Coverage Report

Created: 2025-11-11 06:44

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/glib/glib/gchecksum.c
Line
Count
Source
1
/* gchecksum.h - data hashing functions
2
 *
3
 * Copyright (C) 2007  Emmanuele Bassi  <ebassi@gnome.org>
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2.1 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public License
16
 * along with this library; if not, see <http://www.gnu.org/licenses/>.
17
 */
18
19
#include "config.h"
20
21
#include <string.h>
22
23
#include "gchecksum.h"
24
25
#include "gslice.h"
26
#include "gmem.h"
27
#include "gstrfuncs.h"
28
#include "gtestutils.h"
29
#include "gtypes.h"
30
#include "glibintl.h"
31
32
33
/**
34
 * SECTION:checksum
35
 * @title: Data Checksums
36
 * @short_description: computes the checksum for data
37
 *
38
 * GLib provides a generic API for computing checksums (or "digests")
39
 * for a sequence of arbitrary bytes, using various hashing algorithms
40
 * like MD5, SHA-1 and SHA-256. Checksums are commonly used in various
41
 * environments and specifications.
42
 *
43
 * GLib supports incremental checksums using the GChecksum data
44
 * structure, by calling g_checksum_update() as long as there's data
45
 * available and then using g_checksum_get_string() or
46
 * g_checksum_get_digest() to compute the checksum and return it either
47
 * as a string in hexadecimal form, or as a raw sequence of bytes. To
48
 * compute the checksum for binary blobs and NUL-terminated strings in
49
 * one go, use the convenience functions g_compute_checksum_for_data()
50
 * and g_compute_checksum_for_string(), respectively.
51
 *
52
 * Support for checksums has been added in GLib 2.16
53
 **/
54
55
1.77k
#define IS_VALID_TYPE(type)     ((type) >= G_CHECKSUM_MD5 && (type) <= G_CHECKSUM_SHA384)
56
57
/* The fact that these are lower case characters is part of the ABI */
58
static const gchar hex_digits[] = "0123456789abcdef";
59
60
0
#define MD5_DATASIZE    64
61
1
#define MD5_DIGEST_LEN  16
62
63
typedef struct
64
{
65
  guint32 buf[4];
66
  guint32 bits[2];
67
68
  union {
69
    guchar data[MD5_DATASIZE];
70
    guint32 data32[MD5_DATASIZE / 4];
71
  } u;
72
73
  guchar digest[MD5_DIGEST_LEN];
74
} Md5sum;
75
76
0
#define SHA1_DATASIZE   64
77
1
#define SHA1_DIGEST_LEN 20
78
79
typedef struct
80
{
81
  guint32 buf[5];
82
  guint32 bits[2];
83
84
  /* we pack 64 unsigned chars into 16 32-bit unsigned integers */
85
  guint32 data[16];
86
87
  guchar digest[SHA1_DIGEST_LEN];
88
} Sha1sum;
89
90
1.17M
#define SHA256_DATASIZE         64
91
14.5k
#define SHA256_DIGEST_LEN       32
92
93
typedef struct
94
{
95
  guint32 buf[8];
96
  guint32 bits[2];
97
98
  guint8 data[SHA256_DATASIZE];
99
100
  guchar digest[SHA256_DIGEST_LEN];
101
} Sha256sum;
102
103
/* SHA2 is common thing for SHA-384, SHA-512, SHA-512/224 and SHA-512/256 */
104
0
#define SHA2_BLOCK_LEN         128 /* 1024 bits message block */
105
0
#define SHA384_DIGEST_LEN       48
106
0
#define SHA512_DIGEST_LEN       64
107
108
typedef struct
109
{
110
  guint64 H[8];
111
112
  guint8 block[SHA2_BLOCK_LEN];
113
  guint8 block_len;
114
115
  guint64 data_len[2];
116
117
  guchar digest[SHA512_DIGEST_LEN];
118
} Sha512sum;
119
120
struct _GChecksum
121
{
122
  GChecksumType type;
123
124
  gchar *digest_str;
125
126
  union {
127
    Md5sum md5;
128
    Sha1sum sha1;
129
    Sha256sum sha256;
130
    Sha512sum sha512;
131
  } sum;
132
};
133
134
/* we need different byte swapping functions because MD5 expects buffers
135
 * to be little-endian, while SHA1 and SHA256 expect them in big-endian
136
 * form.
137
 */
138
139
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
140
#define md5_byte_reverse(buffer,length)
141
#else
142
/* assume that the passed buffer is integer aligned */
143
static inline void
144
md5_byte_reverse (guchar *buffer,
145
                  gulong  length)
146
{
147
  guint32 bit;
148
149
  do
150
    {
151
      bit = (guint32) ((unsigned) buffer[3] << 8 | buffer[2]) << 16 |
152
                      ((unsigned) buffer[1] << 8 | buffer[0]);
153
      * (guint32 *) buffer = bit;
154
      buffer += 4;
155
    }
156
  while (--length);
157
}
158
#endif /* G_BYTE_ORDER == G_LITTLE_ENDIAN */
159
160
#if G_BYTE_ORDER == G_BIG_ENDIAN
161
#define sha_byte_reverse(buffer,length)
162
#else
163
static inline void
164
sha_byte_reverse (guint32 *buffer,
165
                  gint     length)
166
0
{
167
0
  length /= sizeof (guint32);
168
0
  while (length--)
169
0
    {
170
0
      *buffer = GUINT32_SWAP_LE_BE (*buffer);
171
0
      ++buffer;
172
0
    }
173
0
}
174
#endif /* G_BYTE_ORDER == G_BIG_ENDIAN */
175
176
static gchar *
177
digest_to_string (guint8 *digest,
178
                  gsize   digest_len)
179
417
{
180
417
  gsize i, len = digest_len * 2;
181
417
  gchar *retval;
182
183
417
  retval = g_new (gchar, len + 1);
184
185
13.7k
  for (i = 0; i < digest_len; i++)
186
13.3k
    {
187
13.3k
      guint8 byte = digest[i];
188
189
13.3k
      retval[2 * i] = hex_digits[byte >> 4];
190
13.3k
      retval[2 * i + 1] = hex_digits[byte & 0xf];
191
13.3k
    }
192
193
417
  retval[len] = 0;
194
195
417
  return retval;
196
417
}
197
198
/*
199
 * MD5 Checksum
200
 */
201
202
/* This MD5 digest computation is based on the equivalent code
203
 * written by Colin Plumb. It came with this notice:
204
 *
205
 * This code implements the MD5 message-digest algorithm.
206
 * The algorithm is due to Ron Rivest.  This code was
207
 * written by Colin Plumb in 1993, no copyright is claimed.
208
 * This code is in the public domain; do with it what you wish.
209
 *
210
 * Equivalent code is available from RSA Data Security, Inc.
211
 * This code has been tested against that, and is equivalent,
212
 * except that you don't need to include two pages of legalese
213
 * with every copy.
214
 */
215
216
static void
217
md5_sum_init (Md5sum *md5)
218
1
{
219
  /* arbitrary constants */
220
1
  md5->buf[0] = 0x67452301;
221
1
  md5->buf[1] = 0xefcdab89;
222
1
  md5->buf[2] = 0x98badcfe;
223
1
  md5->buf[3] = 0x10325476;
224
225
1
  md5->bits[0] = md5->bits[1] = 0;
226
1
}
227
228
/*
229
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
230
 * reflect the addition of 16 longwords of new data.  md5_sum_update()
231
 * blocks the data and converts bytes into longwords for this routine.
232
 */
233
static void
234
md5_transform (guint32       buf[4],
235
               guint32 const in[16])
236
0
{
237
0
  guint32 a, b, c, d;
238
239
/* The four core functions - F1 is optimized somewhat */
240
0
#define F1(x, y, z)     (z ^ (x & (y ^ z)))
241
0
#define F2(x, y, z)     F1 (z, x, y)
242
0
#define F3(x, y, z)     (x ^ y ^ z)
243
0
#define F4(x, y, z)     (y ^ (x | ~z))
244
245
/* This is the central step in the MD5 algorithm. */
246
0
#define md5_step(f, w, x, y, z, data, s) \
247
0
        ( w += f (x, y, z) + data,  w = w << s | w >> (32 - s),  w += x )
248
249
0
  a = buf[0];
250
0
  b = buf[1];
251
0
  c = buf[2];
252
0
  d = buf[3];
253
254
0
  md5_step (F1, a, b, c, d, in[0]  + 0xd76aa478,  7);
255
0
  md5_step (F1, d, a, b, c, in[1]  + 0xe8c7b756, 12);
256
0
  md5_step (F1, c, d, a, b, in[2]  + 0x242070db, 17);
257
0
  md5_step (F1, b, c, d, a, in[3]  + 0xc1bdceee, 22);
258
0
  md5_step (F1, a, b, c, d, in[4]  + 0xf57c0faf,  7);
259
0
  md5_step (F1, d, a, b, c, in[5]  + 0x4787c62a, 12);
260
0
  md5_step (F1, c, d, a, b, in[6]  + 0xa8304613, 17);
261
0
  md5_step (F1, b, c, d, a, in[7]  + 0xfd469501, 22);
262
0
  md5_step (F1, a, b, c, d, in[8]  + 0x698098d8,  7);
263
0
  md5_step (F1, d, a, b, c, in[9]  + 0x8b44f7af, 12);
264
0
  md5_step (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
265
0
  md5_step (F1, b, c, d, a, in[11] + 0x895cd7be, 22);
266
0
  md5_step (F1, a, b, c, d, in[12] + 0x6b901122,  7);
267
0
  md5_step (F1, d, a, b, c, in[13] + 0xfd987193, 12);
268
0
  md5_step (F1, c, d, a, b, in[14] + 0xa679438e, 17);
269
0
  md5_step (F1, b, c, d, a, in[15] + 0x49b40821, 22);
270
        
271
0
  md5_step (F2, a, b, c, d, in[1]  + 0xf61e2562,  5);
272
0
  md5_step (F2, d, a, b, c, in[6]  + 0xc040b340,  9);
273
0
  md5_step (F2, c, d, a, b, in[11] + 0x265e5a51, 14);
274
0
  md5_step (F2, b, c, d, a, in[0]  + 0xe9b6c7aa, 20);
275
0
  md5_step (F2, a, b, c, d, in[5]  + 0xd62f105d,  5);
276
0
  md5_step (F2, d, a, b, c, in[10] + 0x02441453,  9);
277
0
  md5_step (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
278
0
  md5_step (F2, b, c, d, a, in[4]  + 0xe7d3fbc8, 20);
279
0
  md5_step (F2, a, b, c, d, in[9]  + 0x21e1cde6,  5);
280
0
  md5_step (F2, d, a, b, c, in[14] + 0xc33707d6,  9);
281
0
  md5_step (F2, c, d, a, b, in[3]  + 0xf4d50d87, 14);
282
0
  md5_step (F2, b, c, d, a, in[8]  + 0x455a14ed, 20);
283
0
  md5_step (F2, a, b, c, d, in[13] + 0xa9e3e905,  5);
284
0
  md5_step (F2, d, a, b, c, in[2]  + 0xfcefa3f8,  9);
285
0
  md5_step (F2, c, d, a, b, in[7]  + 0x676f02d9, 14);
286
0
  md5_step (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
287
288
0
  md5_step (F3, a, b, c, d, in[5]  + 0xfffa3942,  4);
289
0
  md5_step (F3, d, a, b, c, in[8]  + 0x8771f681, 11);
290
0
  md5_step (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
291
0
  md5_step (F3, b, c, d, a, in[14] + 0xfde5380c, 23);
292
0
  md5_step (F3, a, b, c, d, in[1]  + 0xa4beea44,  4);
293
0
  md5_step (F3, d, a, b, c, in[4]  + 0x4bdecfa9, 11);
294
0
  md5_step (F3, c, d, a, b, in[7]  + 0xf6bb4b60, 16);
295
0
  md5_step (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
296
0
  md5_step (F3, a, b, c, d, in[13] + 0x289b7ec6,  4);
297
0
  md5_step (F3, d, a, b, c, in[0]  + 0xeaa127fa, 11);
298
0
  md5_step (F3, c, d, a, b, in[3]  + 0xd4ef3085, 16);
299
0
  md5_step (F3, b, c, d, a, in[6]  + 0x04881d05, 23);
300
0
  md5_step (F3, a, b, c, d, in[9]  + 0xd9d4d039,  4);
301
0
  md5_step (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
302
0
  md5_step (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
303
0
  md5_step (F3, b, c, d, a, in[2]  + 0xc4ac5665, 23);
304
305
0
  md5_step (F4, a, b, c, d, in[0]  + 0xf4292244,  6);
306
0
  md5_step (F4, d, a, b, c, in[7]  + 0x432aff97, 10);
307
0
  md5_step (F4, c, d, a, b, in[14] + 0xab9423a7, 15);
308
0
  md5_step (F4, b, c, d, a, in[5]  + 0xfc93a039, 21);
309
0
  md5_step (F4, a, b, c, d, in[12] + 0x655b59c3,  6);
310
0
  md5_step (F4, d, a, b, c, in[3]  + 0x8f0ccc92, 10);
311
0
  md5_step (F4, c, d, a, b, in[10] + 0xffeff47d, 15);
312
0
  md5_step (F4, b, c, d, a, in[1]  + 0x85845dd1, 21);
313
0
  md5_step (F4, a, b, c, d, in[8]  + 0x6fa87e4f,  6);
314
0
  md5_step (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
315
0
  md5_step (F4, c, d, a, b, in[6]  + 0xa3014314, 15);
316
0
  md5_step (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
317
0
  md5_step (F4, a, b, c, d, in[4]  + 0xf7537e82,  6);
318
0
  md5_step (F4, d, a, b, c, in[11] + 0xbd3af235, 10);
319
0
  md5_step (F4, c, d, a, b, in[2]  + 0x2ad7d2bb, 15);
320
0
  md5_step (F4, b, c, d, a, in[9]  + 0xeb86d391, 21);
321
322
0
  buf[0] += a;
323
0
  buf[1] += b;
324
0
  buf[2] += c;
325
0
  buf[3] += d;
326
327
0
#undef F1
328
0
#undef F2
329
0
#undef F3
330
0
#undef F4
331
0
#undef md5_step
332
0
}
333
334
static void
335
md5_sum_update (Md5sum       *md5,
336
                const guchar *data,
337
                gsize         length)
338
0
{
339
0
  guint32 bit;
340
341
0
  bit = md5->bits[0];
342
0
  md5->bits[0] = bit + ((guint32) length << 3);
343
344
  /* carry from low to high */
345
0
  if (md5->bits[0] < bit)
346
0
    md5->bits[1] += 1;
347
348
0
  md5->bits[1] += length >> 29;
349
350
  /* bytes already in Md5sum->u.data */
351
0
  bit = (bit >> 3) & 0x3f;
352
353
  /* handle any leading odd-sized chunks */
354
0
  if (bit)
355
0
    {
356
0
      guchar *p = md5->u.data + bit;
357
358
0
      bit = MD5_DATASIZE - bit;
359
0
      if (length < bit)
360
0
        {
361
0
          memcpy (p, data, length);
362
0
          return;
363
0
        }
364
365
0
      memcpy (p, data, bit);
366
367
0
      md5_byte_reverse (md5->u.data, 16);
368
0
      md5_transform (md5->buf, md5->u.data32);
369
370
0
      data += bit;
371
0
      length -= bit;
372
0
    }
373
374
  /* process data in 64-byte chunks */
375
0
  while (length >= MD5_DATASIZE)
376
0
    {
377
0
      memcpy (md5->u.data, data, MD5_DATASIZE);
378
379
0
      md5_byte_reverse (md5->u.data, 16);
380
0
      md5_transform (md5->buf, md5->u.data32);
381
382
0
      data += MD5_DATASIZE;
383
0
      length -= MD5_DATASIZE;
384
0
    }
385
386
  /* handle any remaining bytes of data */
387
0
  memcpy (md5->u.data, data, length);
388
0
}
389
390
/* closes a checksum */
391
static void
392
md5_sum_close (Md5sum *md5)
393
0
{
394
0
  guint count;
395
0
  guchar *p;
396
397
  /* Compute number of bytes mod 64 */
398
0
  count = (md5->bits[0] >> 3) & 0x3F;
399
400
  /* Set the first char of padding to 0x80.
401
   * This is safe since there is always at least one byte free
402
   */
403
0
  p = md5->u.data + count;
404
0
  *p++ = 0x80;
405
406
  /* Bytes of padding needed to make 64 bytes */
407
0
  count = MD5_DATASIZE - 1 - count;
408
409
  /* Pad out to 56 mod 64 */
410
0
  if (count < 8)
411
0
    {
412
      /* Two lots of padding:  Pad the first block to 64 bytes */
413
0
      memset (p, 0, count);
414
415
0
      md5_byte_reverse (md5->u.data, 16);
416
0
      md5_transform (md5->buf, md5->u.data32);
417
418
      /* Now fill the next block with 56 bytes */
419
0
      memset (md5->u.data, 0, MD5_DATASIZE - 8);
420
0
    }
421
0
  else
422
0
    {
423
      /* Pad block to 56 bytes */
424
0
      memset (p, 0, count - 8);
425
0
    }
426
427
0
  md5_byte_reverse (md5->u.data, 14);
428
429
  /* Append length in bits and transform */
430
0
  md5->u.data32[14] = md5->bits[0];
431
0
  md5->u.data32[15] = md5->bits[1];
432
433
0
  md5_transform (md5->buf, md5->u.data32);
434
0
  md5_byte_reverse ((guchar *) md5->buf, 4);
435
436
0
  memcpy (md5->digest, md5->buf, 16);
437
438
  /* Reset buffers in case they contain sensitive data */
439
0
  memset (md5->buf, 0, sizeof (md5->buf));
440
0
  memset (md5->u.data, 0, sizeof (md5->u.data));
441
0
}
442
443
static gchar *
444
md5_sum_to_string (Md5sum *md5)
445
0
{
446
0
  return digest_to_string (md5->digest, MD5_DIGEST_LEN);
447
0
}
448
449
static void
450
md5_sum_digest (Md5sum *md5,
451
                guint8 *digest)
452
0
{
453
0
  gint i;
454
455
0
  for (i = 0; i < MD5_DIGEST_LEN; i++)
456
0
    digest[i] = md5->digest[i];
457
0
}
458
459
/*
460
 * SHA-1 Checksum
461
 */
462
463
/* The following implementation comes from D-Bus dbus-sha.c. I've changed
464
 * it to use GLib types and to work more like the MD5 implementation above.
465
 * I left the comments to have a history of this code.
466
 *      -- Emmanuele Bassi, ebassi@gnome.org
467
 */
468
469
/* The following comments have the history of where this code
470
 * comes from. I actually copied it from GNet in GNOME CVS.
471
 * - hp@redhat.com
472
 */
473
474
/*
475
 *  sha.h : Implementation of the Secure Hash Algorithm
476
 *
477
 * Part of the Python Cryptography Toolkit, version 1.0.0
478
 *
479
 * Copyright (C) 1995, A.M. Kuchling
480
 *
481
 * Distribute and use freely; there are no restrictions on further
482
 * dissemination and usage except those imposed by the laws of your
483
 * country of residence.
484
 *
485
 */
486
487
/* SHA: NIST's Secure Hash Algorithm */
488
489
/* Based on SHA code originally posted to sci.crypt by Peter Gutmann
490
   in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
491
   Modified to test for endianness on creation of SHA objects by AMK.
492
   Also, the original specification of SHA was found to have a weakness
493
   by NSA/NIST.  This code implements the fixed version of SHA.
494
*/
495
496
/* Here's the first paragraph of Peter Gutmann's posting:
497
498
The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
499
SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
500
what's changed in the new version.  The fix is a simple change which involves
501
adding a single rotate in the initial expansion function.  It is unknown
502
whether this is an optimal solution to the problem which was discovered in the
503
SHA or whether it's simply a bandaid which fixes the problem with a minimum of
504
effort (for example the reengineering of a great many Capstone chips).
505
*/
506
507
static void
508
sha1_sum_init (Sha1sum *sha1)
509
1
{
510
  /* initialize constants */
511
1
  sha1->buf[0] = 0x67452301L;
512
1
  sha1->buf[1] = 0xEFCDAB89L;
513
1
  sha1->buf[2] = 0x98BADCFEL;
514
1
  sha1->buf[3] = 0x10325476L;
515
1
  sha1->buf[4] = 0xC3D2E1F0L;
516
517
  /* initialize bits */
518
1
  sha1->bits[0] = sha1->bits[1] = 0;
519
1
}
520
521
/* The SHA f()-functions. */
522
523
0
#define f1(x,y,z)       (z ^ (x & (y ^ z)))             /* Rounds  0-19 */
524
0
#define f2(x,y,z)       (x ^ y ^ z)                     /* Rounds 20-39 */
525
0
#define f3(x,y,z)       (( x & y) | (z & (x | y)))      /* Rounds 40-59 */
526
0
#define f4(x,y,z)       (x ^ y ^ z)                     /* Rounds 60-79 */
527
528
/* The SHA Mysterious Constants */
529
#define K1  0x5A827999L                                 /* Rounds  0-19 */
530
#define K2  0x6ED9EBA1L                                 /* Rounds 20-39 */
531
#define K3  0x8F1BBCDCL                                 /* Rounds 40-59 */
532
#define K4  0xCA62C1D6L                                 /* Rounds 60-79 */
533
534
/* 32-bit rotate left - kludged with shifts */
535
0
#define ROTL(n,X) (((X) << n ) | ((X) >> (32 - n)))
536
537
/* The initial expanding function.  The hash function is defined over an
538
   80-word expanded input array W, where the first 16 are copies of the input
539
   data, and the remaining 64 are defined by
540
541
        W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
542
543
   This implementation generates these values on the fly in a circular
544
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
545
   optimization.
546
547
   The updated SHA changes the expanding function by adding a rotate of 1
548
   bit.  Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
549
   for this information */
550
551
#define expand(W,i) (W[ i & 15 ] = ROTL (1, (W[ i       & 15] ^ \
552
                                             W[(i - 14) & 15] ^ \
553
                                             W[(i -  8) & 15] ^ \
554
                                             W[(i -  3) & 15])))
555
556
557
/* The prototype SHA sub-round.  The fundamental sub-round is:
558
559
        a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
560
        b' = a;
561
        c' = ROTL( 30, b );
562
        d' = c;
563
        e' = d;
564
565
   but this is implemented by unrolling the loop 5 times and renaming the
566
   variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
567
   This code is then replicated 20 times for each of the 4 functions, using
568
   the next 20 values from the W[] array each time */
569
570
#define subRound(a, b, c, d, e, f, k, data) \
571
0
   (e += ROTL (5, a) + f(b, c, d) + k + data, b = ROTL (30, b))
572
573
static void
574
sha1_transform (guint32  buf[5],
575
                guint32  in[16])
576
0
{
577
0
  guint32 A, B, C, D, E;
578
579
0
  A = buf[0];
580
0
  B = buf[1];
581
0
  C = buf[2];
582
0
  D = buf[3];
583
0
  E = buf[4];
584
585
  /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
586
0
  subRound (A, B, C, D, E, f1, K1, in[0]);
587
0
  subRound (E, A, B, C, D, f1, K1, in[1]);
588
0
  subRound (D, E, A, B, C, f1, K1, in[2]);
589
0
  subRound (C, D, E, A, B, f1, K1, in[3]);
590
0
  subRound (B, C, D, E, A, f1, K1, in[4]);
591
0
  subRound (A, B, C, D, E, f1, K1, in[5]);
592
0
  subRound (E, A, B, C, D, f1, K1, in[6]);
593
0
  subRound (D, E, A, B, C, f1, K1, in[7]);
594
0
  subRound (C, D, E, A, B, f1, K1, in[8]);
595
0
  subRound (B, C, D, E, A, f1, K1, in[9]);
596
0
  subRound (A, B, C, D, E, f1, K1, in[10]);
597
0
  subRound (E, A, B, C, D, f1, K1, in[11]);
598
0
  subRound (D, E, A, B, C, f1, K1, in[12]);
599
0
  subRound (C, D, E, A, B, f1, K1, in[13]);
600
0
  subRound (B, C, D, E, A, f1, K1, in[14]);
601
0
  subRound (A, B, C, D, E, f1, K1, in[15]);
602
0
  subRound (E, A, B, C, D, f1, K1, expand (in, 16));
603
0
  subRound (D, E, A, B, C, f1, K1, expand (in, 17));
604
0
  subRound (C, D, E, A, B, f1, K1, expand (in, 18));
605
0
  subRound (B, C, D, E, A, f1, K1, expand (in, 19));
606
607
0
  subRound (A, B, C, D, E, f2, K2, expand (in, 20));
608
0
  subRound (E, A, B, C, D, f2, K2, expand (in, 21));
609
0
  subRound (D, E, A, B, C, f2, K2, expand (in, 22));
610
0
  subRound (C, D, E, A, B, f2, K2, expand (in, 23));
611
0
  subRound (B, C, D, E, A, f2, K2, expand (in, 24));
612
0
  subRound (A, B, C, D, E, f2, K2, expand (in, 25));
613
0
  subRound (E, A, B, C, D, f2, K2, expand (in, 26));
614
0
  subRound (D, E, A, B, C, f2, K2, expand (in, 27));
615
0
  subRound (C, D, E, A, B, f2, K2, expand (in, 28));
616
0
  subRound (B, C, D, E, A, f2, K2, expand (in, 29));
617
0
  subRound (A, B, C, D, E, f2, K2, expand (in, 30));
618
0
  subRound (E, A, B, C, D, f2, K2, expand (in, 31));
619
0
  subRound (D, E, A, B, C, f2, K2, expand (in, 32));
620
0
  subRound (C, D, E, A, B, f2, K2, expand (in, 33));
621
0
  subRound (B, C, D, E, A, f2, K2, expand (in, 34));
622
0
  subRound (A, B, C, D, E, f2, K2, expand (in, 35));
623
0
  subRound (E, A, B, C, D, f2, K2, expand (in, 36));
624
0
  subRound (D, E, A, B, C, f2, K2, expand (in, 37));
625
0
  subRound (C, D, E, A, B, f2, K2, expand (in, 38));
626
0
  subRound (B, C, D, E, A, f2, K2, expand (in, 39));
627
628
0
  subRound (A, B, C, D, E, f3, K3, expand (in, 40));
629
0
  subRound (E, A, B, C, D, f3, K3, expand (in, 41));
630
0
  subRound (D, E, A, B, C, f3, K3, expand (in, 42));
631
0
  subRound (C, D, E, A, B, f3, K3, expand (in, 43));
632
0
  subRound (B, C, D, E, A, f3, K3, expand (in, 44));
633
0
  subRound (A, B, C, D, E, f3, K3, expand (in, 45));
634
0
  subRound (E, A, B, C, D, f3, K3, expand (in, 46));
635
0
  subRound (D, E, A, B, C, f3, K3, expand (in, 47));
636
0
  subRound (C, D, E, A, B, f3, K3, expand (in, 48));
637
0
  subRound (B, C, D, E, A, f3, K3, expand (in, 49));
638
0
  subRound (A, B, C, D, E, f3, K3, expand (in, 50));
639
0
  subRound (E, A, B, C, D, f3, K3, expand (in, 51));
640
0
  subRound (D, E, A, B, C, f3, K3, expand (in, 52));
641
0
  subRound (C, D, E, A, B, f3, K3, expand (in, 53));
642
0
  subRound (B, C, D, E, A, f3, K3, expand (in, 54));
643
0
  subRound (A, B, C, D, E, f3, K3, expand (in, 55));
644
0
  subRound (E, A, B, C, D, f3, K3, expand (in, 56));
645
0
  subRound (D, E, A, B, C, f3, K3, expand (in, 57));
646
0
  subRound (C, D, E, A, B, f3, K3, expand (in, 58));
647
0
  subRound (B, C, D, E, A, f3, K3, expand (in, 59));
648
649
0
  subRound (A, B, C, D, E, f4, K4, expand (in, 60));
650
0
  subRound (E, A, B, C, D, f4, K4, expand (in, 61));
651
0
  subRound (D, E, A, B, C, f4, K4, expand (in, 62));
652
0
  subRound (C, D, E, A, B, f4, K4, expand (in, 63));
653
0
  subRound (B, C, D, E, A, f4, K4, expand (in, 64));
654
0
  subRound (A, B, C, D, E, f4, K4, expand (in, 65));
655
0
  subRound (E, A, B, C, D, f4, K4, expand (in, 66));
656
0
  subRound (D, E, A, B, C, f4, K4, expand (in, 67));
657
0
  subRound (C, D, E, A, B, f4, K4, expand (in, 68));
658
0
  subRound (B, C, D, E, A, f4, K4, expand (in, 69));
659
0
  subRound (A, B, C, D, E, f4, K4, expand (in, 70));
660
0
  subRound (E, A, B, C, D, f4, K4, expand (in, 71));
661
0
  subRound (D, E, A, B, C, f4, K4, expand (in, 72));
662
0
  subRound (C, D, E, A, B, f4, K4, expand (in, 73));
663
0
  subRound (B, C, D, E, A, f4, K4, expand (in, 74));
664
0
  subRound (A, B, C, D, E, f4, K4, expand (in, 75));
665
0
  subRound (E, A, B, C, D, f4, K4, expand (in, 76));
666
0
  subRound (D, E, A, B, C, f4, K4, expand (in, 77));
667
0
  subRound (C, D, E, A, B, f4, K4, expand (in, 78));
668
0
  subRound (B, C, D, E, A, f4, K4, expand (in, 79));
669
670
  /* Build message digest */
671
0
  buf[0] += A;
672
0
  buf[1] += B;
673
0
  buf[2] += C;
674
0
  buf[3] += D;
675
0
  buf[4] += E;
676
0
}
677
678
#undef K1
679
#undef K2
680
#undef K3
681
#undef K4
682
#undef f1
683
#undef f2
684
#undef f3
685
#undef f4
686
#undef ROTL
687
#undef expand
688
#undef subRound
689
690
static void
691
sha1_sum_update (Sha1sum      *sha1,
692
                 const guchar *buffer,
693
                 gsize         count)
694
0
{
695
0
  guint32 tmp;
696
0
  guint dataCount;
697
698
  /* Update bitcount */
699
0
  tmp = sha1->bits[0];
700
0
  if ((sha1->bits[0] = tmp + ((guint32) count << 3) ) < tmp)
701
0
    sha1->bits[1] += 1;             /* Carry from low to high */
702
0
  sha1->bits[1] += count >> 29;
703
704
  /* Get count of bytes already in data */
705
0
  dataCount = (guint) (tmp >> 3) & 0x3F;
706
707
  /* Handle any leading odd-sized chunks */
708
0
  if (dataCount)
709
0
    {
710
0
      guchar *p = (guchar *) sha1->data + dataCount;
711
712
0
      dataCount = SHA1_DATASIZE - dataCount;
713
0
      if (count < dataCount)
714
0
        {
715
0
          memcpy (p, buffer, count);
716
0
          return;
717
0
        }
718
719
0
      memcpy (p, buffer, dataCount);
720
721
0
      sha_byte_reverse (sha1->data, SHA1_DATASIZE);
722
0
      sha1_transform (sha1->buf, sha1->data);
723
724
0
      buffer += dataCount;
725
0
      count -= dataCount;
726
0
    }
727
728
  /* Process data in SHA1_DATASIZE chunks */
729
0
  while (count >= SHA1_DATASIZE)
730
0
    {
731
0
      memcpy (sha1->data, buffer, SHA1_DATASIZE);
732
733
0
      sha_byte_reverse (sha1->data, SHA1_DATASIZE);
734
0
      sha1_transform (sha1->buf, sha1->data);
735
736
0
      buffer += SHA1_DATASIZE;
737
0
      count -= SHA1_DATASIZE;
738
0
    }
739
740
  /* Handle any remaining bytes of data. */
741
0
  memcpy (sha1->data, buffer, count);
742
0
}
743
744
/* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
745
   1 0* (64-bit count of bits processed, MSB-first) */
746
static void
747
sha1_sum_close (Sha1sum *sha1)
748
0
{
749
0
  gint count;
750
0
  guchar *data_p;
751
752
  /* Compute number of bytes mod 64 */
753
0
  count = (gint) ((sha1->bits[0] >> 3) & 0x3f);
754
755
  /* Set the first char of padding to 0x80.  This is safe since there is
756
     always at least one byte free */
757
0
  data_p = (guchar *) sha1->data + count;
758
0
  *data_p++ = 0x80;
759
760
  /* Bytes of padding needed to make 64 bytes */
761
0
  count = SHA1_DATASIZE - 1 - count;
762
763
  /* Pad out to 56 mod 64 */
764
0
  if (count < 8)
765
0
    {
766
      /* Two lots of padding:  Pad the first block to 64 bytes */
767
0
      memset (data_p, 0, count);
768
769
0
      sha_byte_reverse (sha1->data, SHA1_DATASIZE);
770
0
      sha1_transform (sha1->buf, sha1->data);
771
772
      /* Now fill the next block with 56 bytes */
773
0
      memset (sha1->data, 0, SHA1_DATASIZE - 8);
774
0
    }
775
0
  else
776
0
    {
777
      /* Pad block to 56 bytes */
778
0
      memset (data_p, 0, count - 8);
779
0
    }
780
781
  /* Append length in bits and transform */
782
0
  sha1->data[14] = sha1->bits[1];
783
0
  sha1->data[15] = sha1->bits[0];
784
785
0
  sha_byte_reverse (sha1->data, SHA1_DATASIZE - 8);
786
0
  sha1_transform (sha1->buf, sha1->data);
787
0
  sha_byte_reverse (sha1->buf, SHA1_DIGEST_LEN);
788
789
0
  memcpy (sha1->digest, sha1->buf, SHA1_DIGEST_LEN);
790
791
  /* Reset buffers in case they contain sensitive data */
792
0
  memset (sha1->buf, 0, sizeof (sha1->buf));
793
0
  memset (sha1->data, 0, sizeof (sha1->data));
794
0
}
795
796
static gchar *
797
sha1_sum_to_string (Sha1sum *sha1)
798
0
{
799
0
  return digest_to_string (sha1->digest, SHA1_DIGEST_LEN);
800
0
}
801
802
static void
803
sha1_sum_digest (Sha1sum *sha1,
804
                 guint8  *digest)
805
0
{
806
0
  gint i;
807
808
0
  for (i = 0; i < SHA1_DIGEST_LEN; i++)
809
0
    digest[i] = sha1->digest[i];
810
0
}
811
812
/*
813
 * SHA-256 Checksum
814
 */
815
816
/* adapted from the SHA256 implementation in gsk/src/hash/gskhash.c.
817
 *
818
 * Copyright (C) 2006 Dave Benson
819
 * Released under the terms of the GNU Lesser General Public License
820
 */
821
822
static void
823
sha256_sum_init (Sha256sum *sha256)
824
1.77k
{
825
1.77k
  sha256->buf[0] = 0x6a09e667;
826
1.77k
  sha256->buf[1] = 0xbb67ae85;
827
1.77k
  sha256->buf[2] = 0x3c6ef372;
828
1.77k
  sha256->buf[3] = 0xa54ff53a;
829
1.77k
  sha256->buf[4] = 0x510e527f;
830
1.77k
  sha256->buf[5] = 0x9b05688c;
831
1.77k
  sha256->buf[6] = 0x1f83d9ab;
832
1.77k
  sha256->buf[7] = 0x5be0cd19;
833
834
1.77k
  sha256->bits[0] = sha256->bits[1] = 0;
835
1.77k
}
836
837
9.71M
#define GET_UINT32(n,b,i)               G_STMT_START{   \
838
9.71M
    (n) = ((guint32) (b)[(i)    ] << 24)                \
839
9.71M
        | ((guint32) (b)[(i) + 1] << 16)                \
840
9.71M
        | ((guint32) (b)[(i) + 2] <<  8)                \
841
9.71M
        | ((guint32) (b)[(i) + 3]      ); } G_STMT_END
842
843
4.17k
#define PUT_UINT32(n,b,i)               G_STMT_START{   \
844
4.17k
    (b)[(i)    ] = (guint8) ((n) >> 24);                \
845
4.17k
    (b)[(i) + 1] = (guint8) ((n) >> 16);                \
846
4.17k
    (b)[(i) + 2] = (guint8) ((n) >>  8);                \
847
4.17k
    (b)[(i) + 3] = (guint8) ((n)      ); } G_STMT_END
848
849
static void
850
sha256_transform (guint32      buf[8],
851
                  guint8 const data[64])
852
607k
{
853
607k
  guint32 temp1, temp2, W[64];
854
607k
  guint32 A, B, C, D, E, F, G, H;
855
856
607k
  GET_UINT32 (W[0],  data,  0);
857
607k
  GET_UINT32 (W[1],  data,  4);
858
607k
  GET_UINT32 (W[2],  data,  8);
859
607k
  GET_UINT32 (W[3],  data, 12);
860
607k
  GET_UINT32 (W[4],  data, 16);
861
607k
  GET_UINT32 (W[5],  data, 20);
862
607k
  GET_UINT32 (W[6],  data, 24);
863
607k
  GET_UINT32 (W[7],  data, 28);
864
607k
  GET_UINT32 (W[8],  data, 32);
865
607k
  GET_UINT32 (W[9],  data, 36);
866
607k
  GET_UINT32 (W[10], data, 40);
867
607k
  GET_UINT32 (W[11], data, 44);
868
607k
  GET_UINT32 (W[12], data, 48);
869
607k
  GET_UINT32 (W[13], data, 52);
870
607k
  GET_UINT32 (W[14], data, 56);
871
607k
  GET_UINT32 (W[15], data, 60);
872
873
233M
#define SHR(x,n)        ((x & 0xFFFFFFFF) >> n)
874
233M
#define ROTR(x,n)       (SHR (x,n) | (x << (32 - n)))
875
876
607k
#define S0(x) (ROTR (x, 7) ^ ROTR (x,18) ^  SHR (x, 3))
877
607k
#define S1(x) (ROTR (x,17) ^ ROTR (x,19) ^  SHR (x,10))
878
38.8M
#define S2(x) (ROTR (x, 2) ^ ROTR (x,13) ^ ROTR (x,22))
879
38.8M
#define S3(x) (ROTR (x, 6) ^ ROTR (x,11) ^ ROTR (x,25))
880
881
38.8M
#define F0(x,y,z) ((x & y) | (z & (x | y)))
882
38.8M
#define F1(x,y,z) (z ^ (x & (y ^ z)))
883
884
607k
#define R(t)    (W[t] = S1(W[t -  2]) + W[t -  7] + \
885
607k
                        S0(W[t - 15]) + W[t - 16])
886
887
38.8M
#define P(a,b,c,d,e,f,g,h,x,K)          G_STMT_START {  \
888
38.8M
        temp1 = h + S3(e) + F1(e,f,g) + K + x;          \
889
38.8M
        temp2 = S2(a) + F0(a,b,c);                      \
890
38.8M
        d += temp1; h = temp1 + temp2; } G_STMT_END
891
892
607k
  A = buf[0];
893
607k
  B = buf[1];
894
607k
  C = buf[2];
895
607k
  D = buf[3];
896
607k
  E = buf[4];
897
607k
  F = buf[5];
898
607k
  G = buf[6];
899
607k
  H = buf[7];
900
901
607k
  P (A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98);
902
607k
  P (H, A, B, C, D, E, F, G, W[ 1], 0x71374491);
903
607k
  P (G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF);
904
607k
  P (F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5);
905
607k
  P (E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B);
906
607k
  P (D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1);
907
607k
  P (C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4);
908
607k
  P (B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5);
909
607k
  P (A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98);
910
607k
  P (H, A, B, C, D, E, F, G, W[ 9], 0x12835B01);
911
607k
  P (G, H, A, B, C, D, E, F, W[10], 0x243185BE);
912
607k
  P (F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
913
607k
  P (E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
914
607k
  P (D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
915
607k
  P (C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
916
607k
  P (B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
917
607k
  P (A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
918
607k
  P (H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
919
607k
  P (G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
920
607k
  P (F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
921
607k
  P (E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
922
607k
  P (D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
923
607k
  P (C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
924
607k
  P (B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
925
607k
  P (A, B, C, D, E, F, G, H, R(24), 0x983E5152);
926
607k
  P (H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
927
607k
  P (G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
928
607k
  P (F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
929
607k
  P (E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
930
607k
  P (D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
931
607k
  P (C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
932
607k
  P (B, C, D, E, F, G, H, A, R(31), 0x14292967);
933
607k
  P (A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
934
607k
  P (H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
935
607k
  P (G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
936
607k
  P (F, G, H, A, B, C, D, E, R(35), 0x53380D13);
937
607k
  P (E, F, G, H, A, B, C, D, R(36), 0x650A7354);
938
607k
  P (D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
939
607k
  P (C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
940
607k
  P (B, C, D, E, F, G, H, A, R(39), 0x92722C85);
941
607k
  P (A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
942
607k
  P (H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
943
607k
  P (G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
944
607k
  P (F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
945
607k
  P (E, F, G, H, A, B, C, D, R(44), 0xD192E819);
946
607k
  P (D, E, F, G, H, A, B, C, R(45), 0xD6990624);
947
607k
  P (C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
948
607k
  P (B, C, D, E, F, G, H, A, R(47), 0x106AA070);
949
607k
  P (A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
950
607k
  P (H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
951
607k
  P (G, H, A, B, C, D, E, F, R(50), 0x2748774C);
952
607k
  P (F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
953
607k
  P (E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
954
607k
  P (D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
955
607k
  P (C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
956
607k
  P (B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
957
607k
  P (A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
958
607k
  P (H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
959
607k
  P (G, H, A, B, C, D, E, F, R(58), 0x84C87814);
960
607k
  P (F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
961
607k
  P (E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
962
607k
  P (D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
963
607k
  P (C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
964
607k
  P (B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
965
966
607k
#undef SHR
967
607k
#undef ROTR
968
607k
#undef S0
969
607k
#undef S1
970
607k
#undef S2
971
607k
#undef S3
972
607k
#undef F0
973
607k
#undef F1
974
607k
#undef R
975
607k
#undef P
976
977
607k
  buf[0] += A;
978
607k
  buf[1] += B;
979
607k
  buf[2] += C;
980
607k
  buf[3] += D;
981
607k
  buf[4] += E;
982
607k
  buf[5] += F;
983
607k
  buf[6] += G;
984
607k
  buf[7] += H;
985
607k
}
986
987
static void
988
sha256_sum_update (Sha256sum    *sha256,
989
                   const guchar *buffer,
990
                   gsize         length)
991
570k
{
992
570k
  guint32 left, fill;
993
570k
  const guint8 *input = buffer;
994
995
570k
  if (length == 0)
996
0
    return;
997
998
570k
  left = sha256->bits[0] & 0x3F;
999
570k
  fill = 64 - left;
1000
1001
570k
  sha256->bits[0] += length;
1002
570k
  sha256->bits[0] &= 0xFFFFFFFF;
1003
1004
570k
  if (sha256->bits[0] < length)
1005
0
      sha256->bits[1]++;
1006
1007
570k
  if (left > 0 && length >= fill)
1008
432
    {
1009
432
      memcpy ((sha256->data + left), input, fill);
1010
1011
432
      sha256_transform (sha256->buf, sha256->data);
1012
432
      length -= fill;
1013
432
      input += fill;
1014
1015
432
      left = 0;
1016
432
    }
1017
1018
1.17M
  while (length >= SHA256_DATASIZE)
1019
606k
    {
1020
606k
      sha256_transform (sha256->buf, input);
1021
1022
606k
      length -= 64;
1023
606k
      input += 64;
1024
606k
    }
1025
1026
570k
  if (length)
1027
849
    memcpy (sha256->data + left, input, length);
1028
570k
}
1029
1030
static guint8 sha256_padding[64] =
1031
{
1032
 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1033
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1034
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1035
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1036
};
1037
1038
static void
1039
sha256_sum_close (Sha256sum *sha256)
1040
417
{
1041
417
  guint32 last, padn;
1042
417
  guint32 high, low;
1043
417
  guint8 msglen[8];
1044
1045
417
  high = (sha256->bits[0] >> 29)
1046
417
       | (sha256->bits[1] <<  3);
1047
417
  low  = (sha256->bits[0] <<  3);
1048
1049
417
  PUT_UINT32 (high, msglen, 0);
1050
417
  PUT_UINT32 (low, msglen, 4);
1051
1052
417
  last = sha256->bits[0] & 0x3F;
1053
417
  padn = (last < 56) ? (56 - last) : (120 - last);
1054
1055
417
  sha256_sum_update (sha256, sha256_padding, padn);
1056
417
  sha256_sum_update (sha256, msglen, 8);
1057
1058
417
  PUT_UINT32 (sha256->buf[0], sha256->digest,  0);
1059
417
  PUT_UINT32 (sha256->buf[1], sha256->digest,  4);
1060
417
  PUT_UINT32 (sha256->buf[2], sha256->digest,  8);
1061
417
  PUT_UINT32 (sha256->buf[3], sha256->digest, 12);
1062
417
  PUT_UINT32 (sha256->buf[4], sha256->digest, 16);
1063
417
  PUT_UINT32 (sha256->buf[5], sha256->digest, 20);
1064
417
  PUT_UINT32 (sha256->buf[6], sha256->digest, 24);
1065
417
  PUT_UINT32 (sha256->buf[7], sha256->digest, 28);
1066
417
}
1067
1068
#undef PUT_UINT32
1069
#undef GET_UINT32
1070
1071
static gchar *
1072
sha256_sum_to_string (Sha256sum *sha256)
1073
417
{
1074
417
  return digest_to_string (sha256->digest, SHA256_DIGEST_LEN);
1075
417
}
1076
1077
static void
1078
sha256_sum_digest (Sha256sum *sha256,
1079
                   guint8    *digest)
1080
417
{
1081
417
  gint i;
1082
1083
13.7k
  for (i = 0; i < SHA256_DIGEST_LEN; i++)
1084
13.3k
    digest[i] = sha256->digest[i];
1085
417
}
1086
1087
/*
1088
 * SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Checksums
1089
 *
1090
 * Implemented following FIPS-180-4 standard at
1091
 * http://csrc.nist.gov/publications/fips/fips180-4/fips180-4.pdf.
1092
 * References in the form [§x.y.z] map to sections in that document.
1093
 *
1094
 *   Author(s): Eduardo Lima Mitev <elima@igalia.com>
1095
 *              Igor Gnatenko <ignatenko@src.gnome.org>
1096
 */
1097
1098
/* SHA-384, SHA-512, SHA-512/224 and SHA-512/256 functions [§4.1.3] */
1099
0
#define Ch(x,y,z)  ((x & y) ^ (~x & z))
1100
0
#define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z))
1101
0
#define SHR(n,x)   (x >> n)
1102
0
#define ROTR(n,x)  (SHR (n, x) | (x << (64 - n)))
1103
0
#define SIGMA0(x)  (ROTR (28, x) ^ ROTR (34, x) ^ ROTR (39, x))
1104
0
#define SIGMA1(x)  (ROTR (14, x) ^ ROTR (18, x) ^ ROTR (41, x))
1105
0
#define sigma0(x)  (ROTR ( 1, x) ^ ROTR ( 8, x) ^ SHR  ( 7, x))
1106
0
#define sigma1(x)  (ROTR (19, x) ^ ROTR (61, x) ^ SHR  ( 6, x))
1107
1108
0
#define PUT_UINT64(n,b,i)                G_STMT_START{   \
1109
0
    (b)[(i)    ] = (guint8) (n >> 56);                   \
1110
0
    (b)[(i) + 1] = (guint8) (n >> 48);                   \
1111
0
    (b)[(i) + 2] = (guint8) (n >> 40);                   \
1112
0
    (b)[(i) + 3] = (guint8) (n >> 32);                   \
1113
0
    (b)[(i) + 4] = (guint8) (n >> 24);                   \
1114
0
    (b)[(i) + 5] = (guint8) (n >> 16);                   \
1115
0
    (b)[(i) + 6] = (guint8) (n >>  8);                   \
1116
0
    (b)[(i) + 7] = (guint8) (n      ); } G_STMT_END
1117
1118
/* SHA-384 and SHA-512 constants [§4.2.3] */
1119
static const guint64 SHA2_K[80] = {
1120
  G_GUINT64_CONSTANT (0x428a2f98d728ae22), G_GUINT64_CONSTANT (0x7137449123ef65cd),
1121
  G_GUINT64_CONSTANT (0xb5c0fbcfec4d3b2f), G_GUINT64_CONSTANT (0xe9b5dba58189dbbc),
1122
  G_GUINT64_CONSTANT (0x3956c25bf348b538), G_GUINT64_CONSTANT (0x59f111f1b605d019),
1123
  G_GUINT64_CONSTANT (0x923f82a4af194f9b), G_GUINT64_CONSTANT (0xab1c5ed5da6d8118),
1124
  G_GUINT64_CONSTANT (0xd807aa98a3030242), G_GUINT64_CONSTANT (0x12835b0145706fbe),
1125
  G_GUINT64_CONSTANT (0x243185be4ee4b28c), G_GUINT64_CONSTANT (0x550c7dc3d5ffb4e2),
1126
  G_GUINT64_CONSTANT (0x72be5d74f27b896f), G_GUINT64_CONSTANT (0x80deb1fe3b1696b1),
1127
  G_GUINT64_CONSTANT (0x9bdc06a725c71235), G_GUINT64_CONSTANT (0xc19bf174cf692694),
1128
  G_GUINT64_CONSTANT (0xe49b69c19ef14ad2), G_GUINT64_CONSTANT (0xefbe4786384f25e3),
1129
  G_GUINT64_CONSTANT (0x0fc19dc68b8cd5b5), G_GUINT64_CONSTANT (0x240ca1cc77ac9c65),
1130
  G_GUINT64_CONSTANT (0x2de92c6f592b0275), G_GUINT64_CONSTANT (0x4a7484aa6ea6e483),
1131
  G_GUINT64_CONSTANT (0x5cb0a9dcbd41fbd4), G_GUINT64_CONSTANT (0x76f988da831153b5),
1132
  G_GUINT64_CONSTANT (0x983e5152ee66dfab), G_GUINT64_CONSTANT (0xa831c66d2db43210),
1133
  G_GUINT64_CONSTANT (0xb00327c898fb213f), G_GUINT64_CONSTANT (0xbf597fc7beef0ee4),
1134
  G_GUINT64_CONSTANT (0xc6e00bf33da88fc2), G_GUINT64_CONSTANT (0xd5a79147930aa725),
1135
  G_GUINT64_CONSTANT (0x06ca6351e003826f), G_GUINT64_CONSTANT (0x142929670a0e6e70),
1136
  G_GUINT64_CONSTANT (0x27b70a8546d22ffc), G_GUINT64_CONSTANT (0x2e1b21385c26c926),
1137
  G_GUINT64_CONSTANT (0x4d2c6dfc5ac42aed), G_GUINT64_CONSTANT (0x53380d139d95b3df),
1138
  G_GUINT64_CONSTANT (0x650a73548baf63de), G_GUINT64_CONSTANT (0x766a0abb3c77b2a8),
1139
  G_GUINT64_CONSTANT (0x81c2c92e47edaee6), G_GUINT64_CONSTANT (0x92722c851482353b),
1140
  G_GUINT64_CONSTANT (0xa2bfe8a14cf10364), G_GUINT64_CONSTANT (0xa81a664bbc423001),
1141
  G_GUINT64_CONSTANT (0xc24b8b70d0f89791), G_GUINT64_CONSTANT (0xc76c51a30654be30),
1142
  G_GUINT64_CONSTANT (0xd192e819d6ef5218), G_GUINT64_CONSTANT (0xd69906245565a910),
1143
  G_GUINT64_CONSTANT (0xf40e35855771202a), G_GUINT64_CONSTANT (0x106aa07032bbd1b8),
1144
  G_GUINT64_CONSTANT (0x19a4c116b8d2d0c8), G_GUINT64_CONSTANT (0x1e376c085141ab53),
1145
  G_GUINT64_CONSTANT (0x2748774cdf8eeb99), G_GUINT64_CONSTANT (0x34b0bcb5e19b48a8),
1146
  G_GUINT64_CONSTANT (0x391c0cb3c5c95a63), G_GUINT64_CONSTANT (0x4ed8aa4ae3418acb),
1147
  G_GUINT64_CONSTANT (0x5b9cca4f7763e373), G_GUINT64_CONSTANT (0x682e6ff3d6b2b8a3),
1148
  G_GUINT64_CONSTANT (0x748f82ee5defb2fc), G_GUINT64_CONSTANT (0x78a5636f43172f60),
1149
  G_GUINT64_CONSTANT (0x84c87814a1f0ab72), G_GUINT64_CONSTANT (0x8cc702081a6439ec),
1150
  G_GUINT64_CONSTANT (0x90befffa23631e28), G_GUINT64_CONSTANT (0xa4506cebde82bde9),
1151
  G_GUINT64_CONSTANT (0xbef9a3f7b2c67915), G_GUINT64_CONSTANT (0xc67178f2e372532b),
1152
  G_GUINT64_CONSTANT (0xca273eceea26619c), G_GUINT64_CONSTANT (0xd186b8c721c0c207),
1153
  G_GUINT64_CONSTANT (0xeada7dd6cde0eb1e), G_GUINT64_CONSTANT (0xf57d4f7fee6ed178),
1154
  G_GUINT64_CONSTANT (0x06f067aa72176fba), G_GUINT64_CONSTANT (0x0a637dc5a2c898a6),
1155
  G_GUINT64_CONSTANT (0x113f9804bef90dae), G_GUINT64_CONSTANT (0x1b710b35131c471b),
1156
  G_GUINT64_CONSTANT (0x28db77f523047d84), G_GUINT64_CONSTANT (0x32caab7b40c72493),
1157
  G_GUINT64_CONSTANT (0x3c9ebe0a15c9bebc), G_GUINT64_CONSTANT (0x431d67c49c100d4c),
1158
  G_GUINT64_CONSTANT (0x4cc5d4becb3e42b6), G_GUINT64_CONSTANT (0x597f299cfc657e2a),
1159
  G_GUINT64_CONSTANT (0x5fcb6fab3ad6faec), G_GUINT64_CONSTANT (0x6c44198c4a475817)
1160
};
1161
1162
1163
static void
1164
sha384_sum_init (Sha512sum *sha512)
1165
0
{
1166
  /* Initial Hash Value [§5.3.4] */
1167
0
  sha512->H[0] = G_GUINT64_CONSTANT (0xcbbb9d5dc1059ed8);
1168
0
  sha512->H[1] = G_GUINT64_CONSTANT (0x629a292a367cd507);
1169
0
  sha512->H[2] = G_GUINT64_CONSTANT (0x9159015a3070dd17);
1170
0
  sha512->H[3] = G_GUINT64_CONSTANT (0x152fecd8f70e5939);
1171
0
  sha512->H[4] = G_GUINT64_CONSTANT (0x67332667ffc00b31);
1172
0
  sha512->H[5] = G_GUINT64_CONSTANT (0x8eb44a8768581511);
1173
0
  sha512->H[6] = G_GUINT64_CONSTANT (0xdb0c2e0d64f98fa7);
1174
0
  sha512->H[7] = G_GUINT64_CONSTANT (0x47b5481dbefa4fa4);
1175
1176
0
  sha512->block_len = 0;
1177
1178
0
  sha512->data_len[0] = 0;
1179
0
  sha512->data_len[1] = 0;
1180
0
}
1181
1182
static void
1183
sha512_sum_init (Sha512sum *sha512)
1184
0
{
1185
  /* Initial Hash Value [§5.3.5] */
1186
0
  sha512->H[0] = G_GUINT64_CONSTANT (0x6a09e667f3bcc908);
1187
0
  sha512->H[1] = G_GUINT64_CONSTANT (0xbb67ae8584caa73b);
1188
0
  sha512->H[2] = G_GUINT64_CONSTANT (0x3c6ef372fe94f82b);
1189
0
  sha512->H[3] = G_GUINT64_CONSTANT (0xa54ff53a5f1d36f1);
1190
0
  sha512->H[4] = G_GUINT64_CONSTANT (0x510e527fade682d1);
1191
0
  sha512->H[5] = G_GUINT64_CONSTANT (0x9b05688c2b3e6c1f);
1192
0
  sha512->H[6] = G_GUINT64_CONSTANT (0x1f83d9abfb41bd6b);
1193
0
  sha512->H[7] = G_GUINT64_CONSTANT (0x5be0cd19137e2179);
1194
1195
0
  sha512->block_len = 0;
1196
1197
0
  sha512->data_len[0] = 0;
1198
0
  sha512->data_len[1] = 0;
1199
0
}
1200
1201
static void
1202
sha512_transform (guint64      H[8],
1203
                  guint8 const data[SHA2_BLOCK_LEN])
1204
0
{
1205
0
  gint i;
1206
0
  gint t;
1207
0
  guint64 a, b, c, d, e, f, g, h;
1208
0
  guint64 M[16];
1209
0
  guint64 W[80];
1210
1211
  /* SHA-512 hash computation [§6.4.2] */
1212
1213
  /* prepare the message schedule */
1214
0
  for (i = 0; i < 16; i++)
1215
0
    {
1216
0
      gint p = i * 8;
1217
1218
0
      M[i] =
1219
0
        ((guint64) data[p + 0] << 56) |
1220
0
        ((guint64) data[p + 1] << 48) |
1221
0
        ((guint64) data[p + 2] << 40) |
1222
0
        ((guint64) data[p + 3] << 32) |
1223
0
        ((guint64) data[p + 4] << 24) |
1224
0
        ((guint64) data[p + 5] << 16) |
1225
0
        ((guint64) data[p + 6] <<  8) |
1226
0
        ((guint64) data[p + 7]      );
1227
0
    }
1228
1229
0
  for (t = 0; t < 80; t++)
1230
0
    if (t < 16)
1231
0
      W[t] = M[t];
1232
0
    else
1233
0
      W[t] = sigma1 (W[t - 2]) + W[t - 7] + sigma0 (W[t - 15]) + W[t - 16];
1234
1235
  /* initialize the eight working variables */
1236
0
  a = H[0];
1237
0
  b = H[1];
1238
0
  c = H[2];
1239
0
  d = H[3];
1240
0
  e = H[4];
1241
0
  f = H[5];
1242
0
  g = H[6];
1243
0
  h = H[7];
1244
1245
0
  for (t = 0; t < 80; t++)
1246
0
    {
1247
0
      guint64 T1, T2;
1248
1249
0
      T1 = h + SIGMA1 (e) + Ch (e, f, g) + SHA2_K[t] + W[t];
1250
0
      T2 = SIGMA0 (a) + Maj (a, b, c);
1251
0
      h = g;
1252
0
      g = f;
1253
0
      f = e;
1254
0
      e = d + T1;
1255
0
      d = c;
1256
0
      c = b;
1257
0
      b = a;
1258
0
      a = T1 + T2;
1259
0
    }
1260
1261
  /* Compute the intermediate hash value H */
1262
0
  H[0] += a;
1263
0
  H[1] += b;
1264
0
  H[2] += c;
1265
0
  H[3] += d;
1266
0
  H[4] += e;
1267
0
  H[5] += f;
1268
0
  H[6] += g;
1269
0
  H[7] += h;
1270
0
}
1271
1272
static void
1273
sha512_sum_update (Sha512sum    *sha512,
1274
                   const guchar *buffer,
1275
                   gsize         length)
1276
0
{
1277
0
  gsize block_left, offset = 0;
1278
1279
0
  if (length == 0)
1280
0
    return;
1281
1282
0
  sha512->data_len[0] += length * 8;
1283
0
  if (sha512->data_len[0] < length)
1284
0
    sha512->data_len[1]++;
1285
1286
  /* try to fill current block */
1287
0
  block_left = SHA2_BLOCK_LEN - sha512->block_len;
1288
0
  if (block_left > 0)
1289
0
    {
1290
0
      gsize fill_len;
1291
1292
0
      fill_len = MIN (block_left, length);
1293
0
      memcpy (sha512->block + sha512->block_len, buffer, fill_len);
1294
0
      sha512->block_len += fill_len;
1295
0
      length -= fill_len;
1296
0
      offset += fill_len;
1297
1298
0
      if (sha512->block_len == SHA2_BLOCK_LEN)
1299
0
        {
1300
0
          sha512_transform (sha512->H, sha512->block);
1301
0
          sha512->block_len = 0;
1302
0
        }
1303
0
    }
1304
1305
  /* process complete blocks */
1306
0
  while (length >= SHA2_BLOCK_LEN)
1307
0
    {
1308
0
      memcpy (sha512->block, buffer + offset, SHA2_BLOCK_LEN);
1309
1310
0
      sha512_transform (sha512->H, sha512->block);
1311
1312
0
      length -= SHA2_BLOCK_LEN;
1313
0
      offset += SHA2_BLOCK_LEN;
1314
0
    }
1315
1316
  /* keep remaining data for next block */
1317
0
  if (length > 0)
1318
0
    {
1319
0
      memcpy (sha512->block, buffer + offset, length);
1320
0
      sha512->block_len = length;
1321
0
    }
1322
0
}
1323
1324
static void
1325
sha512_sum_close (Sha512sum *sha512)
1326
0
{
1327
0
  guint l;
1328
0
  gint zeros;
1329
0
  guint8 pad[SHA2_BLOCK_LEN * 2] = { 0, };
1330
0
  guint pad_len = 0;
1331
0
  gint i;
1332
1333
  /* apply padding [§5.1.2] */
1334
0
  l = sha512->block_len * 8;
1335
0
  zeros = 896 - (l + 1);
1336
1337
0
  if (zeros < 0)
1338
0
    zeros += 128 * 8;
1339
1340
0
  pad[0] = 0x80; /* 1000 0000 */
1341
0
  zeros -= 7;
1342
0
  pad_len++;
1343
1344
0
  memset (pad + pad_len, 0x00, zeros / 8);
1345
0
  pad_len += zeros / 8;
1346
0
  zeros = zeros % 8;
1347
0
  (void) zeros;  /* don’t care about the dead store */
1348
1349
  /* put message bit length at the end of padding */
1350
0
  PUT_UINT64 (sha512->data_len[1], pad, pad_len);
1351
0
  pad_len += 8;
1352
1353
0
  PUT_UINT64 (sha512->data_len[0], pad, pad_len);
1354
0
  pad_len += 8;
1355
1356
  /* update checksum with the padded block */
1357
0
  sha512_sum_update (sha512, pad, pad_len);
1358
1359
  /* copy resulting 64-bit words into digest */
1360
0
  for (i = 0; i < 8; i++)
1361
0
    PUT_UINT64 (sha512->H[i], sha512->digest, i * 8);
1362
0
}
1363
1364
static gchar *
1365
sha384_sum_to_string (Sha512sum *sha512)
1366
0
{
1367
0
  return digest_to_string (sha512->digest, SHA384_DIGEST_LEN);
1368
0
}
1369
1370
static gchar *
1371
sha512_sum_to_string (Sha512sum *sha512)
1372
0
{
1373
0
  return digest_to_string (sha512->digest, SHA512_DIGEST_LEN);
1374
0
}
1375
1376
static void
1377
sha384_sum_digest (Sha512sum *sha512,
1378
                   guint8    *digest)
1379
0
{
1380
0
  memcpy (digest, sha512->digest, SHA384_DIGEST_LEN);
1381
0
}
1382
1383
static void
1384
sha512_sum_digest (Sha512sum *sha512,
1385
                   guint8    *digest)
1386
0
{
1387
0
  memcpy (digest, sha512->digest, SHA512_DIGEST_LEN);
1388
0
}
1389
1390
#undef Ch
1391
#undef Maj
1392
#undef SHR
1393
#undef ROTR
1394
#undef SIGMA0
1395
#undef SIGMA1
1396
#undef sigma0
1397
#undef sigma1
1398
1399
#undef PUT_UINT64
1400
1401
/*
1402
 * Public API
1403
 */
1404
1405
/**
1406
 * g_checksum_type_get_length:
1407
 * @checksum_type: a #GChecksumType
1408
 *
1409
 * Gets the length in bytes of digests of type @checksum_type
1410
 *
1411
 * Returns: the checksum length, or -1 if @checksum_type is
1412
 * not supported.
1413
 *
1414
 * Since: 2.16
1415
 */
1416
gssize
1417
g_checksum_type_get_length (GChecksumType checksum_type)
1418
421
{
1419
421
  gssize len = -1;
1420
1421
421
  switch (checksum_type)
1422
421
    {
1423
1
    case G_CHECKSUM_MD5:
1424
1
      len = MD5_DIGEST_LEN;
1425
1
      break;
1426
1
    case G_CHECKSUM_SHA1:
1427
1
      len = SHA1_DIGEST_LEN;
1428
1
      break;
1429
419
    case G_CHECKSUM_SHA256:
1430
419
      len = SHA256_DIGEST_LEN;
1431
419
      break;
1432
0
    case G_CHECKSUM_SHA384:
1433
0
      len = SHA384_DIGEST_LEN;
1434
0
      break;
1435
0
    case G_CHECKSUM_SHA512:
1436
0
      len = SHA512_DIGEST_LEN;
1437
0
      break;
1438
0
    default:
1439
0
      len = -1;
1440
0
      break;
1441
421
    }
1442
1443
421
  return len;
1444
421
}
1445
1446
/**
1447
 * g_checksum_new:
1448
 * @checksum_type: the desired type of checksum
1449
 *
1450
 * Creates a new #GChecksum, using the checksum algorithm @checksum_type.
1451
 * If the @checksum_type is not known, %NULL is returned.
1452
 * A #GChecksum can be used to compute the checksum, or digest, of an
1453
 * arbitrary binary blob, using different hashing algorithms.
1454
 *
1455
 * A #GChecksum works by feeding a binary blob through g_checksum_update()
1456
 * until there is data to be checked; the digest can then be extracted
1457
 * using g_checksum_get_string(), which will return the checksum as a
1458
 * hexadecimal string; or g_checksum_get_digest(), which will return a
1459
 * vector of raw bytes. Once either g_checksum_get_string() or
1460
 * g_checksum_get_digest() have been called on a #GChecksum, the checksum
1461
 * will be closed and it won't be possible to call g_checksum_update()
1462
 * on it anymore.
1463
 *
1464
 * Returns: (transfer full) (nullable): the newly created #GChecksum, or %NULL.
1465
 *   Use g_checksum_free() to free the memory allocated by it.
1466
 *
1467
 * Since: 2.16
1468
 */
1469
GChecksum *
1470
g_checksum_new (GChecksumType checksum_type)
1471
1.77k
{
1472
1.77k
  GChecksum *checksum;
1473
1474
1.77k
  if (! IS_VALID_TYPE (checksum_type))
1475
0
    return NULL;
1476
1477
1.77k
  checksum = g_slice_new0 (GChecksum);
1478
1.77k
  checksum->type = checksum_type;
1479
1480
1.77k
  g_checksum_reset (checksum);
1481
1482
1.77k
  return checksum;
1483
1.77k
}
1484
1485
/**
1486
 * g_checksum_reset:
1487
 * @checksum: the #GChecksum to reset
1488
 *
1489
 * Resets the state of the @checksum back to its initial state.
1490
 *
1491
 * Since: 2.18
1492
 **/
1493
void
1494
g_checksum_reset (GChecksum *checksum)
1495
1.77k
{
1496
1.77k
  g_return_if_fail (checksum != NULL);
1497
1498
1.77k
  g_free (checksum->digest_str);
1499
1.77k
  checksum->digest_str = NULL;
1500
1501
1.77k
  switch (checksum->type)
1502
1.77k
    {
1503
1
    case G_CHECKSUM_MD5:
1504
1
      md5_sum_init (&(checksum->sum.md5));
1505
1
      break;
1506
1
    case G_CHECKSUM_SHA1:
1507
1
      sha1_sum_init (&(checksum->sum.sha1));
1508
1
      break;
1509
1.77k
    case G_CHECKSUM_SHA256:
1510
1.77k
      sha256_sum_init (&(checksum->sum.sha256));
1511
1.77k
      break;
1512
0
    case G_CHECKSUM_SHA384:
1513
0
      sha384_sum_init (&(checksum->sum.sha512));
1514
0
      break;
1515
0
    case G_CHECKSUM_SHA512:
1516
0
      sha512_sum_init (&(checksum->sum.sha512));
1517
0
      break;
1518
0
    default:
1519
0
      g_assert_not_reached ();
1520
0
      break;
1521
1.77k
    }
1522
1.77k
}
1523
1524
/**
1525
 * g_checksum_copy:
1526
 * @checksum: the #GChecksum to copy
1527
 *
1528
 * Copies a #GChecksum. If @checksum has been closed, by calling
1529
 * g_checksum_get_string() or g_checksum_get_digest(), the copied
1530
 * checksum will be closed as well.
1531
 *
1532
 * Returns: (transfer full): the copy of the passed #GChecksum. Use
1533
 *   g_checksum_free() when finished using it.
1534
 *
1535
 * Since: 2.16
1536
 */
1537
GChecksum *
1538
g_checksum_copy (const GChecksum *checksum)
1539
0
{
1540
0
  GChecksum *copy;
1541
1542
0
  g_return_val_if_fail (checksum != NULL, NULL);
1543
1544
0
  copy = g_slice_new (GChecksum);
1545
0
  *copy = *checksum;
1546
1547
0
  copy->digest_str = g_strdup (checksum->digest_str);
1548
1549
0
  return copy;
1550
0
}
1551
1552
/**
1553
 * g_checksum_free:
1554
 * @checksum: a #GChecksum
1555
 *
1556
 * Frees the memory allocated for @checksum.
1557
 *
1558
 * Since: 2.16
1559
 */
1560
void
1561
g_checksum_free (GChecksum *checksum)
1562
1.77k
{
1563
1.77k
  if (G_LIKELY (checksum))
1564
1.77k
    {
1565
1.77k
      g_free (checksum->digest_str);
1566
1567
1.77k
      g_slice_free (GChecksum, checksum);
1568
1.77k
    }
1569
1.77k
}
1570
1571
/**
1572
 * g_checksum_update:
1573
 * @checksum: a #GChecksum
1574
 * @data: (array length=length) (element-type guint8): buffer used to compute the checksum
1575
 * @length: size of the buffer, or -1 if it is a null-terminated string.
1576
 *
1577
 * Feeds @data into an existing #GChecksum. The checksum must still be
1578
 * open, that is g_checksum_get_string() or g_checksum_get_digest() must
1579
 * not have been called on @checksum.
1580
 *
1581
 * Since: 2.16
1582
 */
1583
void
1584
g_checksum_update (GChecksum    *checksum,
1585
                   const guchar *data,
1586
                   gssize        length)
1587
569k
{
1588
569k
  g_return_if_fail (checksum != NULL);
1589
569k
  g_return_if_fail (length == 0 || data != NULL);
1590
1591
569k
  if (length < 0)
1592
0
    length = strlen ((const gchar *) data);
1593
1594
569k
  if (checksum->digest_str)
1595
0
    {
1596
0
      g_warning ("The checksum '%s' has been closed and cannot be updated "
1597
0
                 "anymore.",
1598
0
                 checksum->digest_str);
1599
0
      return;
1600
0
    }
1601
1602
569k
  switch (checksum->type)
1603
569k
    {
1604
0
    case G_CHECKSUM_MD5:
1605
0
      md5_sum_update (&(checksum->sum.md5), data, length);
1606
0
      break;
1607
0
    case G_CHECKSUM_SHA1:
1608
0
      sha1_sum_update (&(checksum->sum.sha1), data, length);
1609
0
      break;
1610
569k
    case G_CHECKSUM_SHA256:
1611
569k
      sha256_sum_update (&(checksum->sum.sha256), data, length);
1612
569k
      break;
1613
0
    case G_CHECKSUM_SHA384:
1614
0
    case G_CHECKSUM_SHA512:
1615
0
      sha512_sum_update (&(checksum->sum.sha512), data, length);
1616
0
      break;
1617
0
    default:
1618
0
      g_assert_not_reached ();
1619
0
      break;
1620
569k
    }
1621
569k
}
1622
1623
/**
1624
 * g_checksum_get_string:
1625
 * @checksum: a #GChecksum
1626
 *
1627
 * Gets the digest as a hexadecimal string.
1628
 *
1629
 * Once this function has been called the #GChecksum can no longer be
1630
 * updated with g_checksum_update().
1631
 *
1632
 * The hexadecimal characters will be lower case.
1633
 *
1634
 * Returns: the hexadecimal representation of the checksum. The
1635
 *   returned string is owned by the checksum and should not be modified
1636
 *   or freed.
1637
 *
1638
 * Since: 2.16
1639
 */
1640
const gchar *
1641
g_checksum_get_string (GChecksum *checksum)
1642
0
{
1643
0
  gchar *str = NULL;
1644
1645
0
  g_return_val_if_fail (checksum != NULL, NULL);
1646
1647
0
  if (checksum->digest_str)
1648
0
    return checksum->digest_str;
1649
1650
0
  switch (checksum->type)
1651
0
    {
1652
0
    case G_CHECKSUM_MD5:
1653
0
      md5_sum_close (&(checksum->sum.md5));
1654
0
      str = md5_sum_to_string (&(checksum->sum.md5));
1655
0
      break;
1656
0
    case G_CHECKSUM_SHA1:
1657
0
      sha1_sum_close (&(checksum->sum.sha1));
1658
0
      str = sha1_sum_to_string (&(checksum->sum.sha1));
1659
0
      break;
1660
0
    case G_CHECKSUM_SHA256:
1661
0
      sha256_sum_close (&(checksum->sum.sha256));
1662
0
      str = sha256_sum_to_string (&(checksum->sum.sha256));
1663
0
      break;
1664
0
    case G_CHECKSUM_SHA384:
1665
0
      sha512_sum_close (&(checksum->sum.sha512));
1666
0
      str = sha384_sum_to_string (&(checksum->sum.sha512));
1667
0
      break;
1668
0
    case G_CHECKSUM_SHA512:
1669
0
      sha512_sum_close (&(checksum->sum.sha512));
1670
0
      str = sha512_sum_to_string (&(checksum->sum.sha512));
1671
0
      break;
1672
0
    default:
1673
0
      g_assert_not_reached ();
1674
0
      break;
1675
0
    }
1676
1677
0
  checksum->digest_str = str;
1678
1679
0
  return checksum->digest_str;
1680
0
}
1681
1682
/**
1683
 * g_checksum_get_digest: (skip)
1684
 * @checksum: a #GChecksum
1685
 * @buffer: (array length=digest_len): output buffer
1686
 * @digest_len: (inout): an inout parameter. The caller initializes it to the size of @buffer.
1687
 *   After the call it contains the length of the digest.
1688
 *
1689
 * Gets the digest from @checksum as a raw binary vector and places it
1690
 * into @buffer. The size of the digest depends on the type of checksum.
1691
 *
1692
 * Once this function has been called, the #GChecksum is closed and can
1693
 * no longer be updated with g_checksum_update().
1694
 *
1695
 * Since: 2.16
1696
 */
1697
void
1698
g_checksum_get_digest (GChecksum  *checksum,
1699
                       guint8     *buffer,
1700
                       gsize      *digest_len)
1701
417
{
1702
417
  gboolean checksum_open = FALSE;
1703
417
  gchar *str = NULL;
1704
417
  gsize len;
1705
1706
417
  g_return_if_fail (checksum != NULL);
1707
1708
417
  len = g_checksum_type_get_length (checksum->type);
1709
417
  g_return_if_fail (*digest_len >= len);
1710
1711
417
  checksum_open = !!(checksum->digest_str == NULL);
1712
1713
417
  switch (checksum->type)
1714
417
    {
1715
0
    case G_CHECKSUM_MD5:
1716
0
      if (checksum_open)
1717
0
        {
1718
0
          md5_sum_close (&(checksum->sum.md5));
1719
0
          str = md5_sum_to_string (&(checksum->sum.md5));
1720
0
        }
1721
0
      md5_sum_digest (&(checksum->sum.md5), buffer);
1722
0
      break;
1723
0
    case G_CHECKSUM_SHA1:
1724
0
      if (checksum_open)
1725
0
        {
1726
0
          sha1_sum_close (&(checksum->sum.sha1));
1727
0
          str = sha1_sum_to_string (&(checksum->sum.sha1));
1728
0
        }
1729
0
      sha1_sum_digest (&(checksum->sum.sha1), buffer);
1730
0
      break;
1731
417
    case G_CHECKSUM_SHA256:
1732
417
      if (checksum_open)
1733
417
        {
1734
417
          sha256_sum_close (&(checksum->sum.sha256));
1735
417
          str = sha256_sum_to_string (&(checksum->sum.sha256));
1736
417
        }
1737
417
      sha256_sum_digest (&(checksum->sum.sha256), buffer);
1738
417
      break;
1739
0
    case G_CHECKSUM_SHA384:
1740
0
      if (checksum_open)
1741
0
        {
1742
0
          sha512_sum_close (&(checksum->sum.sha512));
1743
0
          str = sha384_sum_to_string (&(checksum->sum.sha512));
1744
0
        }
1745
0
      sha384_sum_digest (&(checksum->sum.sha512), buffer);
1746
0
      break;
1747
0
    case G_CHECKSUM_SHA512:
1748
0
      if (checksum_open)
1749
0
        {
1750
0
          sha512_sum_close (&(checksum->sum.sha512));
1751
0
          str = sha512_sum_to_string (&(checksum->sum.sha512));
1752
0
        }
1753
0
      sha512_sum_digest (&(checksum->sum.sha512), buffer);
1754
0
      break;
1755
0
    default:
1756
0
      g_assert_not_reached ();
1757
0
      break;
1758
417
    }
1759
1760
417
  if (str)
1761
417
    checksum->digest_str = str;
1762
1763
417
  *digest_len = len;
1764
417
}
1765
1766
/**
1767
 * g_compute_checksum_for_data:
1768
 * @checksum_type: a #GChecksumType
1769
 * @data: (array length=length) (element-type guint8): binary blob to compute the digest of
1770
 * @length: length of @data
1771
 *
1772
 * Computes the checksum for a binary @data of @length. This is a
1773
 * convenience wrapper for g_checksum_new(), g_checksum_get_string()
1774
 * and g_checksum_free().
1775
 *
1776
 * The hexadecimal string returned will be in lower case.
1777
 *
1778
 * Returns: (transfer full) (nullable): the digest of the binary data as a
1779
 *   string in hexadecimal, or %NULL if g_checksum_new() fails for
1780
 *   @checksum_type. The returned string should be freed with g_free() when
1781
 *   done using it.
1782
 *
1783
 * Since: 2.16
1784
 */
1785
gchar *
1786
g_compute_checksum_for_data (GChecksumType  checksum_type,
1787
                             const guchar  *data,
1788
                             gsize          length)
1789
0
{
1790
0
  GChecksum *checksum;
1791
0
  gchar *retval;
1792
1793
0
  g_return_val_if_fail (length == 0 || data != NULL, NULL);
1794
1795
0
  checksum = g_checksum_new (checksum_type);
1796
0
  if (!checksum)
1797
0
    return NULL;
1798
1799
0
  g_checksum_update (checksum, data, length);
1800
0
  retval = g_strdup (g_checksum_get_string (checksum));
1801
0
  g_checksum_free (checksum);
1802
1803
0
  return retval;
1804
0
}
1805
1806
/**
1807
 * g_compute_checksum_for_string:
1808
 * @checksum_type: a #GChecksumType
1809
 * @str: the string to compute the checksum of
1810
 * @length: the length of the string, or -1 if the string is null-terminated.
1811
 *
1812
 * Computes the checksum of a string.
1813
 *
1814
 * The hexadecimal string returned will be in lower case.
1815
 *
1816
 * Returns: (transfer full) (nullable): the checksum as a hexadecimal string,
1817
 *   or %NULL if g_checksum_new() fails for @checksum_type. The returned string
1818
 *   should be freed with g_free() when done using it.
1819
 *
1820
 * Since: 2.16
1821
 */
1822
gchar *
1823
g_compute_checksum_for_string (GChecksumType  checksum_type,
1824
                               const gchar   *str,
1825
                               gssize         length)
1826
0
{
1827
0
  g_return_val_if_fail (length == 0 || str != NULL, NULL);
1828
1829
0
  if (length < 0)
1830
0
    length = strlen (str);
1831
1832
0
  return g_compute_checksum_for_data (checksum_type, (const guchar *) str, length);
1833
0
}
1834
1835
/**
1836
 * g_compute_checksum_for_bytes:
1837
 * @checksum_type: a #GChecksumType
1838
 * @data: binary blob to compute the digest of
1839
 *
1840
 * Computes the checksum for a binary @data. This is a
1841
 * convenience wrapper for g_checksum_new(), g_checksum_get_string()
1842
 * and g_checksum_free().
1843
 *
1844
 * The hexadecimal string returned will be in lower case.
1845
 *
1846
 * Returns: (transfer full) (nullable): the digest of the binary data as a
1847
 *   string in hexadecimal, or %NULL if g_checksum_new() fails for
1848
 *   @checksum_type. The returned string should be freed with g_free() when
1849
 *   done using it.
1850
 *
1851
 * Since: 2.34
1852
 */
1853
gchar *
1854
g_compute_checksum_for_bytes (GChecksumType  checksum_type,
1855
                              GBytes        *data)
1856
0
{
1857
0
  gconstpointer byte_data;
1858
0
  gsize length;
1859
1860
0
  g_return_val_if_fail (data != NULL, NULL);
1861
1862
0
  byte_data = g_bytes_get_data (data, &length);
1863
0
  return g_compute_checksum_for_data (checksum_type, byte_data, length);
1864
0
}