Coverage Report

Created: 2025-07-11 06:31

/src/glib/glib/gdate.c
Line
Count
Source (jump to first uncovered line)
1
/* GLIB - Library of useful routines for C programming
2
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
3
 *
4
 * This library is free software; you can redistribute it and/or
5
 * modify it under the terms of the GNU Lesser General Public
6
 * License as published by the Free Software Foundation; either
7
 * version 2.1 of the License, or (at your option) any later version.
8
 *
9
 * This library is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12
 * Lesser General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU Lesser General Public
15
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
16
 */
17
18
/*
19
 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
20
 * file for a list of people on the GLib Team.  See the ChangeLog
21
 * files for a list of changes.  These files are distributed with
22
 * GLib at ftp://ftp.gtk.org/pub/gtk/. 
23
 */
24
25
/* 
26
 * MT safe
27
 */
28
29
#include "config.h"
30
#include "glibconfig.h"
31
32
#define DEBUG_MSG(x)  /* */
33
#ifdef G_ENABLE_DEBUG
34
/* #define DEBUG_MSG(args)  g_message args ; */
35
#endif
36
37
#include <time.h>
38
#include <string.h>
39
#include <stdlib.h>
40
#include <locale.h>
41
42
#ifdef G_OS_WIN32
43
#include <windows.h>
44
#endif
45
46
#include "gdate.h"
47
48
#include "gconvert.h"
49
#include "gmem.h"
50
#include "gstrfuncs.h"
51
#include "gtestutils.h"
52
#include "gthread.h"
53
#include "gunicode.h"
54
55
#ifdef G_OS_WIN32
56
#include "garray.h"
57
#endif
58
59
/**
60
 * SECTION:date
61
 * @title: Date and Time Functions
62
 * @short_description: calendrical calculations and miscellaneous time stuff
63
 *
64
 * The #GDate data structure represents a day between January 1, Year 1,
65
 * and sometime a few thousand years in the future (right now it will go
66
 * to the year 65535 or so, but g_date_set_parse() only parses up to the
67
 * year 8000 or so - just count on "a few thousand"). #GDate is meant to
68
 * represent everyday dates, not astronomical dates or historical dates
69
 * or ISO timestamps or the like. It extrapolates the current Gregorian
70
 * calendar forward and backward in time; there is no attempt to change
71
 * the calendar to match time periods or locations. #GDate does not store
72
 * time information; it represents a day.
73
 *
74
 * The #GDate implementation has several nice features; it is only a
75
 * 64-bit struct, so storing large numbers of dates is very efficient. It
76
 * can keep both a Julian and day-month-year representation of the date,
77
 * since some calculations are much easier with one representation or the
78
 * other. A Julian representation is simply a count of days since some
79
 * fixed day in the past; for #GDate the fixed day is January 1, 1 AD.
80
 * ("Julian" dates in the #GDate API aren't really Julian dates in the
81
 * technical sense; technically, Julian dates count from the start of the
82
 * Julian period, Jan 1, 4713 BC).
83
 *
84
 * #GDate is simple to use. First you need a "blank" date; you can get a
85
 * dynamically allocated date from g_date_new(), or you can declare an
86
 * automatic variable or array and initialize it by
87
 * calling g_date_clear(). A cleared date is safe; it's safe to call
88
 * g_date_set_dmy() and the other mutator functions to initialize the
89
 * value of a cleared date. However, a cleared date is initially
90
 * invalid, meaning that it doesn't represent a day that exists.
91
 * It is undefined to call any of the date calculation routines on an
92
 * invalid date. If you obtain a date from a user or other
93
 * unpredictable source, you should check its validity with the
94
 * g_date_valid() predicate. g_date_valid() is also used to check for
95
 * errors with g_date_set_parse() and other functions that can
96
 * fail. Dates can be invalidated by calling g_date_clear() again.
97
 *
98
 * It is very important to use the API to access the #GDate
99
 * struct. Often only the day-month-year or only the Julian
100
 * representation is valid. Sometimes neither is valid. Use the API.
101
 *
102
 * GLib also features #GDateTime which represents a precise time.
103
 */
104
105
/**
106
 * G_USEC_PER_SEC:
107
 *
108
 * Number of microseconds in one second (1 million).
109
 * This macro is provided for code readability.
110
 */
111
112
/**
113
 * GTimeVal:
114
 * @tv_sec: seconds
115
 * @tv_usec: microseconds
116
 *
117
 * Represents a precise time, with seconds and microseconds.
118
 * Similar to the struct timeval returned by the gettimeofday()
119
 * UNIX system call.
120
 *
121
 * GLib is attempting to unify around the use of 64-bit integers to
122
 * represent microsecond-precision time. As such, this type will be
123
 * removed from a future version of GLib. A consequence of using `glong` for
124
 * `tv_sec` is that on 32-bit systems `GTimeVal` is subject to the year 2038
125
 * problem.
126
 *
127
 * Deprecated: 2.62: Use #GDateTime or #guint64 instead.
128
 */
129
130
/**
131
 * GDate:
132
 * @julian_days: the Julian representation of the date
133
 * @julian: this bit is set if @julian_days is valid
134
 * @dmy: this is set if @day, @month and @year are valid
135
 * @day: the day of the day-month-year representation of the date,
136
 *     as a number between 1 and 31
137
 * @month: the day of the day-month-year representation of the date,
138
 *     as a number between 1 and 12
139
 * @year: the day of the day-month-year representation of the date
140
 *
141
 * Represents a day between January 1, Year 1 and a few thousand years in
142
 * the future. None of its members should be accessed directly.
143
 *
144
 * If the #GDate-struct is obtained from g_date_new(), it will be safe
145
 * to mutate but invalid and thus not safe for calendrical computations.
146
 *
147
 * If it's declared on the stack, it will contain garbage so must be
148
 * initialized with g_date_clear(). g_date_clear() makes the date invalid
149
 * but safe. An invalid date doesn't represent a day, it's "empty." A date
150
 * becomes valid after you set it to a Julian day or you set a day, month,
151
 * and year.
152
 */
153
154
/**
155
 * GTime:
156
 *
157
 * Simply a replacement for `time_t`. It has been deprecated
158
 * since it is not equivalent to `time_t` on 64-bit platforms
159
 * with a 64-bit `time_t`. Unrelated to #GTimer.
160
 *
161
 * Note that #GTime is defined to always be a 32-bit integer,
162
 * unlike `time_t` which may be 64-bit on some systems. Therefore,
163
 * #GTime will overflow in the year 2038, and you cannot use the
164
 * address of a #GTime variable as argument to the UNIX time()
165
 * function.
166
 *
167
 * Instead, do the following:
168
 * |[<!-- language="C" -->
169
 * time_t ttime;
170
 * GTime gtime;
171
 *
172
 * time (&ttime);
173
 * gtime = (GTime)ttime;
174
 * ]|
175
 *
176
 * Deprecated: 2.62: This is not [Y2038-safe](https://en.wikipedia.org/wiki/Year_2038_problem).
177
 *    Use #GDateTime or #time_t instead.
178
 */
179
180
/**
181
 * GDateDMY:
182
 * @G_DATE_DAY: a day
183
 * @G_DATE_MONTH: a month
184
 * @G_DATE_YEAR: a year
185
 *
186
 * This enumeration isn't used in the API, but may be useful if you need
187
 * to mark a number as a day, month, or year.
188
 */
189
190
/**
191
 * GDateDay:
192
 *
193
 * Integer representing a day of the month; between 1 and 31.
194
 * #G_DATE_BAD_DAY represents an invalid day of the month.
195
 */
196
197
/**
198
 * GDateMonth:
199
 * @G_DATE_BAD_MONTH: invalid value
200
 * @G_DATE_JANUARY: January
201
 * @G_DATE_FEBRUARY: February
202
 * @G_DATE_MARCH: March
203
 * @G_DATE_APRIL: April
204
 * @G_DATE_MAY: May
205
 * @G_DATE_JUNE: June
206
 * @G_DATE_JULY: July
207
 * @G_DATE_AUGUST: August
208
 * @G_DATE_SEPTEMBER: September
209
 * @G_DATE_OCTOBER: October
210
 * @G_DATE_NOVEMBER: November
211
 * @G_DATE_DECEMBER: December
212
 *
213
 * Enumeration representing a month; values are #G_DATE_JANUARY,
214
 * #G_DATE_FEBRUARY, etc. #G_DATE_BAD_MONTH is the invalid value.
215
 */
216
217
/**
218
 * GDateYear:
219
 *
220
 * Integer representing a year; #G_DATE_BAD_YEAR is the invalid
221
 * value. The year must be 1 or higher; negative (BC) years are not
222
 * allowed. The year is represented with four digits.
223
 */
224
225
/**
226
 * GDateWeekday:
227
 * @G_DATE_BAD_WEEKDAY: invalid value
228
 * @G_DATE_MONDAY: Monday
229
 * @G_DATE_TUESDAY: Tuesday
230
 * @G_DATE_WEDNESDAY: Wednesday
231
 * @G_DATE_THURSDAY: Thursday
232
 * @G_DATE_FRIDAY: Friday
233
 * @G_DATE_SATURDAY: Saturday
234
 * @G_DATE_SUNDAY: Sunday
235
 *
236
 * Enumeration representing a day of the week; #G_DATE_MONDAY,
237
 * #G_DATE_TUESDAY, etc. #G_DATE_BAD_WEEKDAY is an invalid weekday.
238
 */
239
240
/**
241
 * G_DATE_BAD_DAY:
242
 *
243
 * Represents an invalid #GDateDay.
244
 */
245
246
/**
247
 * G_DATE_BAD_JULIAN:
248
 *
249
 * Represents an invalid Julian day number.
250
 */
251
252
/**
253
 * G_DATE_BAD_YEAR:
254
 *
255
 * Represents an invalid year.
256
 */
257
258
/**
259
 * g_date_new:
260
 *
261
 * Allocates a #GDate and initializes
262
 * it to a safe state. The new date will
263
 * be cleared (as if you'd called g_date_clear()) but invalid (it won't
264
 * represent an existing day). Free the return value with g_date_free().
265
 *
266
 * Returns: a newly-allocated #GDate
267
 */
268
GDate*
269
g_date_new (void)
270
0
{
271
0
  GDate *d = g_new0 (GDate, 1); /* happily, 0 is the invalid flag for everything. */
272
  
273
0
  return d;
274
0
}
275
276
/**
277
 * g_date_new_dmy:
278
 * @day: day of the month
279
 * @month: month of the year
280
 * @year: year
281
 *
282
 * Like g_date_new(), but also sets the value of the date. Assuming the
283
 * day-month-year triplet you pass in represents an existing day, the
284
 * returned date will be valid.
285
 *
286
 * Returns: a newly-allocated #GDate initialized with @day, @month, and @year
287
 */
288
GDate*
289
g_date_new_dmy (GDateDay   day, 
290
                GDateMonth m, 
291
                GDateYear  y)
292
0
{
293
0
  GDate *d;
294
0
  g_return_val_if_fail (g_date_valid_dmy (day, m, y), NULL);
295
  
296
0
  d = g_new (GDate, 1);
297
  
298
0
  d->julian = FALSE;
299
0
  d->dmy    = TRUE;
300
  
301
0
  d->month = m;
302
0
  d->day   = day;
303
0
  d->year  = y;
304
  
305
0
  g_assert (g_date_valid (d));
306
  
307
0
  return d;
308
0
}
309
310
/**
311
 * g_date_new_julian:
312
 * @julian_day: days since January 1, Year 1
313
 *
314
 * Like g_date_new(), but also sets the value of the date. Assuming the
315
 * Julian day number you pass in is valid (greater than 0, less than an
316
 * unreasonably large number), the returned date will be valid.
317
 *
318
 * Returns: a newly-allocated #GDate initialized with @julian_day
319
 */
320
GDate*
321
g_date_new_julian (guint32 julian_day)
322
0
{
323
0
  GDate *d;
324
0
  g_return_val_if_fail (g_date_valid_julian (julian_day), NULL);
325
  
326
0
  d = g_new (GDate, 1);
327
  
328
0
  d->julian = TRUE;
329
0
  d->dmy    = FALSE;
330
  
331
0
  d->julian_days = julian_day;
332
  
333
0
  g_assert (g_date_valid (d));
334
  
335
0
  return d;
336
0
}
337
338
/**
339
 * g_date_free:
340
 * @date: a #GDate to free
341
 *
342
 * Frees a #GDate returned from g_date_new().
343
 */
344
void
345
g_date_free (GDate *date)
346
0
{
347
0
  g_return_if_fail (date != NULL);
348
  
349
0
  g_free (date);
350
0
}
351
352
/**
353
 * g_date_copy:
354
 * @date: a #GDate to copy
355
 *
356
 * Copies a GDate to a newly-allocated GDate. If the input was invalid
357
 * (as determined by g_date_valid()), the invalid state will be copied
358
 * as is into the new object.
359
 *
360
 * Returns: (transfer full): a newly-allocated #GDate initialized from @date
361
 *
362
 * Since: 2.56
363
 */
364
GDate *
365
g_date_copy (const GDate *date)
366
0
{
367
0
  GDate *res;
368
0
  g_return_val_if_fail (date != NULL, NULL);
369
370
0
  if (g_date_valid (date))
371
0
    res = g_date_new_julian (g_date_get_julian (date));
372
0
  else
373
0
    {
374
0
      res = g_date_new ();
375
0
      *res = *date;
376
0
    }
377
378
0
  return res;
379
0
}
380
381
/**
382
 * g_date_valid:
383
 * @date: a #GDate to check
384
 *
385
 * Returns %TRUE if the #GDate represents an existing day. The date must not
386
 * contain garbage; it should have been initialized with g_date_clear()
387
 * if it wasn't allocated by one of the g_date_new() variants.
388
 *
389
 * Returns: Whether the date is valid
390
 */
391
gboolean     
392
g_date_valid (const GDate *d)
393
0
{
394
0
  g_return_val_if_fail (d != NULL, FALSE);
395
  
396
0
  return (d->julian || d->dmy);
397
0
}
398
399
static const guint8 days_in_months[2][13] = 
400
{  /* error, jan feb mar apr may jun jul aug sep oct nov dec */
401
  {  0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, 
402
  {  0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } /* leap year */
403
};
404
405
static const guint16 days_in_year[2][14] = 
406
{  /* 0, jan feb mar apr may  jun  jul  aug  sep  oct  nov  dec */
407
  {  0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, 
408
  {  0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
409
};
410
411
/**
412
 * g_date_valid_month:
413
 * @month: month
414
 *
415
 * Returns %TRUE if the month value is valid. The 12 #GDateMonth
416
 * enumeration values are the only valid months.
417
 *
418
 * Returns: %TRUE if the month is valid
419
 */
420
gboolean     
421
g_date_valid_month (GDateMonth m)
422
0
{ 
423
0
  return (((gint) m > G_DATE_BAD_MONTH) && ((gint) m < 13));
424
0
}
425
426
/**
427
 * g_date_valid_year:
428
 * @year: year
429
 *
430
 * Returns %TRUE if the year is valid. Any year greater than 0 is valid,
431
 * though there is a 16-bit limit to what #GDate will understand.
432
 *
433
 * Returns: %TRUE if the year is valid
434
 */
435
gboolean     
436
g_date_valid_year (GDateYear y)
437
0
{
438
0
  return ( y > G_DATE_BAD_YEAR );
439
0
}
440
441
/**
442
 * g_date_valid_day:
443
 * @day: day to check
444
 *
445
 * Returns %TRUE if the day of the month is valid (a day is valid if it's
446
 * between 1 and 31 inclusive).
447
 *
448
 * Returns: %TRUE if the day is valid
449
 */
450
451
gboolean     
452
g_date_valid_day (GDateDay d)
453
0
{
454
0
  return ( (d > G_DATE_BAD_DAY) && (d < 32) );
455
0
}
456
457
/**
458
 * g_date_valid_weekday:
459
 * @weekday: weekday
460
 *
461
 * Returns %TRUE if the weekday is valid. The seven #GDateWeekday enumeration
462
 * values are the only valid weekdays.
463
 *
464
 * Returns: %TRUE if the weekday is valid
465
 */
466
gboolean     
467
g_date_valid_weekday (GDateWeekday w)
468
0
{
469
0
  return (((gint) w > G_DATE_BAD_WEEKDAY) && ((gint) w < 8));
470
0
}
471
472
/**
473
 * g_date_valid_julian:
474
 * @julian_date: Julian day to check
475
 *
476
 * Returns %TRUE if the Julian day is valid. Anything greater than zero
477
 * is basically a valid Julian, though there is a 32-bit limit.
478
 *
479
 * Returns: %TRUE if the Julian day is valid
480
 */
481
gboolean     
482
g_date_valid_julian (guint32 j)
483
0
{
484
0
  return (j > G_DATE_BAD_JULIAN);
485
0
}
486
487
/**
488
 * g_date_valid_dmy:
489
 * @day: day
490
 * @month: month
491
 * @year: year
492
 *
493
 * Returns %TRUE if the day-month-year triplet forms a valid, existing day
494
 * in the range of days #GDate understands (Year 1 or later, no more than
495
 * a few thousand years in the future).
496
 *
497
 * Returns: %TRUE if the date is a valid one
498
 */
499
gboolean     
500
g_date_valid_dmy (GDateDay   d, 
501
                  GDateMonth m, 
502
      GDateYear  y)
503
0
{
504
  /* No need to check the upper bound of @y, because #GDateYear is 16 bits wide,
505
   * just like #GDate.year. */
506
0
  return ( (m > G_DATE_BAD_MONTH) &&
507
0
           (m < 13)               && 
508
0
           (d > G_DATE_BAD_DAY)   && 
509
0
           (y > G_DATE_BAD_YEAR)  &&   /* must check before using g_date_is_leap_year */
510
0
           (d <=  (g_date_is_leap_year (y) ? 
511
0
       days_in_months[1][m] : days_in_months[0][m])) );
512
0
}
513
514
515
/* "Julian days" just means an absolute number of days, where Day 1 ==
516
 *   Jan 1, Year 1
517
 */
518
static void
519
g_date_update_julian (const GDate *const_d)
520
0
{
521
0
  GDate *d = (GDate *) const_d;
522
0
  GDateYear year;
523
0
  gint idx;
524
  
525
0
  g_return_if_fail (d != NULL);
526
0
  g_return_if_fail (d->dmy != 0);
527
0
  g_return_if_fail (!d->julian);
528
0
  g_return_if_fail (g_date_valid_dmy (d->day, d->month, d->year));
529
  
530
  /* What we actually do is: multiply years * 365 days in the year,
531
   * add the number of years divided by 4, subtract the number of
532
   * years divided by 100 and add the number of years divided by 400,
533
   * which accounts for leap year stuff. Code from Steffen Beyer's
534
   * DateCalc. 
535
   */
536
  
537
0
  year = d->year - 1; /* we know d->year > 0 since it's valid */
538
  
539
0
  d->julian_days = year * 365U;
540
0
  d->julian_days += (year >>= 2); /* divide by 4 and add */
541
0
  d->julian_days -= (year /= 25); /* divides original # years by 100 */
542
0
  d->julian_days += year >> 2;    /* divides by 4, which divides original by 400 */
543
  
544
0
  idx = g_date_is_leap_year (d->year) ? 1 : 0;
545
  
546
0
  d->julian_days += days_in_year[idx][d->month] + d->day;
547
  
548
0
  g_return_if_fail (g_date_valid_julian (d->julian_days));
549
  
550
0
  d->julian = TRUE;
551
0
}
552
553
static void 
554
g_date_update_dmy (const GDate *const_d)
555
0
{
556
0
  GDate *d = (GDate *) const_d;
557
0
  GDateYear y;
558
0
  GDateMonth m;
559
0
  GDateDay day;
560
  
561
0
  guint32 A, B, C, D, E, M;
562
  
563
0
  g_return_if_fail (d != NULL);
564
0
  g_return_if_fail (d->julian);
565
0
  g_return_if_fail (!d->dmy);
566
0
  g_return_if_fail (g_date_valid_julian (d->julian_days));
567
  
568
  /* Formula taken from the Calendar FAQ; the formula was for the
569
   *  Julian Period which starts on 1 January 4713 BC, so we add
570
   *  1,721,425 to the number of days before doing the formula.
571
   *
572
   * I'm sure this can be simplified for our 1 January 1 AD period
573
   * start, but I can't figure out how to unpack the formula.  
574
   */
575
  
576
0
  A = d->julian_days + 1721425 + 32045;
577
0
  B = ( 4 *(A + 36524) )/ 146097 - 1;
578
0
  C = A - (146097 * B)/4;
579
0
  D = ( 4 * (C + 365) ) / 1461 - 1;
580
0
  E = C - ((1461*D) / 4);
581
0
  M = (5 * (E - 1) + 2)/153;
582
  
583
0
  m = M + 3 - (12*(M/10));
584
0
  day = E - (153*M + 2)/5;
585
0
  y = 100 * B + D - 4800 + (M/10);
586
  
587
0
#ifdef G_ENABLE_DEBUG
588
0
  if (!g_date_valid_dmy (day, m, y)) 
589
0
    g_warning ("OOPS julian: %u  computed dmy: %u %u %u",
590
0
         d->julian_days, day, m, y);
591
0
#endif
592
  
593
0
  d->month = m;
594
0
  d->day   = day;
595
0
  d->year  = y;
596
  
597
0
  d->dmy = TRUE;
598
0
}
599
600
/**
601
 * g_date_get_weekday:
602
 * @date: a #GDate
603
 *
604
 * Returns the day of the week for a #GDate. The date must be valid.
605
 *
606
 * Returns: day of the week as a #GDateWeekday.
607
 */
608
GDateWeekday 
609
g_date_get_weekday (const GDate *d)
610
0
{
611
0
  g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_WEEKDAY);
612
  
613
0
  if (!d->julian) 
614
0
    g_date_update_julian (d);
615
616
0
  g_return_val_if_fail (d->julian, G_DATE_BAD_WEEKDAY);
617
  
618
0
  return ((d->julian_days - 1) % 7) + 1;
619
0
}
620
621
/**
622
 * g_date_get_month:
623
 * @date: a #GDate to get the month from
624
 *
625
 * Returns the month of the year. The date must be valid.
626
 *
627
 * Returns: month of the year as a #GDateMonth
628
 */
629
GDateMonth   
630
g_date_get_month (const GDate *d)
631
0
{
632
0
  g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_MONTH);
633
  
634
0
  if (!d->dmy) 
635
0
    g_date_update_dmy (d);
636
637
0
  g_return_val_if_fail (d->dmy, G_DATE_BAD_MONTH);
638
  
639
0
  return d->month;
640
0
}
641
642
/**
643
 * g_date_get_year:
644
 * @date: a #GDate
645
 *
646
 * Returns the year of a #GDate. The date must be valid.
647
 *
648
 * Returns: year in which the date falls
649
 */
650
GDateYear    
651
g_date_get_year (const GDate *d)
652
0
{
653
0
  g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_YEAR);
654
  
655
0
  if (!d->dmy) 
656
0
    g_date_update_dmy (d);
657
658
0
  g_return_val_if_fail (d->dmy, G_DATE_BAD_YEAR);  
659
  
660
0
  return d->year;
661
0
}
662
663
/**
664
 * g_date_get_day:
665
 * @date: a #GDate to extract the day of the month from
666
 *
667
 * Returns the day of the month. The date must be valid.
668
 *
669
 * Returns: day of the month
670
 */
671
GDateDay     
672
g_date_get_day (const GDate *d)
673
0
{
674
0
  g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_DAY);
675
  
676
0
  if (!d->dmy) 
677
0
    g_date_update_dmy (d);
678
679
0
  g_return_val_if_fail (d->dmy, G_DATE_BAD_DAY);  
680
  
681
0
  return d->day;
682
0
}
683
684
/**
685
 * g_date_get_julian:
686
 * @date: a #GDate to extract the Julian day from
687
 *
688
 * Returns the Julian day or "serial number" of the #GDate. The
689
 * Julian day is simply the number of days since January 1, Year 1; i.e.,
690
 * January 1, Year 1 is Julian day 1; January 2, Year 1 is Julian day 2,
691
 * etc. The date must be valid.
692
 *
693
 * Returns: Julian day
694
 */
695
guint32      
696
g_date_get_julian (const GDate *d)
697
0
{
698
0
  g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_JULIAN);
699
  
700
0
  if (!d->julian) 
701
0
    g_date_update_julian (d);
702
703
0
  g_return_val_if_fail (d->julian, G_DATE_BAD_JULIAN);  
704
  
705
0
  return d->julian_days;
706
0
}
707
708
/**
709
 * g_date_get_day_of_year:
710
 * @date: a #GDate to extract day of year from
711
 *
712
 * Returns the day of the year, where Jan 1 is the first day of the
713
 * year. The date must be valid.
714
 *
715
 * Returns: day of the year
716
 */
717
guint        
718
g_date_get_day_of_year (const GDate *d)
719
0
{
720
0
  gint idx;
721
  
722
0
  g_return_val_if_fail (g_date_valid (d), 0);
723
  
724
0
  if (!d->dmy) 
725
0
    g_date_update_dmy (d);
726
727
0
  g_return_val_if_fail (d->dmy, 0);  
728
  
729
0
  idx = g_date_is_leap_year (d->year) ? 1 : 0;
730
  
731
0
  return (days_in_year[idx][d->month] + d->day);
732
0
}
733
734
/**
735
 * g_date_get_monday_week_of_year:
736
 * @date: a #GDate
737
 *
738
 * Returns the week of the year, where weeks are understood to start on
739
 * Monday. If the date is before the first Monday of the year, return 0.
740
 * The date must be valid.
741
 *
742
 * Returns: week of the year
743
 */
744
guint        
745
g_date_get_monday_week_of_year (const GDate *d)
746
0
{
747
0
  GDateWeekday wd;
748
0
  guint day;
749
0
  GDate first;
750
  
751
0
  g_return_val_if_fail (g_date_valid (d), 0);
752
  
753
0
  if (!d->dmy) 
754
0
    g_date_update_dmy (d);
755
756
0
  g_return_val_if_fail (d->dmy, 0);  
757
  
758
0
  g_date_clear (&first, 1);
759
  
760
0
  g_date_set_dmy (&first, 1, 1, d->year);
761
  
762
0
  wd = g_date_get_weekday (&first) - 1; /* make Monday day 0 */
763
0
  day = g_date_get_day_of_year (d) - 1;
764
  
765
0
  return ((day + wd)/7U + (wd == 0 ? 1 : 0));
766
0
}
767
768
/**
769
 * g_date_get_sunday_week_of_year:
770
 * @date: a #GDate
771
 *
772
 * Returns the week of the year during which this date falls, if
773
 * weeks are understood to begin on Sunday. The date must be valid.
774
 * Can return 0 if the day is before the first Sunday of the year.
775
 *
776
 * Returns: week number
777
 */
778
guint        
779
g_date_get_sunday_week_of_year (const GDate *d)
780
0
{
781
0
  GDateWeekday wd;
782
0
  guint day;
783
0
  GDate first;
784
  
785
0
  g_return_val_if_fail (g_date_valid (d), 0);
786
  
787
0
  if (!d->dmy) 
788
0
    g_date_update_dmy (d);
789
790
0
  g_return_val_if_fail (d->dmy, 0);  
791
  
792
0
  g_date_clear (&first, 1);
793
  
794
0
  g_date_set_dmy (&first, 1, 1, d->year);
795
  
796
0
  wd = g_date_get_weekday (&first);
797
0
  if (wd == 7) wd = 0; /* make Sunday day 0 */
798
0
  day = g_date_get_day_of_year (d) - 1;
799
  
800
0
  return ((day + wd)/7U + (wd == 0 ? 1 : 0));
801
0
}
802
803
/**
804
 * g_date_get_iso8601_week_of_year:
805
 * @date: a valid #GDate
806
 *
807
 * Returns the week of the year, where weeks are interpreted according
808
 * to ISO 8601. 
809
 * 
810
 * Returns: ISO 8601 week number of the year.
811
 *
812
 * Since: 2.6
813
 **/
814
guint
815
g_date_get_iso8601_week_of_year (const GDate *d)
816
0
{
817
0
  guint j, d4, L, d1, w;
818
819
0
  g_return_val_if_fail (g_date_valid (d), 0);
820
  
821
0
  if (!d->julian)
822
0
    g_date_update_julian (d);
823
824
0
  g_return_val_if_fail (d->julian, 0);
825
826
  /* Formula taken from the Calendar FAQ; the formula was for the
827
   * Julian Period which starts on 1 January 4713 BC, so we add
828
   * 1,721,425 to the number of days before doing the formula. 
829
   */
830
0
  j  = d->julian_days + 1721425;
831
0
  d4 = (j + 31741 - (j % 7)) % 146097 % 36524 % 1461;
832
0
  L  = d4 / 1460;
833
0
  d1 = ((d4 - L) % 365) + L;
834
0
  w  = d1 / 7 + 1;
835
836
0
  return w;
837
0
}
838
839
/**
840
 * g_date_days_between:
841
 * @date1: the first date
842
 * @date2: the second date
843
 *
844
 * Computes the number of days between two dates.
845
 * If @date2 is prior to @date1, the returned value is negative.
846
 * Both dates must be valid.
847
 *
848
 * Returns: the number of days between @date1 and @date2
849
 */
850
gint
851
g_date_days_between (const GDate *d1,
852
         const GDate *d2)
853
0
{
854
0
  g_return_val_if_fail (g_date_valid (d1), 0);
855
0
  g_return_val_if_fail (g_date_valid (d2), 0);
856
857
0
  return (gint)g_date_get_julian (d2) - (gint)g_date_get_julian (d1);
858
0
}
859
860
/**
861
 * g_date_clear:
862
 * @date: pointer to one or more dates to clear
863
 * @n_dates: number of dates to clear
864
 *
865
 * Initializes one or more #GDate structs to a safe but invalid
866
 * state. The cleared dates will not represent an existing date, but will
867
 * not contain garbage. Useful to init a date declared on the stack.
868
 * Validity can be tested with g_date_valid().
869
 */
870
void         
871
g_date_clear (GDate *d, guint ndates)
872
0
{
873
0
  g_return_if_fail (d != NULL);
874
0
  g_return_if_fail (ndates != 0);
875
  
876
0
  memset (d, 0x0, ndates*sizeof (GDate)); 
877
0
}
878
879
G_LOCK_DEFINE_STATIC (g_date_global);
880
881
/* These are for the parser, output to the user should use *
882
 * g_date_strftime () - this creates more never-freed memory to annoy
883
 * all those memory debugger users. :-) 
884
 */
885
886
static gchar *long_month_names[13] = 
887
{ 
888
  NULL,
889
};
890
891
static gchar *long_month_names_alternative[13] =
892
{
893
  NULL,
894
};
895
896
static gchar *short_month_names[13] = 
897
{
898
  NULL, 
899
};
900
901
static gchar *short_month_names_alternative[13] =
902
{
903
  NULL,
904
};
905
906
/* This tells us if we need to update the parse info */
907
static gchar *current_locale = NULL;
908
909
/* order of these in the current locale */
910
static GDateDMY dmy_order[3] = 
911
{
912
   G_DATE_DAY, G_DATE_MONTH, G_DATE_YEAR
913
};
914
915
/* Where to chop two-digit years: i.e., for the 1930 default, numbers
916
 * 29 and below are counted as in the year 2000, numbers 30 and above
917
 * are counted as in the year 1900.  
918
 */
919
920
static const GDateYear twodigit_start_year = 1930;
921
922
/* It is impossible to enter a year between 1 AD and 99 AD with this
923
 * in effect.  
924
 */
925
static gboolean using_twodigit_years = FALSE;
926
927
/* Adjustment of locale era to AD, non-zero means using locale era
928
 */
929
static gint locale_era_adjust = 0;
930
931
struct _GDateParseTokens {
932
  gint num_ints;
933
  gint n[3];
934
  guint month;
935
};
936
937
typedef struct _GDateParseTokens GDateParseTokens;
938
939
static inline gboolean
940
update_month_match (gsize *longest,
941
                    const gchar *haystack,
942
                    const gchar *needle)
943
0
{
944
0
  gsize length;
945
946
0
  if (needle == NULL)
947
0
    return FALSE;
948
949
0
  length = strlen (needle);
950
0
  if (*longest >= length)
951
0
    return FALSE;
952
953
0
  if (strstr (haystack, needle) == NULL)
954
0
    return FALSE;
955
956
0
  *longest = length;
957
0
  return TRUE;
958
0
}
959
960
0
#define NUM_LEN 10
961
962
/* HOLDS: g_date_global_lock */
963
static void
964
g_date_fill_parse_tokens (const gchar *str, GDateParseTokens *pt)
965
0
{
966
0
  gchar num[4][NUM_LEN+1];
967
0
  gint i;
968
0
  const guchar *s;
969
  
970
  /* We count 4, but store 3; so we can give an error
971
   * if there are 4.
972
   */
973
0
  num[0][0] = num[1][0] = num[2][0] = num[3][0] = '\0';
974
  
975
0
  s = (const guchar *) str;
976
0
  pt->num_ints = 0;
977
0
  while (*s && pt->num_ints < 4) 
978
0
    {
979
      
980
0
      i = 0;
981
0
      while (*s && g_ascii_isdigit (*s) && i < NUM_LEN)
982
0
        {
983
0
          num[pt->num_ints][i] = *s;
984
0
          ++s; 
985
0
          ++i;
986
0
        }
987
      
988
0
      if (i > 0) 
989
0
        {
990
0
          num[pt->num_ints][i] = '\0';
991
0
          ++(pt->num_ints);
992
0
        }
993
      
994
0
      if (*s == '\0') break;
995
      
996
0
      ++s;
997
0
    }
998
  
999
0
  pt->n[0] = pt->num_ints > 0 ? atoi (num[0]) : 0;
1000
0
  pt->n[1] = pt->num_ints > 1 ? atoi (num[1]) : 0;
1001
0
  pt->n[2] = pt->num_ints > 2 ? atoi (num[2]) : 0;
1002
  
1003
0
  pt->month = G_DATE_BAD_MONTH;
1004
  
1005
0
  if (pt->num_ints < 3)
1006
0
    {
1007
0
      gsize longest = 0;
1008
0
      gchar *casefold;
1009
0
      gchar *normalized;
1010
      
1011
0
      casefold = g_utf8_casefold (str, -1);
1012
0
      normalized = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1013
0
      g_free (casefold);
1014
1015
0
      for (i = 1; i < 13; ++i)
1016
0
        {
1017
          /* Here month names may be in a genitive case if the language
1018
           * grammatical rules require it.
1019
           * Examples of how January may look in some languages:
1020
           * Catalan: "de gener", Croatian: "siječnja", Polish: "stycznia",
1021
           * Upper Sorbian: "januara".
1022
           * Note that most of the languages can't or don't use the the
1023
           * genitive case here so they use nominative everywhere.
1024
           * For example, English always uses "January".
1025
           */
1026
0
          if (update_month_match (&longest, normalized, long_month_names[i]))
1027
0
            pt->month = i;
1028
1029
          /* Here month names will be in a nominative case.
1030
           * Examples of how January may look in some languages:
1031
           * Catalan: "gener", Croatian: "Siječanj", Polish: "styczeń",
1032
           * Upper Sorbian: "Januar".
1033
           */
1034
0
          if (update_month_match (&longest, normalized, long_month_names_alternative[i]))
1035
0
            pt->month = i;
1036
1037
          /* Differences between abbreviated nominative and abbreviated
1038
           * genitive month names are visible in very few languages but
1039
           * let's handle them.
1040
           */
1041
0
          if (update_month_match (&longest, normalized, short_month_names[i]))
1042
0
            pt->month = i;
1043
1044
0
          if (update_month_match (&longest, normalized, short_month_names_alternative[i]))
1045
0
            pt->month = i;
1046
0
        }
1047
1048
0
      g_free (normalized);
1049
0
    }
1050
0
}
1051
1052
/* HOLDS: g_date_global_lock */
1053
static void
1054
g_date_prepare_to_parse (const gchar      *str, 
1055
                         GDateParseTokens *pt)
1056
0
{
1057
0
  const gchar *locale = setlocale (LC_TIME, NULL);
1058
0
  gboolean recompute_localeinfo = FALSE;
1059
0
  GDate d;
1060
  
1061
0
  g_return_if_fail (locale != NULL); /* should not happen */
1062
  
1063
0
  g_date_clear (&d, 1);              /* clear for scratch use */
1064
  
1065
0
  if ( (current_locale == NULL) || (strcmp (locale, current_locale) != 0) ) 
1066
0
    recompute_localeinfo = TRUE;  /* Uh, there used to be a reason for the temporary */
1067
  
1068
0
  if (recompute_localeinfo)
1069
0
    {
1070
0
      int i = 1;
1071
0
      GDateParseTokens testpt;
1072
0
      gchar buf[128];
1073
      
1074
0
      g_free (current_locale); /* still works if current_locale == NULL */
1075
      
1076
0
      current_locale = g_strdup (locale);
1077
      
1078
0
      short_month_names[0] = "Error";
1079
0
      long_month_names[0] = "Error";
1080
1081
0
      while (i < 13) 
1082
0
        {
1083
0
    gchar *casefold;
1084
    
1085
0
          g_date_set_dmy (&d, 1, i, 1976);
1086
    
1087
0
          g_return_if_fail (g_date_valid (&d));
1088
    
1089
0
          g_date_strftime (buf, 127, "%b", &d);
1090
1091
0
    casefold = g_utf8_casefold (buf, -1);
1092
0
          g_free (short_month_names[i]);
1093
0
          short_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1094
0
    g_free (casefold);
1095
    
1096
0
          g_date_strftime (buf, 127, "%B", &d);
1097
0
    casefold = g_utf8_casefold (buf, -1);
1098
0
          g_free (long_month_names[i]);
1099
0
          long_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1100
0
    g_free (casefold);
1101
          
1102
0
          g_date_strftime (buf, 127, "%Ob", &d);
1103
0
          casefold = g_utf8_casefold (buf, -1);
1104
0
          g_free (short_month_names_alternative[i]);
1105
0
          short_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1106
0
          g_free (casefold);
1107
1108
0
          g_date_strftime (buf, 127, "%OB", &d);
1109
0
          casefold = g_utf8_casefold (buf, -1);
1110
0
          g_free (long_month_names_alternative[i]);
1111
0
          long_month_names_alternative[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1112
0
          g_free (casefold);
1113
1114
0
          ++i;
1115
0
        }
1116
      
1117
      /* Determine DMY order */
1118
      
1119
      /* had to pick a random day - don't change this, some strftimes
1120
       * are broken on some days, and this one is good so far. */
1121
0
      g_date_set_dmy (&d, 4, 7, 1976);
1122
      
1123
0
      g_date_strftime (buf, 127, "%x", &d);
1124
      
1125
0
      g_date_fill_parse_tokens (buf, &testpt);
1126
1127
0
      using_twodigit_years = FALSE;
1128
0
      locale_era_adjust = 0;
1129
0
      dmy_order[0] = G_DATE_DAY;
1130
0
      dmy_order[1] = G_DATE_MONTH;
1131
0
      dmy_order[2] = G_DATE_YEAR;
1132
      
1133
0
      i = 0;
1134
0
      while (i < testpt.num_ints)
1135
0
        {
1136
0
          switch (testpt.n[i])
1137
0
            {
1138
0
            case 7:
1139
0
              dmy_order[i] = G_DATE_MONTH;
1140
0
              break;
1141
0
            case 4:
1142
0
              dmy_order[i] = G_DATE_DAY;
1143
0
              break;
1144
0
            case 76:
1145
0
              using_twodigit_years = TRUE;
1146
0
              G_GNUC_FALLTHROUGH;
1147
0
            case 1976:
1148
0
              dmy_order[i] = G_DATE_YEAR;
1149
0
              break;
1150
0
            default:
1151
              /* assume locale era */
1152
0
              locale_era_adjust = 1976 - testpt.n[i];
1153
0
              dmy_order[i] = G_DATE_YEAR;
1154
0
              break;
1155
0
            }
1156
0
          ++i;
1157
0
        }
1158
      
1159
#if defined(G_ENABLE_DEBUG) && 0
1160
      DEBUG_MSG (("**GDate prepared a new set of locale-specific parse rules."));
1161
      i = 1;
1162
      while (i < 13) 
1163
        {
1164
          DEBUG_MSG (("  %s   %s", long_month_names[i], short_month_names[i]));
1165
          ++i;
1166
        }
1167
      DEBUG_MSG (("Alternative month names:"));
1168
      i = 1;
1169
      while (i < 13)
1170
        {
1171
          DEBUG_MSG (("  %s   %s", long_month_names_alternative[i], short_month_names_alternative[i]));
1172
          ++i;
1173
        }
1174
      if (using_twodigit_years)
1175
        {
1176
    DEBUG_MSG (("**Using twodigit years with cutoff year: %u", twodigit_start_year));
1177
        }
1178
      { 
1179
        gchar *strings[3];
1180
        i = 0;
1181
        while (i < 3)
1182
          {
1183
            switch (dmy_order[i])
1184
              {
1185
              case G_DATE_MONTH:
1186
                strings[i] = "Month";
1187
                break;
1188
              case G_DATE_YEAR:
1189
                strings[i] = "Year";
1190
                break;
1191
              case G_DATE_DAY:
1192
                strings[i] = "Day";
1193
                break;
1194
              default:
1195
                strings[i] = NULL;
1196
                break;
1197
              }
1198
            ++i;
1199
          }
1200
        DEBUG_MSG (("**Order: %s, %s, %s", strings[0], strings[1], strings[2]));
1201
        DEBUG_MSG (("**Sample date in this locale: '%s'", buf));
1202
      }
1203
#endif
1204
0
    }
1205
  
1206
0
  g_date_fill_parse_tokens (str, pt);
1207
0
}
1208
1209
/**
1210
 * g_date_set_parse:
1211
 * @date: a #GDate to fill in
1212
 * @str: string to parse
1213
 *
1214
 * Parses a user-inputted string @str, and try to figure out what date it
1215
 * represents, taking the [current locale][setlocale] into account. If the
1216
 * string is successfully parsed, the date will be valid after the call.
1217
 * Otherwise, it will be invalid. You should check using g_date_valid()
1218
 * to see whether the parsing succeeded.
1219
 *
1220
 * This function is not appropriate for file formats and the like; it
1221
 * isn't very precise, and its exact behavior varies with the locale.
1222
 * It's intended to be a heuristic routine that guesses what the user
1223
 * means by a given string (and it does work pretty well in that
1224
 * capacity).
1225
 */
1226
void         
1227
g_date_set_parse (GDate       *d, 
1228
                  const gchar *str)
1229
0
{
1230
0
  GDateParseTokens pt;
1231
0
  guint m = G_DATE_BAD_MONTH, day = G_DATE_BAD_DAY, y = G_DATE_BAD_YEAR;
1232
0
  gsize str_len;
1233
  
1234
0
  g_return_if_fail (d != NULL);
1235
  
1236
  /* set invalid */
1237
0
  g_date_clear (d, 1);
1238
1239
  /* Anything longer than this is ridiculous and could take a while to normalize.
1240
   * This limit is chosen arbitrarily. */
1241
0
  str_len = strlen (str);
1242
0
  if (str_len > 200)
1243
0
    return;
1244
1245
  /* The input has to be valid UTF-8. */
1246
0
  if (!g_utf8_validate_len (str, str_len, NULL))
1247
0
    return;
1248
1249
0
  G_LOCK (g_date_global);
1250
1251
0
  g_date_prepare_to_parse (str, &pt);
1252
  
1253
0
  DEBUG_MSG (("Found %d ints, '%d' '%d' '%d' and written out month %d",
1254
0
        pt.num_ints, pt.n[0], pt.n[1], pt.n[2], pt.month));
1255
  
1256
  
1257
0
  if (pt.num_ints == 4) 
1258
0
    {
1259
0
      G_UNLOCK (g_date_global);
1260
0
      return; /* presumably a typo; bail out. */
1261
0
    }
1262
  
1263
0
  if (pt.num_ints > 1)
1264
0
    {
1265
0
      int i = 0;
1266
0
      int j = 0;
1267
      
1268
0
      g_assert (pt.num_ints < 4); /* i.e., it is 2 or 3 */
1269
      
1270
0
      while (i < pt.num_ints && j < 3) 
1271
0
        {
1272
0
          switch (dmy_order[j])
1273
0
            {
1274
0
            case G_DATE_MONTH:
1275
0
      {
1276
0
        if (pt.num_ints == 2 && pt.month != G_DATE_BAD_MONTH)
1277
0
    {
1278
0
      m = pt.month;
1279
0
      ++j;      /* skip months, but don't skip this number */
1280
0
      continue;
1281
0
    }
1282
0
        else 
1283
0
    m = pt.n[i];
1284
0
      }
1285
0
      break;
1286
0
            case G_DATE_DAY:
1287
0
      {
1288
0
        if (pt.num_ints == 2 && pt.month == G_DATE_BAD_MONTH)
1289
0
    {
1290
0
      day = 1;
1291
0
      ++j;      /* skip days, since we may have month/year */
1292
0
      continue;
1293
0
    }
1294
0
        day = pt.n[i];
1295
0
      }
1296
0
      break;
1297
0
            case G_DATE_YEAR:
1298
0
      {
1299
0
        y  = pt.n[i];
1300
        
1301
0
        if (locale_era_adjust != 0)
1302
0
          {
1303
0
      y += locale_era_adjust;
1304
0
          }
1305
0
        else if (using_twodigit_years && y < 100)
1306
0
    {
1307
0
      guint two     =  twodigit_start_year % 100;
1308
0
      guint century = (twodigit_start_year / 100) * 100;
1309
      
1310
0
      if (y < two)
1311
0
        century += 100;
1312
      
1313
0
      y += century;
1314
0
    }
1315
0
      }
1316
0
      break;
1317
0
            default:
1318
0
              break;
1319
0
            }
1320
    
1321
0
          ++i;
1322
0
          ++j;
1323
0
        }
1324
      
1325
      
1326
0
      if (pt.num_ints == 3 && !g_date_valid_dmy (day, m, y))
1327
0
        {
1328
          /* Try YYYY MM DD */
1329
0
          y   = pt.n[0];
1330
0
          m   = pt.n[1];
1331
0
          day = pt.n[2];
1332
          
1333
0
          if (using_twodigit_years && y < 100) 
1334
0
            y = G_DATE_BAD_YEAR; /* avoids ambiguity */
1335
0
        }
1336
0
      else if (pt.num_ints == 2)
1337
0
  {
1338
0
    if (m == G_DATE_BAD_MONTH && pt.month != G_DATE_BAD_MONTH)
1339
0
      m = pt.month;
1340
0
  }
1341
0
    }
1342
0
  else if (pt.num_ints == 1) 
1343
0
    {
1344
0
      if (pt.month != G_DATE_BAD_MONTH)
1345
0
        {
1346
          /* Month name and year? */
1347
0
          m    = pt.month;
1348
0
          day  = 1;
1349
0
          y = pt.n[0];
1350
0
        }
1351
0
      else
1352
0
        {
1353
          /* Try yyyymmdd and yymmdd */
1354
    
1355
0
          m   = (pt.n[0]/100) % 100;
1356
0
          day = pt.n[0] % 100;
1357
0
          y   = pt.n[0]/10000;
1358
    
1359
          /* FIXME move this into a separate function */
1360
0
          if (using_twodigit_years && y < 100)
1361
0
            {
1362
0
              guint two     =  twodigit_start_year % 100;
1363
0
              guint century = (twodigit_start_year / 100) * 100;
1364
              
1365
0
              if (y < two)
1366
0
                century += 100;
1367
              
1368
0
              y += century;
1369
0
            }
1370
0
        }
1371
0
    }
1372
  
1373
  /* See if we got anything valid out of all this. */
1374
  /* y < 8000 is to catch 19998 style typos; the library is OK up to 65535 or so */
1375
0
  if (y < 8000 && g_date_valid_dmy (day, m, y)) 
1376
0
    {
1377
0
      d->month = m;
1378
0
      d->day   = day;
1379
0
      d->year  = y;
1380
0
      d->dmy   = TRUE;
1381
0
    }
1382
0
#ifdef G_ENABLE_DEBUG
1383
0
  else 
1384
0
    {
1385
0
      DEBUG_MSG (("Rejected DMY %u %u %u", day, m, y));
1386
0
    }
1387
0
#endif
1388
0
  G_UNLOCK (g_date_global);
1389
0
}
1390
1391
/**
1392
 * g_date_set_time_t:
1393
 * @date: a #GDate 
1394
 * @timet: time_t value to set
1395
 *
1396
 * Sets the value of a date to the date corresponding to a time 
1397
 * specified as a time_t. The time to date conversion is done using 
1398
 * the user's current timezone.
1399
 *
1400
 * To set the value of a date to the current day, you could write:
1401
 * |[<!-- language="C" -->
1402
 *  time_t now = time (NULL);
1403
 *  if (now == (time_t) -1)
1404
 *    // handle the error
1405
 *  g_date_set_time_t (date, now);
1406
 * ]|
1407
 *
1408
 * Since: 2.10
1409
 */
1410
void         
1411
g_date_set_time_t (GDate *date,
1412
       time_t timet)
1413
0
{
1414
0
  struct tm tm;
1415
  
1416
0
  g_return_if_fail (date != NULL);
1417
  
1418
0
#ifdef HAVE_LOCALTIME_R
1419
0
  localtime_r (&timet, &tm);
1420
#else
1421
  {
1422
    struct tm *ptm = localtime (&timet);
1423
1424
    if (ptm == NULL)
1425
      {
1426
  /* Happens at least in Microsoft's C library if you pass a
1427
   * negative time_t. Use 2000-01-01 as default date.
1428
   */
1429
#ifndef G_DISABLE_CHECKS
1430
  g_return_if_fail_warning (G_LOG_DOMAIN, "g_date_set_time", "ptm != NULL");
1431
#endif
1432
1433
  tm.tm_mon = 0;
1434
  tm.tm_mday = 1;
1435
  tm.tm_year = 100;
1436
      }
1437
    else
1438
      memcpy ((void *) &tm, (void *) ptm, sizeof(struct tm));
1439
  }
1440
#endif
1441
  
1442
0
  date->julian = FALSE;
1443
  
1444
0
  date->month = tm.tm_mon + 1;
1445
0
  date->day   = tm.tm_mday;
1446
0
  date->year  = tm.tm_year + 1900;
1447
  
1448
0
  g_return_if_fail (g_date_valid_dmy (date->day, date->month, date->year));
1449
  
1450
0
  date->dmy    = TRUE;
1451
0
}
1452
1453
1454
/**
1455
 * g_date_set_time:
1456
 * @date: a #GDate.
1457
 * @time_: #GTime value to set.
1458
 *
1459
 * Sets the value of a date from a #GTime value.
1460
 * The time to date conversion is done using the user's current timezone.
1461
 *
1462
 * Deprecated: 2.10: Use g_date_set_time_t() instead.
1463
 */
1464
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1465
void
1466
g_date_set_time (GDate *date,
1467
     GTime  time_)
1468
0
{
1469
0
  g_date_set_time_t (date, (time_t) time_);
1470
0
}
1471
G_GNUC_END_IGNORE_DEPRECATIONS
1472
1473
/**
1474
 * g_date_set_time_val:
1475
 * @date: a #GDate 
1476
 * @timeval: #GTimeVal value to set
1477
 *
1478
 * Sets the value of a date from a #GTimeVal value.  Note that the
1479
 * @tv_usec member is ignored, because #GDate can't make use of the
1480
 * additional precision.
1481
 *
1482
 * The time to date conversion is done using the user's current timezone.
1483
 *
1484
 * Since: 2.10
1485
 * Deprecated: 2.62: #GTimeVal is not year-2038-safe. Use g_date_set_time_t()
1486
 *    instead.
1487
 */
1488
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1489
void
1490
g_date_set_time_val (GDate    *date,
1491
         GTimeVal *timeval)
1492
0
{
1493
0
  g_date_set_time_t (date, (time_t) timeval->tv_sec);
1494
0
}
1495
G_GNUC_END_IGNORE_DEPRECATIONS
1496
1497
/**
1498
 * g_date_set_month:
1499
 * @date: a #GDate
1500
 * @month: month to set
1501
 *
1502
 * Sets the month of the year for a #GDate.  If the resulting
1503
 * day-month-year triplet is invalid, the date will be invalid.
1504
 */
1505
void         
1506
g_date_set_month (GDate     *d, 
1507
                  GDateMonth m)
1508
0
{
1509
0
  g_return_if_fail (d != NULL);
1510
0
  g_return_if_fail (g_date_valid_month (m));
1511
1512
0
  if (d->julian && !d->dmy) g_date_update_dmy(d);
1513
0
  d->julian = FALSE;
1514
  
1515
0
  d->month = m;
1516
  
1517
0
  if (g_date_valid_dmy (d->day, d->month, d->year))
1518
0
    d->dmy = TRUE;
1519
0
  else 
1520
0
    d->dmy = FALSE;
1521
0
}
1522
1523
/**
1524
 * g_date_set_day:
1525
 * @date: a #GDate
1526
 * @day: day to set
1527
 *
1528
 * Sets the day of the month for a #GDate. If the resulting
1529
 * day-month-year triplet is invalid, the date will be invalid.
1530
 */
1531
void         
1532
g_date_set_day (GDate    *d, 
1533
                GDateDay  day)
1534
0
{
1535
0
  g_return_if_fail (d != NULL);
1536
0
  g_return_if_fail (g_date_valid_day (day));
1537
  
1538
0
  if (d->julian && !d->dmy) g_date_update_dmy(d);
1539
0
  d->julian = FALSE;
1540
  
1541
0
  d->day = day;
1542
  
1543
0
  if (g_date_valid_dmy (d->day, d->month, d->year))
1544
0
    d->dmy = TRUE;
1545
0
  else 
1546
0
    d->dmy = FALSE;
1547
0
}
1548
1549
/**
1550
 * g_date_set_year:
1551
 * @date: a #GDate
1552
 * @year: year to set
1553
 *
1554
 * Sets the year for a #GDate. If the resulting day-month-year
1555
 * triplet is invalid, the date will be invalid.
1556
 */
1557
void         
1558
g_date_set_year (GDate     *d, 
1559
                 GDateYear  y)
1560
0
{
1561
0
  g_return_if_fail (d != NULL);
1562
0
  g_return_if_fail (g_date_valid_year (y));
1563
  
1564
0
  if (d->julian && !d->dmy) g_date_update_dmy(d);
1565
0
  d->julian = FALSE;
1566
  
1567
0
  d->year = y;
1568
  
1569
0
  if (g_date_valid_dmy (d->day, d->month, d->year))
1570
0
    d->dmy = TRUE;
1571
0
  else 
1572
0
    d->dmy = FALSE;
1573
0
}
1574
1575
/**
1576
 * g_date_set_dmy:
1577
 * @date: a #GDate
1578
 * @day: day
1579
 * @month: month
1580
 * @y: year
1581
 *
1582
 * Sets the value of a #GDate from a day, month, and year.
1583
 * The day-month-year triplet must be valid; if you aren't
1584
 * sure it is, call g_date_valid_dmy() to check before you
1585
 * set it.
1586
 */
1587
void         
1588
g_date_set_dmy (GDate      *d, 
1589
                GDateDay    day, 
1590
                GDateMonth  m, 
1591
                GDateYear   y)
1592
0
{
1593
0
  g_return_if_fail (d != NULL);
1594
0
  g_return_if_fail (g_date_valid_dmy (day, m, y));
1595
  
1596
0
  d->julian = FALSE;
1597
  
1598
0
  d->month = m;
1599
0
  d->day   = day;
1600
0
  d->year  = y;
1601
  
1602
0
  d->dmy = TRUE;
1603
0
}
1604
1605
/**
1606
 * g_date_set_julian:
1607
 * @date: a #GDate
1608
 * @julian_date: Julian day number (days since January 1, Year 1)
1609
 *
1610
 * Sets the value of a #GDate from a Julian day number.
1611
 */
1612
void         
1613
g_date_set_julian (GDate   *d, 
1614
                   guint32  j)
1615
0
{
1616
0
  g_return_if_fail (d != NULL);
1617
0
  g_return_if_fail (g_date_valid_julian (j));
1618
  
1619
0
  d->julian_days = j;
1620
0
  d->julian = TRUE;
1621
0
  d->dmy = FALSE;
1622
0
}
1623
1624
/**
1625
 * g_date_is_first_of_month:
1626
 * @date: a #GDate to check
1627
 *
1628
 * Returns %TRUE if the date is on the first of a month.
1629
 * The date must be valid.
1630
 *
1631
 * Returns: %TRUE if the date is the first of the month
1632
 */
1633
gboolean     
1634
g_date_is_first_of_month (const GDate *d)
1635
0
{
1636
0
  g_return_val_if_fail (g_date_valid (d), FALSE);
1637
  
1638
0
  if (!d->dmy) 
1639
0
    g_date_update_dmy (d);
1640
1641
0
  g_return_val_if_fail (d->dmy, FALSE);  
1642
  
1643
0
  if (d->day == 1) return TRUE;
1644
0
  else return FALSE;
1645
0
}
1646
1647
/**
1648
 * g_date_is_last_of_month:
1649
 * @date: a #GDate to check
1650
 *
1651
 * Returns %TRUE if the date is the last day of the month.
1652
 * The date must be valid.
1653
 *
1654
 * Returns: %TRUE if the date is the last day of the month
1655
 */
1656
gboolean     
1657
g_date_is_last_of_month (const GDate *d)
1658
0
{
1659
0
  gint idx;
1660
  
1661
0
  g_return_val_if_fail (g_date_valid (d), FALSE);
1662
  
1663
0
  if (!d->dmy) 
1664
0
    g_date_update_dmy (d);
1665
1666
0
  g_return_val_if_fail (d->dmy, FALSE);  
1667
  
1668
0
  idx = g_date_is_leap_year (d->year) ? 1 : 0;
1669
  
1670
0
  if (d->day == days_in_months[idx][d->month]) return TRUE;
1671
0
  else return FALSE;
1672
0
}
1673
1674
/**
1675
 * g_date_add_days:
1676
 * @date: a #GDate to increment
1677
 * @n_days: number of days to move the date forward
1678
 *
1679
 * Increments a date some number of days.
1680
 * To move forward by weeks, add weeks*7 days.
1681
 * The date must be valid.
1682
 */
1683
void         
1684
g_date_add_days (GDate *d, 
1685
                 guint  ndays)
1686
0
{
1687
0
  g_return_if_fail (g_date_valid (d));
1688
  
1689
0
  if (!d->julian)
1690
0
    g_date_update_julian (d);
1691
1692
0
  g_return_if_fail (d->julian);
1693
0
  g_return_if_fail (ndays <= G_MAXUINT32 - d->julian_days);
1694
  
1695
0
  d->julian_days += ndays;
1696
0
  d->dmy = FALSE;
1697
0
}
1698
1699
/**
1700
 * g_date_subtract_days:
1701
 * @date: a #GDate to decrement
1702
 * @n_days: number of days to move
1703
 *
1704
 * Moves a date some number of days into the past.
1705
 * To move by weeks, just move by weeks*7 days.
1706
 * The date must be valid.
1707
 */
1708
void         
1709
g_date_subtract_days (GDate *d, 
1710
                      guint  ndays)
1711
0
{
1712
0
  g_return_if_fail (g_date_valid (d));
1713
  
1714
0
  if (!d->julian)
1715
0
    g_date_update_julian (d);
1716
1717
0
  g_return_if_fail (d->julian);
1718
0
  g_return_if_fail (d->julian_days > ndays);
1719
  
1720
0
  d->julian_days -= ndays;
1721
0
  d->dmy = FALSE;
1722
0
}
1723
1724
/**
1725
 * g_date_add_months:
1726
 * @date: a #GDate to increment
1727
 * @n_months: number of months to move forward
1728
 *
1729
 * Increments a date by some number of months.
1730
 * If the day of the month is greater than 28,
1731
 * this routine may change the day of the month
1732
 * (because the destination month may not have
1733
 * the current day in it). The date must be valid.
1734
 */
1735
void         
1736
g_date_add_months (GDate *d, 
1737
                   guint  nmonths)
1738
0
{
1739
0
  guint years, months;
1740
0
  gint idx;
1741
  
1742
0
  g_return_if_fail (g_date_valid (d));
1743
  
1744
0
  if (!d->dmy) 
1745
0
    g_date_update_dmy (d);
1746
1747
0
  g_return_if_fail (d->dmy != 0);
1748
0
  g_return_if_fail (nmonths <= G_MAXUINT - (d->month - 1));
1749
1750
0
  nmonths += d->month - 1;
1751
  
1752
0
  years  = nmonths/12;
1753
0
  months = nmonths%12;
1754
1755
0
  g_return_if_fail (years <= (guint) (G_MAXUINT16 - d->year));
1756
1757
0
  d->month = months + 1;
1758
0
  d->year  += years;
1759
  
1760
0
  idx = g_date_is_leap_year (d->year) ? 1 : 0;
1761
  
1762
0
  if (d->day > days_in_months[idx][d->month])
1763
0
    d->day = days_in_months[idx][d->month];
1764
  
1765
0
  d->julian = FALSE;
1766
  
1767
0
  g_return_if_fail (g_date_valid (d));
1768
0
}
1769
1770
/**
1771
 * g_date_subtract_months:
1772
 * @date: a #GDate to decrement
1773
 * @n_months: number of months to move
1774
 *
1775
 * Moves a date some number of months into the past.
1776
 * If the current day of the month doesn't exist in
1777
 * the destination month, the day of the month
1778
 * may change. The date must be valid.
1779
 */
1780
void         
1781
g_date_subtract_months (GDate *d, 
1782
                        guint  nmonths)
1783
0
{
1784
0
  guint years, months;
1785
0
  gint idx;
1786
  
1787
0
  g_return_if_fail (g_date_valid (d));
1788
  
1789
0
  if (!d->dmy) 
1790
0
    g_date_update_dmy (d);
1791
1792
0
  g_return_if_fail (d->dmy != 0);
1793
  
1794
0
  years  = nmonths/12;
1795
0
  months = nmonths%12;
1796
  
1797
0
  g_return_if_fail (d->year > years);
1798
  
1799
0
  d->year  -= years;
1800
  
1801
0
  if (d->month > months) d->month -= months;
1802
0
  else 
1803
0
    {
1804
0
      months -= d->month;
1805
0
      d->month = 12 - months;
1806
0
      d->year -= 1;
1807
0
    }
1808
  
1809
0
  idx = g_date_is_leap_year (d->year) ? 1 : 0;
1810
  
1811
0
  if (d->day > days_in_months[idx][d->month])
1812
0
    d->day = days_in_months[idx][d->month];
1813
  
1814
0
  d->julian = FALSE;
1815
  
1816
0
  g_return_if_fail (g_date_valid (d));
1817
0
}
1818
1819
/**
1820
 * g_date_add_years:
1821
 * @date: a #GDate to increment
1822
 * @n_years: number of years to move forward
1823
 *
1824
 * Increments a date by some number of years.
1825
 * If the date is February 29, and the destination
1826
 * year is not a leap year, the date will be changed
1827
 * to February 28. The date must be valid.
1828
 */
1829
void         
1830
g_date_add_years (GDate *d, 
1831
                  guint  nyears)
1832
0
{
1833
0
  g_return_if_fail (g_date_valid (d));
1834
  
1835
0
  if (!d->dmy) 
1836
0
    g_date_update_dmy (d);
1837
1838
0
  g_return_if_fail (d->dmy != 0);
1839
0
  g_return_if_fail (nyears <= (guint) (G_MAXUINT16 - d->year));
1840
1841
0
  d->year += nyears;
1842
  
1843
0
  if (d->month == 2 && d->day == 29)
1844
0
    {
1845
0
      if (!g_date_is_leap_year (d->year))
1846
0
        d->day = 28;
1847
0
    }
1848
  
1849
0
  d->julian = FALSE;
1850
0
}
1851
1852
/**
1853
 * g_date_subtract_years:
1854
 * @date: a #GDate to decrement
1855
 * @n_years: number of years to move
1856
 *
1857
 * Moves a date some number of years into the past.
1858
 * If the current day doesn't exist in the destination
1859
 * year (i.e. it's February 29 and you move to a non-leap-year)
1860
 * then the day is changed to February 29. The date
1861
 * must be valid.
1862
 */
1863
void         
1864
g_date_subtract_years (GDate *d, 
1865
                       guint  nyears)
1866
0
{
1867
0
  g_return_if_fail (g_date_valid (d));
1868
  
1869
0
  if (!d->dmy) 
1870
0
    g_date_update_dmy (d);
1871
1872
0
  g_return_if_fail (d->dmy != 0);
1873
0
  g_return_if_fail (d->year > nyears);
1874
  
1875
0
  d->year -= nyears;
1876
  
1877
0
  if (d->month == 2 && d->day == 29)
1878
0
    {
1879
0
      if (!g_date_is_leap_year (d->year))
1880
0
        d->day = 28;
1881
0
    }
1882
  
1883
0
  d->julian = FALSE;
1884
0
}
1885
1886
/**
1887
 * g_date_is_leap_year:
1888
 * @year: year to check
1889
 *
1890
 * Returns %TRUE if the year is a leap year.
1891
 *
1892
 * For the purposes of this function, leap year is every year
1893
 * divisible by 4 unless that year is divisible by 100. If it
1894
 * is divisible by 100 it would be a leap year only if that year
1895
 * is also divisible by 400.
1896
 *
1897
 * Returns: %TRUE if the year is a leap year
1898
 */
1899
gboolean     
1900
g_date_is_leap_year (GDateYear year)
1901
0
{
1902
0
  g_return_val_if_fail (g_date_valid_year (year), FALSE);
1903
  
1904
0
  return ( (((year % 4) == 0) && ((year % 100) != 0)) ||
1905
0
           (year % 400) == 0 );
1906
0
}
1907
1908
/**
1909
 * g_date_get_days_in_month:
1910
 * @month: month
1911
 * @year: year
1912
 *
1913
 * Returns the number of days in a month, taking leap
1914
 * years into account.
1915
 *
1916
 * Returns: number of days in @month during the @year
1917
 */
1918
guint8         
1919
g_date_get_days_in_month (GDateMonth month, 
1920
                          GDateYear  year)
1921
0
{
1922
0
  gint idx;
1923
  
1924
0
  g_return_val_if_fail (g_date_valid_year (year), 0);
1925
0
  g_return_val_if_fail (g_date_valid_month (month), 0);
1926
  
1927
0
  idx = g_date_is_leap_year (year) ? 1 : 0;
1928
  
1929
0
  return days_in_months[idx][month];
1930
0
}
1931
1932
/**
1933
 * g_date_get_monday_weeks_in_year:
1934
 * @year: a year
1935
 *
1936
 * Returns the number of weeks in the year, where weeks
1937
 * are taken to start on Monday. Will be 52 or 53. The
1938
 * date must be valid. (Years always have 52 7-day periods,
1939
 * plus 1 or 2 extra days depending on whether it's a leap
1940
 * year. This function is basically telling you how many
1941
 * Mondays are in the year, i.e. there are 53 Mondays if
1942
 * one of the extra days happens to be a Monday.)
1943
 *
1944
 * Returns: number of Mondays in the year
1945
 */
1946
guint8       
1947
g_date_get_monday_weeks_in_year (GDateYear year)
1948
0
{
1949
0
  GDate d;
1950
  
1951
0
  g_return_val_if_fail (g_date_valid_year (year), 0);
1952
  
1953
0
  g_date_clear (&d, 1);
1954
0
  g_date_set_dmy (&d, 1, 1, year);
1955
0
  if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1956
0
  g_date_set_dmy (&d, 31, 12, year);
1957
0
  if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1958
0
  if (g_date_is_leap_year (year)) 
1959
0
    {
1960
0
      g_date_set_dmy (&d, 2, 1, year);
1961
0
      if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1962
0
      g_date_set_dmy (&d, 30, 12, year);
1963
0
      if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1964
0
    }
1965
0
  return 52;
1966
0
}
1967
1968
/**
1969
 * g_date_get_sunday_weeks_in_year:
1970
 * @year: year to count weeks in
1971
 *
1972
 * Returns the number of weeks in the year, where weeks
1973
 * are taken to start on Sunday. Will be 52 or 53. The
1974
 * date must be valid. (Years always have 52 7-day periods,
1975
 * plus 1 or 2 extra days depending on whether it's a leap
1976
 * year. This function is basically telling you how many
1977
 * Sundays are in the year, i.e. there are 53 Sundays if
1978
 * one of the extra days happens to be a Sunday.)
1979
 *
1980
 * Returns: the number of weeks in @year
1981
 */
1982
guint8       
1983
g_date_get_sunday_weeks_in_year (GDateYear year)
1984
0
{
1985
0
  GDate d;
1986
  
1987
0
  g_return_val_if_fail (g_date_valid_year (year), 0);
1988
  
1989
0
  g_date_clear (&d, 1);
1990
0
  g_date_set_dmy (&d, 1, 1, year);
1991
0
  if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1992
0
  g_date_set_dmy (&d, 31, 12, year);
1993
0
  if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1994
0
  if (g_date_is_leap_year (year)) 
1995
0
    {
1996
0
      g_date_set_dmy (&d, 2, 1, year);
1997
0
      if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1998
0
      g_date_set_dmy (&d, 30, 12, year);
1999
0
      if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
2000
0
    }
2001
0
  return 52;
2002
0
}
2003
2004
/**
2005
 * g_date_compare:
2006
 * @lhs: first date to compare
2007
 * @rhs: second date to compare
2008
 *
2009
 * qsort()-style comparison function for dates.
2010
 * Both dates must be valid.
2011
 *
2012
 * Returns: 0 for equal, less than zero if @lhs is less than @rhs,
2013
 *     greater than zero if @lhs is greater than @rhs
2014
 */
2015
gint         
2016
g_date_compare (const GDate *lhs, 
2017
                const GDate *rhs)
2018
0
{
2019
0
  g_return_val_if_fail (lhs != NULL, 0);
2020
0
  g_return_val_if_fail (rhs != NULL, 0);
2021
0
  g_return_val_if_fail (g_date_valid (lhs), 0);
2022
0
  g_return_val_if_fail (g_date_valid (rhs), 0);
2023
  
2024
  /* Remember the self-comparison case! I think it works right now. */
2025
  
2026
0
  while (TRUE)
2027
0
    {
2028
0
      if (lhs->julian && rhs->julian) 
2029
0
        {
2030
0
          if (lhs->julian_days < rhs->julian_days) return -1;
2031
0
          else if (lhs->julian_days > rhs->julian_days) return 1;
2032
0
          else                                          return 0;
2033
0
        }
2034
0
      else if (lhs->dmy && rhs->dmy) 
2035
0
        {
2036
0
          if (lhs->year < rhs->year)               return -1;
2037
0
          else if (lhs->year > rhs->year)               return 1;
2038
0
          else 
2039
0
            {
2040
0
              if (lhs->month < rhs->month)         return -1;
2041
0
              else if (lhs->month > rhs->month)         return 1;
2042
0
              else 
2043
0
                {
2044
0
                  if (lhs->day < rhs->day)              return -1;
2045
0
                  else if (lhs->day > rhs->day)              return 1;
2046
0
                  else                                       return 0;
2047
0
                }
2048
              
2049
0
            }
2050
          
2051
0
        }
2052
0
      else
2053
0
        {
2054
0
          if (!lhs->julian) g_date_update_julian (lhs);
2055
0
          if (!rhs->julian) g_date_update_julian (rhs);
2056
0
          g_return_val_if_fail (lhs->julian, 0);
2057
0
          g_return_val_if_fail (rhs->julian, 0);
2058
0
        }
2059
      
2060
0
    }
2061
0
  return 0; /* warnings */
2062
0
}
2063
2064
/**
2065
 * g_date_to_struct_tm:
2066
 * @date: a #GDate to set the struct tm from
2067
 * @tm: (not nullable): struct tm to fill
2068
 *
2069
 * Fills in the date-related bits of a struct tm using the @date value.
2070
 * Initializes the non-date parts with something safe but meaningless.
2071
 */
2072
void        
2073
g_date_to_struct_tm (const GDate *d, 
2074
                     struct tm   *tm)
2075
0
{
2076
0
  GDateWeekday day;
2077
     
2078
0
  g_return_if_fail (g_date_valid (d));
2079
0
  g_return_if_fail (tm != NULL);
2080
  
2081
0
  if (!d->dmy) 
2082
0
    g_date_update_dmy (d);
2083
2084
0
  g_return_if_fail (d->dmy != 0);
2085
  
2086
  /* zero all the irrelevant fields to be sure they're valid */
2087
  
2088
  /* On Linux and maybe other systems, there are weird non-POSIX
2089
   * fields on the end of struct tm that choke strftime if they
2090
   * contain garbage.  So we need to 0 the entire struct, not just the
2091
   * fields we know to exist. 
2092
   */
2093
  
2094
0
  memset (tm, 0x0, sizeof (struct tm));
2095
  
2096
0
  tm->tm_mday = d->day;
2097
0
  tm->tm_mon  = d->month - 1; /* 0-11 goes in tm */
2098
0
  tm->tm_year = ((int)d->year) - 1900; /* X/Open says tm_year can be negative */
2099
  
2100
0
  day = g_date_get_weekday (d);
2101
0
  if (day == 7) day = 0; /* struct tm wants days since Sunday, so Sunday is 0 */
2102
  
2103
0
  tm->tm_wday = (int)day;
2104
  
2105
0
  tm->tm_yday = g_date_get_day_of_year (d) - 1; /* 0 to 365 */
2106
0
  tm->tm_isdst = -1; /* -1 means "information not available" */
2107
0
}
2108
2109
/**
2110
 * g_date_clamp:
2111
 * @date: a #GDate to clamp
2112
 * @min_date: minimum accepted value for @date
2113
 * @max_date: maximum accepted value for @date
2114
 *
2115
 * If @date is prior to @min_date, sets @date equal to @min_date.
2116
 * If @date falls after @max_date, sets @date equal to @max_date.
2117
 * Otherwise, @date is unchanged.
2118
 * Either of @min_date and @max_date may be %NULL.
2119
 * All non-%NULL dates must be valid.
2120
 */
2121
void
2122
g_date_clamp (GDate       *date,
2123
        const GDate *min_date,
2124
        const GDate *max_date)
2125
0
{
2126
0
  g_return_if_fail (g_date_valid (date));
2127
2128
0
  if (min_date != NULL)
2129
0
    g_return_if_fail (g_date_valid (min_date));
2130
2131
0
  if (max_date != NULL)
2132
0
    g_return_if_fail (g_date_valid (max_date));
2133
2134
0
  if (min_date != NULL && max_date != NULL)
2135
0
    g_return_if_fail (g_date_compare (min_date, max_date) <= 0);
2136
2137
0
  if (min_date && g_date_compare (date, min_date) < 0)
2138
0
    *date = *min_date;
2139
2140
0
  if (max_date && g_date_compare (max_date, date) < 0)
2141
0
    *date = *max_date;
2142
0
}
2143
2144
/**
2145
 * g_date_order:
2146
 * @date1: the first date
2147
 * @date2: the second date
2148
 *
2149
 * Checks if @date1 is less than or equal to @date2,
2150
 * and swap the values if this is not the case.
2151
 */
2152
void
2153
g_date_order (GDate *date1,
2154
              GDate *date2)
2155
0
{
2156
0
  g_return_if_fail (g_date_valid (date1));
2157
0
  g_return_if_fail (g_date_valid (date2));
2158
2159
0
  if (g_date_compare (date1, date2) > 0)
2160
0
    {
2161
0
      GDate tmp = *date1;
2162
0
      *date1 = *date2;
2163
0
      *date2 = tmp;
2164
0
    }
2165
0
}
2166
2167
#ifdef G_OS_WIN32
2168
static gboolean
2169
append_month_name (GArray     *result,
2170
       LCID        lcid,
2171
       SYSTEMTIME *systemtime,
2172
       gboolean    abbreviated,
2173
       gboolean    alternative)
2174
{
2175
  int n;
2176
  WORD base;
2177
  LPCWSTR lpFormat;
2178
2179
  if (alternative)
2180
    {
2181
      base = abbreviated ? LOCALE_SABBREVMONTHNAME1 : LOCALE_SMONTHNAME1;
2182
      n = GetLocaleInfoW (lcid, base + systemtime->wMonth - 1, NULL, 0);
2183
      if (n == 0)
2184
        return FALSE;
2185
2186
      g_array_set_size (result, result->len + n);
2187
      if (GetLocaleInfoW (lcid, base + systemtime->wMonth - 1,
2188
                          ((wchar_t *) result->data) + result->len - n, n) != n)
2189
        return FALSE;
2190
2191
      g_array_set_size (result, result->len - 1);
2192
    }
2193
  else
2194
    {
2195
      /* According to MSDN, this is the correct method to obtain
2196
       * the form of the month name used when formatting a full
2197
       * date; it must be a genitive case in some languages.
2198
       *
2199
       * (n == 0) indicates an error, whereas (n < 2) is something we’d never
2200
       * expect from the given format string, and would break the subsequent code.
2201
       */
2202
      lpFormat = abbreviated ? L"ddMMM" : L"ddMMMM";
2203
      n = GetDateFormatW (lcid, 0, systemtime, lpFormat, NULL, 0);
2204
      if (n < 2)
2205
        return FALSE;
2206
2207
      g_array_set_size (result, result->len + n);
2208
      if (GetDateFormatW (lcid, 0, systemtime, lpFormat,
2209
                          ((wchar_t *) result->data) + result->len - n, n) != n)
2210
        return FALSE;
2211
2212
      /* We have obtained a day number as two digits and the month name.
2213
       * Now let's get rid of those two digits: overwrite them with the
2214
       * month name.
2215
       */
2216
      memmove (((wchar_t *) result->data) + result->len - n,
2217
         ((wchar_t *) result->data) + result->len - n + 2,
2218
         (n - 2) * sizeof (wchar_t));
2219
      g_array_set_size (result, result->len - 3);
2220
    }
2221
2222
  return TRUE;
2223
}
2224
2225
static gsize
2226
win32_strftime_helper (const GDate     *d,
2227
           const gchar     *format,
2228
           const struct tm *tm,
2229
           gchar           *s,
2230
           gsize          slen)
2231
{
2232
  SYSTEMTIME systemtime;
2233
  TIME_ZONE_INFORMATION tzinfo;
2234
  LCID lcid;
2235
  int n, k;
2236
  GArray *result;
2237
  const gchar *p;
2238
  gunichar c, modifier;
2239
  const wchar_t digits[] = L"0123456789";
2240
  gchar *convbuf;
2241
  glong convlen = 0;
2242
  gsize retval;
2243
2244
  systemtime.wYear = tm->tm_year + 1900;
2245
  systemtime.wMonth = tm->tm_mon + 1;
2246
  systemtime.wDayOfWeek = tm->tm_wday;
2247
  systemtime.wDay = tm->tm_mday;
2248
  systemtime.wHour = tm->tm_hour;
2249
  systemtime.wMinute = tm->tm_min;
2250
  systemtime.wSecond = tm->tm_sec;
2251
  systemtime.wMilliseconds = 0;
2252
  
2253
  lcid = GetThreadLocale ();
2254
  result = g_array_sized_new (FALSE, FALSE, sizeof (wchar_t), MAX (128, strlen (format) * 2));
2255
2256
  p = format;
2257
  while (*p)
2258
    {
2259
      c = g_utf8_get_char (p);
2260
      if (c == '%')
2261
  {
2262
    p = g_utf8_next_char (p);
2263
    if (!*p)
2264
      {
2265
        s[0] = '\0';
2266
        g_array_free (result, TRUE);
2267
2268
        return 0;
2269
      }
2270
2271
    modifier = '\0';
2272
    c = g_utf8_get_char (p);
2273
    if (c == 'E' || c == 'O')
2274
      {
2275
        /* "%OB", "%Ob", and "%Oh" are supported, ignore other modified
2276
         * conversion specifiers for now.
2277
         */
2278
        modifier = c;
2279
        p = g_utf8_next_char (p);
2280
        if (!*p)
2281
    {
2282
      s[0] = '\0';
2283
      g_array_free (result, TRUE);
2284
2285
      return 0;
2286
    }
2287
2288
        c = g_utf8_get_char (p);
2289
      }
2290
2291
    switch (c)
2292
      {
2293
      case 'a':
2294
        if (systemtime.wDayOfWeek == 0)
2295
    k = 6;
2296
        else
2297
    k = systemtime.wDayOfWeek - 1;
2298
        n = GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, NULL, 0);
2299
        g_array_set_size (result, result->len + n);
2300
        GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
2301
        g_array_set_size (result, result->len - 1);
2302
        break;
2303
      case 'A':
2304
        if (systemtime.wDayOfWeek == 0)
2305
    k = 6;
2306
        else
2307
    k = systemtime.wDayOfWeek - 1;
2308
        n = GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, NULL, 0);
2309
        g_array_set_size (result, result->len + n);
2310
        GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
2311
        g_array_set_size (result, result->len - 1);
2312
        break;
2313
      case 'b':
2314
      case 'h':
2315
              if (!append_month_name (result, lcid, &systemtime, TRUE, modifier == 'O'))
2316
                {
2317
                  /* Ignore the error; this placeholder will be replaced with nothing */
2318
                }
2319
        break;
2320
      case 'B':
2321
              if (!append_month_name (result, lcid, &systemtime, FALSE, modifier == 'O'))
2322
                {
2323
                  /* Ignore the error; this placeholder will be replaced with nothing */
2324
                }
2325
        break;
2326
      case 'c':
2327
        n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2328
        if (n > 0)
2329
    {
2330
      g_array_set_size (result, result->len + n);
2331
      GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2332
      g_array_set_size (result, result->len - 1);
2333
    }
2334
        g_array_append_vals (result, L" ", 1);
2335
        n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2336
        if (n > 0)
2337
    {
2338
      g_array_set_size (result, result->len + n);
2339
      GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2340
      g_array_set_size (result, result->len - 1);
2341
    }
2342
        break;
2343
      case 'C':
2344
        g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
2345
        g_array_append_vals (result, digits + (systemtime.wYear/1000)%10, 1);
2346
        break;
2347
      case 'd':
2348
        g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2349
        g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2350
        break;
2351
      case 'D':
2352
        g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
2353
        g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
2354
        g_array_append_vals (result, L"/", 1);
2355
        g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2356
        g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2357
        g_array_append_vals (result, L"/", 1);
2358
        g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2359
        g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2360
        break;
2361
      case 'e':
2362
        if (systemtime.wDay >= 10)
2363
    g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2364
        else
2365
    g_array_append_vals (result, L" ", 1);
2366
        g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2367
        break;
2368
2369
        /* A GDate has no time fields, so for now we can
2370
         * hardcode all time conversions into zeros (or 12 for
2371
         * %I). The alternative code snippets in the #else
2372
         * branches are here ready to be taken into use when
2373
         * needed by a g_strftime() or g_date_and_time_format()
2374
         * or whatever.
2375
         */
2376
      case 'H':
2377
#if 1
2378
        g_array_append_vals (result, L"00", 2);
2379
#else
2380
        g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2381
        g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2382
#endif
2383
        break;
2384
      case 'I':
2385
#if 1
2386
        g_array_append_vals (result, L"12", 2);
2387
#else
2388
        if (systemtime.wHour == 0)
2389
    g_array_append_vals (result, L"12", 2);
2390
        else
2391
    {
2392
      g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
2393
      g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
2394
    }
2395
#endif
2396
        break;
2397
      case  'j':
2398
        g_array_append_vals (result, digits + (tm->tm_yday+1)/100, 1);
2399
        g_array_append_vals (result, digits + ((tm->tm_yday+1)/10)%10, 1);
2400
        g_array_append_vals (result, digits + (tm->tm_yday+1)%10, 1);
2401
        break;
2402
      case 'm':
2403
        g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
2404
        g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
2405
        break;
2406
      case 'M':
2407
#if 1
2408
        g_array_append_vals (result, L"00", 2);
2409
#else
2410
        g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2411
        g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2412
#endif
2413
        break;
2414
      case 'n':
2415
        g_array_append_vals (result, L"\n", 1);
2416
        break;
2417
      case 'p':
2418
        n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
2419
        if (n > 0)
2420
    {
2421
      g_array_set_size (result, result->len + n);
2422
      GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
2423
      g_array_set_size (result, result->len - 1);
2424
    }
2425
        break;
2426
      case 'r':
2427
        /* This is a rather odd format. Hard to say what to do.
2428
         * Let's always use the POSIX %I:%M:%S %p
2429
         */
2430
#if 1
2431
        g_array_append_vals (result, L"12:00:00", 8);
2432
#else
2433
        if (systemtime.wHour == 0)
2434
    g_array_append_vals (result, L"12", 2);
2435
        else
2436
    {
2437
      g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
2438
      g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
2439
    }
2440
        g_array_append_vals (result, L":", 1);
2441
        g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2442
        g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2443
        g_array_append_vals (result, L":", 1);
2444
        g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2445
        g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2446
        g_array_append_vals (result, L" ", 1);
2447
#endif
2448
        n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
2449
        if (n > 0)
2450
    {
2451
      g_array_set_size (result, result->len + n);
2452
      GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
2453
      g_array_set_size (result, result->len - 1);
2454
    }
2455
        break;
2456
      case 'R':
2457
#if 1
2458
        g_array_append_vals (result, L"00:00", 5);
2459
#else
2460
        g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2461
        g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2462
        g_array_append_vals (result, L":", 1);
2463
        g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2464
        g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2465
#endif
2466
        break;
2467
      case 'S':
2468
#if 1
2469
        g_array_append_vals (result, L"00", 2);
2470
#else
2471
        g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2472
        g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2473
#endif
2474
        break;
2475
      case 't':
2476
        g_array_append_vals (result, L"\t", 1);
2477
        break;
2478
      case 'T':
2479
#if 1
2480
        g_array_append_vals (result, L"00:00:00", 8);
2481
#else
2482
        g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2483
        g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2484
        g_array_append_vals (result, L":", 1);
2485
        g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2486
        g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2487
        g_array_append_vals (result, L":", 1);
2488
        g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2489
        g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2490
#endif
2491
        break;
2492
      case 'u':
2493
        if (systemtime.wDayOfWeek == 0)
2494
    g_array_append_vals (result, L"7", 1);
2495
        else
2496
    g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
2497
        break;
2498
      case 'U':
2499
        n = g_date_get_sunday_week_of_year (d);
2500
        g_array_append_vals (result, digits + n/10, 1);
2501
        g_array_append_vals (result, digits + n%10, 1);
2502
        break;
2503
      case 'V':
2504
        n = g_date_get_iso8601_week_of_year (d);
2505
        g_array_append_vals (result, digits + n/10, 1);
2506
        g_array_append_vals (result, digits + n%10, 1);
2507
        break;
2508
      case 'w':
2509
        g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
2510
        break;
2511
      case 'W':
2512
        n = g_date_get_monday_week_of_year (d);
2513
        g_array_append_vals (result, digits + n/10, 1);
2514
        g_array_append_vals (result, digits + n%10, 1);
2515
        break;
2516
      case 'x':
2517
        n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2518
        if (n > 0)
2519
    {
2520
      g_array_set_size (result, result->len + n);
2521
      GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2522
      g_array_set_size (result, result->len - 1);
2523
    }
2524
        break;
2525
      case 'X':
2526
        n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2527
        if (n > 0)
2528
    {
2529
      g_array_set_size (result, result->len + n);
2530
      GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2531
      g_array_set_size (result, result->len - 1);
2532
    }
2533
        break;
2534
      case 'y':
2535
        g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2536
        g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2537
        break;
2538
      case 'Y':
2539
        g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
2540
        g_array_append_vals (result, digits + (systemtime.wYear/100)%10, 1);
2541
        g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2542
        g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2543
        break;
2544
      case 'Z':
2545
        n = GetTimeZoneInformation (&tzinfo);
2546
        if (n == TIME_ZONE_ID_UNKNOWN)
2547
    ;
2548
        else if (n == TIME_ZONE_ID_STANDARD)
2549
    g_array_append_vals (result, tzinfo.StandardName, wcslen (tzinfo.StandardName));
2550
        else if (n == TIME_ZONE_ID_DAYLIGHT)
2551
    g_array_append_vals (result, tzinfo.DaylightName, wcslen (tzinfo.DaylightName));
2552
        break;
2553
      case '%':
2554
        g_array_append_vals (result, L"%", 1);
2555
        break;
2556
      }      
2557
  } 
2558
      else if (c <= 0xFFFF)
2559
  {
2560
    wchar_t wc = c;
2561
    g_array_append_vals (result, &wc, 1);
2562
  }
2563
      else
2564
  {
2565
    glong nwc;
2566
    wchar_t *ws;
2567
2568
    ws = g_ucs4_to_utf16 (&c, 1, NULL, &nwc, NULL);
2569
    g_array_append_vals (result, ws, nwc);
2570
    g_free (ws);
2571
  }
2572
      p = g_utf8_next_char (p);
2573
    }
2574
  
2575
  convbuf = g_utf16_to_utf8 ((wchar_t *) result->data, result->len, NULL, &convlen, NULL);
2576
  g_array_free (result, TRUE);
2577
2578
  if (!convbuf)
2579
    {
2580
      s[0] = '\0';
2581
      return 0;
2582
    }
2583
  
2584
  if (slen <= convlen)
2585
    {
2586
      /* Ensure only whole characters are copied into the buffer. */
2587
      gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
2588
      g_assert (end != NULL);
2589
      convlen = end - convbuf;
2590
2591
      /* Return 0 because the buffer isn't large enough. */
2592
      retval = 0;
2593
    }
2594
  else
2595
    retval = convlen;
2596
2597
  memcpy (s, convbuf, convlen);
2598
  s[convlen] = '\0';
2599
  g_free (convbuf);
2600
2601
  return retval;
2602
}
2603
2604
#endif
2605
2606
/**
2607
 * g_date_strftime:
2608
 * @s: destination buffer
2609
 * @slen: buffer size
2610
 * @format: format string
2611
 * @date: valid #GDate
2612
 *
2613
 * Generates a printed representation of the date, in a
2614
 * [locale][setlocale]-specific way.
2615
 * Works just like the platform's C library strftime() function,
2616
 * but only accepts date-related formats; time-related formats
2617
 * give undefined results. Date must be valid. Unlike strftime()
2618
 * (which uses the locale encoding), works on a UTF-8 format
2619
 * string and stores a UTF-8 result.
2620
 *
2621
 * This function does not provide any conversion specifiers in
2622
 * addition to those implemented by the platform's C library.
2623
 * For example, don't expect that using g_date_strftime() would
2624
 * make the \%F provided by the C99 strftime() work on Windows
2625
 * where the C library only complies to C89.
2626
 *
2627
 * Returns: number of characters written to the buffer, or 0 the buffer was too small
2628
 */
2629
#pragma GCC diagnostic push
2630
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
2631
2632
gsize     
2633
g_date_strftime (gchar       *s, 
2634
                 gsize        slen, 
2635
                 const gchar *format, 
2636
                 const GDate *d)
2637
0
{
2638
0
  struct tm tm;
2639
0
#ifndef G_OS_WIN32
2640
0
  gsize locale_format_len = 0;
2641
0
  gchar *locale_format;
2642
0
  gsize tmplen;
2643
0
  gchar *tmpbuf;
2644
0
  gsize tmpbufsize;
2645
0
  gsize convlen = 0;
2646
0
  gchar *convbuf;
2647
0
  GError *error = NULL;
2648
0
  gsize retval;
2649
0
#endif
2650
2651
0
  g_return_val_if_fail (g_date_valid (d), 0);
2652
0
  g_return_val_if_fail (slen > 0, 0); 
2653
0
  g_return_val_if_fail (format != NULL, 0);
2654
0
  g_return_val_if_fail (s != NULL, 0);
2655
2656
0
  g_date_to_struct_tm (d, &tm);
2657
2658
#ifdef G_OS_WIN32
2659
  if (!g_utf8_validate (format, -1, NULL))
2660
    {
2661
      s[0] = '\0';
2662
      return 0;
2663
    }
2664
  return win32_strftime_helper (d, format, &tm, s, slen);
2665
#else
2666
2667
0
  locale_format = g_locale_from_utf8 (format, -1, NULL, &locale_format_len, &error);
2668
2669
0
  if (error)
2670
0
    {
2671
0
      g_warning (G_STRLOC "Error converting format to locale encoding: %s", error->message);
2672
0
      g_error_free (error);
2673
2674
0
      s[0] = '\0';
2675
0
      return 0;
2676
0
    }
2677
2678
0
  tmpbufsize = MAX (128, locale_format_len * 2);
2679
0
  while (TRUE)
2680
0
    {
2681
0
      tmpbuf = g_malloc (tmpbufsize);
2682
2683
      /* Set the first byte to something other than '\0', to be able to
2684
       * recognize whether strftime actually failed or just returned "".
2685
       */
2686
0
      tmpbuf[0] = '\1';
2687
0
      tmplen = strftime (tmpbuf, tmpbufsize, locale_format, &tm);
2688
2689
0
      if (tmplen == 0 && tmpbuf[0] != '\0')
2690
0
        {
2691
0
          g_free (tmpbuf);
2692
0
          tmpbufsize *= 2;
2693
2694
0
          if (tmpbufsize > 65536)
2695
0
            {
2696
0
              g_warning (G_STRLOC "Maximum buffer size for g_date_strftime exceeded: giving up");
2697
0
              g_free (locale_format);
2698
2699
0
              s[0] = '\0';
2700
0
              return 0;
2701
0
            }
2702
0
        }
2703
0
      else
2704
0
        break;
2705
0
    }
2706
0
  g_free (locale_format);
2707
2708
0
  convbuf = g_locale_to_utf8 (tmpbuf, tmplen, NULL, &convlen, &error);
2709
0
  g_free (tmpbuf);
2710
2711
0
  if (error)
2712
0
    {
2713
0
      g_warning (G_STRLOC "Error converting results of strftime to UTF-8: %s", error->message);
2714
0
      g_error_free (error);
2715
2716
0
      s[0] = '\0';
2717
0
      return 0;
2718
0
    }
2719
2720
0
  if (slen <= convlen)
2721
0
    {
2722
      /* Ensure only whole characters are copied into the buffer.
2723
       */
2724
0
      gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
2725
0
      g_assert (end != NULL);
2726
0
      convlen = end - convbuf;
2727
2728
      /* Return 0 because the buffer isn't large enough.
2729
       */
2730
0
      retval = 0;
2731
0
    }
2732
0
  else
2733
0
    retval = convlen;
2734
2735
0
  memcpy (s, convbuf, convlen);
2736
0
  s[convlen] = '\0';
2737
0
  g_free (convbuf);
2738
2739
0
  return retval;
2740
0
#endif
2741
0
}
2742
2743
#pragma GCC diagnostic pop