Coverage Report

Created: 2025-11-11 06:44

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/glib/glib/gthread-posix.c
Line
Count
Source
1
/* GLIB - Library of useful routines for C programming
2
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
3
 *
4
 * gthread.c: posix thread system implementation
5
 * Copyright 1998 Sebastian Wilhelmi; University of Karlsruhe
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19
 */
20
21
/*
22
 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
23
 * file for a list of people on the GLib Team.  See the ChangeLog
24
 * files for a list of changes.  These files are distributed with
25
 * GLib at ftp://ftp.gtk.org/pub/gtk/.
26
 */
27
28
/* The GMutex, GCond and GPrivate implementations in this file are some
29
 * of the lowest-level code in GLib.  All other parts of GLib (messages,
30
 * memory, slices, etc) assume that they can freely use these facilities
31
 * without risking recursion.
32
 *
33
 * As such, these functions are NOT permitted to call any other part of
34
 * GLib.
35
 *
36
 * The thread manipulation functions (create, exit, join, etc.) have
37
 * more freedom -- they can do as they please.
38
 */
39
40
#include "config.h"
41
42
#include "gthread.h"
43
44
#include "gmain.h"
45
#include "gmessages.h"
46
#include "gslice.h"
47
#include "gstrfuncs.h"
48
#include "gtestutils.h"
49
#include "gthreadprivate.h"
50
#include "gutils.h"
51
52
#include <stdlib.h>
53
#include <stdio.h>
54
#include <string.h>
55
#include <errno.h>
56
#include <pthread.h>
57
58
#include <sys/time.h>
59
#include <unistd.h>
60
61
#ifdef HAVE_PTHREAD_SET_NAME_NP
62
#include <pthread_np.h>
63
#endif
64
#ifdef HAVE_SCHED_H
65
#include <sched.h>
66
#endif
67
#ifdef G_OS_WIN32
68
#include <windows.h>
69
#endif
70
71
#if defined(HAVE_SYS_SCHED_GETATTR)
72
#include <sys/syscall.h>
73
#endif
74
75
#if defined(HAVE_FUTEX) && \
76
    (defined(HAVE_STDATOMIC_H) || defined(__ATOMIC_SEQ_CST))
77
#define USE_NATIVE_MUTEX
78
#endif
79
80
static void
81
g_thread_abort (gint         status,
82
                const gchar *function)
83
0
{
84
0
  fprintf (stderr, "GLib (gthread-posix.c): Unexpected error from C library during '%s': %s.  Aborting.\n",
85
0
           function, strerror (status));
86
0
  g_abort ();
87
0
}
88
89
/* {{{1 GMutex */
90
91
#if !defined(USE_NATIVE_MUTEX)
92
93
static pthread_mutex_t *
94
g_mutex_impl_new (void)
95
{
96
  pthread_mutexattr_t *pattr = NULL;
97
  pthread_mutex_t *mutex;
98
  gint status;
99
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
100
  pthread_mutexattr_t attr;
101
#endif
102
103
  mutex = malloc (sizeof (pthread_mutex_t));
104
  if G_UNLIKELY (mutex == NULL)
105
    g_thread_abort (errno, "malloc");
106
107
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
108
  pthread_mutexattr_init (&attr);
109
  pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
110
  pattr = &attr;
111
#endif
112
113
  if G_UNLIKELY ((status = pthread_mutex_init (mutex, pattr)) != 0)
114
    g_thread_abort (status, "pthread_mutex_init");
115
116
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
117
  pthread_mutexattr_destroy (&attr);
118
#endif
119
120
  return mutex;
121
}
122
123
static void
124
g_mutex_impl_free (pthread_mutex_t *mutex)
125
{
126
  pthread_mutex_destroy (mutex);
127
  free (mutex);
128
}
129
130
static inline pthread_mutex_t *
131
g_mutex_get_impl (GMutex *mutex)
132
{
133
  pthread_mutex_t *impl = g_atomic_pointer_get (&mutex->p);
134
135
  if G_UNLIKELY (impl == NULL)
136
    {
137
      impl = g_mutex_impl_new ();
138
      if (!g_atomic_pointer_compare_and_exchange (&mutex->p, NULL, impl))
139
        g_mutex_impl_free (impl);
140
      impl = mutex->p;
141
    }
142
143
  return impl;
144
}
145
146
147
/**
148
 * g_mutex_init:
149
 * @mutex: an uninitialized #GMutex
150
 *
151
 * Initializes a #GMutex so that it can be used.
152
 *
153
 * This function is useful to initialize a mutex that has been
154
 * allocated on the stack, or as part of a larger structure.
155
 * It is not necessary to initialize a mutex that has been
156
 * statically allocated.
157
 *
158
 * |[<!-- language="C" --> 
159
 *   typedef struct {
160
 *     GMutex m;
161
 *     ...
162
 *   } Blob;
163
 *
164
 * Blob *b;
165
 *
166
 * b = g_new (Blob, 1);
167
 * g_mutex_init (&b->m);
168
 * ]|
169
 *
170
 * To undo the effect of g_mutex_init() when a mutex is no longer
171
 * needed, use g_mutex_clear().
172
 *
173
 * Calling g_mutex_init() on an already initialized #GMutex leads
174
 * to undefined behaviour.
175
 *
176
 * Since: 2.32
177
 */
178
void
179
g_mutex_init (GMutex *mutex)
180
{
181
  mutex->p = g_mutex_impl_new ();
182
}
183
184
/**
185
 * g_mutex_clear:
186
 * @mutex: an initialized #GMutex
187
 *
188
 * Frees the resources allocated to a mutex with g_mutex_init().
189
 *
190
 * This function should not be used with a #GMutex that has been
191
 * statically allocated.
192
 *
193
 * Calling g_mutex_clear() on a locked mutex leads to undefined
194
 * behaviour.
195
 *
196
 * Sine: 2.32
197
 */
198
void
199
g_mutex_clear (GMutex *mutex)
200
{
201
  g_mutex_impl_free (mutex->p);
202
}
203
204
/**
205
 * g_mutex_lock:
206
 * @mutex: a #GMutex
207
 *
208
 * Locks @mutex. If @mutex is already locked by another thread, the
209
 * current thread will block until @mutex is unlocked by the other
210
 * thread.
211
 *
212
 * #GMutex is neither guaranteed to be recursive nor to be
213
 * non-recursive.  As such, calling g_mutex_lock() on a #GMutex that has
214
 * already been locked by the same thread results in undefined behaviour
215
 * (including but not limited to deadlocks).
216
 */
217
void
218
g_mutex_lock (GMutex *mutex)
219
{
220
  gint status;
221
222
  if G_UNLIKELY ((status = pthread_mutex_lock (g_mutex_get_impl (mutex))) != 0)
223
    g_thread_abort (status, "pthread_mutex_lock");
224
}
225
226
/**
227
 * g_mutex_unlock:
228
 * @mutex: a #GMutex
229
 *
230
 * Unlocks @mutex. If another thread is blocked in a g_mutex_lock()
231
 * call for @mutex, it will become unblocked and can lock @mutex itself.
232
 *
233
 * Calling g_mutex_unlock() on a mutex that is not locked by the
234
 * current thread leads to undefined behaviour.
235
 */
236
void
237
g_mutex_unlock (GMutex *mutex)
238
{
239
  gint status;
240
241
  if G_UNLIKELY ((status = pthread_mutex_unlock (g_mutex_get_impl (mutex))) != 0)
242
    g_thread_abort (status, "pthread_mutex_unlock");
243
}
244
245
/**
246
 * g_mutex_trylock:
247
 * @mutex: a #GMutex
248
 *
249
 * Tries to lock @mutex. If @mutex is already locked by another thread,
250
 * it immediately returns %FALSE. Otherwise it locks @mutex and returns
251
 * %TRUE.
252
 *
253
 * #GMutex is neither guaranteed to be recursive nor to be
254
 * non-recursive.  As such, calling g_mutex_lock() on a #GMutex that has
255
 * already been locked by the same thread results in undefined behaviour
256
 * (including but not limited to deadlocks or arbitrary return values).
257
 *
258
 * Returns: %TRUE if @mutex could be locked
259
 */
260
gboolean
261
g_mutex_trylock (GMutex *mutex)
262
{
263
  gint status;
264
265
  if G_LIKELY ((status = pthread_mutex_trylock (g_mutex_get_impl (mutex))) == 0)
266
    return TRUE;
267
268
  if G_UNLIKELY (status != EBUSY)
269
    g_thread_abort (status, "pthread_mutex_trylock");
270
271
  return FALSE;
272
}
273
274
#endif /* !defined(USE_NATIVE_MUTEX) */
275
276
/* {{{1 GRecMutex */
277
278
static pthread_mutex_t *
279
g_rec_mutex_impl_new (void)
280
39
{
281
39
  pthread_mutexattr_t attr;
282
39
  pthread_mutex_t *mutex;
283
284
39
  mutex = malloc (sizeof (pthread_mutex_t));
285
39
  if G_UNLIKELY (mutex == NULL)
286
0
    g_thread_abort (errno, "malloc");
287
288
39
  pthread_mutexattr_init (&attr);
289
39
  pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
290
39
  pthread_mutex_init (mutex, &attr);
291
39
  pthread_mutexattr_destroy (&attr);
292
293
39
  return mutex;
294
39
}
295
296
static void
297
g_rec_mutex_impl_free (pthread_mutex_t *mutex)
298
0
{
299
0
  pthread_mutex_destroy (mutex);
300
0
  free (mutex);
301
0
}
302
303
static inline pthread_mutex_t *
304
g_rec_mutex_get_impl (GRecMutex *rec_mutex)
305
697
{
306
697
  pthread_mutex_t *impl = g_atomic_pointer_get (&rec_mutex->p);
307
308
697
  if G_UNLIKELY (impl == NULL)
309
39
    {
310
39
      impl = g_rec_mutex_impl_new ();
311
39
      if (!g_atomic_pointer_compare_and_exchange (&rec_mutex->p, NULL, impl))
312
0
        g_rec_mutex_impl_free (impl);
313
39
      impl = rec_mutex->p;
314
39
    }
315
316
697
  return impl;
317
697
}
318
319
/**
320
 * g_rec_mutex_init:
321
 * @rec_mutex: an uninitialized #GRecMutex
322
 *
323
 * Initializes a #GRecMutex so that it can be used.
324
 *
325
 * This function is useful to initialize a recursive mutex
326
 * that has been allocated on the stack, or as part of a larger
327
 * structure.
328
 *
329
 * It is not necessary to initialise a recursive mutex that has been
330
 * statically allocated.
331
 *
332
 * |[<!-- language="C" --> 
333
 *   typedef struct {
334
 *     GRecMutex m;
335
 *     ...
336
 *   } Blob;
337
 *
338
 * Blob *b;
339
 *
340
 * b = g_new (Blob, 1);
341
 * g_rec_mutex_init (&b->m);
342
 * ]|
343
 *
344
 * Calling g_rec_mutex_init() on an already initialized #GRecMutex
345
 * leads to undefined behaviour.
346
 *
347
 * To undo the effect of g_rec_mutex_init() when a recursive mutex
348
 * is no longer needed, use g_rec_mutex_clear().
349
 *
350
 * Since: 2.32
351
 */
352
void
353
g_rec_mutex_init (GRecMutex *rec_mutex)
354
0
{
355
0
  rec_mutex->p = g_rec_mutex_impl_new ();
356
0
}
357
358
/**
359
 * g_rec_mutex_clear:
360
 * @rec_mutex: an initialized #GRecMutex
361
 *
362
 * Frees the resources allocated to a recursive mutex with
363
 * g_rec_mutex_init().
364
 *
365
 * This function should not be used with a #GRecMutex that has been
366
 * statically allocated.
367
 *
368
 * Calling g_rec_mutex_clear() on a locked recursive mutex leads
369
 * to undefined behaviour.
370
 *
371
 * Sine: 2.32
372
 */
373
void
374
g_rec_mutex_clear (GRecMutex *rec_mutex)
375
0
{
376
0
  g_rec_mutex_impl_free (rec_mutex->p);
377
0
}
378
379
/**
380
 * g_rec_mutex_lock:
381
 * @rec_mutex: a #GRecMutex
382
 *
383
 * Locks @rec_mutex. If @rec_mutex is already locked by another
384
 * thread, the current thread will block until @rec_mutex is
385
 * unlocked by the other thread. If @rec_mutex is already locked
386
 * by the current thread, the 'lock count' of @rec_mutex is increased.
387
 * The mutex will only become available again when it is unlocked
388
 * as many times as it has been locked.
389
 *
390
 * Since: 2.32
391
 */
392
void
393
g_rec_mutex_lock (GRecMutex *mutex)
394
697
{
395
697
  pthread_mutex_lock (g_rec_mutex_get_impl (mutex));
396
697
}
397
398
/**
399
 * g_rec_mutex_unlock:
400
 * @rec_mutex: a #GRecMutex
401
 *
402
 * Unlocks @rec_mutex. If another thread is blocked in a
403
 * g_rec_mutex_lock() call for @rec_mutex, it will become unblocked
404
 * and can lock @rec_mutex itself.
405
 *
406
 * Calling g_rec_mutex_unlock() on a recursive mutex that is not
407
 * locked by the current thread leads to undefined behaviour.
408
 *
409
 * Since: 2.32
410
 */
411
void
412
g_rec_mutex_unlock (GRecMutex *rec_mutex)
413
697
{
414
697
  pthread_mutex_unlock (rec_mutex->p);
415
697
}
416
417
/**
418
 * g_rec_mutex_trylock:
419
 * @rec_mutex: a #GRecMutex
420
 *
421
 * Tries to lock @rec_mutex. If @rec_mutex is already locked
422
 * by another thread, it immediately returns %FALSE. Otherwise
423
 * it locks @rec_mutex and returns %TRUE.
424
 *
425
 * Returns: %TRUE if @rec_mutex could be locked
426
 *
427
 * Since: 2.32
428
 */
429
gboolean
430
g_rec_mutex_trylock (GRecMutex *rec_mutex)
431
0
{
432
0
  if (pthread_mutex_trylock (g_rec_mutex_get_impl (rec_mutex)) != 0)
433
0
    return FALSE;
434
435
0
  return TRUE;
436
0
}
437
438
/* {{{1 GRWLock */
439
440
static pthread_rwlock_t *
441
g_rw_lock_impl_new (void)
442
89
{
443
89
  pthread_rwlock_t *rwlock;
444
89
  gint status;
445
446
89
  rwlock = malloc (sizeof (pthread_rwlock_t));
447
89
  if G_UNLIKELY (rwlock == NULL)
448
0
    g_thread_abort (errno, "malloc");
449
450
89
  if G_UNLIKELY ((status = pthread_rwlock_init (rwlock, NULL)) != 0)
451
0
    g_thread_abort (status, "pthread_rwlock_init");
452
453
89
  return rwlock;
454
89
}
455
456
static void
457
g_rw_lock_impl_free (pthread_rwlock_t *rwlock)
458
0
{
459
0
  pthread_rwlock_destroy (rwlock);
460
0
  free (rwlock);
461
0
}
462
463
static inline pthread_rwlock_t *
464
g_rw_lock_get_impl (GRWLock *lock)
465
937k
{
466
937k
  pthread_rwlock_t *impl = g_atomic_pointer_get (&lock->p);
467
468
937k
  if G_UNLIKELY (impl == NULL)
469
89
    {
470
89
      impl = g_rw_lock_impl_new ();
471
89
      if (!g_atomic_pointer_compare_and_exchange (&lock->p, NULL, impl))
472
0
        g_rw_lock_impl_free (impl);
473
89
      impl = lock->p;
474
89
    }
475
476
937k
  return impl;
477
937k
}
478
479
/**
480
 * g_rw_lock_init:
481
 * @rw_lock: an uninitialized #GRWLock
482
 *
483
 * Initializes a #GRWLock so that it can be used.
484
 *
485
 * This function is useful to initialize a lock that has been
486
 * allocated on the stack, or as part of a larger structure.  It is not
487
 * necessary to initialise a reader-writer lock that has been statically
488
 * allocated.
489
 *
490
 * |[<!-- language="C" --> 
491
 *   typedef struct {
492
 *     GRWLock l;
493
 *     ...
494
 *   } Blob;
495
 *
496
 * Blob *b;
497
 *
498
 * b = g_new (Blob, 1);
499
 * g_rw_lock_init (&b->l);
500
 * ]|
501
 *
502
 * To undo the effect of g_rw_lock_init() when a lock is no longer
503
 * needed, use g_rw_lock_clear().
504
 *
505
 * Calling g_rw_lock_init() on an already initialized #GRWLock leads
506
 * to undefined behaviour.
507
 *
508
 * Since: 2.32
509
 */
510
void
511
g_rw_lock_init (GRWLock *rw_lock)
512
0
{
513
0
  rw_lock->p = g_rw_lock_impl_new ();
514
0
}
515
516
/**
517
 * g_rw_lock_clear:
518
 * @rw_lock: an initialized #GRWLock
519
 *
520
 * Frees the resources allocated to a lock with g_rw_lock_init().
521
 *
522
 * This function should not be used with a #GRWLock that has been
523
 * statically allocated.
524
 *
525
 * Calling g_rw_lock_clear() when any thread holds the lock
526
 * leads to undefined behaviour.
527
 *
528
 * Sine: 2.32
529
 */
530
void
531
g_rw_lock_clear (GRWLock *rw_lock)
532
0
{
533
0
  g_rw_lock_impl_free (rw_lock->p);
534
0
}
535
536
/**
537
 * g_rw_lock_writer_lock:
538
 * @rw_lock: a #GRWLock
539
 *
540
 * Obtain a write lock on @rw_lock. If another thread currently holds
541
 * a read or write lock on @rw_lock, the current thread will block
542
 * until all other threads have dropped their locks on @rw_lock.
543
 *
544
 * Calling g_rw_lock_writer_lock() while the current thread already
545
 * owns a read or write lock on @rw_lock leads to undefined behaviour.
546
 *
547
 * Since: 2.32
548
 */
549
void
550
g_rw_lock_writer_lock (GRWLock *rw_lock)
551
6.22k
{
552
6.22k
  int retval = pthread_rwlock_wrlock (g_rw_lock_get_impl (rw_lock));
553
554
6.22k
  if (retval != 0)
555
0
    g_critical ("Failed to get RW lock %p: %s", rw_lock, g_strerror (retval));
556
6.22k
}
557
558
/**
559
 * g_rw_lock_writer_trylock:
560
 * @rw_lock: a #GRWLock
561
 *
562
 * Tries to obtain a write lock on @rw_lock. If another thread
563
 * currently holds a read or write lock on @rw_lock, it immediately
564
 * returns %FALSE.
565
 * Otherwise it locks @rw_lock and returns %TRUE.
566
 *
567
 * Returns: %TRUE if @rw_lock could be locked
568
 *
569
 * Since: 2.32
570
 */
571
gboolean
572
g_rw_lock_writer_trylock (GRWLock *rw_lock)
573
0
{
574
0
  if (pthread_rwlock_trywrlock (g_rw_lock_get_impl (rw_lock)) != 0)
575
0
    return FALSE;
576
577
0
  return TRUE;
578
0
}
579
580
/**
581
 * g_rw_lock_writer_unlock:
582
 * @rw_lock: a #GRWLock
583
 *
584
 * Release a write lock on @rw_lock.
585
 *
586
 * Calling g_rw_lock_writer_unlock() on a lock that is not held
587
 * by the current thread leads to undefined behaviour.
588
 *
589
 * Since: 2.32
590
 */
591
void
592
g_rw_lock_writer_unlock (GRWLock *rw_lock)
593
6.22k
{
594
6.22k
  pthread_rwlock_unlock (g_rw_lock_get_impl (rw_lock));
595
6.22k
}
596
597
/**
598
 * g_rw_lock_reader_lock:
599
 * @rw_lock: a #GRWLock
600
 *
601
 * Obtain a read lock on @rw_lock. If another thread currently holds
602
 * the write lock on @rw_lock, the current thread will block until the
603
 * write lock was (held and) released. If another thread does not hold
604
 * the write lock, but is waiting for it, it is implementation defined
605
 * whether the reader or writer will block. Read locks can be taken
606
 * recursively.
607
 *
608
 * Calling g_rw_lock_reader_lock() while the current thread already
609
 * owns a write lock leads to undefined behaviour. Read locks however
610
 * can be taken recursively, in which case you need to make sure to
611
 * call g_rw_lock_reader_unlock() the same amount of times.
612
 *
613
 * It is implementation-defined how many read locks are allowed to be
614
 * held on the same lock simultaneously. If the limit is hit,
615
 * or if a deadlock is detected, a critical warning will be emitted.
616
 *
617
 * Since: 2.32
618
 */
619
void
620
g_rw_lock_reader_lock (GRWLock *rw_lock)
621
462k
{
622
462k
  int retval = pthread_rwlock_rdlock (g_rw_lock_get_impl (rw_lock));
623
624
462k
  if (retval != 0)
625
0
    g_critical ("Failed to get RW lock %p: %s", rw_lock, g_strerror (retval));
626
462k
}
627
628
/**
629
 * g_rw_lock_reader_trylock:
630
 * @rw_lock: a #GRWLock
631
 *
632
 * Tries to obtain a read lock on @rw_lock and returns %TRUE if
633
 * the read lock was successfully obtained. Otherwise it
634
 * returns %FALSE.
635
 *
636
 * Returns: %TRUE if @rw_lock could be locked
637
 *
638
 * Since: 2.32
639
 */
640
gboolean
641
g_rw_lock_reader_trylock (GRWLock *rw_lock)
642
0
{
643
0
  if (pthread_rwlock_tryrdlock (g_rw_lock_get_impl (rw_lock)) != 0)
644
0
    return FALSE;
645
646
0
  return TRUE;
647
0
}
648
649
/**
650
 * g_rw_lock_reader_unlock:
651
 * @rw_lock: a #GRWLock
652
 *
653
 * Release a read lock on @rw_lock.
654
 *
655
 * Calling g_rw_lock_reader_unlock() on a lock that is not held
656
 * by the current thread leads to undefined behaviour.
657
 *
658
 * Since: 2.32
659
 */
660
void
661
g_rw_lock_reader_unlock (GRWLock *rw_lock)
662
462k
{
663
462k
  pthread_rwlock_unlock (g_rw_lock_get_impl (rw_lock));
664
462k
}
665
666
/* {{{1 GCond */
667
668
#if !defined(USE_NATIVE_MUTEX)
669
670
static pthread_cond_t *
671
g_cond_impl_new (void)
672
{
673
  pthread_condattr_t attr;
674
  pthread_cond_t *cond;
675
  gint status;
676
677
  pthread_condattr_init (&attr);
678
679
#ifdef HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE_NP
680
#elif defined (HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined (CLOCK_MONOTONIC)
681
  if G_UNLIKELY ((status = pthread_condattr_setclock (&attr, CLOCK_MONOTONIC)) != 0)
682
    g_thread_abort (status, "pthread_condattr_setclock");
683
#else
684
#error Cannot support GCond on your platform.
685
#endif
686
687
  cond = malloc (sizeof (pthread_cond_t));
688
  if G_UNLIKELY (cond == NULL)
689
    g_thread_abort (errno, "malloc");
690
691
  if G_UNLIKELY ((status = pthread_cond_init (cond, &attr)) != 0)
692
    g_thread_abort (status, "pthread_cond_init");
693
694
  pthread_condattr_destroy (&attr);
695
696
  return cond;
697
}
698
699
static void
700
g_cond_impl_free (pthread_cond_t *cond)
701
{
702
  pthread_cond_destroy (cond);
703
  free (cond);
704
}
705
706
static inline pthread_cond_t *
707
g_cond_get_impl (GCond *cond)
708
{
709
  pthread_cond_t *impl = g_atomic_pointer_get (&cond->p);
710
711
  if G_UNLIKELY (impl == NULL)
712
    {
713
      impl = g_cond_impl_new ();
714
      if (!g_atomic_pointer_compare_and_exchange (&cond->p, NULL, impl))
715
        g_cond_impl_free (impl);
716
      impl = cond->p;
717
    }
718
719
  return impl;
720
}
721
722
/**
723
 * g_cond_init:
724
 * @cond: an uninitialized #GCond
725
 *
726
 * Initialises a #GCond so that it can be used.
727
 *
728
 * This function is useful to initialise a #GCond that has been
729
 * allocated as part of a larger structure.  It is not necessary to
730
 * initialise a #GCond that has been statically allocated.
731
 *
732
 * To undo the effect of g_cond_init() when a #GCond is no longer
733
 * needed, use g_cond_clear().
734
 *
735
 * Calling g_cond_init() on an already-initialised #GCond leads
736
 * to undefined behaviour.
737
 *
738
 * Since: 2.32
739
 */
740
void
741
g_cond_init (GCond *cond)
742
{
743
  cond->p = g_cond_impl_new ();
744
}
745
746
/**
747
 * g_cond_clear:
748
 * @cond: an initialised #GCond
749
 *
750
 * Frees the resources allocated to a #GCond with g_cond_init().
751
 *
752
 * This function should not be used with a #GCond that has been
753
 * statically allocated.
754
 *
755
 * Calling g_cond_clear() for a #GCond on which threads are
756
 * blocking leads to undefined behaviour.
757
 *
758
 * Since: 2.32
759
 */
760
void
761
g_cond_clear (GCond *cond)
762
{
763
  g_cond_impl_free (cond->p);
764
}
765
766
/**
767
 * g_cond_wait:
768
 * @cond: a #GCond
769
 * @mutex: a #GMutex that is currently locked
770
 *
771
 * Atomically releases @mutex and waits until @cond is signalled.
772
 * When this function returns, @mutex is locked again and owned by the
773
 * calling thread.
774
 *
775
 * When using condition variables, it is possible that a spurious wakeup
776
 * may occur (ie: g_cond_wait() returns even though g_cond_signal() was
777
 * not called).  It's also possible that a stolen wakeup may occur.
778
 * This is when g_cond_signal() is called, but another thread acquires
779
 * @mutex before this thread and modifies the state of the program in
780
 * such a way that when g_cond_wait() is able to return, the expected
781
 * condition is no longer met.
782
 *
783
 * For this reason, g_cond_wait() must always be used in a loop.  See
784
 * the documentation for #GCond for a complete example.
785
 **/
786
void
787
g_cond_wait (GCond  *cond,
788
             GMutex *mutex)
789
{
790
  gint status;
791
792
  if G_UNLIKELY ((status = pthread_cond_wait (g_cond_get_impl (cond), g_mutex_get_impl (mutex))) != 0)
793
    g_thread_abort (status, "pthread_cond_wait");
794
}
795
796
/**
797
 * g_cond_signal:
798
 * @cond: a #GCond
799
 *
800
 * If threads are waiting for @cond, at least one of them is unblocked.
801
 * If no threads are waiting for @cond, this function has no effect.
802
 * It is good practice to hold the same lock as the waiting thread
803
 * while calling this function, though not required.
804
 */
805
void
806
g_cond_signal (GCond *cond)
807
{
808
  gint status;
809
810
  if G_UNLIKELY ((status = pthread_cond_signal (g_cond_get_impl (cond))) != 0)
811
    g_thread_abort (status, "pthread_cond_signal");
812
}
813
814
/**
815
 * g_cond_broadcast:
816
 * @cond: a #GCond
817
 *
818
 * If threads are waiting for @cond, all of them are unblocked.
819
 * If no threads are waiting for @cond, this function has no effect.
820
 * It is good practice to lock the same mutex as the waiting threads
821
 * while calling this function, though not required.
822
 */
823
void
824
g_cond_broadcast (GCond *cond)
825
{
826
  gint status;
827
828
  if G_UNLIKELY ((status = pthread_cond_broadcast (g_cond_get_impl (cond))) != 0)
829
    g_thread_abort (status, "pthread_cond_broadcast");
830
}
831
832
/**
833
 * g_cond_wait_until:
834
 * @cond: a #GCond
835
 * @mutex: a #GMutex that is currently locked
836
 * @end_time: the monotonic time to wait until
837
 *
838
 * Waits until either @cond is signalled or @end_time has passed.
839
 *
840
 * As with g_cond_wait() it is possible that a spurious or stolen wakeup
841
 * could occur.  For that reason, waiting on a condition variable should
842
 * always be in a loop, based on an explicitly-checked predicate.
843
 *
844
 * %TRUE is returned if the condition variable was signalled (or in the
845
 * case of a spurious wakeup).  %FALSE is returned if @end_time has
846
 * passed.
847
 *
848
 * The following code shows how to correctly perform a timed wait on a
849
 * condition variable (extending the example presented in the
850
 * documentation for #GCond):
851
 *
852
 * |[<!-- language="C" --> 
853
 * gpointer
854
 * pop_data_timed (void)
855
 * {
856
 *   gint64 end_time;
857
 *   gpointer data;
858
 *
859
 *   g_mutex_lock (&data_mutex);
860
 *
861
 *   end_time = g_get_monotonic_time () + 5 * G_TIME_SPAN_SECOND;
862
 *   while (!current_data)
863
 *     if (!g_cond_wait_until (&data_cond, &data_mutex, end_time))
864
 *       {
865
 *         // timeout has passed.
866
 *         g_mutex_unlock (&data_mutex);
867
 *         return NULL;
868
 *       }
869
 *
870
 *   // there is data for us
871
 *   data = current_data;
872
 *   current_data = NULL;
873
 *
874
 *   g_mutex_unlock (&data_mutex);
875
 *
876
 *   return data;
877
 * }
878
 * ]|
879
 *
880
 * Notice that the end time is calculated once, before entering the
881
 * loop and reused.  This is the motivation behind the use of absolute
882
 * time on this API -- if a relative time of 5 seconds were passed
883
 * directly to the call and a spurious wakeup occurred, the program would
884
 * have to start over waiting again (which would lead to a total wait
885
 * time of more than 5 seconds).
886
 *
887
 * Returns: %TRUE on a signal, %FALSE on a timeout
888
 * Since: 2.32
889
 **/
890
gboolean
891
g_cond_wait_until (GCond  *cond,
892
                   GMutex *mutex,
893
                   gint64  end_time)
894
{
895
  struct timespec ts;
896
  gint status;
897
898
#ifdef HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE_NP
899
  /* end_time is given relative to the monotonic clock as returned by
900
   * g_get_monotonic_time().
901
   *
902
   * Since this pthreads wants the relative time, convert it back again.
903
   */
904
  {
905
    gint64 now = g_get_monotonic_time ();
906
    gint64 relative;
907
908
    if (end_time <= now)
909
      return FALSE;
910
911
    relative = end_time - now;
912
913
    ts.tv_sec = relative / 1000000;
914
    ts.tv_nsec = (relative % 1000000) * 1000;
915
916
    if ((status = pthread_cond_timedwait_relative_np (g_cond_get_impl (cond), g_mutex_get_impl (mutex), &ts)) == 0)
917
      return TRUE;
918
  }
919
#elif defined (HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined (CLOCK_MONOTONIC)
920
  /* This is the exact check we used during init to set the clock to
921
   * monotonic, so if we're in this branch, timedwait() will already be
922
   * expecting a monotonic clock.
923
   */
924
  {
925
    ts.tv_sec = end_time / 1000000;
926
    ts.tv_nsec = (end_time % 1000000) * 1000;
927
928
    if ((status = pthread_cond_timedwait (g_cond_get_impl (cond), g_mutex_get_impl (mutex), &ts)) == 0)
929
      return TRUE;
930
  }
931
#else
932
#error Cannot support GCond on your platform.
933
#endif
934
935
  if G_UNLIKELY (status != ETIMEDOUT)
936
    g_thread_abort (status, "pthread_cond_timedwait");
937
938
  return FALSE;
939
}
940
941
#endif /* defined(USE_NATIVE_MUTEX) */
942
943
/* {{{1 GPrivate */
944
945
/**
946
 * GPrivate:
947
 *
948
 * The #GPrivate struct is an opaque data structure to represent a
949
 * thread-local data key. It is approximately equivalent to the
950
 * pthread_setspecific()/pthread_getspecific() APIs on POSIX and to
951
 * TlsSetValue()/TlsGetValue() on Windows.
952
 *
953
 * If you don't already know why you might want this functionality,
954
 * then you probably don't need it.
955
 *
956
 * #GPrivate is a very limited resource (as far as 128 per program,
957
 * shared between all libraries). It is also not possible to destroy a
958
 * #GPrivate after it has been used. As such, it is only ever acceptable
959
 * to use #GPrivate in static scope, and even then sparingly so.
960
 *
961
 * See G_PRIVATE_INIT() for a couple of examples.
962
 *
963
 * The #GPrivate structure should be considered opaque.  It should only
964
 * be accessed via the g_private_ functions.
965
 */
966
967
/**
968
 * G_PRIVATE_INIT:
969
 * @notify: a #GDestroyNotify
970
 *
971
 * A macro to assist with the static initialisation of a #GPrivate.
972
 *
973
 * This macro is useful for the case that a #GDestroyNotify function
974
 * should be associated with the key.  This is needed when the key will be
975
 * used to point at memory that should be deallocated when the thread
976
 * exits.
977
 *
978
 * Additionally, the #GDestroyNotify will also be called on the previous
979
 * value stored in the key when g_private_replace() is used.
980
 *
981
 * If no #GDestroyNotify is needed, then use of this macro is not
982
 * required -- if the #GPrivate is declared in static scope then it will
983
 * be properly initialised by default (ie: to all zeros).  See the
984
 * examples below.
985
 *
986
 * |[<!-- language="C" --> 
987
 * static GPrivate name_key = G_PRIVATE_INIT (g_free);
988
 *
989
 * // return value should not be freed
990
 * const gchar *
991
 * get_local_name (void)
992
 * {
993
 *   return g_private_get (&name_key);
994
 * }
995
 *
996
 * void
997
 * set_local_name (const gchar *name)
998
 * {
999
 *   g_private_replace (&name_key, g_strdup (name));
1000
 * }
1001
 *
1002
 *
1003
 * static GPrivate count_key;   // no free function
1004
 *
1005
 * gint
1006
 * get_local_count (void)
1007
 * {
1008
 *   return GPOINTER_TO_INT (g_private_get (&count_key));
1009
 * }
1010
 *
1011
 * void
1012
 * set_local_count (gint count)
1013
 * {
1014
 *   g_private_set (&count_key, GINT_TO_POINTER (count));
1015
 * }
1016
 * ]|
1017
 *
1018
 * Since: 2.32
1019
 **/
1020
1021
static pthread_key_t *
1022
g_private_impl_new (GDestroyNotify notify)
1023
140
{
1024
140
  pthread_key_t *key;
1025
140
  gint status;
1026
1027
140
  key = malloc (sizeof (pthread_key_t));
1028
140
  if G_UNLIKELY (key == NULL)
1029
0
    g_thread_abort (errno, "malloc");
1030
140
  status = pthread_key_create (key, notify);
1031
140
  if G_UNLIKELY (status != 0)
1032
0
    g_thread_abort (status, "pthread_key_create");
1033
1034
140
  return key;
1035
140
}
1036
1037
static void
1038
g_private_impl_free (pthread_key_t *key)
1039
0
{
1040
0
  gint status;
1041
1042
0
  status = pthread_key_delete (*key);
1043
0
  if G_UNLIKELY (status != 0)
1044
0
    g_thread_abort (status, "pthread_key_delete");
1045
0
  free (key);
1046
0
}
1047
1048
static inline pthread_key_t *
1049
g_private_get_impl (GPrivate *key)
1050
263M
{
1051
263M
  pthread_key_t *impl = g_atomic_pointer_get (&key->p);
1052
1053
263M
  if G_UNLIKELY (impl == NULL)
1054
140
    {
1055
140
      impl = g_private_impl_new (key->notify);
1056
140
      if (!g_atomic_pointer_compare_and_exchange (&key->p, NULL, impl))
1057
0
        {
1058
0
          g_private_impl_free (impl);
1059
0
          impl = key->p;
1060
0
        }
1061
140
    }
1062
1063
263M
  return impl;
1064
263M
}
1065
1066
/**
1067
 * g_private_get:
1068
 * @key: a #GPrivate
1069
 *
1070
 * Returns the current value of the thread local variable @key.
1071
 *
1072
 * If the value has not yet been set in this thread, %NULL is returned.
1073
 * Values are never copied between threads (when a new thread is
1074
 * created, for example).
1075
 *
1076
 * Returns: the thread-local value
1077
 */
1078
gpointer
1079
g_private_get (GPrivate *key)
1080
252M
{
1081
  /* quote POSIX: No errors are returned from pthread_getspecific(). */
1082
252M
  return pthread_getspecific (*g_private_get_impl (key));
1083
252M
}
1084
1085
/**
1086
 * g_private_set:
1087
 * @key: a #GPrivate
1088
 * @value: the new value
1089
 *
1090
 * Sets the thread local variable @key to have the value @value in the
1091
 * current thread.
1092
 *
1093
 * This function differs from g_private_replace() in the following way:
1094
 * the #GDestroyNotify for @key is not called on the old value.
1095
 */
1096
void
1097
g_private_set (GPrivate *key,
1098
               gpointer  value)
1099
11.4M
{
1100
11.4M
  gint status;
1101
1102
11.4M
  if G_UNLIKELY ((status = pthread_setspecific (*g_private_get_impl (key), value)) != 0)
1103
0
    g_thread_abort (status, "pthread_setspecific");
1104
11.4M
}
1105
1106
/**
1107
 * g_private_replace:
1108
 * @key: a #GPrivate
1109
 * @value: the new value
1110
 *
1111
 * Sets the thread local variable @key to have the value @value in the
1112
 * current thread.
1113
 *
1114
 * This function differs from g_private_set() in the following way: if
1115
 * the previous value was non-%NULL then the #GDestroyNotify handler for
1116
 * @key is run on it.
1117
 *
1118
 * Since: 2.32
1119
 **/
1120
void
1121
g_private_replace (GPrivate *key,
1122
                   gpointer  value)
1123
0
{
1124
0
  pthread_key_t *impl = g_private_get_impl (key);
1125
0
  gpointer old;
1126
0
  gint status;
1127
1128
0
  old = pthread_getspecific (*impl);
1129
1130
0
  if G_UNLIKELY ((status = pthread_setspecific (*impl, value)) != 0)
1131
0
    g_thread_abort (status, "pthread_setspecific");
1132
1133
0
  if (old && key->notify)
1134
0
    key->notify (old);
1135
0
}
1136
1137
/* {{{1 GThread */
1138
1139
0
#define posix_check_err(err, name) G_STMT_START{     \
1140
0
  int error = (err);              \
1141
0
  if (error)               \
1142
0
    g_error ("file %s: line %d (%s): error '%s' during '%s'",    \
1143
0
           __FILE__, __LINE__, G_STRFUNC,       \
1144
0
           g_strerror (error), name);         \
1145
0
  }G_STMT_END
1146
1147
0
#define posix_check_cmd(cmd) posix_check_err (cmd, #cmd)
1148
1149
typedef struct
1150
{
1151
  GRealThread thread;
1152
1153
  pthread_t system_thread;
1154
  gboolean  joined;
1155
  GMutex    lock;
1156
1157
  void *(*proxy) (void *);
1158
1159
  /* Must be statically allocated and valid forever */
1160
  const GThreadSchedulerSettings *scheduler_settings;
1161
} GThreadPosix;
1162
1163
void
1164
g_system_thread_free (GRealThread *thread)
1165
0
{
1166
0
  GThreadPosix *pt = (GThreadPosix *) thread;
1167
1168
0
  if (!pt->joined)
1169
0
    pthread_detach (pt->system_thread);
1170
1171
0
  g_mutex_clear (&pt->lock);
1172
1173
0
  g_slice_free (GThreadPosix, pt);
1174
0
}
1175
1176
gboolean
1177
g_system_thread_get_scheduler_settings (GThreadSchedulerSettings *scheduler_settings)
1178
0
{
1179
  /* FIXME: Implement the same for macOS and the BSDs so it doesn't go through
1180
   * the fallback code using an additional thread. */
1181
0
#if defined(HAVE_SYS_SCHED_GETATTR)
1182
0
  pid_t tid;
1183
0
  int res;
1184
  /* FIXME: The struct definition does not seem to be possible to pull in
1185
   * via any of the normal system headers and it's only declared in the
1186
   * kernel headers. That's why we hardcode 56 here right now. */
1187
0
  guint size = 56; /* Size as of Linux 5.3.9 */
1188
0
  guint flags = 0;
1189
1190
0
  tid = (pid_t) syscall (SYS_gettid);
1191
1192
0
  scheduler_settings->attr = g_malloc0 (size);
1193
1194
0
  do
1195
0
    {
1196
0
      int errsv;
1197
1198
0
      res = syscall (SYS_sched_getattr, tid, scheduler_settings->attr, size, flags);
1199
0
      errsv = errno;
1200
0
      if (res == -1)
1201
0
        {
1202
0
          if (errsv == EAGAIN)
1203
0
            {
1204
0
              continue;
1205
0
            }
1206
0
          else if (errsv == E2BIG)
1207
0
            {
1208
0
              g_assert (size < G_MAXINT);
1209
0
              size *= 2;
1210
0
              scheduler_settings->attr = g_realloc (scheduler_settings->attr, size);
1211
              /* Needs to be zero-initialized */
1212
0
              memset (scheduler_settings->attr, 0, size);
1213
0
            }
1214
0
          else
1215
0
            {
1216
0
              g_debug ("Failed to get thread scheduler attributes: %s", g_strerror (errsv));
1217
0
              g_free (scheduler_settings->attr);
1218
1219
0
              return FALSE;
1220
0
            }
1221
0
        }
1222
0
    }
1223
0
  while (res == -1);
1224
1225
  /* Try setting them on the current thread to see if any system policies are
1226
   * in place that would disallow doing so */
1227
0
  res = syscall (SYS_sched_setattr, tid, scheduler_settings->attr, flags);
1228
0
  if (res == -1)
1229
0
    {
1230
0
      int errsv = errno;
1231
1232
0
      g_debug ("Failed to set thread scheduler attributes: %s", g_strerror (errsv));
1233
0
      g_free (scheduler_settings->attr);
1234
1235
0
      return FALSE;
1236
0
    }
1237
1238
0
  return TRUE;
1239
#else
1240
  return FALSE;
1241
#endif
1242
0
}
1243
1244
#if defined(HAVE_SYS_SCHED_GETATTR)
1245
static void *
1246
linux_pthread_proxy (void *data)
1247
0
{
1248
0
  GThreadPosix *thread = data;
1249
0
  static gboolean printed_scheduler_warning = FALSE;  /* (atomic) */
1250
1251
  /* Set scheduler settings first if requested */
1252
0
  if (thread->scheduler_settings)
1253
0
    {
1254
0
      pid_t tid = 0;
1255
0
      guint flags = 0;
1256
0
      int res;
1257
0
      int errsv;
1258
1259
0
      tid = (pid_t) syscall (SYS_gettid);
1260
0
      res = syscall (SYS_sched_setattr, tid, thread->scheduler_settings->attr, flags);
1261
0
      errsv = errno;
1262
0
      if (res == -1 && g_atomic_int_compare_and_exchange (&printed_scheduler_warning, FALSE, TRUE))
1263
0
        g_critical ("Failed to set scheduler settings: %s", g_strerror (errsv));
1264
0
      else if (res == -1)
1265
0
        g_debug ("Failed to set scheduler settings: %s", g_strerror (errsv));
1266
0
      printed_scheduler_warning = TRUE;
1267
0
    }
1268
1269
0
  return thread->proxy (data);
1270
0
}
1271
#endif
1272
1273
GRealThread *
1274
g_system_thread_new (GThreadFunc proxy,
1275
                     gulong stack_size,
1276
                     const GThreadSchedulerSettings *scheduler_settings,
1277
                     const char *name,
1278
                     GThreadFunc func,
1279
                     gpointer data,
1280
                     GError **error)
1281
0
{
1282
0
  GThreadPosix *thread;
1283
0
  GRealThread *base_thread;
1284
0
  pthread_attr_t attr;
1285
0
  gint ret;
1286
1287
0
  thread = g_slice_new0 (GThreadPosix);
1288
0
  base_thread = (GRealThread*)thread;
1289
0
  base_thread->ref_count = 2;
1290
0
  base_thread->ours = TRUE;
1291
0
  base_thread->thread.joinable = TRUE;
1292
0
  base_thread->thread.func = func;
1293
0
  base_thread->thread.data = data;
1294
0
  base_thread->name = g_strdup (name);
1295
0
  thread->scheduler_settings = scheduler_settings;
1296
0
  thread->proxy = proxy;
1297
1298
0
  posix_check_cmd (pthread_attr_init (&attr));
1299
1300
0
#ifdef HAVE_PTHREAD_ATTR_SETSTACKSIZE
1301
0
  if (stack_size)
1302
0
    {
1303
0
#ifdef _SC_THREAD_STACK_MIN
1304
0
      long min_stack_size = sysconf (_SC_THREAD_STACK_MIN);
1305
0
      if (min_stack_size >= 0)
1306
0
        stack_size = MAX ((gulong) min_stack_size, stack_size);
1307
0
#endif /* _SC_THREAD_STACK_MIN */
1308
      /* No error check here, because some systems can't do it and
1309
       * we simply don't want threads to fail because of that. */
1310
0
      pthread_attr_setstacksize (&attr, stack_size);
1311
0
    }
1312
0
#endif /* HAVE_PTHREAD_ATTR_SETSTACKSIZE */
1313
1314
0
#ifdef HAVE_PTHREAD_ATTR_SETINHERITSCHED
1315
0
  if (!scheduler_settings)
1316
0
    {
1317
      /* While this is the default, better be explicit about it */
1318
0
      pthread_attr_setinheritsched (&attr, PTHREAD_INHERIT_SCHED);
1319
0
    }
1320
0
#endif /* HAVE_PTHREAD_ATTR_SETINHERITSCHED */
1321
1322
0
#if defined(HAVE_SYS_SCHED_GETATTR)
1323
0
  ret = pthread_create (&thread->system_thread, &attr, linux_pthread_proxy, thread);
1324
#else
1325
  ret = pthread_create (&thread->system_thread, &attr, (void* (*)(void*))proxy, thread);
1326
#endif
1327
1328
0
  posix_check_cmd (pthread_attr_destroy (&attr));
1329
1330
0
  if (ret == EAGAIN)
1331
0
    {
1332
0
      g_set_error (error, G_THREAD_ERROR, G_THREAD_ERROR_AGAIN, 
1333
0
                   "Error creating thread: %s", g_strerror (ret));
1334
0
      g_slice_free (GThreadPosix, thread);
1335
0
      return NULL;
1336
0
    }
1337
1338
0
  posix_check_err (ret, "pthread_create");
1339
1340
0
  g_mutex_init (&thread->lock);
1341
1342
0
  return (GRealThread *) thread;
1343
0
}
1344
1345
/**
1346
 * g_thread_yield:
1347
 *
1348
 * Causes the calling thread to voluntarily relinquish the CPU, so
1349
 * that other threads can run.
1350
 *
1351
 * This function is often used as a method to make busy wait less evil.
1352
 */
1353
void
1354
g_thread_yield (void)
1355
0
{
1356
0
  sched_yield ();
1357
0
}
1358
1359
void
1360
g_system_thread_wait (GRealThread *thread)
1361
0
{
1362
0
  GThreadPosix *pt = (GThreadPosix *) thread;
1363
1364
0
  g_mutex_lock (&pt->lock);
1365
1366
0
  if (!pt->joined)
1367
0
    {
1368
0
      posix_check_cmd (pthread_join (pt->system_thread, NULL));
1369
0
      pt->joined = TRUE;
1370
0
    }
1371
1372
0
  g_mutex_unlock (&pt->lock);
1373
0
}
1374
1375
void
1376
g_system_thread_exit (void)
1377
0
{
1378
0
  pthread_exit (NULL);
1379
0
}
1380
1381
void
1382
g_system_thread_set_name (const gchar *name)
1383
0
{
1384
#if defined(HAVE_PTHREAD_SETNAME_NP_WITHOUT_TID)
1385
  pthread_setname_np (name); /* on OS X and iOS */
1386
#elif defined(HAVE_PTHREAD_SETNAME_NP_WITH_TID)
1387
  pthread_setname_np (pthread_self (), name); /* on Linux and Solaris */
1388
#elif defined(HAVE_PTHREAD_SETNAME_NP_WITH_TID_AND_ARG)
1389
  pthread_setname_np (pthread_self (), "%s", (gchar *) name); /* on NetBSD */
1390
#elif defined(HAVE_PTHREAD_SET_NAME_NP)
1391
  pthread_set_name_np (pthread_self (), name); /* on FreeBSD, DragonFlyBSD, OpenBSD */
1392
#endif
1393
0
}
1394
1395
/* {{{1 GMutex and GCond futex implementation */
1396
1397
#if defined(USE_NATIVE_MUTEX)
1398
1399
#include <linux/futex.h>
1400
#include <sys/syscall.h>
1401
1402
#ifndef FUTEX_WAIT_PRIVATE
1403
#define FUTEX_WAIT_PRIVATE FUTEX_WAIT
1404
#define FUTEX_WAKE_PRIVATE FUTEX_WAKE
1405
#endif
1406
1407
/* We should expand the set of operations available in gatomic once we
1408
 * have better C11 support in GCC in common distributions (ie: 4.9).
1409
 *
1410
 * Before then, let's define a couple of useful things for our own
1411
 * purposes...
1412
 */
1413
1414
#ifdef HAVE_STDATOMIC_H
1415
1416
#include <stdatomic.h>
1417
1418
#define exchange_acquire(ptr, new) \
1419
0
  atomic_exchange_explicit((atomic_uint *) (ptr), (new), __ATOMIC_ACQUIRE)
1420
#define compare_exchange_acquire(ptr, old, new) \
1421
753k
  atomic_compare_exchange_strong_explicit((atomic_uint *) (ptr), (old), (new), \
1422
753k
                                          __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)
1423
1424
#define exchange_release(ptr, new) \
1425
71.4M
  atomic_exchange_explicit((atomic_uint *) (ptr), (new), __ATOMIC_RELEASE)
1426
#define store_release(ptr, new) \
1427
  atomic_store_explicit((atomic_uint *) (ptr), (new), __ATOMIC_RELEASE)
1428
1429
#else
1430
1431
#define exchange_acquire(ptr, new) \
1432
  __atomic_exchange_4((ptr), (new), __ATOMIC_ACQUIRE)
1433
#define compare_exchange_acquire(ptr, old, new) \
1434
  __atomic_compare_exchange_4((ptr), (old), (new), 0, __ATOMIC_ACQUIRE, __ATOMIC_RELAXED)
1435
1436
#define exchange_release(ptr, new) \
1437
  __atomic_exchange_4((ptr), (new), __ATOMIC_RELEASE)
1438
#define store_release(ptr, new) \
1439
  __atomic_store_4((ptr), (new), __ATOMIC_RELEASE)
1440
1441
#endif
1442
1443
/* Our strategy for the mutex is pretty simple:
1444
 *
1445
 *  0: not in use
1446
 *
1447
 *  1: acquired by one thread only, no contention
1448
 *
1449
 *  > 1: contended
1450
 *
1451
 *
1452
 * As such, attempting to acquire the lock should involve an increment.
1453
 * If we find that the previous value was 0 then we can return
1454
 * immediately.
1455
 *
1456
 * On unlock, we always store 0 to indicate that the lock is available.
1457
 * If the value there was 1 before then we didn't have contention and
1458
 * can return immediately.  If the value was something other than 1 then
1459
 * we have the contended case and need to wake a waiter.
1460
 *
1461
 * If it was not 0 then there is another thread holding it and we must
1462
 * wait.  We must always ensure that we mark a value >1 while we are
1463
 * waiting in order to instruct the holder to do a wake operation on
1464
 * unlock.
1465
 */
1466
1467
void
1468
g_mutex_init (GMutex *mutex)
1469
0
{
1470
0
  mutex->i[0] = 0;
1471
0
}
1472
1473
void
1474
g_mutex_clear (GMutex *mutex)
1475
0
{
1476
0
  if G_UNLIKELY (mutex->i[0] != 0)
1477
0
    {
1478
0
      fprintf (stderr, "g_mutex_clear() called on uninitialised or locked mutex\n");
1479
0
      g_abort ();
1480
0
    }
1481
0
}
1482
1483
static void __attribute__((noinline))
1484
g_mutex_lock_slowpath (GMutex *mutex)
1485
0
{
1486
  /* Set to 2 to indicate contention.  If it was zero before then we
1487
   * just acquired the lock.
1488
   *
1489
   * Otherwise, sleep for as long as the 2 remains...
1490
   */
1491
0
  while (exchange_acquire (&mutex->i[0], 2) != 0)
1492
0
    syscall (__NR_futex, &mutex->i[0], (gsize) FUTEX_WAIT_PRIVATE, (gsize) 2, NULL);
1493
0
}
1494
1495
static void __attribute__((noinline))
1496
g_mutex_unlock_slowpath (GMutex *mutex,
1497
                         guint   prev)
1498
0
{
1499
  /* We seem to get better code for the uncontended case by splitting
1500
   * this out...
1501
   */
1502
0
  if G_UNLIKELY (prev == 0)
1503
0
    {
1504
0
      fprintf (stderr, "Attempt to unlock mutex that was not locked\n");
1505
0
      g_abort ();
1506
0
    }
1507
1508
0
  syscall (__NR_futex, &mutex->i[0], (gsize) FUTEX_WAKE_PRIVATE, (gsize) 1, NULL);
1509
0
}
1510
1511
void
1512
g_mutex_lock (GMutex *mutex)
1513
70.6M
{
1514
  /* 0 -> 1 and we're done.  Anything else, and we need to wait... */
1515
70.6M
  if G_UNLIKELY (g_atomic_int_add (&mutex->i[0], 1) != 0)
1516
0
    g_mutex_lock_slowpath (mutex);
1517
70.6M
}
1518
1519
void
1520
g_mutex_unlock (GMutex *mutex)
1521
71.4M
{
1522
71.4M
  guint prev;
1523
1524
71.4M
  prev = exchange_release (&mutex->i[0], 0);
1525
1526
  /* 1-> 0 and we're done.  Anything else and we need to signal... */
1527
71.4M
  if G_UNLIKELY (prev != 1)
1528
0
    g_mutex_unlock_slowpath (mutex, prev);
1529
71.4M
}
1530
1531
gboolean
1532
g_mutex_trylock (GMutex *mutex)
1533
753k
{
1534
753k
  guint zero = 0;
1535
1536
  /* We don't want to touch the value at all unless we can move it from
1537
   * exactly 0 to 1.
1538
   */
1539
753k
  return compare_exchange_acquire (&mutex->i[0], &zero, 1);
1540
753k
}
1541
1542
/* Condition variables are implemented in a rather simple way as well.
1543
 * In many ways, futex() as an abstraction is even more ideally suited
1544
 * to condition variables than it is to mutexes.
1545
 *
1546
 * We store a generation counter.  We sample it with the lock held and
1547
 * unlock before sleeping on the futex.
1548
 *
1549
 * Signalling simply involves increasing the counter and making the
1550
 * appropriate futex call.
1551
 *
1552
 * The only thing that is the slightest bit complicated is timed waits
1553
 * because we must convert our absolute time to relative.
1554
 */
1555
1556
void
1557
g_cond_init (GCond *cond)
1558
0
{
1559
0
  cond->i[0] = 0;
1560
0
}
1561
1562
void
1563
g_cond_clear (GCond *cond)
1564
0
{
1565
0
}
1566
1567
void
1568
g_cond_wait (GCond  *cond,
1569
             GMutex *mutex)
1570
0
{
1571
0
  guint sampled = (guint) g_atomic_int_get (&cond->i[0]);
1572
1573
0
  g_mutex_unlock (mutex);
1574
0
  syscall (__NR_futex, &cond->i[0], (gsize) FUTEX_WAIT_PRIVATE, (gsize) sampled, NULL);
1575
0
  g_mutex_lock (mutex);
1576
0
}
1577
1578
void
1579
g_cond_signal (GCond *cond)
1580
0
{
1581
0
  g_atomic_int_inc (&cond->i[0]);
1582
1583
0
  syscall (__NR_futex, &cond->i[0], (gsize) FUTEX_WAKE_PRIVATE, (gsize) 1, NULL);
1584
0
}
1585
1586
void
1587
g_cond_broadcast (GCond *cond)
1588
667
{
1589
667
  g_atomic_int_inc (&cond->i[0]);
1590
1591
667
  syscall (__NR_futex, &cond->i[0], (gsize) FUTEX_WAKE_PRIVATE, (gsize) INT_MAX, NULL);
1592
667
}
1593
1594
gboolean
1595
g_cond_wait_until (GCond  *cond,
1596
                   GMutex *mutex,
1597
                   gint64  end_time)
1598
0
{
1599
0
  struct timespec now;
1600
0
  struct timespec span;
1601
0
  guint sampled;
1602
0
  int res;
1603
0
  gboolean success;
1604
1605
0
  if (end_time < 0)
1606
0
    return FALSE;
1607
1608
0
  clock_gettime (CLOCK_MONOTONIC, &now);
1609
0
  span.tv_sec = (end_time / 1000000) - now.tv_sec;
1610
0
  span.tv_nsec = ((end_time % 1000000) * 1000) - now.tv_nsec;
1611
0
  if (span.tv_nsec < 0)
1612
0
    {
1613
0
      span.tv_nsec += 1000000000;
1614
0
      span.tv_sec--;
1615
0
    }
1616
1617
0
  if (span.tv_sec < 0)
1618
0
    return FALSE;
1619
1620
0
  sampled = cond->i[0];
1621
0
  g_mutex_unlock (mutex);
1622
0
  res = syscall (__NR_futex, &cond->i[0], (gsize) FUTEX_WAIT_PRIVATE, (gsize) sampled, &span);
1623
0
  success = (res < 0 && errno == ETIMEDOUT) ? FALSE : TRUE;
1624
0
  g_mutex_lock (mutex);
1625
1626
0
  return success;
1627
0
}
1628
1629
#endif
1630
1631
  /* {{{1 Epilogue */
1632
/* vim:set foldmethod=marker: */