1"""
2Functions inferring the syntax tree.
3"""
4import copy
5import itertools
6
7from parso.python import tree
8
9from jedi import debug
10from jedi import parser_utils
11from jedi.inference.base_value import ValueSet, NO_VALUES, ContextualizedNode, \
12 iterator_to_value_set, iterate_values
13from jedi.inference.lazy_value import LazyTreeValue
14from jedi.inference import compiled
15from jedi.inference import recursion
16from jedi.inference import analysis
17from jedi.inference import imports
18from jedi.inference import arguments
19from jedi.inference.value import ClassValue, FunctionValue
20from jedi.inference.value import iterable
21from jedi.inference.value.dynamic_arrays import ListModification, DictModification
22from jedi.inference.value import TreeInstance
23from jedi.inference.helpers import is_string, is_literal, is_number, \
24 get_names_of_node, is_big_annoying_library
25from jedi.inference.compiled.access import COMPARISON_OPERATORS
26from jedi.inference.cache import inference_state_method_cache
27from jedi.inference.gradual.stub_value import VersionInfo
28from jedi.inference.gradual import annotation
29from jedi.inference.names import TreeNameDefinition
30from jedi.inference.context import CompForContext
31from jedi.inference.value.decorator import Decoratee
32from jedi.plugins import plugin_manager
33
34operator_to_magic_method = {
35 '+': '__add__',
36 '-': '__sub__',
37 '*': '__mul__',
38 '@': '__matmul__',
39 '/': '__truediv__',
40 '//': '__floordiv__',
41 '%': '__mod__',
42 '**': '__pow__',
43 '<<': '__lshift__',
44 '>>': '__rshift__',
45 '&': '__and__',
46 '|': '__or__',
47 '^': '__xor__',
48}
49
50reverse_operator_to_magic_method = {
51 k: '__r' + v[2:] for k, v in operator_to_magic_method.items()
52}
53
54
55def _limit_value_infers(func):
56 """
57 This is for now the way how we limit type inference going wild. There are
58 other ways to ensure recursion limits as well. This is mostly necessary
59 because of instance (self) access that can be quite tricky to limit.
60
61 I'm still not sure this is the way to go, but it looks okay for now and we
62 can still go anther way in the future. Tests are there. ~ dave
63 """
64 def wrapper(context, *args, **kwargs):
65 n = context.tree_node
66 inference_state = context.inference_state
67 try:
68 inference_state.inferred_element_counts[n] += 1
69 maximum = 300
70 if context.parent_context is None \
71 and context.get_value() is inference_state.builtins_module:
72 # Builtins should have a more generous inference limit.
73 # It is important that builtins can be executed, otherwise some
74 # functions that depend on certain builtins features would be
75 # broken, see e.g. GH #1432
76 maximum *= 100
77
78 if inference_state.inferred_element_counts[n] > maximum:
79 debug.warning('In value %s there were too many inferences.', n)
80 return NO_VALUES
81 except KeyError:
82 inference_state.inferred_element_counts[n] = 1
83 return func(context, *args, **kwargs)
84
85 return wrapper
86
87
88def infer_node(context, element):
89 if isinstance(context, CompForContext):
90 return _infer_node(context, element)
91
92 if_stmt = element
93 while if_stmt is not None:
94 if_stmt = if_stmt.parent
95 if if_stmt.type in ('if_stmt', 'for_stmt'):
96 break
97 if parser_utils.is_scope(if_stmt):
98 if_stmt = None
99 break
100 predefined_if_name_dict = context.predefined_names.get(if_stmt)
101 # TODO there's a lot of issues with this one. We actually should do
102 # this in a different way. Caching should only be active in certain
103 # cases and this all sucks.
104 if predefined_if_name_dict is None and if_stmt \
105 and if_stmt.type == 'if_stmt' and context.inference_state.is_analysis:
106 if_stmt_test = if_stmt.children[1]
107 name_dicts = [{}]
108 # If we already did a check, we don't want to do it again -> If
109 # value.predefined_names is filled, we stop.
110 # We don't want to check the if stmt itself, it's just about
111 # the content.
112 if element.start_pos > if_stmt_test.end_pos:
113 # Now we need to check if the names in the if_stmt match the
114 # names in the suite.
115 if_names = get_names_of_node(if_stmt_test)
116 element_names = get_names_of_node(element)
117 str_element_names = [e.value for e in element_names]
118 if any(i.value in str_element_names for i in if_names):
119 for if_name in if_names:
120 definitions = context.inference_state.infer(context, if_name)
121 # Every name that has multiple different definitions
122 # causes the complexity to rise. The complexity should
123 # never fall below 1.
124 if len(definitions) > 1:
125 if len(name_dicts) * len(definitions) > 16:
126 debug.dbg('Too many options for if branch inference %s.', if_stmt)
127 # There's only a certain amount of branches
128 # Jedi can infer, otherwise it will take to
129 # long.
130 name_dicts = [{}]
131 break
132
133 original_name_dicts = list(name_dicts)
134 name_dicts = []
135 for definition in definitions:
136 new_name_dicts = list(original_name_dicts)
137 for i, name_dict in enumerate(new_name_dicts):
138 new_name_dicts[i] = name_dict.copy()
139 new_name_dicts[i][if_name.value] = ValueSet([definition])
140
141 name_dicts += new_name_dicts
142 else:
143 for name_dict in name_dicts:
144 name_dict[if_name.value] = definitions
145 if len(name_dicts) > 1:
146 result = NO_VALUES
147 for name_dict in name_dicts:
148 with context.predefine_names(if_stmt, name_dict):
149 result |= _infer_node(context, element)
150 return result
151 else:
152 return _infer_node_if_inferred(context, element)
153 else:
154 if predefined_if_name_dict:
155 return _infer_node(context, element)
156 else:
157 return _infer_node_if_inferred(context, element)
158
159
160def _infer_node_if_inferred(context, element):
161 """
162 TODO This function is temporary: Merge with infer_node.
163 """
164 parent = element
165 while parent is not None:
166 parent = parent.parent
167 predefined_if_name_dict = context.predefined_names.get(parent)
168 if predefined_if_name_dict is not None:
169 return _infer_node(context, element)
170 return _infer_node_cached(context, element)
171
172
173@inference_state_method_cache(default=NO_VALUES)
174def _infer_node_cached(context, element):
175 return _infer_node(context, element)
176
177
178@debug.increase_indent
179@_limit_value_infers
180def _infer_node(context, element):
181 debug.dbg('infer_node %s@%s in %s', element, element.start_pos, context)
182 inference_state = context.inference_state
183 typ = element.type
184 if typ in ('name', 'number', 'string', 'atom', 'strings', 'keyword', 'fstring'):
185 return infer_atom(context, element)
186 elif typ == 'lambdef':
187 return ValueSet([FunctionValue.from_context(context, element)])
188 elif typ == 'expr_stmt':
189 return infer_expr_stmt(context, element)
190 elif typ in ('power', 'atom_expr'):
191 first_child = element.children[0]
192 children = element.children[1:]
193 had_await = False
194 if first_child.type == 'keyword' and first_child.value == 'await':
195 had_await = True
196 first_child = children.pop(0)
197
198 value_set = context.infer_node(first_child)
199 for (i, trailer) in enumerate(children):
200 if trailer == '**': # has a power operation.
201 right = context.infer_node(children[i + 1])
202 value_set = _infer_comparison(
203 context,
204 value_set,
205 trailer,
206 right
207 )
208 break
209 value_set = infer_trailer(context, value_set, trailer)
210
211 if had_await:
212 return value_set.py__await__().py__stop_iteration_returns()
213 return value_set
214 elif typ in ('testlist_star_expr', 'testlist',):
215 # The implicit tuple in statements.
216 return ValueSet([iterable.SequenceLiteralValue(inference_state, context, element)])
217 elif typ in ('not_test', 'factor'):
218 value_set = context.infer_node(element.children[-1])
219 for operator in element.children[:-1]:
220 value_set = infer_factor(value_set, operator)
221 return value_set
222 elif typ == 'test':
223 # `x if foo else y` case.
224 return (context.infer_node(element.children[0])
225 | context.infer_node(element.children[-1]))
226 elif typ == 'operator':
227 # Must be an ellipsis, other operators are not inferred.
228 if element.value != '...':
229 origin = element.parent
230 raise AssertionError("unhandled operator %s in %s " % (repr(element.value), origin))
231 return ValueSet([compiled.builtin_from_name(inference_state, 'Ellipsis')])
232 elif typ == 'dotted_name':
233 value_set = infer_atom(context, element.children[0])
234 for next_name in element.children[2::2]:
235 value_set = value_set.py__getattribute__(next_name, name_context=context)
236 return value_set
237 elif typ == 'eval_input':
238 return context.infer_node(element.children[0])
239 elif typ == 'annassign':
240 return annotation.infer_annotation(context, element.children[1]) \
241 .execute_annotation()
242 elif typ == 'yield_expr':
243 if len(element.children) and element.children[1].type == 'yield_arg':
244 # Implies that it's a yield from.
245 element = element.children[1].children[1]
246 generators = context.infer_node(element) \
247 .py__getattribute__('__iter__').execute_with_values()
248 return generators.py__stop_iteration_returns()
249
250 # Generator.send() is not implemented.
251 return NO_VALUES
252 elif typ == 'namedexpr_test':
253 return context.infer_node(element.children[2])
254 else:
255 return infer_or_test(context, element)
256
257
258def infer_trailer(context, atom_values, trailer):
259 trailer_op, node = trailer.children[:2]
260 if node == ')': # `arglist` is optional.
261 node = None
262
263 if trailer_op == '[':
264 trailer_op, node, _ = trailer.children
265 return atom_values.get_item(
266 _infer_subscript_list(context, node),
267 ContextualizedNode(context, trailer)
268 )
269 else:
270 debug.dbg('infer_trailer: %s in %s', trailer, atom_values)
271 if trailer_op == '.':
272 return atom_values.py__getattribute__(
273 name_context=context,
274 name_or_str=node
275 )
276 else:
277 assert trailer_op == '(', 'trailer_op is actually %s' % trailer_op
278 args = arguments.TreeArguments(context.inference_state, context, node, trailer)
279 return atom_values.execute(args)
280
281
282def infer_atom(context, atom):
283 """
284 Basically to process ``atom`` nodes. The parser sometimes doesn't
285 generate the node (because it has just one child). In that case an atom
286 might be a name or a literal as well.
287 """
288 state = context.inference_state
289 if atom.type == 'name':
290 # This is the first global lookup.
291 stmt = tree.search_ancestor(atom, 'expr_stmt', 'lambdef', 'if_stmt') or atom
292 if stmt.type == 'if_stmt':
293 if not any(n.start_pos <= atom.start_pos < n.end_pos for n in stmt.get_test_nodes()):
294 stmt = atom
295 elif stmt.type == 'lambdef':
296 stmt = atom
297 position = stmt.start_pos
298 if _is_annotation_name(atom):
299 # Since Python 3.7 (with from __future__ import annotations),
300 # annotations are essentially strings and can reference objects
301 # that are defined further down in code. Therefore just set the
302 # position to None, so the finder will not try to stop at a certain
303 # position in the module.
304 position = None
305 return context.py__getattribute__(atom, position=position)
306 elif atom.type == 'keyword':
307 # For False/True/None
308 if atom.value in ('False', 'True', 'None'):
309 return ValueSet([compiled.builtin_from_name(state, atom.value)])
310 elif atom.value == 'yield':
311 # Contrary to yield from, yield can just appear alone to return a
312 # value when used with `.send()`.
313 return NO_VALUES
314 assert False, 'Cannot infer the keyword %s' % atom
315
316 elif isinstance(atom, tree.Literal):
317 string = state.compiled_subprocess.safe_literal_eval(atom.value)
318 return ValueSet([compiled.create_simple_object(state, string)])
319 elif atom.type == 'strings':
320 # Will be multiple string.
321 value_set = infer_atom(context, atom.children[0])
322 for string in atom.children[1:]:
323 right = infer_atom(context, string)
324 value_set = _infer_comparison(context, value_set, '+', right)
325 return value_set
326 elif atom.type == 'fstring':
327 return compiled.get_string_value_set(state)
328 else:
329 c = atom.children
330 # Parentheses without commas are not tuples.
331 if c[0] == '(' and not len(c) == 2 \
332 and not (c[1].type == 'testlist_comp'
333 and len(c[1].children) > 1):
334 return context.infer_node(c[1])
335
336 try:
337 comp_for = c[1].children[1]
338 except (IndexError, AttributeError):
339 pass
340 else:
341 if comp_for == ':':
342 # Dict comprehensions have a colon at the 3rd index.
343 try:
344 comp_for = c[1].children[3]
345 except IndexError:
346 pass
347
348 if comp_for.type in ('comp_for', 'sync_comp_for'):
349 return ValueSet([iterable.comprehension_from_atom(
350 state, context, atom
351 )])
352
353 # It's a dict/list/tuple literal.
354 array_node = c[1]
355 try:
356 array_node_c = array_node.children
357 except AttributeError:
358 array_node_c = []
359 if c[0] == '{' and (array_node == '}' or ':' in array_node_c
360 or '**' in array_node_c):
361 new_value = iterable.DictLiteralValue(state, context, atom)
362 else:
363 new_value = iterable.SequenceLiteralValue(state, context, atom)
364 return ValueSet([new_value])
365
366
367@_limit_value_infers
368def infer_expr_stmt(context, stmt, seek_name=None):
369 with recursion.execution_allowed(context.inference_state, stmt) as allowed:
370 if allowed:
371 if seek_name is not None:
372 pep0484_values = \
373 annotation.find_type_from_comment_hint_assign(context, stmt, seek_name)
374 if pep0484_values:
375 return pep0484_values
376
377 return _infer_expr_stmt(context, stmt, seek_name)
378 return NO_VALUES
379
380
381@debug.increase_indent
382def _infer_expr_stmt(context, stmt, seek_name=None):
383 """
384 The starting point of the completion. A statement always owns a call
385 list, which are the calls, that a statement does. In case multiple
386 names are defined in the statement, `seek_name` returns the result for
387 this name.
388
389 expr_stmt: testlist_star_expr (annassign | augassign (yield_expr|testlist) |
390 ('=' (yield_expr|testlist_star_expr))*)
391 annassign: ':' test ['=' test]
392 augassign: ('+=' | '-=' | '*=' | '@=' | '/=' | '%=' | '&=' | '|=' | '^=' |
393 '<<=' | '>>=' | '**=' | '//=')
394
395 :param stmt: A `tree.ExprStmt`.
396 """
397 def check_setitem(stmt):
398 atom_expr = stmt.children[0]
399 if atom_expr.type not in ('atom_expr', 'power'):
400 return False, None
401 name = atom_expr.children[0]
402 if name.type != 'name' or len(atom_expr.children) != 2:
403 return False, None
404 trailer = atom_expr.children[-1]
405 return trailer.children[0] == '[', trailer.children[1]
406
407 debug.dbg('infer_expr_stmt %s (%s)', stmt, seek_name)
408 rhs = stmt.get_rhs()
409
410 value_set = context.infer_node(rhs)
411
412 if seek_name:
413 n = TreeNameDefinition(context, seek_name)
414 value_set = check_tuple_assignments(n, value_set)
415
416 first_operator = next(stmt.yield_operators(), None)
417 is_setitem, subscriptlist = check_setitem(stmt)
418 is_annassign = first_operator not in ('=', None) and first_operator.type == 'operator'
419 if is_annassign or is_setitem:
420 # `=` is always the last character in aug assignments -> -1
421 name = stmt.get_defined_names(include_setitem=True)[0].value
422 left_values = context.py__getattribute__(name, position=stmt.start_pos)
423
424 if is_setitem:
425 def to_mod(v):
426 c = ContextualizedSubscriptListNode(context, subscriptlist)
427 if v.array_type == 'dict':
428 return DictModification(v, value_set, c)
429 elif v.array_type == 'list':
430 return ListModification(v, value_set, c)
431 return v
432
433 value_set = ValueSet(to_mod(v) for v in left_values)
434 else:
435 operator = copy.copy(first_operator)
436 operator.value = operator.value[:-1]
437 for_stmt = tree.search_ancestor(stmt, 'for_stmt')
438 if for_stmt is not None and for_stmt.type == 'for_stmt' and value_set \
439 and parser_utils.for_stmt_defines_one_name(for_stmt):
440 # Iterate through result and add the values, that's possible
441 # only in for loops without clutter, because they are
442 # predictable. Also only do it, if the variable is not a tuple.
443 node = for_stmt.get_testlist()
444 cn = ContextualizedNode(context, node)
445 ordered = list(cn.infer().iterate(cn))
446
447 for lazy_value in ordered:
448 dct = {for_stmt.children[1].value: lazy_value.infer()}
449 with context.predefine_names(for_stmt, dct):
450 t = context.infer_node(rhs)
451 left_values = _infer_comparison(context, left_values, operator, t)
452 value_set = left_values
453 else:
454 value_set = _infer_comparison(context, left_values, operator, value_set)
455 debug.dbg('infer_expr_stmt result %s', value_set)
456 return value_set
457
458
459def infer_or_test(context, or_test):
460 iterator = iter(or_test.children)
461 types = context.infer_node(next(iterator))
462 for operator in iterator:
463 right = next(iterator)
464 if operator.type == 'comp_op': # not in / is not
465 operator = ' '.join(c.value for c in operator.children)
466
467 # handle type inference of and/or here.
468 if operator in ('and', 'or'):
469 left_bools = set(left.py__bool__() for left in types)
470 if left_bools == {True}:
471 if operator == 'and':
472 types = context.infer_node(right)
473 elif left_bools == {False}:
474 if operator != 'and':
475 types = context.infer_node(right)
476 # Otherwise continue, because of uncertainty.
477 else:
478 types = _infer_comparison(context, types, operator,
479 context.infer_node(right))
480 debug.dbg('infer_or_test types %s', types)
481 return types
482
483
484@iterator_to_value_set
485def infer_factor(value_set, operator):
486 """
487 Calculates `+`, `-`, `~` and `not` prefixes.
488 """
489 for value in value_set:
490 if operator == '-':
491 if is_number(value):
492 yield value.negate()
493 elif operator == 'not':
494 b = value.py__bool__()
495 if b is None: # Uncertainty.
496 yield list(value.inference_state.builtins_module.py__getattribute__('bool')
497 .execute_annotation()).pop()
498 else:
499 yield compiled.create_simple_object(value.inference_state, not b)
500 else:
501 yield value
502
503
504def _literals_to_types(inference_state, result):
505 # Changes literals ('a', 1, 1.0, etc) to its type instances (str(),
506 # int(), float(), etc).
507 new_result = NO_VALUES
508 for typ in result:
509 if is_literal(typ):
510 # Literals are only valid as long as the operations are
511 # correct. Otherwise add a value-free instance.
512 cls = compiled.builtin_from_name(inference_state, typ.name.string_name)
513 new_result |= cls.execute_with_values()
514 else:
515 new_result |= ValueSet([typ])
516 return new_result
517
518
519def _infer_comparison(context, left_values, operator, right_values):
520 state = context.inference_state
521 if isinstance(operator, str):
522 operator_str = operator
523 else:
524 operator_str = str(operator.value)
525 if not left_values or not right_values:
526 # illegal slices e.g. cause left/right_result to be None
527 result = (left_values or NO_VALUES) | (right_values or NO_VALUES)
528 return _literals_to_types(state, result)
529 elif operator_str == "|" and all(
530 value.is_class() or value.is_compiled()
531 for value in itertools.chain(left_values, right_values)
532 ):
533 # ^^^ A naive hack for PEP 604
534 return ValueSet.from_sets((left_values, right_values))
535 else:
536 # I don't think there's a reasonable chance that a string
537 # operation is still correct, once we pass something like six
538 # objects.
539 if len(left_values) * len(right_values) > 6:
540 return _literals_to_types(state, left_values | right_values)
541 else:
542 return ValueSet.from_sets(
543 _infer_comparison_part(state, context, left, operator, right)
544 for left in left_values
545 for right in right_values
546 )
547
548
549def _is_annotation_name(name):
550 ancestor = tree.search_ancestor(name, 'param', 'funcdef', 'expr_stmt')
551 if ancestor is None:
552 return False
553
554 if ancestor.type in ('param', 'funcdef'):
555 ann = ancestor.annotation
556 if ann is not None:
557 return ann.start_pos <= name.start_pos < ann.end_pos
558 elif ancestor.type == 'expr_stmt':
559 c = ancestor.children
560 if len(c) > 1 and c[1].type == 'annassign':
561 return c[1].start_pos <= name.start_pos < c[1].end_pos
562 return False
563
564
565def _is_list(value):
566 return value.array_type == 'list'
567
568
569def _is_tuple(value):
570 return value.array_type == 'tuple'
571
572
573def _bool_to_value(inference_state, bool_):
574 return compiled.builtin_from_name(inference_state, str(bool_))
575
576
577def _get_tuple_ints(value):
578 if not isinstance(value, iterable.SequenceLiteralValue):
579 return None
580 numbers = []
581 for lazy_value in value.py__iter__():
582 if not isinstance(lazy_value, LazyTreeValue):
583 return None
584 node = lazy_value.data
585 if node.type != 'number':
586 return None
587 try:
588 numbers.append(int(node.value))
589 except ValueError:
590 return None
591 return numbers
592
593
594def _infer_comparison_part(inference_state, context, left, operator, right):
595 l_is_num = is_number(left)
596 r_is_num = is_number(right)
597 if isinstance(operator, str):
598 str_operator = operator
599 else:
600 str_operator = str(operator.value)
601
602 if str_operator == '*':
603 # for iterables, ignore * operations
604 if isinstance(left, iterable.Sequence) or is_string(left):
605 return ValueSet([left])
606 elif isinstance(right, iterable.Sequence) or is_string(right):
607 return ValueSet([right])
608 elif str_operator == '+':
609 if l_is_num and r_is_num or is_string(left) and is_string(right):
610 return left.execute_operation(right, str_operator)
611 elif _is_list(left) and _is_list(right) or _is_tuple(left) and _is_tuple(right):
612 return ValueSet([iterable.MergedArray(inference_state, (left, right))])
613 elif str_operator == '-':
614 if l_is_num and r_is_num:
615 return left.execute_operation(right, str_operator)
616 elif str_operator == '%':
617 # With strings and numbers the left type typically remains. Except for
618 # `int() % float()`.
619 return ValueSet([left])
620 elif str_operator in COMPARISON_OPERATORS:
621 if left.is_compiled() and right.is_compiled():
622 # Possible, because the return is not an option. Just compare.
623 result = left.execute_operation(right, str_operator)
624 if result:
625 return result
626 else:
627 if str_operator in ('is', '!=', '==', 'is not'):
628 operation = COMPARISON_OPERATORS[str_operator]
629 bool_ = operation(left, right)
630 # Only if == returns True or != returns False, we can continue.
631 # There's no guarantee that they are not equal. This can help
632 # in some cases, but does not cover everything.
633 if (str_operator in ('is', '==')) == bool_:
634 return ValueSet([_bool_to_value(inference_state, bool_)])
635
636 if isinstance(left, VersionInfo):
637 version_info = _get_tuple_ints(right)
638 if version_info is not None:
639 bool_result = compiled.access.COMPARISON_OPERATORS[operator](
640 inference_state.environment.version_info,
641 tuple(version_info)
642 )
643 return ValueSet([_bool_to_value(inference_state, bool_result)])
644
645 return ValueSet([
646 _bool_to_value(inference_state, True),
647 _bool_to_value(inference_state, False)
648 ])
649 elif str_operator in ('in', 'not in'):
650 return inference_state.builtins_module.py__getattribute__('bool').execute_annotation()
651
652 def check(obj):
653 """Checks if a Jedi object is either a float or an int."""
654 return isinstance(obj, TreeInstance) and \
655 obj.name.string_name in ('int', 'float')
656
657 # Static analysis, one is a number, the other one is not.
658 if str_operator in ('+', '-') and l_is_num != r_is_num \
659 and not (check(left) or check(right)):
660 message = "TypeError: unsupported operand type(s) for +: %s and %s"
661 analysis.add(context, 'type-error-operation', operator,
662 message % (left, right))
663
664 if left.is_class() or right.is_class():
665 return NO_VALUES
666
667 method_name = operator_to_magic_method[str_operator]
668 magic_methods = left.py__getattribute__(method_name)
669 if magic_methods:
670 result = magic_methods.execute_with_values(right)
671 if result:
672 return result
673
674 if not magic_methods:
675 reverse_method_name = reverse_operator_to_magic_method[str_operator]
676 magic_methods = right.py__getattribute__(reverse_method_name)
677
678 result = magic_methods.execute_with_values(left)
679 if result:
680 return result
681
682 result = ValueSet([left, right])
683 debug.dbg('Used operator %s resulting in %s', operator, result)
684 return result
685
686
687@plugin_manager.decorate()
688def tree_name_to_values(inference_state, context, tree_name):
689 value_set = NO_VALUES
690 module_node = context.get_root_context().tree_node
691 # First check for annotations, like: `foo: int = 3`
692 if module_node is not None:
693 names = module_node.get_used_names().get(tree_name.value, [])
694 found_annotation = False
695 for name in names:
696 expr_stmt = name.parent
697
698 if expr_stmt.type == "expr_stmt" and expr_stmt.children[1].type == "annassign":
699 correct_scope = parser_utils.get_parent_scope(name) == context.tree_node
700 ann_assign = expr_stmt.children[1]
701 if correct_scope:
702 found_annotation = True
703 if (
704 (ann_assign.children[1].type == 'name')
705 and (ann_assign.children[1].value == tree_name.value)
706 and context.parent_context
707 ):
708 context = context.parent_context
709 value_set |= annotation.infer_annotation(
710 context, expr_stmt.children[1].children[1]
711 ).execute_annotation()
712 if found_annotation:
713 return value_set
714
715 types = []
716 node = tree_name.get_definition(import_name_always=True, include_setitem=True)
717 if node is None:
718 node = tree_name.parent
719 if node.type == 'global_stmt':
720 c = context.create_context(tree_name)
721 if c.is_module():
722 # In case we are already part of the module, there is no point
723 # in looking up the global statement anymore, because it's not
724 # valid at that point anyway.
725 return NO_VALUES
726 # For global_stmt lookups, we only need the first possible scope,
727 # which means the function itself.
728 filter = next(c.get_filters())
729 names = filter.get(tree_name.value)
730 return ValueSet.from_sets(name.infer() for name in names)
731 elif node.type not in ('import_from', 'import_name'):
732 c = context.create_context(tree_name)
733 return infer_atom(c, tree_name)
734
735 typ = node.type
736 if typ == 'for_stmt':
737 types = annotation.find_type_from_comment_hint_for(context, node, tree_name)
738 if types:
739 return types
740 if typ == 'with_stmt':
741 types = annotation.find_type_from_comment_hint_with(context, node, tree_name)
742 if types:
743 return types
744
745 if typ in ('for_stmt', 'comp_for', 'sync_comp_for'):
746 try:
747 types = context.predefined_names[node][tree_name.value]
748 except KeyError:
749 cn = ContextualizedNode(context, node.children[3])
750 for_types = iterate_values(
751 cn.infer(),
752 contextualized_node=cn,
753 is_async=node.parent.type == 'async_stmt',
754 )
755 n = TreeNameDefinition(context, tree_name)
756 types = check_tuple_assignments(n, for_types)
757 elif typ == 'expr_stmt':
758 types = infer_expr_stmt(context, node, tree_name)
759 elif typ == 'with_stmt':
760 value_managers = context.infer_node(node.get_test_node_from_name(tree_name))
761 if node.parent.type == 'async_stmt':
762 # In the case of `async with` statements, we need to
763 # first get the coroutine from the `__aenter__` method,
764 # then "unwrap" via the `__await__` method
765 enter_methods = value_managers.py__getattribute__('__aenter__')
766 coro = enter_methods.execute_with_values()
767 return coro.py__await__().py__stop_iteration_returns()
768 enter_methods = value_managers.py__getattribute__('__enter__')
769 return enter_methods.execute_with_values()
770 elif typ in ('import_from', 'import_name'):
771 types = imports.infer_import(context, tree_name)
772 elif typ in ('funcdef', 'classdef'):
773 types = _apply_decorators(context, node)
774 elif typ == 'try_stmt':
775 # TODO an exception can also be a tuple. Check for those.
776 # TODO check for types that are not classes and add it to
777 # the static analysis report.
778 exceptions = context.infer_node(tree_name.get_previous_sibling().get_previous_sibling())
779 types = exceptions.execute_with_values()
780 elif typ == 'param':
781 types = NO_VALUES
782 elif typ == 'del_stmt':
783 types = NO_VALUES
784 elif typ == 'namedexpr_test':
785 types = infer_node(context, node)
786 else:
787 raise ValueError("Should not happen. type: %s" % typ)
788 return types
789
790
791# We don't want to have functions/classes that are created by the same
792# tree_node.
793@inference_state_method_cache()
794def _apply_decorators(context, node):
795 """
796 Returns the function, that should to be executed in the end.
797 This is also the places where the decorators are processed.
798 """
799 if node.type == 'classdef':
800 decoratee_value = ClassValue(
801 context.inference_state,
802 parent_context=context,
803 tree_node=node
804 )
805 else:
806 decoratee_value = FunctionValue.from_context(context, node)
807 initial = values = ValueSet([decoratee_value])
808
809 if is_big_annoying_library(context):
810 return values
811
812 for dec in reversed(node.get_decorators()):
813 debug.dbg('decorator: %s %s', dec, values, color="MAGENTA")
814 with debug.increase_indent_cm():
815 dec_values = context.infer_node(dec.children[1])
816 trailer_nodes = dec.children[2:-1]
817 if trailer_nodes:
818 # Create a trailer and infer it.
819 trailer = tree.PythonNode('trailer', trailer_nodes)
820 trailer.parent = dec
821 dec_values = infer_trailer(context, dec_values, trailer)
822
823 if not len(dec_values):
824 code = dec.get_code(include_prefix=False)
825 # For the short future, we don't want to hear about the runtime
826 # decorator in typing that was intentionally omitted. This is not
827 # "correct", but helps with debugging.
828 if code != '@runtime\n':
829 debug.warning('decorator not found: %s on %s', dec, node)
830 return initial
831
832 values = dec_values.execute(arguments.ValuesArguments([values]))
833 if not len(values):
834 debug.warning('not possible to resolve wrappers found %s', node)
835 return initial
836
837 debug.dbg('decorator end %s', values, color="MAGENTA")
838 if values != initial:
839 return ValueSet([Decoratee(c, decoratee_value) for c in values])
840 return values
841
842
843def check_tuple_assignments(name, value_set):
844 """
845 Checks if tuples are assigned.
846 """
847 lazy_value = None
848 for index, node in name.assignment_indexes():
849 cn = ContextualizedNode(name.parent_context, node)
850 iterated = value_set.iterate(cn)
851 if isinstance(index, slice):
852 # For no star unpacking is not possible.
853 return NO_VALUES
854 i = 0
855 while i <= index:
856 try:
857 lazy_value = next(iterated)
858 except StopIteration:
859 # We could do this with the default param in next. But this
860 # would allow this loop to run for a very long time if the
861 # index number is high. Therefore break if the loop is
862 # finished.
863 return NO_VALUES
864 else:
865 i += lazy_value.max
866 value_set = lazy_value.infer()
867 return value_set
868
869
870class ContextualizedSubscriptListNode(ContextualizedNode):
871 def infer(self):
872 return _infer_subscript_list(self.context, self.node)
873
874
875def _infer_subscript_list(context, index):
876 """
877 Handles slices in subscript nodes.
878 """
879 if index == ':':
880 # Like array[:]
881 return ValueSet([iterable.Slice(context, None, None, None)])
882
883 elif index.type == 'subscript' and not index.children[0] == '.':
884 # subscript basically implies a slice operation
885 # e.g. array[:3]
886 result = []
887 for el in index.children:
888 if el == ':':
889 if not result:
890 result.append(None)
891 elif el.type == 'sliceop':
892 if len(el.children) == 2:
893 result.append(el.children[1])
894 else:
895 result.append(el)
896 result += [None] * (3 - len(result))
897
898 return ValueSet([iterable.Slice(context, *result)])
899 elif index.type == 'subscriptlist':
900 return ValueSet([iterable.SequenceLiteralValue(context.inference_state, context, index)])
901
902 # No slices
903 return context.infer_node(index)