);
3996
0
  va_end (ap);
3997
3998
0
  return TRUE;
3999
0
}
4000
4001
/**
4002
 * g_variant_dict_lookup_value:
4003
 * @dict: a #GVariantDict
4004
 * @key: the key to look up in the dictionary
4005
 * @expected_type: (nullable): a #GVariantType, or %NULL
4006
 *
4007
 * Looks up a value in a #GVariantDict.
4008
 *
4009
 * If @key is not found in @dictionary, %NULL is returned.
4010
 *
4011
 * The @expected_type string specifies what type of value is expected.
4012
 * If the value associated with @key has a different type then %NULL is
4013
 * returned.
4014
 *
4015
 * If the key is found and the value has the correct type, it is
4016
 * returned.  If @expected_type was specified then any non-%NULL return
4017
 * value will have this type.
4018
 *
4019
 * Returns: (transfer full): the value of the dictionary key, or %NULL
4020
 *
4021
 * Since: 2.40
4022
 **/
4023
GVariant *
4024
g_variant_dict_lookup_value (GVariantDict       *dict,
4025
                             const gchar        *key,
4026
                             const GVariantType *expected_type)
4027
0
{
4028
0
  GVariant *result;
4029
4030
0
  g_return_val_if_fail (ensure_valid_dict (dict), NULL);
4031
0
  g_return_val_if_fail (key != NULL, NULL);
4032
4033
0
  result = g_hash_table_lookup (GVSD(dict)->values, key);
4034
4035
0
  if (result && (!expected_type || g_variant_is_of_type (result, expected_type)))
4036
0
    return g_variant_ref (result);
4037
4038
0
  return NULL;
4039
0
}
4040
4041
/**
4042
 * g_variant_dict_contains:
4043
 * @dict: a #GVariantDict
4044
 * @key: the key to look up in the dictionary
4045
 *
4046
 * Checks if @key exists in @dict.
4047
 *
4048
 * Returns: %TRUE if @key is in @dict
4049
 *
4050
 * Since: 2.40
4051
 **/
4052
gboolean
4053
g_variant_dict_contains (GVariantDict *dict,
4054
                         const gchar  *key)
4055
0
{
4056
0
  g_return_val_if_fail (ensure_valid_dict (dict), FALSE);
4057
0
  g_return_val_if_fail (key != NULL, FALSE);
4058
4059
0
  return g_hash_table_contains (GVSD(dict)->values, key);
4060
0
}
4061
4062
/**
4063
 * g_variant_dict_insert:
4064
 * @dict: a #GVariantDict
4065
 * @key: the key to insert a value for
4066
 * @format_string: a #GVariant varargs format string
4067
 * @...: arguments, as per @format_string
4068
 *
4069
 * Inserts a value into a #GVariantDict.
4070
 *
4071
 * This call is a convenience wrapper that is exactly equivalent to
4072
 * calling g_variant_new() followed by g_variant_dict_insert_value().
4073
 *
4074
 * Since: 2.40
4075
 **/
4076
void
4077
g_variant_dict_insert (GVariantDict *dict,
4078
                       const gchar  *key,
4079
                       const gchar  *format_string,
4080
                       ...)
4081
0
{
4082
0
  va_list ap;
4083
4084
0
  g_return_if_fail (ensure_valid_dict (dict));
4085
0
  g_return_if_fail (key != NULL);
4086
0
  g_return_if_fail (format_string != NULL);
4087
4088
0
  va_start (ap, format_string);
4089
0
  g_variant_dict_insert_value (dict, key, g_variant_new_va (format_string, NULL, &ap));
4090
0
  va_end (ap);
4091
0
}
4092
4093
/**
4094
 * g_variant_dict_insert_value:
4095
 * @dict: a #GVariantDict
4096
 * @key: the key to insert a value for
4097
 * @value: the value to insert
4098
 *
4099
 * Inserts (or replaces) a key in a #GVariantDict.
4100
 *
4101
 * @value is consumed if it is floating.
4102
 *
4103
 * Since: 2.40
4104
 **/
4105
void
4106
g_variant_dict_insert_value (GVariantDict *dict,
4107
                             const gchar  *key,
4108
                             GVariant     *value)
4109
0
{
4110
0
  g_return_if_fail (ensure_valid_dict (dict));
4111
0
  g_return_if_fail (key != NULL);
4112
0
  g_return_if_fail (value != NULL);
4113
4114
0
  g_hash_table_insert (GVSD(dict)->values, g_strdup (key), g_variant_ref_sink (value));
4115
0
}
4116
4117
/**
4118
 * g_variant_dict_remove:
4119
 * @dict: a #GVariantDict
4120
 * @key: the key to remove
4121
 *
4122
 * Removes a key and its associated value from a #GVariantDict.
4123
 *
4124
 * Returns: %TRUE if the key was found and removed
4125
 *
4126
 * Since: 2.40
4127
 **/
4128
gboolean
4129
g_variant_dict_remove (GVariantDict *dict,
4130
                       const gchar  *key)
4131
0
{
4132
0
  g_return_val_if_fail (ensure_valid_dict (dict), FALSE);
4133
0
  g_return_val_if_fail (key != NULL, FALSE);
4134
4135
0
  return g_hash_table_remove (GVSD(dict)->values, key);
4136
0
}
4137
4138
/**
4139
 * g_variant_dict_clear:
4140
 * @dict: a #GVariantDict
4141
 *
4142
 * Releases all memory associated with a #GVariantDict without freeing
4143
 * the #GVariantDict structure itself.
4144
 *
4145
 * It typically only makes sense to do this on a stack-allocated
4146
 * #GVariantDict if you want to abort building the value part-way
4147
 * through.  This function need not be called if you call
4148
 * g_variant_dict_end() and it also doesn't need to be called on dicts
4149
 * allocated with g_variant_dict_new (see g_variant_dict_unref() for
4150
 * that).
4151
 *
4152
 * It is valid to call this function on either an initialised
4153
 * #GVariantDict or one that was previously cleared by an earlier call
4154
 * to g_variant_dict_clear() but it is not valid to call this function
4155
 * on uninitialised memory.
4156
 *
4157
 * Since: 2.40
4158
 **/
4159
void
4160
g_variant_dict_clear (GVariantDict *dict)
4161
0
{
4162
0
  if (GVSD(dict)->magic == 0)
4163
    /* all-zeros case */
4164
0
    return;
4165
4166
0
  g_return_if_fail (ensure_valid_dict (dict));
4167
4168
0
  g_hash_table_unref (GVSD(dict)->values);
4169
0
  GVSD(dict)->values = NULL;
4170
4171
0
  GVSD(dict)->magic = 0;
4172
0
}
4173
4174
/**
4175
 * g_variant_dict_end:
4176
 * @dict: a #GVariantDict
4177
 *
4178
 * Returns the current value of @dict as a #GVariant of type
4179
 * %G_VARIANT_TYPE_VARDICT, clearing it in the process.
4180
 *
4181
 * It is not permissible to use @dict in any way after this call except
4182
 * for reference counting operations (in the case of a heap-allocated
4183
 * #GVariantDict) or by reinitialising it with g_variant_dict_init() (in
4184
 * the case of stack-allocated).
4185
 *
4186
 * Returns: (transfer none): a new, floating, #GVariant
4187
 *
4188
 * Since: 2.40
4189
 **/
4190
GVariant *
4191
g_variant_dict_end (GVariantDict *dict)
4192
0
{
4193
0
  GVariantBuilder builder;
4194
0
  GHashTableIter iter;
4195
0
  gpointer key, value;
4196
4197
0
  g_return_val_if_fail (ensure_valid_dict (dict), NULL);
4198
4199
0
  g_variant_builder_init (&builder, G_VARIANT_TYPE_VARDICT);
4200
4201
0
  g_hash_table_iter_init (&iter, GVSD(dict)->values);
4202
0
  while (g_hash_table_iter_next (&iter, &key, &value))
4203
0
    g_variant_builder_add (&builder, "{sv}", (const gchar *) key, (GVariant *) value);
4204
4205
0
  g_variant_dict_clear (dict);
4206
4207
0
  return g_variant_builder_end (&builder);
4208
0
}
4209
4210
/**
4211
 * g_variant_dict_ref:
4212
 * @dict: a heap-allocated #GVariantDict
4213
 *
4214
 * Increases the reference count on @dict.
4215
 *
4216
 * Don't call this on stack-allocated #GVariantDict instances or bad
4217
 * things will happen.
4218
 *
4219
 * Returns: (transfer full): a new reference to @dict
4220
 *
4221
 * Since: 2.40
4222
 **/
4223
GVariantDict *
4224
g_variant_dict_ref (GVariantDict *dict)
4225
0
{
4226
0
  g_return_val_if_fail (is_valid_heap_dict (dict), NULL);
4227
4228
0
  GVHD(dict)->ref_count++;
4229
4230
0
  return dict;
4231
0
}
4232
4233
/**
4234
 * g_variant_dict_unref:
4235
 * @dict: (transfer full): a heap-allocated #GVariantDict
4236
 *
4237
 * Decreases the reference count on @dict.
4238
 *
4239
 * In the event that there are no more references, releases all memory
4240
 * associated with the #GVariantDict.
4241
 *
4242
 * Don't call this on stack-allocated #GVariantDict instances or bad
4243
 * things will happen.
4244
 *
4245
 * Since: 2.40
4246
 **/
4247
void
4248
g_variant_dict_unref (GVariantDict *dict)
4249
0
{
4250
0
  g_return_if_fail (is_valid_heap_dict (dict));
4251
4252
0
  if (--GVHD(dict)->ref_count == 0)
4253
0
    {
4254
0
      g_variant_dict_clear (dict);
4255
0
      g_slice_free (struct heap_dict, (struct heap_dict *) dict);
4256
0
    }
4257
0
}
4258
4259
4260
/* Format strings {{{1 */
4261
/*< private >
4262
 * g_variant_format_string_scan:
4263
 * @string: a string that may be prefixed with a format string
4264
 * @limit: (nullable) (default NULL): a pointer to the end of @string,
4265
 *         or %NULL
4266
 * @endptr: (nullable) (default NULL): location to store the end pointer,
4267
 *          or %NULL
4268
 *
4269
 * Checks the string pointed to by @string for starting with a properly
4270
 * formed #GVariant varargs format string.  If no valid format string is
4271
 * found then %FALSE is returned.
4272
 *
4273
 * If @string does start with a valid format string then %TRUE is
4274
 * returned.  If @endptr is non-%NULL then it is updated to point to the
4275
 * first character after the format string.
4276
 *
4277
 * If @limit is non-%NULL then @limit (and any character after it) will
4278
 * not be accessed and the effect is otherwise equivalent to if the
4279
 * character at @limit were nul.
4280
 *
4281
 * See the section on [GVariant format strings][gvariant-format-strings].
4282
 *
4283
 * Returns: %TRUE if there was a valid format string
4284
 *
4285
 * Since: 2.24
4286
 */
4287
gboolean
4288
g_variant_format_string_scan (const gchar  *string,
4289
                              const gchar  *limit,
4290
                              const gchar **endptr)
4291
0
{
4292
0
#define next_char() (string == limit ? '\0' : *(string++))
4293
0
#define peek_char() (string == limit ? '\0' : *string)
4294
0
  char c;
4295
4296
0
  switch (next_char())
4297
0
    {
4298
0
    case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
4299
0
    case 'x': case 't': case 'h': case 'd': case 's': case 'o':
4300
0
    case 'g': case 'v': case '*': case '?': case 'r':
4301
0
      break;
4302
4303
0
    case 'm':
4304
0
      return g_variant_format_string_scan (string, limit, endptr);
4305
4306
0
    case 'a':
4307
0
    case '@':
4308
0
      return g_variant_type_string_scan (string, limit, endptr);
4309
4310
0
    case '(':
4311
0
      while (peek_char() != ')')
4312
0
        if (!g_variant_format_string_scan (string, limit, &string))
4313
0
          return FALSE;
4314
4315
0
      next_char(); /* consume ')' */
4316
0
      break;
4317
4318
0
    case '{':
4319
0
      c = next_char();
4320
4321
0
      if (c == '&')
4322
0
        {
4323
0
          c = next_char ();
4324
4325
0
          if (c != 's' && c != 'o' && c != 'g')
4326
0
            return FALSE;
4327
0
        }
4328
0
      else
4329
0
        {
4330
0
          if (c == '@')
4331
0
            c = next_char ();
4332
4333
          /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
4334
           *    The terminating null character is considered to be
4335
           *    part of the string.
4336
           */
4337
0
          if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
4338
0
            return FALSE;
4339
0
        }
4340
4341
0
      if (!g_variant_format_string_scan (string, limit, &string))
4342
0
        return FALSE;
4343
4344
0
      if (next_char() != '}')
4345
0
        return FALSE;
4346
4347
0
      break;
4348
4349
0
    case '^':
4350
0
      if ((c = next_char()) == 'a')
4351
0
        {
4352
0
          if ((c = next_char()) == '&')
4353
0
            {
4354
0
              if ((c = next_char()) == 'a')
4355
0
                {
4356
0
                  if ((c = next_char()) == 'y')
4357
0
                    break;      /* '^a&ay' */
4358
0
                }
4359
4360
0
              else if (c == 's' || c == 'o')
4361
0
                break;          /* '^a&s', '^a&o' */
4362
0
            }
4363
4364
0
          else if (c == 'a')
4365
0
            {
4366
0
              if ((c = next_char()) == 'y')
4367
0
                break;          /* '^aay' */
4368
0
            }
4369
4370
0
          else if (c == 's' || c == 'o')
4371
0
            break;              /* '^as', '^ao' */
4372
4373
0
          else if (c == 'y')
4374
0
            break;              /* '^ay' */
4375
0
        }
4376
0
      else if (c == '&')
4377
0
        {
4378
0
          if ((c = next_char()) == 'a')
4379
0
            {
4380
0
              if ((c = next_char()) == 'y')
4381
0
                break;          /* '^&ay' */
4382
0
            }
4383
0
        }
4384
4385
0
      return FALSE;
4386
4387
0
    case '&':
4388
0
      c = next_char();
4389
4390
0
      if (c != 's' && c != 'o' && c != 'g')
4391
0
        return FALSE;
4392
4393
0
      break;
4394
4395
0
    default:
4396
0
      return FALSE;
4397
0
    }
4398
4399
0
  if (endptr != NULL)
4400
0
    *endptr = string;
4401
4402
0
#undef next_char
4403
0
#undef peek_char
4404
4405
0
  return TRUE;
4406
0
}
4407
4408
/**
4409
 * g_variant_check_format_string:
4410
 * @value: a #GVariant
4411
 * @format_string: a valid #GVariant format string
4412
 * @copy_only: %TRUE to ensure the format string makes deep copies
4413
 *
4414
 * Checks if calling g_variant_get() with @format_string on @value would
4415
 * be valid from a type-compatibility standpoint.  @format_string is
4416
 * assumed to be a valid format string (from a syntactic standpoint).
4417
 *
4418
 * If @copy_only is %TRUE then this function additionally checks that it
4419
 * would be safe to call g_variant_unref() on @value immediately after
4420
 * the call to g_variant_get() without invalidating the result.  This is
4421
 * only possible if deep copies are made (ie: there are no pointers to
4422
 * the data inside of the soon-to-be-freed #GVariant instance).  If this
4423
 * check fails then a g_critical() is printed and %FALSE is returned.
4424
 *
4425
 * This function is meant to be used by functions that wish to provide
4426
 * varargs accessors to #GVariant values of uncertain values (eg:
4427
 * g_variant_lookup() or g_menu_model_get_item_attribute()).
4428
 *
4429
 * Returns: %TRUE if @format_string is safe to use
4430
 *
4431
 * Since: 2.34
4432
 */
4433
gboolean
4434
g_variant_check_format_string (GVariant    *value,
4435
                               const gchar *format_string,
4436
                               gboolean     copy_only)
4437
0
{
4438
0
  const gchar *original_format = format_string;
4439
0
  const gchar *type_string;
4440
4441
  /* Interesting factoid: assuming a format string is valid, it can be
4442
   * converted to a type string by removing all '@' '&' and '^'
4443
   * characters.
4444
   *
4445
   * Instead of doing that, we can just skip those characters when
4446
   * comparing it to the type string of @value.
4447
   *
4448
   * For the copy-only case we can just drop the '&' from the list of
4449
   * characters to skip over.  A '&' will never appear in a type string
4450
   * so we know that it won't be possible to return %TRUE if it is in a
4451
   * format string.
4452
   */
4453
0
  type_string = g_variant_get_type_string (value);
4454
4455
0
  while (*type_string || *format_string)
4456
0
    {
4457
0
      gchar format = *format_string++;
4458
4459
0
      switch (format)
4460
0
        {
4461
0
        case '&':
4462
0
          if G_UNLIKELY (copy_only)
4463
0
            {
4464
              /* for the love of all that is good, please don't mark this string for translation... */
4465
0
              g_critical ("g_variant_check_format_string() is being called by a function with a GVariant varargs "
4466
0
                          "interface to validate the passed format string for type safety.  The passed format "
4467
0
                          "(%s) contains a '&' character which would result in a pointer being returned to the "
4468
0
                          "data inside of a GVariant instance that may no longer exist by the time the function "
4469
0
                          "returns.  Modify your code to use a format string without '&'.", original_format);
4470
0
              return FALSE;
4471
0
            }
4472
4473
0
          G_GNUC_FALLTHROUGH;
4474
0
        case '^':
4475
0
        case '@':
4476
          /* ignore these 2 (or 3) */
4477
0
          continue;
4478
4479
0
        case '?':
4480
          /* attempt to consume one of 'bynqiuxthdsog' */
4481
0
          {
4482
0
            char s = *type_string++;
4483
4484
0
            if (s == '\0' || strchr ("bynqiuxthdsog", s) == NULL)
4485
0
              return FALSE;
4486
0
          }
4487
0
          continue;
4488
4489
0
        case 'r':
4490
          /* ensure it's a tuple */
4491
0
          if (*type_string != '(')
4492
0
            return FALSE;
4493
4494
0
          G_GNUC_FALLTHROUGH;
4495
0
        case '*':
4496
          /* consume a full type string for the '*' or 'r' */
4497
0
          if (!g_variant_type_string_scan (type_string, NULL, &type_string))
4498
0
            return FALSE;
4499
4500
0
          continue;
4501
4502
0
        default:
4503
          /* attempt to consume exactly one character equal to the format */
4504
0
          if (format != *type_string++)
4505
0
            return FALSE;
4506
0
        }
4507
0
    }
4508
4509
0
  return TRUE;
4510
0
}
4511
4512
/*< private >
4513
 * g_variant_format_string_scan_type:
4514
 * @string: a string that may be prefixed with a format string
4515
 * @limit: (nullable) (default NULL): a pointer to the end of @string,
4516
 *         or %NULL
4517
 * @endptr: (nullable) (default NULL): location to store the end pointer,
4518
 *          or %NULL
4519
 *
4520
 * If @string starts with a valid format string then this function will
4521
 * return the type that the format string corresponds to.  Otherwise
4522
 * this function returns %NULL.
4523
 *
4524
 * Use g_variant_type_free() to free the return value when you no longer
4525
 * need it.
4526
 *
4527
 * This function is otherwise exactly like
4528
 * g_variant_format_string_scan().
4529
 *
4530
 * Returns: (nullable): a #GVariantType if there was a valid format string
4531
 *
4532
 * Since: 2.24
4533
 */
4534
GVariantType *
4535
g_variant_format_string_scan_type (const gchar  *string,
4536
                                   const gchar  *limit,
4537
                                   const gchar **endptr)
4538
0
{
4539
0
  const gchar *my_end;
4540
0
  gchar *dest;
4541
0
  gchar *new;
4542
4543
0
  if (endptr == NULL)
4544
0
    endptr = &my_end;
4545
4546
0
  if (!g_variant_format_string_scan (string, limit, endptr))
4547
0
    return NULL;
4548
4549
0
  dest = new = g_malloc (*endptr - string + 1);
4550
0
  while (string != *endptr)
4551
0
    {
4552
0
      if (*string != '@' && *string != '&' && *string != '^')
4553
0
        *dest++ = *string;
4554
0
      string++;
4555
0
    }
4556
0
  *dest = '\0';
4557
4558
0
  return (GVariantType *) G_VARIANT_TYPE (new);
4559
0
}
4560
4561
static gboolean
4562
valid_format_string (const gchar *format_string,
4563
                     gboolean     single,
4564
                     GVariant    *value)
4565
0
{
4566
0
  const gchar *endptr;
4567
0
  GVariantType *type;
4568
4569
0
  type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
4570
4571
0
  if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
4572
0
    {
4573
0
      if (single)
4574
0
        g_critical ("'%s' is not a valid GVariant format string",
4575
0
                    format_string);
4576
0
      else
4577
0
        g_critical ("'%s' does not have a valid GVariant format "
4578
0
                    "string as a prefix", format_string);
4579
4580
0
      if (type != NULL)
4581
0
        g_variant_type_free (type);
4582
4583
0
      return FALSE;
4584
0
    }
4585
4586
0
  if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
4587
0
    {
4588
0
      gchar *fragment;
4589
0
      gchar *typestr;
4590
4591
0
      fragment = g_strndup (format_string, endptr - format_string);
4592
0
      typestr = g_variant_type_dup_string (type);
4593
4594
0
      g_critical ("the GVariant format string '%s' has a type of "
4595
0
                  "'%s' but the given value has a type of '%s'",
4596
0
                  fragment, typestr, g_variant_get_type_string (value));
4597
4598
0
      g_variant_type_free (type);
4599
0
      g_free (fragment);
4600
0
      g_free (typestr);
4601
4602
0
      return FALSE;
4603
0
    }
4604
4605
0
  g_variant_type_free (type);
4606
4607
0
  return TRUE;
4608
0
}
4609
4610
/* Variable Arguments {{{1 */
4611
/* We consider 2 main classes of format strings:
4612
 *
4613
 *   - recursive format strings
4614
 *      these are ones that result in recursion and the collection of
4615
 *      possibly more than one argument.  Maybe types, tuples,
4616
 *      dictionary entries.
4617
 *
4618
 *   - leaf format string
4619
 *      these result in the collection of a single argument.
4620
 *
4621
 * Leaf format strings are further subdivided into two categories:
4622
 *
4623
 *   - single non-null pointer ("nnp")
4624
 *      these either collect or return a single non-null pointer.
4625
 *
4626
 *   - other
4627
 *      these collect or return something else (bool, number, etc).
4628
 *
4629
 * Based on the above, the varargs handling code is split into 4 main parts:
4630
 *
4631
 *   - nnp handling code
4632
 *   - leaf handling code (which may invoke nnp code)
4633
 *   - generic handling code (may be recursive, may invoke leaf code)
4634
 *   - user-facing API (which invokes the generic code)
4635
 *
4636
 * Each section implements some of the following functions:
4637
 *
4638
 *   - skip:
4639
 *      collect the arguments for the format string as if
4640
 *      g_variant_new() had been called, but do nothing with them.  used
4641
 *      for skipping over arguments when constructing a Nothing maybe
4642
 *      type.
4643
 *
4644
 *   - new:
4645
 *      create a GVariant *
4646
 *
4647
 *   - get:
4648
 *      unpack a GVariant *
4649
 *
4650
 *   - free (nnp only):
4651
 *      free a previously allocated item
4652
 */
4653
4654
static gboolean
4655
g_variant_format_string_is_leaf (const gchar *str)
4656
0
{
4657
0
  return str[0] != 'm' && str[0] != '(' && str[0] != '{';
4658
0
}
4659
4660
static gboolean
4661
g_variant_format_string_is_nnp (const gchar *str)
4662
0
{
4663
0
  return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
4664
0
         str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
4665
0
         str[0] == 'r' || str[0] == 'v' || str[0] == '&';
4666
0
}
4667
4668
/* Single non-null pointer ("nnp") {{{2 */
4669
static void
4670
g_variant_valist_free_nnp (const gchar *str,
4671
                           gpointer     ptr)
4672
0
{
4673
0
  switch (*str)
4674
0
    {
4675
0
    case 'a':
4676
0
      g_variant_iter_free (ptr);
4677
0
      break;
4678
4679
0
    case '^':
4680
0
      if (g_str_has_suffix (str, "y"))
4681
0
        {
4682
0
          if (str[2] != 'a') /* '^a&ay', '^ay' */
4683
0
            g_free (ptr);
4684
0
          else if (str[1] == 'a') /* '^aay' */
4685
0
            g_strfreev (ptr);
4686
0
          break; /* '^&ay' */
4687
0
        }
4688
0
      else if (str[2] != '&') /* '^as', '^ao' */
4689
0
        g_strfreev (ptr);
4690
0
      else                      /* '^a&s', '^a&o' */
4691
0
        g_free (ptr);
4692
0
      break;
4693
4694
0
    case 's':
4695
0
    case 'o':
4696
0
    case 'g':
4697
0
      g_free (ptr);
4698
0
      break;
4699
4700
0
    case '@':
4701
0
    case '*':
4702
0
    case '?':
4703
0
    case 'v':
4704
0
      g_variant_unref (ptr);
4705
0
      break;
4706
4707
0
    case '&':
4708
0
      break;
4709
4710
0
    default:
4711
0
      g_assert_not_reached ();
4712
0
    }
4713
0
}
4714
4715
static gchar
4716
g_variant_scan_convenience (const gchar **str,
4717
                            gboolean     *constant,
4718
                            guint        *arrays)
4719
0
{
4720
0
  *constant = FALSE;
4721
0
  *arrays = 0;
4722
4723
0
  for (;;)
4724
0
    {
4725
0
      char c = *(*str)++;
4726
4727
0
      if (c == '&')
4728
0
        *constant = TRUE;
4729
4730
0
      else if (c == 'a')
4731
0
        (*arrays)++;
4732
4733
0
      else
4734
0
        return c;
4735
0
    }
4736
0
}
4737
4738
static GVariant *
4739
g_variant_valist_new_nnp (const gchar **str,
4740
                          gpointer      ptr)
4741
0
{
4742
0
  if (**str == '&')
4743
0
    (*str)++;
4744
4745
0
  switch (*(*str)++)
4746
0
    {
4747
0
    case 'a':
4748
0
      if (ptr != NULL)
4749
0
        {
4750
0
          const GVariantType *type;
4751
0
          GVariant *value;
4752
4753
0
          value = g_variant_builder_end (ptr);
4754
0
          type = g_variant_get_type (value);
4755
4756
0
          if G_UNLIKELY (!g_variant_type_is_array (type))
4757
0
            g_error ("g_variant_new: expected array GVariantBuilder but "
4758
0
                     "the built value has type '%s'",
4759
0
                     g_variant_get_type_string (value));
4760
4761
0
          type = g_variant_type_element (type);
4762
4763
0
          if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
4764
0
            {
4765
0
              gchar *type_string = g_variant_type_dup_string ((GVariantType *) *str);
4766
0
              g_error ("g_variant_new: expected GVariantBuilder array element "
4767
0
                       "type '%s' but the built value has element type '%s'",
4768
0
                       type_string, g_variant_get_type_string (value) + 1);
4769
0
              g_free (type_string);
4770
0
            }
4771
4772
0
          g_variant_type_string_scan (*str, NULL, str);
4773
4774
0
          return value;
4775
0
        }
4776
0
      else
4777
4778
        /* special case: NULL pointer for empty array */
4779
0
        {
4780
0
          const GVariantType *type = (GVariantType *) *str;
4781
4782
0
          g_variant_type_string_scan (*str, NULL, str);
4783
4784
0
          if G_UNLIKELY (!g_variant_type_is_definite (type))
4785
0
            g_error ("g_variant_new: NULL pointer given with indefinite "
4786
0
                     "array type; unable to determine which type of empty "
4787
0
                     "array to construct.");
4788
4789
0
          return g_variant_new_array (type, NULL, 0);
4790
0
        }
4791
4792
0
    case 's':
4793
0
      {
4794
0
        GVariant *value;
4795
4796
0
        value = g_variant_new_string (ptr);
4797
4798
0
        if (value == NULL)
4799
0
          value = g_variant_new_string ("[Invalid UTF-8]");
4800
4801
0
        return value;
4802
0
      }
4803
4804
0
    case 'o':
4805
0
      return g_variant_new_object_path (ptr);
4806
4807
0
    case 'g':
4808
0
      return g_variant_new_signature (ptr);
4809
4810
0
    case '^':
4811
0
      {
4812
0
        gboolean constant;
4813
0
        guint arrays;
4814
0
        gchar type;
4815
4816
0
        type = g_variant_scan_convenience (str, &constant, &arrays);
4817
4818
0
        if (type == 's')
4819
0
          return g_variant_new_strv (ptr, -1);
4820
4821
0
        if (type == 'o')
4822
0
          return g_variant_new_objv (ptr, -1);
4823
4824
0
        if (arrays > 1)
4825
0
          return g_variant_new_bytestring_array (ptr, -1);
4826
4827
0
        return g_variant_new_bytestring (ptr);
4828
0
      }
4829
4830
0
    case '@':
4831
0
      if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
4832
0
        {
4833
0
          gchar *type_string = g_variant_type_dup_string ((GVariantType *) *str);
4834
0
          g_error ("g_variant_new: expected GVariant of type '%s' but "
4835
0
                   "received value has type '%s'",
4836
0
                   type_string, g_variant_get_type_string (ptr));
4837
0
          g_free (type_string);
4838
0
        }
4839
4840
0
      g_variant_type_string_scan (*str, NULL, str);
4841
4842
0
      return ptr;
4843
4844
0
    case '*':
4845
0
      return ptr;
4846
4847
0
    case '?':
4848
0
      if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
4849
0
        g_error ("g_variant_new: format string '?' expects basic-typed "
4850
0
                 "GVariant, but received value has type '%s'",
4851
0
                 g_variant_get_type_string (ptr));
4852
4853
0
      return ptr;
4854
4855
0
    case 'r':
4856
0
      if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
4857
0
        g_error ("g_variant_new: format string 'r' expects tuple-typed "
4858
0
                 "GVariant, but received value has type '%s'",
4859
0
                 g_variant_get_type_string (ptr));
4860
4861
0
      return ptr;
4862
4863
0
    case 'v':
4864
0
      return g_variant_new_variant (ptr);
4865
4866
0
    default:
4867
0
      g_assert_not_reached ();
4868
0
    }
4869
0
}
4870
4871
static gpointer
4872
g_variant_valist_get_nnp (const gchar **str,
4873
                          GVariant     *value)
4874
0
{
4875
0
  switch (*(*str)++)
4876
0
    {
4877
0
    case 'a':
4878
0
      g_variant_type_string_scan (*str, NULL, str);
4879
0
      return g_variant_iter_new (value);
4880
4881
0
    case '&':
4882
0
      (*str)++;
4883
0
      return (gchar *) g_variant_get_string (value, NULL);
4884
4885
0
    case 's':
4886
0
    case 'o':
4887
0
    case 'g':
4888
0
      return g_variant_dup_string (value, NULL);
4889
4890
0
    case '^':
4891
0
      {
4892
0
        gboolean constant;
4893
0
        guint arrays;
4894
0
        gchar type;
4895
4896
0
        type = g_variant_scan_convenience (str, &constant, &arrays);
4897
4898
0
        if (type == 's')
4899
0
          {
4900
0
            if (constant)
4901
0
              return g_variant_get_strv (value, NULL);
4902
0
            else
4903
0
              return g_variant_dup_strv (value, NULL);
4904
0
          }
4905
4906
0
        else if (type == 'o')
4907
0
          {
4908
0
            if (constant)
4909
0
              return g_variant_get_objv (value, NULL);
4910
0
            else
4911
0
              return g_variant_dup_objv (value, NULL);
4912
0
          }
4913
4914
0
        else if (arrays > 1)
4915
0
          {
4916
0
            if (constant)
4917
0
              return g_variant_get_bytestring_array (value, NULL);
4918
0
            else
4919
0
              return g_variant_dup_bytestring_array (value, NULL);
4920
0
          }
4921
4922
0
        else
4923
0
          {
4924
0
            if (constant)
4925
0
              return (gchar *) g_variant_get_bytestring (value);
4926
0
            else
4927
0
              return g_variant_dup_bytestring (value, NULL);
4928
0
          }
4929
0
      }
4930
4931
0
    case '@':
4932
0
      g_variant_type_string_scan (*str, NULL, str);
4933
0
      G_GNUC_FALLTHROUGH;
4934
4935
0
    case '*':
4936
0
    case '?':
4937
0
    case 'r':
4938
0
      return g_variant_ref (value);
4939
4940
0
    case 'v':
4941
0
      return g_variant_get_variant (value);
4942
4943
0
    default:
4944
0
      g_assert_not_reached ();
4945
0
    }
4946
0
}
4947
4948
/* Leaves {{{2 */
4949
static void
4950
g_variant_valist_skip_leaf (const gchar **str,
4951
                            va_list      *app)
4952
0
{
4953
0
  if (g_variant_format_string_is_nnp (*str))
4954
0
    {
4955
0
      g_variant_format_string_scan (*str, NULL, str);
4956
0
      va_arg (*app, gpointer);
4957
0
      return;
4958
0
    }
4959
4960
0
  switch (*(*str)++)
4961
0
    {
4962
0
    case 'b':
4963
0
    case 'y':
4964
0
    case 'n':
4965
0
    case 'q':
4966
0
    case 'i':
4967
0
    case 'u':
4968
0
    case 'h':
4969
0
      va_arg (*app, int);
4970
0
      return;
4971
4972
0
    case 'x':
4973
0
    case 't':
4974
0
      va_arg (*app, guint64);
4975
0
      return;
4976
4977
0
    case 'd':
4978
0
      va_arg (*app, gdouble);
4979
0
      return;
4980
4981
0
    default:
4982
0
      g_assert_not_reached ();
4983
0
    }
4984
0
}
4985
4986
static GVariant *
4987
g_variant_valist_new_leaf (const gchar **str,
4988
                           va_list      *app)
4989
0
{
4990
0
  if (g_variant_format_string_is_nnp (*str))
4991
0
    return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
4992
4993
0
  switch (*(*str)++)
4994
0
    {
4995
0
    case 'b':
4996
0
      return g_variant_new_boolean (va_arg (*app, gboolean));
4997
4998
0
    case 'y':
4999
0
      return g_variant_new_byte (va_arg (*app, guint));
5000
5001
0
    case 'n':
5002
0
      return g_variant_new_int16 (va_arg (*app, gint));
5003
5004
0
    case 'q':
5005
0
      return g_variant_new_uint16 (va_arg (*app, guint));
5006
5007
0
    case 'i':
5008
0
      return g_variant_new_int32 (va_arg (*app, gint));
5009
5010
0
    case 'u':
5011
0
      return g_variant_new_uint32 (va_arg (*app, guint));
5012
5013
0
    case 'x':
5014
0
      return g_variant_new_int64 (va_arg (*app, gint64));
5015
5016
0
    case 't':
5017
0
      return g_variant_new_uint64 (va_arg (*app, guint64));
5018
5019
0
    case 'h':
5020
0
      return g_variant_new_handle (va_arg (*app, gint));
5021
5022
0
    case 'd':
5023
0
      return g_variant_new_double (va_arg (*app, gdouble));
5024
5025
0
    default:
5026
0
      g_assert_not_reached ();
5027
0
    }
5028
0
}
5029
5030
/* The code below assumes this */
5031
G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
5032
G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
5033
5034
static void
5035
g_variant_valist_get_leaf (const gchar **str,
5036
                           GVariant     *value,
5037
                           gboolean      free,
5038
                           va_list      *app)
5039
0
{
5040
0
  gpointer ptr = va_arg (*app, gpointer);
5041
5042
0
  if (ptr == NULL)
5043
0
    {
5044
0
      g_variant_format_string_scan (*str, NULL, str);
5045
0
      return;
5046
0
    }
5047
5048
0
  if (g_variant_format_string_is_nnp (*str))
5049
0
    {
5050
0
      gpointer *nnp = (gpointer *) ptr;
5051
5052
0
      if (free && *nnp != NULL)
5053
0
        g_variant_valist_free_nnp (*str, *nnp);
5054
5055
0
      *nnp = NULL;
5056
5057
0
      if (value != NULL)
5058
0
        *nnp = g_variant_valist_get_nnp (str, value);
5059
0
      else
5060
0
        g_variant_format_string_scan (*str, NULL, str);
5061
5062
0
      return;
5063
0
    }
5064
5065
0
  if (value != NULL)
5066
0
    {
5067
0
      switch (*(*str)++)
5068
0
        {
5069
0
        case 'b':
5070
0
          *(gboolean *) ptr = g_variant_get_boolean (value);
5071
0
          return;
5072
5073
0
        case 'y':
5074
0
          *(guint8 *) ptr = g_variant_get_byte (value);
5075
0
          return;
5076
5077
0
        case 'n':
5078
0
          *(gint16 *) ptr = g_variant_get_int16 (value);
5079
0
          return;
5080
5081
0
        case 'q':
5082
0
          *(guint16 *) ptr = g_variant_get_uint16 (value);
5083
0
          return;
5084
5085
0
        case 'i':
5086
0
          *(gint32 *) ptr = g_variant_get_int32 (value);
5087
0
          return;
5088
5089
0
        case 'u':
5090
0
          *(guint32 *) ptr = g_variant_get_uint32 (value);
5091
0
          return;
5092
5093
0
        case 'x':
5094
0
          *(gint64 *) ptr = g_variant_get_int64 (value);
5095
0
          return;
5096
5097
0
        case 't':
5098
0
          *(guint64 *) ptr = g_variant_get_uint64 (value);
5099
0
          return;
5100
5101
0
        case 'h':
5102
0
          *(gint32 *) ptr = g_variant_get_handle (value);
5103
0
          return;
5104
5105
0
        case 'd':
5106
0
          *(gdouble *) ptr = g_variant_get_double (value);
5107
0
          return;
5108
0
        }
5109
0
    }
5110
0
  else
5111
0
    {
5112
0
      switch (*(*str)++)
5113
0
        {
5114
0
        case 'y':
5115
0
          *(guint8 *) ptr = 0;
5116
0
          return;
5117
5118
0
        case 'n':
5119
0
        case 'q':
5120
0
          *(guint16 *) ptr = 0;
5121
0
          return;
5122
5123
0
        case 'i':
5124
0
        case 'u':
5125
0
        case 'h':
5126
0
        case 'b':
5127
0
          *(guint32 *) ptr = 0;
5128
0
          return;
5129
5130
0
        case 'x':
5131
0
        case 't':
5132
0
        case 'd':
5133
0
          *(guint64 *) ptr = 0;
5134
0
          return;
5135
0
        }
5136
0
    }
5137
5138
0
  g_assert_not_reached ();
5139
0
}
5140
5141
/* Generic (recursive) {{{2 */
5142
static void
5143
g_variant_valist_skip (const gchar **str,
5144
                       va_list      *app)
5145
0
{
5146
0
  if (g_variant_format_string_is_leaf (*str))
5147
0
    g_variant_valist_skip_leaf (str, app);
5148
5149
0
  else if (**str == 'm') /* maybe */
5150
0
    {
5151
0
      (*str)++;
5152
5153
0
      if (!g_variant_format_string_is_nnp (*str))
5154
0
        va_arg (*app, gboolean);
5155
5156
0
      g_variant_valist_skip (str, app);
5157
0
    }
5158
0
  else /* tuple, dictionary entry */
5159
0
    {
5160
0
      g_assert (**str == '(' || **str == '{');
5161
0
      (*str)++;
5162
0
      while (**str != ')' && **str != '}')
5163
0
        g_variant_valist_skip (str, app);
5164
0
      (*str)++;
5165
0
    }
5166
0
}
5167
5168
static GVariant *
5169
g_variant_valist_new (const gchar **str,
5170
                      va_list      *app)
5171
0
{
5172
0
  if (g_variant_format_string_is_leaf (*str))
5173
0
    return g_variant_valist_new_leaf (str, app);
5174
5175
0
  if (**str == 'm') /* maybe */
5176
0
    {
5177
0
      GVariantType *type = NULL;
5178
0
      GVariant *value = NULL;
5179
5180
0
      (*str)++;
5181
5182
0
      if (g_variant_format_string_is_nnp (*str))
5183
0
        {
5184
0
          gpointer nnp = va_arg (*app, gpointer);
5185
5186
0
          if (nnp != NULL)
5187
0
            value = g_variant_valist_new_nnp (str, nnp);
5188
0
          else
5189
0
            type = g_variant_format_string_scan_type (*str, NULL, str);
5190
0
        }
5191
0
      else
5192
0
        {
5193
0
          gboolean just = va_arg (*app, gboolean);
5194
5195
0
          if (just)
5196
0
            value = g_variant_valist_new (str, app);
5197
0
          else
5198
0
            {
5199
0
              type = g_variant_format_string_scan_type (*str, NULL, NULL);
5200
0
              g_variant_valist_skip (str, app);
5201
0
            }
5202
0
        }
5203
5204
0
      value = g_variant_new_maybe (type, value);
5205
5206
0
      if (type != NULL)
5207
0
        g_variant_type_free (type);
5208
5209
0
      return value;
5210
0
    }
5211
0
  else /* tuple, dictionary entry */
5212
0
    {
5213
0
      GVariantBuilder b;
5214
5215
0
      if (**str == '(')
5216
0
        g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
5217
0
      else
5218
0
        {
5219
0
          g_assert (**str == '{');
5220
0
          g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
5221
0
        }
5222
5223
0
      (*str)++; /* '(' */
5224
0
      while (**str != ')' && **str != '}')
5225
0
        g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
5226
0
      (*str)++; /* ')' */
5227
5228
0
      return g_variant_builder_end (&b);
5229
0
    }
5230
0
}
5231
5232
static void
5233
g_variant_valist_get (const gchar **str,
5234
                      GVariant     *value,
5235
                      gboolean      free,
5236
                      va_list      *app)
5237
0
{
5238
0
  if (g_variant_format_string_is_leaf (*str))
5239
0
    g_variant_valist_get_leaf (str, value, free, app);
5240
5241
0
  else if (**str == 'm')
5242
0
    {
5243
0
      (*str)++;
5244
5245
0
      if (value != NULL)
5246
0
        value = g_variant_get_maybe (value);
5247
5248
0
      if (!g_variant_format_string_is_nnp (*str))
5249
0
        {
5250
0
          gboolean *ptr = va_arg (*app, gboolean *);
5251
5252
0
          if (ptr != NULL)
5253
0
            *ptr = value != NULL;
5254
0
        }
5255
5256
0
      g_variant_valist_get (str, value, free, app);
5257
5258
0
      if (value != NULL)
5259
0
        g_variant_unref (value);
5260
0
    }
5261
5262
0
  else /* tuple, dictionary entry */
5263
0
    {
5264
0
      gint index = 0;
5265
5266
0
      g_assert (**str == '(' || **str == '{');
5267
5268
0
      (*str)++;
5269
0
      while (**str != ')' && **str != '}')
5270
0
        {
5271
0
          if (value != NULL)
5272
0
            {
5273
0
              GVariant *child = g_variant_get_child_value (value, index++);
5274
0
              g_variant_valist_get (str, child, free, app);
5275
0
              g_variant_unref (child);
5276
0
            }
5277
0
          else
5278
0
            g_variant_valist_get (str, NULL, free, app);
5279
0
        }
5280
0
      (*str)++;
5281
0
    }
5282
0
}
5283
5284
/* User-facing API {{{2 */
5285
/**
5286
 * g_variant_new: (skip)
5287
 * @format_string: a #GVariant format string
5288
 * @...: arguments, as per @format_string
5289
 *
5290
 * Creates a new #GVariant instance.
5291
 *
5292
 * Think of this function as an analogue to g_strdup_printf().
5293
 *
5294
 * The type of the created instance and the arguments that are expected
5295
 * by this function are determined by @format_string. See the section on
5296
 * [GVariant format strings][gvariant-format-strings]. Please note that
5297
 * the syntax of the format string is very likely to be extended in the
5298
 * future.
5299
 *
5300
 * The first character of the format string must not be '*' '?' '@' or
5301
 * 'r'; in essence, a new #GVariant must always be constructed by this
5302
 * function (and not merely passed through it unmodified).
5303
 *
5304
 * Note that the arguments must be of the correct width for their types
5305
 * specified in @format_string. This can be achieved by casting them. See
5306
 * the [GVariant varargs documentation][gvariant-varargs].
5307
 *
5308
 * |[<!-- language="C" -->
5309
 * MyFlags some_flags = FLAG_ONE | FLAG_TWO;
5310
 * const gchar *some_strings[] = { "a", "b", "c", NULL };
5311
 * GVariant *new_variant;
5312
 *
5313
 * new_variant = g_variant_new ("(t^as)",
5314
 *                              // This cast is required.
5315
 *                              (guint64) some_flags,
5316
 *                              some_strings);
5317
 * ]|
5318
 *
5319
 * Returns: a new floating #GVariant instance
5320
 *
5321
 * Since: 2.24
5322
 **/
5323
GVariant *
5324
g_variant_new (const gchar *format_string,
5325
               ...)
5326
0
{
5327
0
  GVariant *value;
5328
0
  va_list ap;
5329
5330
0
  g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
5331
0
                        format_string[0] != '?' && format_string[0] != '@' &&
5332
0
                        format_string[0] != '*' && format_string[0] != 'r',
5333
0
                        NULL);
5334
5335
0
  va_start (ap, format_string);
5336
0
  value = g_variant_new_va (format_string, NULL, &ap);
5337
0
  va_end (ap);
5338
5339
0
  return value;
5340
0
}
5341
5342
/**
5343
 * g_variant_new_va: (skip)
5344
 * @format_string: a string that is prefixed with a format string
5345
 * @endptr: (nullable) (default NULL): location to store the end pointer,
5346
 *          or %NULL
5347
 * @app: a pointer to a #va_list
5348
 *
5349
 * This function is intended to be used by libraries based on
5350
 * #GVariant that want to provide g_variant_new()-like functionality
5351
 * to their users.
5352
 *
5353
 * The API is more general than g_variant_new() to allow a wider range
5354
 * of possible uses.
5355
 *
5356
 * @format_string must still point to a valid format string, but it only
5357
 * needs to be nul-terminated if @endptr is %NULL.  If @endptr is
5358
 * non-%NULL then it is updated to point to the first character past the
5359
 * end of the format string.
5360
 *
5361
 * @app is a pointer to a #va_list.  The arguments, according to
5362
 * @format_string, are collected from this #va_list and the list is left
5363
 * pointing to the argument following the last.
5364
 *
5365
 * Note that the arguments in @app must be of the correct width for their
5366
 * types specified in @format_string when collected into the #va_list.
5367
 * See the [GVariant varargs documentation][gvariant-varargs].
5368
 *
5369
 * These two generalisations allow mixing of multiple calls to
5370
 * g_variant_new_va() and g_variant_get_va() within a single actual
5371
 * varargs call by the user.
5372
 *
5373
 * The return value will be floating if it was a newly created GVariant
5374
 * instance (for example, if the format string was "(ii)").  In the case
5375
 * that the format_string was '*', '?', 'r', or a format starting with
5376
 * '@' then the collected #GVariant pointer will be returned unmodified,
5377
 * without adding any additional references.
5378
 *
5379
 * In order to behave correctly in all cases it is necessary for the
5380
 * calling function to g_variant_ref_sink() the return result before
5381
 * returning control to the user that originally provided the pointer.
5382
 * At this point, the caller will have their own full reference to the
5383
 * result.  This can also be done by adding the result to a container,
5384
 * or by passing it to another g_variant_new() call.
5385
 *
5386
 * Returns: a new, usually floating, #GVariant
5387
 *
5388
 * Since: 2.24
5389
 **/
5390
GVariant *
5391
g_variant_new_va (const gchar  *format_string,
5392
                  const gchar **endptr,
5393
                  va_list      *app)
5394
0
{
5395
0
  GVariant *value;
5396
5397
0
  g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
5398
0
                        NULL);
5399
0
  g_return_val_if_fail (app != NULL, NULL);
5400
5401
0
  value = g_variant_valist_new (&format_string, app);
5402
5403
0
  if (endptr != NULL)
5404
0
    *endptr = format_string;
5405
5406
0
  return value;
5407
0
}
5408
5409
/**
5410
 * g_variant_get: (skip)
5411
 * @value: a #GVariant instance
5412
 * @format_string: a #GVariant format string
5413
 * @...: arguments, as per @format_string
5414
 *
5415
 * Deconstructs a #GVariant instance.
5416
 *
5417
 * Think of this function as an analogue to scanf().
5418
 *
5419
 * The arguments that are expected by this function are entirely
5420
 * determined by @format_string.  @format_string also restricts the
5421
 * permissible types of @value.  It is an error to give a value with
5422
 * an incompatible type.  See the section on
5423
 * [GVariant format strings][gvariant-format-strings].
5424
 * Please note that the syntax of the format string is very likely to be
5425
 * extended in the future.
5426
 *
5427
 * @format_string determines the C types that are used for unpacking
5428
 * the values and also determines if the values are copied or borrowed,
5429
 * see the section on
5430
 * [GVariant format strings][gvariant-format-strings-pointers].
5431
 *
5432
 * Since: 2.24
5433
 **/
5434
void
5435
g_variant_get (GVariant    *value,
5436
               const gchar *format_string,
5437
               ...)
5438
0
{
5439
0
  va_list ap;
5440
5441
0
  g_return_if_fail (value != NULL);
5442
0
  g_return_if_fail (valid_format_string (format_string, TRUE, value));
5443
5444
  /* if any direct-pointer-access formats are in use, flatten first */
5445
0
  if (strchr (format_string, '&'))
5446
0
    g_variant_get_data (value);
5447
5448
0
  va_start (ap, format_string);
5449
0
  g_variant_get_va (value, format_string, NULL, &ap);
5450
0
  va_end (ap);
5451
0
}
5452
5453
/**
5454
 * g_variant_get_va: (skip)
5455
 * @value: a #GVariant
5456
 * @format_string: a string that is prefixed with a format string
5457
 * @endptr: (nullable) (default NULL): location to store the end pointer,
5458
 *          or %NULL
5459
 * @app: a pointer to a #va_list
5460
 *
5461
 * This function is intended to be used by libraries based on #GVariant
5462
 * that want to provide g_variant_get()-like functionality to their
5463
 * users.
5464
 *
5465
 * The API is more general than g_variant_get() to allow a wider range
5466
 * of possible uses.
5467
 *
5468
 * @format_string must still point to a valid format string, but it only
5469
 * need to be nul-terminated if @endptr is %NULL.  If @endptr is
5470
 * non-%NULL then it is updated to point to the first character past the
5471
 * end of the format string.
5472
 *
5473
 * @app is a pointer to a #va_list.  The arguments, according to
5474
 * @format_string, are collected from this #va_list and the list is left
5475
 * pointing to the argument following the last.
5476
 *
5477
 * These two generalisations allow mixing of multiple calls to
5478
 * g_variant_new_va() and g_variant_get_va() within a single actual
5479
 * varargs call by the user.
5480
 *
5481
 * @format_string determines the C types that are used for unpacking
5482
 * the values and also determines if the values are copied or borrowed,
5483
 * see the section on
5484
 * [GVariant format strings][gvariant-format-strings-pointers].
5485
 *
5486
 * Since: 2.24
5487
 **/
5488
void
5489
g_variant_get_va (GVariant     *value,
5490
                  const gchar  *format_string,
5491
                  const gchar **endptr,
5492
                  va_list      *app)
5493
0
{
5494
0
  g_return_if_fail (valid_format_string (format_string, !endptr, value));
5495
0
  g_return_if_fail (value != NULL);
5496
0
  g_return_if_fail (app != NULL);
5497
5498
  /* if any direct-pointer-access formats are in use, flatten first */
5499
0
  if (strchr (format_string, '&'))
5500
0
    g_variant_get_data (value);
5501
5502
0
  g_variant_valist_get (&format_string, value, FALSE, app);
5503
5504
0
  if (endptr != NULL)
5505
0
    *endptr = format_string;
5506
0
}
5507
5508
/* Varargs-enabled Utility Functions {{{1 */
5509
5510
/**
5511
 * g_variant_builder_add: (skip)
5512
 * @builder: a #GVariantBuilder
5513
 * @format_string: a #GVariant varargs format string
5514
 * @...: arguments, as per @format_string
5515
 *
5516
 * Adds to a #GVariantBuilder.
5517
 *
5518
 * This call is a convenience wrapper that is exactly equivalent to
5519
 * calling g_variant_new() followed by g_variant_builder_add_value().
5520
 *
5521
 * Note that the arguments must be of the correct width for their types
5522
 * specified in @format_string. This can be achieved by casting them. See
5523
 * the [GVariant varargs documentation][gvariant-varargs].
5524
 *
5525
 * This function might be used as follows:
5526
 *
5527
 * |[<!-- language="C" --> 
5528
 * GVariant *
5529
 * make_pointless_dictionary (void)
5530
 * {
5531
 *   GVariantBuilder builder;
5532
 *   int i;
5533
 *
5534
 *   g_variant_builder_init (&builder, G_VARIANT_TYPE_ARRAY);
5535
 *   for (i = 0; i < 16; i++)
5536
 *     {
5537
 *       gchar buf[3];
5538
 *
5539
 *       sprintf (buf, "%d", i);
5540
 *       g_variant_builder_add (&builder, "{is}", i, buf);
5541
 *     }
5542
 *
5543
 *   return g_variant_builder_end (&builder);
5544
 * }
5545
 * ]|
5546
 *
5547
 * Since: 2.24
5548
 */
5549
void
5550
g_variant_builder_add (GVariantBuilder *builder,
5551
                       const gchar     *format_string,
5552
                       ...)
5553
0
{
5554
0
  GVariant *variant;
5555
0
  va_list ap;
5556
5557
0
  va_start (ap, format_string);
5558
0
  variant = g_variant_new_va (format_string, NULL, &ap);
5559
0
  va_end (ap);
5560
5561
0
  g_variant_builder_add_value (builder, variant);
5562
0
}
5563
5564
/**
5565
 * g_variant_get_child: (skip)
5566
 * @value: a container #GVariant
5567
 * @index_: the index of the child to deconstruct
5568
 * @format_string: a #GVariant format string
5569
 * @...: arguments, as per @format_string
5570
 *
5571
 * Reads a child item out of a container #GVariant instance and
5572
 * deconstructs it according to @format_string.  This call is
5573
 * essentially a combination of g_variant_get_child_value() and
5574
 * g_variant_get().
5575
 *
5576
 * @format_string determines the C types that are used for unpacking
5577
 * the values and also determines if the values are copied or borrowed,
5578
 * see the section on
5579
 * [GVariant format strings][gvariant-format-strings-pointers].
5580
 *
5581
 * Since: 2.24
5582
 **/
5583
void
5584
g_variant_get_child (GVariant    *value,
5585
                     gsize        index_,
5586
                     const gchar *format_string,
5587
                     ...)
5588
0
{
5589
0
  GVariant *child;
5590
0
  va_list ap;
5591
5592
  /* if any direct-pointer-access formats are in use, flatten first */
5593
0
  if (strchr (format_string, '&'))
5594
0
    g_variant_get_data (value);
5595
5596
0
  child = g_variant_get_child_value (value, index_);
5597
0
  g_return_if_fail (valid_format_string (format_string, TRUE, child));
5598
5599
0
  va_start (ap, format_string);
5600
0
  g_variant_get_va (child, format_string, NULL, &ap);
5601
0
  va_end (ap);
5602
5603
0
  g_variant_unref (child);
5604
0
}
5605
5606
/**
5607
 * g_variant_iter_next: (skip)
5608
 * @iter: a #GVariantIter
5609
 * @format_string: a GVariant format string
5610
 * @...: the arguments to unpack the value into
5611
 *
5612
 * Gets the next item in the container and unpacks it into the variable
5613
 * argument list according to @format_string, returning %TRUE.
5614
 *
5615
 * If no more items remain then %FALSE is returned.
5616
 *
5617
 * All of the pointers given on the variable arguments list of this
5618
 * function are assumed to point at uninitialised memory.  It is the
5619
 * responsibility of the caller to free all of the values returned by
5620
 * the unpacking process.
5621
 *
5622
 * Here is an example for memory management with g_variant_iter_next():
5623
 * |[<!-- language="C" --> 
5624
 *   // Iterates a dictionary of type 'a{sv}'
5625
 *   void
5626
 *   iterate_dictionary (GVariant *dictionary)
5627
 *   {
5628
 *     GVariantIter iter;
5629
 *     GVariant *value;
5630
 *     gchar *key;
5631
 *
5632
 *     g_variant_iter_init (&iter, dictionary);
5633
 *     while (g_variant_iter_next (&iter, "{sv}", &key, &value))
5634
 *       {
5635
 *         g_print ("Item '%s' has type '%s'\n", key,
5636
 *                  g_variant_get_type_string (value));
5637
 *
5638
 *         // must free data for ourselves
5639
 *         g_variant_unref (value);
5640
 *         g_free (key);
5641
 *       }
5642
 *   }
5643
 * ]|
5644
 *
5645
 * For a solution that is likely to be more convenient to C programmers
5646
 * when dealing with loops, see g_variant_iter_loop().
5647
 *
5648
 * @format_string determines the C types that are used for unpacking
5649
 * the values and also determines if the values are copied or borrowed.
5650
 *
5651
 * See the section on
5652
 * [GVariant format strings][gvariant-format-strings-pointers].
5653
 *
5654
 * Returns: %TRUE if a value was unpacked, or %FALSE if there as no value
5655
 *
5656
 * Since: 2.24
5657
 **/
5658
gboolean
5659
g_variant_iter_next (GVariantIter *iter,
5660
                     const gchar  *format_string,
5661
                     ...)
5662
0
{
5663
0
  GVariant *value;
5664
5665
0
  value = g_variant_iter_next_value (iter);
5666
5667
0
  g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
5668
0
                        FALSE);
5669
5670
0
  if (value != NULL)
5671
0
    {
5672
0
      va_list ap;
5673
5674
0
      va_start (ap, format_string);
5675
0
      g_variant_valist_get (&format_string, value, FALSE, &ap);
5676
0
      va_end (ap);
5677
5678
0
      g_variant_unref (value);
5679
0
    }
5680
5681
0
  return value != NULL;
5682
0
}
5683
5684
/**
5685
 * g_variant_iter_loop: (skip)
5686
 * @iter: a #GVariantIter
5687
 * @format_string: a GVariant format string
5688
 * @...: the arguments to unpack the value into
5689
 *
5690
 * Gets the next item in the container and unpacks it into the variable
5691
 * argument list according to @format_string, returning %TRUE.
5692
 *
5693
 * If no more items remain then %FALSE is returned.
5694
 *
5695
 * On the first call to this function, the pointers appearing on the
5696
 * variable argument list are assumed to point at uninitialised memory.
5697
 * On the second and later calls, it is assumed that the same pointers
5698
 * will be given and that they will point to the memory as set by the
5699
 * previous call to this function.  This allows the previous values to
5700
 * be freed, as appropriate.
5701
 *
5702
 * This function is intended to be used with a while loop as
5703
 * demonstrated in the following example.  This function can only be
5704
 * used when iterating over an array.  It is only valid to call this
5705
 * function with a string constant for the format string and the same
5706
 * string constant must be used each time.  Mixing calls to this
5707
 * function and g_variant_iter_next() or g_variant_iter_next_value() on
5708
 * the same iterator causes undefined behavior.
5709
 *
5710
 * If you break out of a such a while loop using g_variant_iter_loop() then
5711
 * you must free or unreference all the unpacked values as you would with
5712
 * g_variant_get(). Failure to do so will cause a memory leak.
5713
 *
5714
 * Here is an example for memory management with g_variant_iter_loop():
5715
 * |[<!-- language="C" --> 
5716
 *   // Iterates a dictionary of type 'a{sv}'
5717
 *   void
5718
 *   iterate_dictionary (GVariant *dictionary)
5719
 *   {
5720
 *     GVariantIter iter;
5721
 *     GVariant *value;
5722
 *     gchar *key;
5723
 *
5724
 *     g_variant_iter_init (&iter, dictionary);
5725
 *     while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
5726
 *       {
5727
 *         g_print ("Item '%s' has type '%s'\n", key,
5728
 *                  g_variant_get_type_string (value));
5729
 *
5730
 *         // no need to free 'key' and 'value' here
5731
 *         // unless breaking out of this loop
5732
 *       }
5733
 *   }
5734
 * ]|
5735
 *
5736
 * For most cases you should use g_variant_iter_next().
5737
 *
5738
 * This function is really only useful when unpacking into #GVariant or
5739
 * #GVariantIter in order to allow you to skip the call to
5740
 * g_variant_unref() or g_variant_iter_free().
5741
 *
5742
 * For example, if you are only looping over simple integer and string
5743
 * types, g_variant_iter_next() is definitely preferred.  For string
5744
 * types, use the '&' prefix to avoid allocating any memory at all (and
5745
 * thereby avoiding the need to free anything as well).
5746
 *
5747
 * @format_string determines the C types that are used for unpacking
5748
 * the values and also determines if the values are copied or borrowed.
5749
 *
5750
 * See the section on
5751
 * [GVariant format strings][gvariant-format-strings-pointers].
5752
 *
5753
 * Returns: %TRUE if a value was unpacked, or %FALSE if there was no
5754
 *          value
5755
 *
5756
 * Since: 2.24
5757
 **/
5758
gboolean
5759
g_variant_iter_loop (GVariantIter *iter,
5760
                     const gchar  *format_string,
5761
                     ...)
5762
0
{
5763
0
  gboolean first_time = GVSI(iter)->loop_format == NULL;
5764
0
  GVariant *value;
5765
0
  va_list ap;
5766
5767
0
  g_return_val_if_fail (first_time ||
5768
0
                        format_string == GVSI(iter)->loop_format,
5769
0
                        FALSE);
5770
5771
0
  if (first_time)
5772
0
    {
5773
0
      TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
5774
0
      GVSI(iter)->loop_format = format_string;
5775
5776
0
      if (strchr (format_string, '&'))
5777
0
        g_variant_get_data (GVSI(iter)->value);
5778
0
    }
5779
5780
0
  value = g_variant_iter_next_value (iter);
5781
5782
0
  g_return_val_if_fail (!first_time ||
5783
0
                        valid_format_string (format_string, TRUE, value),
5784
0
                        FALSE);
5785
5786
0
  va_start (ap, format_string);
5787
0
  g_variant_valist_get (&format_string, value, !first_time, &ap);
5788
0
  va_end (ap);
5789
5790
0
  if (value != NULL)
5791
0
    g_variant_unref (value);
5792
5793
0
  return value != NULL;
5794
0
}
5795
5796
/* Serialised data {{{1 */
5797
static GVariant *
5798
g_variant_deep_copy (GVariant *value)
5799
0
{
5800
0
  switch (g_variant_classify (value))
5801
0
    {
5802
0
    case G_VARIANT_CLASS_MAYBE:
5803
0
    case G_VARIANT_CLASS_ARRAY:
5804
0
    case G_VARIANT_CLASS_TUPLE:
5805
0
    case G_VARIANT_CLASS_DICT_ENTRY:
5806
0
    case G_VARIANT_CLASS_VARIANT:
5807
0
      {
5808
0
        GVariantBuilder builder;
5809
0
        GVariantIter iter;
5810
0
        GVariant *child;
5811
5812
0
        g_variant_builder_init (&builder, g_variant_get_type (value));
5813
0
        g_variant_iter_init (&iter, value);
5814
5815
0
        while ((child = g_variant_iter_next_value (&iter)))
5816
0
          {
5817
0
            g_variant_builder_add_value (&builder, g_variant_deep_copy (child));
5818
0
            g_variant_unref (child);
5819
0
          }
5820
5821
0
        return g_variant_builder_end (&builder);
5822
0
      }
5823
5824
0
    case G_VARIANT_CLASS_BOOLEAN:
5825
0
      return g_variant_new_boolean (g_variant_get_boolean (value));
5826
5827
0
    case G_VARIANT_CLASS_BYTE:
5828
0
      return g_variant_new_byte (g_variant_get_byte (value));
5829
5830
0
    case G_VARIANT_CLASS_INT16:
5831
0
      return g_variant_new_int16 (g_variant_get_int16 (value));
5832
5833
0
    case G_VARIANT_CLASS_UINT16:
5834
0
      return g_variant_new_uint16 (g_variant_get_uint16 (value));
5835
5836
0
    case G_VARIANT_CLASS_INT32:
5837
0
      return g_variant_new_int32 (g_variant_get_int32 (value));
5838
5839
0
    case G_VARIANT_CLASS_UINT32:
5840
0
      return g_variant_new_uint32 (g_variant_get_uint32 (value));
5841
5842
0
    case G_VARIANT_CLASS_INT64:
5843
0
      return g_variant_new_int64 (g_variant_get_int64 (value));
5844
5845
0
    case G_VARIANT_CLASS_UINT64:
5846
0
      return g_variant_new_uint64 (g_variant_get_uint64 (value));
5847
5848
0
    case G_VARIANT_CLASS_HANDLE:
5849
0
      return g_variant_new_handle (g_variant_get_handle (value));
5850
5851
0
    case G_VARIANT_CLASS_DOUBLE:
5852
0
      return g_variant_new_double (g_variant_get_double (value));
5853
5854
0
    case G_VARIANT_CLASS_STRING:
5855
0
      return g_variant_new_string (g_variant_get_string (value, NULL));
5856
5857
0
    case G_VARIANT_CLASS_OBJECT_PATH:
5858
0
      return g_variant_new_object_path (g_variant_get_string (value, NULL));
5859
5860
0
    case G_VARIANT_CLASS_SIGNATURE:
5861
0
      return g_variant_new_signature (g_variant_get_string (value, NULL));
5862
0
    }
5863
5864
0
  g_assert_not_reached ();
5865
0
}
5866
5867
/**
5868
 * g_variant_get_normal_form:
5869
 * @value: a #GVariant
5870
 *
5871
 * Gets a #GVariant instance that has the same value as @value and is
5872
 * trusted to be in normal form.
5873
 *
5874
 * If @value is already trusted to be in normal form then a new
5875
 * reference to @value is returned.
5876
 *
5877
 * If @value is not already trusted, then it is scanned to check if it
5878
 * is in normal form.  If it is found to be in normal form then it is
5879
 * marked as trusted and a new reference to it is returned.
5880
 *
5881
 * If @value is found not to be in normal form then a new trusted
5882
 * #GVariant is created with the same value as @value.
5883
 *
5884
 * It makes sense to call this function if you've received #GVariant
5885
 * data from untrusted sources and you want to ensure your serialised
5886
 * output is definitely in normal form.
5887
 *
5888
 * If @value is already in normal form, a new reference will be returned
5889
 * (which will be floating if @value is floating). If it is not in normal form,
5890
 * the newly created #GVariant will be returned with a single non-floating
5891
 * reference. Typically, g_variant_take_ref() should be called on the return
5892
 * value from this function to guarantee ownership of a single non-floating
5893
 * reference to it.
5894
 *
5895
 * Returns: (transfer full): a trusted #GVariant
5896
 *
5897
 * Since: 2.24
5898
 **/
5899
GVariant *
5900
g_variant_get_normal_form (GVariant *value)
5901
0
{
5902
0
  GVariant *trusted;
5903
5904
0
  if (g_variant_is_normal_form (value))
5905
0
    return g_variant_ref (value);
5906
5907
0
  trusted = g_variant_deep_copy (value);
5908
0
  g_assert (g_variant_is_trusted (trusted));
5909
5910
0
  return g_variant_ref_sink (trusted);
5911
0
}
5912
5913
/**
5914
 * g_variant_byteswap:
5915
 * @value: a #GVariant
5916
 *
5917
 * Performs a byteswapping operation on the contents of @value.  The
5918
 * result is that all multi-byte numeric data contained in @value is
5919
 * byteswapped.  That includes 16, 32, and 64bit signed and unsigned
5920
 * integers as well as file handles and double precision floating point
5921
 * values.
5922
 *
5923
 * This function is an identity mapping on any value that does not
5924
 * contain multi-byte numeric data.  That include strings, booleans,
5925
 * bytes and containers containing only these things (recursively).
5926
 *
5927
 * The returned value is always in normal form and is marked as trusted.
5928
 *
5929
 * Returns: (transfer full): the byteswapped form of @value
5930
 *
5931
 * Since: 2.24
5932
 **/
5933
GVariant *
5934
g_variant_byteswap (GVariant *value)
5935
0
{
5936
0
  GVariantTypeInfo *type_info;
5937
0
  guint alignment;
5938
0
  GVariant *new;
5939
5940
0
  type_info = g_variant_get_type_info (value);
5941
5942
0
  g_variant_type_info_query (type_info, &alignment, NULL);
5943
5944
0
  if (alignment)
5945
    /* (potentially) contains multi-byte numeric data */
5946
0
    {
5947
0
      GVariantSerialised serialised;
5948
0
      GVariant *trusted;
5949
0
      GBytes *bytes;
5950
5951
0
      trusted = g_variant_get_normal_form (value);
5952
0
      serialised.type_info = g_variant_get_type_info (trusted);
5953
0
      serialised.size = g_variant_get_size (trusted);
5954
0
      serialised.data = g_malloc (serialised.size);
5955
0
      serialised.depth = g_variant_get_depth (trusted);
5956
0
      g_variant_store (trusted, serialised.data);
5957
0
      g_variant_unref (trusted);
5958
5959
0
      g_variant_serialised_byteswap (serialised);
5960
5961
0
      bytes = g_bytes_new_take (serialised.data, serialised.size);
5962
0
      new = g_variant_new_from_bytes (g_variant_get_type (value), bytes, TRUE);
5963
0
      g_bytes_unref (bytes);
5964
0
    }
5965
0
  else
5966
    /* contains no multi-byte data */
5967
0
    new = value;
5968
5969
0
  return g_variant_ref_sink (new);
5970
0
}
5971
5972
/**
5973
 * g_variant_new_from_data:
5974
 * @type: a definite #GVariantType
5975
 * @data: (array length=size) (element-type guint8): the serialised data
5976
 * @size: the size of @data
5977
 * @trusted: %TRUE if @data is definitely in normal form
5978
 * @notify: (scope async): function to call when @data is no longer needed
5979
 * @user_data: data for @notify
5980
 *
5981
 * Creates a new #GVariant instance from serialised data.
5982
 *
5983
 * @type is the type of #GVariant instance that will be constructed.
5984
 * The interpretation of @data depends on knowing the type.
5985
 *
5986
 * @data is not modified by this function and must remain valid with an
5987
 * unchanging value until such a time as @notify is called with
5988
 * @user_data.  If the contents of @data change before that time then
5989
 * the result is undefined.
5990
 *
5991
 * If @data is trusted to be serialised data in normal form then
5992
 * @trusted should be %TRUE.  This applies to serialised data created
5993
 * within this process or read from a trusted location on the disk (such
5994
 * as a file installed in /usr/lib alongside your application).  You
5995
 * should set trusted to %FALSE if @data is read from the network, a
5996
 * file in the user's home directory, etc.
5997
 *
5998
 * If @data was not stored in this machine's native endianness, any multi-byte
5999
 * numeric values in the returned variant will also be in non-native
6000
 * endianness. g_variant_byteswap() can be used to recover the original values.
6001
 *
6002
 * @notify will be called with @user_data when @data is no longer
6003
 * needed.  The exact time of this call is unspecified and might even be
6004
 * before this function returns.
6005
 *
6006
 * Note: @data must be backed by memory that is aligned appropriately for the
6007
 * @type being loaded. Otherwise this function will internally create a copy of
6008
 * the memory (since GLib 2.60) or (in older versions) fail and exit the
6009
 * process.
6010
 *
6011
 * Returns: (transfer none): a new floating #GVariant of type @type
6012
 *
6013
 * Since: 2.24
6014
 **/
6015
GVariant *
6016
g_variant_new_from_data (const GVariantType *type,
6017
                         gconstpointer       data,
6018
                         gsize               size,
6019
                         gboolean            trusted,
6020
                         GDestroyNotify      notify,
6021
                         gpointer            user_data)
6022
0
{
6023
0
  GVariant *value;
6024
0
  GBytes *bytes;
6025
6026
0
  g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
6027
0
  g_return_val_if_fail (data != NULL || size == 0, NULL);
6028
6029
0
  if (notify)
6030
0
    bytes = g_bytes_new_with_free_func (data, size, notify, user_data);
6031
0
  else
6032
0
    bytes = g_bytes_new_static (data, size);
6033
6034
0
  value = g_variant_new_from_bytes (type, bytes, trusted);
6035
0
  g_bytes_unref (bytes);
6036
6037
0
  return value;
6038
0
}
6039
6040
/* Epilogue {{{1 */
6041
/* vim:set foldmethod=marker: */