Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/cryptography/hazmat/backends/openssl/ec.py: 24%
150 statements
« prev ^ index » next coverage.py v7.3.1, created at 2023-09-25 06:13 +0000
« prev ^ index » next coverage.py v7.3.1, created at 2023-09-25 06:13 +0000
1# This file is dual licensed under the terms of the Apache License, Version
2# 2.0, and the BSD License. See the LICENSE file in the root of this repository
3# for complete details.
5from __future__ import annotations
7import typing
9from cryptography.exceptions import (
10 InvalidSignature,
11 UnsupportedAlgorithm,
12 _Reasons,
13)
14from cryptography.hazmat.backends.openssl.utils import (
15 _calculate_digest_and_algorithm,
16 _evp_pkey_derive,
17)
18from cryptography.hazmat.primitives import serialization
19from cryptography.hazmat.primitives.asymmetric import ec
21if typing.TYPE_CHECKING:
22 from cryptography.hazmat.backends.openssl.backend import Backend
25def _check_signature_algorithm(
26 signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
27) -> None:
28 if not isinstance(signature_algorithm, ec.ECDSA):
29 raise UnsupportedAlgorithm(
30 "Unsupported elliptic curve signature algorithm.",
31 _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,
32 )
35def _ec_key_curve_sn(backend: Backend, ec_key) -> str:
36 group = backend._lib.EC_KEY_get0_group(ec_key)
37 backend.openssl_assert(group != backend._ffi.NULL)
39 nid = backend._lib.EC_GROUP_get_curve_name(group)
40 # The following check is to find EC keys with unnamed curves and raise
41 # an error for now.
42 if nid == backend._lib.NID_undef:
43 raise ValueError(
44 "ECDSA keys with explicit parameters are unsupported at this time"
45 )
47 # This is like the above check, but it also catches the case where you
48 # explicitly encoded a curve with the same parameters as a named curve.
49 # Don't do that.
50 if (
51 not backend._lib.CRYPTOGRAPHY_IS_LIBRESSL
52 and backend._lib.EC_GROUP_get_asn1_flag(group) == 0
53 ):
54 raise ValueError(
55 "ECDSA keys with explicit parameters are unsupported at this time"
56 )
58 curve_name = backend._lib.OBJ_nid2sn(nid)
59 backend.openssl_assert(curve_name != backend._ffi.NULL)
61 sn = backend._ffi.string(curve_name).decode("ascii")
62 return sn
65def _mark_asn1_named_ec_curve(backend: Backend, ec_cdata):
66 """
67 Set the named curve flag on the EC_KEY. This causes OpenSSL to
68 serialize EC keys along with their curve OID which makes
69 deserialization easier.
70 """
72 backend._lib.EC_KEY_set_asn1_flag(
73 ec_cdata, backend._lib.OPENSSL_EC_NAMED_CURVE
74 )
77def _check_key_infinity(backend: Backend, ec_cdata) -> None:
78 point = backend._lib.EC_KEY_get0_public_key(ec_cdata)
79 backend.openssl_assert(point != backend._ffi.NULL)
80 group = backend._lib.EC_KEY_get0_group(ec_cdata)
81 backend.openssl_assert(group != backend._ffi.NULL)
82 if backend._lib.EC_POINT_is_at_infinity(group, point):
83 raise ValueError(
84 "Cannot load an EC public key where the point is at infinity"
85 )
88def _sn_to_elliptic_curve(backend: Backend, sn: str) -> ec.EllipticCurve:
89 try:
90 return ec._CURVE_TYPES[sn]()
91 except KeyError:
92 raise UnsupportedAlgorithm(
93 f"{sn} is not a supported elliptic curve",
94 _Reasons.UNSUPPORTED_ELLIPTIC_CURVE,
95 )
98def _ecdsa_sig_sign(
99 backend: Backend, private_key: _EllipticCurvePrivateKey, data: bytes
100) -> bytes:
101 max_size = backend._lib.ECDSA_size(private_key._ec_key)
102 backend.openssl_assert(max_size > 0)
104 sigbuf = backend._ffi.new("unsigned char[]", max_size)
105 siglen_ptr = backend._ffi.new("unsigned int[]", 1)
106 res = backend._lib.ECDSA_sign(
107 0, data, len(data), sigbuf, siglen_ptr, private_key._ec_key
108 )
109 backend.openssl_assert(res == 1)
110 return backend._ffi.buffer(sigbuf)[: siglen_ptr[0]]
113def _ecdsa_sig_verify(
114 backend: Backend,
115 public_key: _EllipticCurvePublicKey,
116 signature: bytes,
117 data: bytes,
118) -> None:
119 res = backend._lib.ECDSA_verify(
120 0, data, len(data), signature, len(signature), public_key._ec_key
121 )
122 if res != 1:
123 backend._consume_errors()
124 raise InvalidSignature
127class _EllipticCurvePrivateKey(ec.EllipticCurvePrivateKey):
128 def __init__(self, backend: Backend, ec_key_cdata, evp_pkey):
129 self._backend = backend
130 self._ec_key = ec_key_cdata
131 self._evp_pkey = evp_pkey
133 sn = _ec_key_curve_sn(backend, ec_key_cdata)
134 self._curve = _sn_to_elliptic_curve(backend, sn)
135 _mark_asn1_named_ec_curve(backend, ec_key_cdata)
136 _check_key_infinity(backend, ec_key_cdata)
138 @property
139 def curve(self) -> ec.EllipticCurve:
140 return self._curve
142 @property
143 def key_size(self) -> int:
144 return self.curve.key_size
146 def exchange(
147 self, algorithm: ec.ECDH, peer_public_key: ec.EllipticCurvePublicKey
148 ) -> bytes:
149 if not (
150 self._backend.elliptic_curve_exchange_algorithm_supported(
151 algorithm, self.curve
152 )
153 ):
154 raise UnsupportedAlgorithm(
155 "This backend does not support the ECDH algorithm.",
156 _Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,
157 )
159 if peer_public_key.curve.name != self.curve.name:
160 raise ValueError(
161 "peer_public_key and self are not on the same curve"
162 )
164 return _evp_pkey_derive(self._backend, self._evp_pkey, peer_public_key)
166 def public_key(self) -> ec.EllipticCurvePublicKey:
167 group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
168 self._backend.openssl_assert(group != self._backend._ffi.NULL)
170 curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)
171 public_ec_key = self._backend._ec_key_new_by_curve_nid(curve_nid)
173 point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
174 self._backend.openssl_assert(point != self._backend._ffi.NULL)
176 res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)
177 self._backend.openssl_assert(res == 1)
179 evp_pkey = self._backend._ec_cdata_to_evp_pkey(public_ec_key)
181 return _EllipticCurvePublicKey(self._backend, public_ec_key, evp_pkey)
183 def private_numbers(self) -> ec.EllipticCurvePrivateNumbers:
184 bn = self._backend._lib.EC_KEY_get0_private_key(self._ec_key)
185 private_value = self._backend._bn_to_int(bn)
186 return ec.EllipticCurvePrivateNumbers(
187 private_value=private_value,
188 public_numbers=self.public_key().public_numbers(),
189 )
191 def private_bytes(
192 self,
193 encoding: serialization.Encoding,
194 format: serialization.PrivateFormat,
195 encryption_algorithm: serialization.KeySerializationEncryption,
196 ) -> bytes:
197 return self._backend._private_key_bytes(
198 encoding,
199 format,
200 encryption_algorithm,
201 self,
202 self._evp_pkey,
203 self._ec_key,
204 )
206 def sign(
207 self,
208 data: bytes,
209 signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
210 ) -> bytes:
211 _check_signature_algorithm(signature_algorithm)
212 data, _ = _calculate_digest_and_algorithm(
213 data,
214 signature_algorithm.algorithm,
215 )
216 return _ecdsa_sig_sign(self._backend, self, data)
219class _EllipticCurvePublicKey(ec.EllipticCurvePublicKey):
220 def __init__(self, backend: Backend, ec_key_cdata, evp_pkey):
221 self._backend = backend
222 self._ec_key = ec_key_cdata
223 self._evp_pkey = evp_pkey
225 sn = _ec_key_curve_sn(backend, ec_key_cdata)
226 self._curve = _sn_to_elliptic_curve(backend, sn)
227 _mark_asn1_named_ec_curve(backend, ec_key_cdata)
228 _check_key_infinity(backend, ec_key_cdata)
230 @property
231 def curve(self) -> ec.EllipticCurve:
232 return self._curve
234 @property
235 def key_size(self) -> int:
236 return self.curve.key_size
238 def __eq__(self, other: object) -> bool:
239 if not isinstance(other, _EllipticCurvePublicKey):
240 return NotImplemented
242 return (
243 self._backend._lib.EVP_PKEY_cmp(self._evp_pkey, other._evp_pkey)
244 == 1
245 )
247 def public_numbers(self) -> ec.EllipticCurvePublicNumbers:
248 group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
249 self._backend.openssl_assert(group != self._backend._ffi.NULL)
251 point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
252 self._backend.openssl_assert(point != self._backend._ffi.NULL)
254 with self._backend._tmp_bn_ctx() as bn_ctx:
255 bn_x = self._backend._lib.BN_CTX_get(bn_ctx)
256 bn_y = self._backend._lib.BN_CTX_get(bn_ctx)
258 res = self._backend._lib.EC_POINT_get_affine_coordinates(
259 group, point, bn_x, bn_y, bn_ctx
260 )
261 self._backend.openssl_assert(res == 1)
263 x = self._backend._bn_to_int(bn_x)
264 y = self._backend._bn_to_int(bn_y)
266 return ec.EllipticCurvePublicNumbers(x=x, y=y, curve=self._curve)
268 def _encode_point(self, format: serialization.PublicFormat) -> bytes:
269 if format is serialization.PublicFormat.CompressedPoint:
270 conversion = self._backend._lib.POINT_CONVERSION_COMPRESSED
271 else:
272 assert format is serialization.PublicFormat.UncompressedPoint
273 conversion = self._backend._lib.POINT_CONVERSION_UNCOMPRESSED
275 group = self._backend._lib.EC_KEY_get0_group(self._ec_key)
276 self._backend.openssl_assert(group != self._backend._ffi.NULL)
277 point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)
278 self._backend.openssl_assert(point != self._backend._ffi.NULL)
279 with self._backend._tmp_bn_ctx() as bn_ctx:
280 buflen = self._backend._lib.EC_POINT_point2oct(
281 group, point, conversion, self._backend._ffi.NULL, 0, bn_ctx
282 )
283 self._backend.openssl_assert(buflen > 0)
284 buf = self._backend._ffi.new("char[]", buflen)
285 res = self._backend._lib.EC_POINT_point2oct(
286 group, point, conversion, buf, buflen, bn_ctx
287 )
288 self._backend.openssl_assert(buflen == res)
290 return self._backend._ffi.buffer(buf)[:]
292 def public_bytes(
293 self,
294 encoding: serialization.Encoding,
295 format: serialization.PublicFormat,
296 ) -> bytes:
297 if (
298 encoding is serialization.Encoding.X962
299 or format is serialization.PublicFormat.CompressedPoint
300 or format is serialization.PublicFormat.UncompressedPoint
301 ):
302 if encoding is not serialization.Encoding.X962 or format not in (
303 serialization.PublicFormat.CompressedPoint,
304 serialization.PublicFormat.UncompressedPoint,
305 ):
306 raise ValueError(
307 "X962 encoding must be used with CompressedPoint or "
308 "UncompressedPoint format"
309 )
311 return self._encode_point(format)
312 else:
313 return self._backend._public_key_bytes(
314 encoding, format, self, self._evp_pkey, None
315 )
317 def verify(
318 self,
319 signature: bytes,
320 data: bytes,
321 signature_algorithm: ec.EllipticCurveSignatureAlgorithm,
322 ) -> None:
323 _check_signature_algorithm(signature_algorithm)
324 data, _ = _calculate_digest_and_algorithm(
325 data,
326 signature_algorithm.algorithm,
327 )
328 _ecdsa_sig_verify(self._backend, self, signature, data)