1# Copyright 2015 Google LLC
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15"""Define API Tables."""
16
17from __future__ import absolute_import
18
19import copy
20import datetime
21import functools
22import operator
23import typing
24from typing import Any, Dict, Iterable, Iterator, List, Optional, Tuple, Union, Sequence
25
26import warnings
27
28try:
29 import pandas # type: ignore
30except ImportError:
31 pandas = None
32
33try:
34 import pyarrow # type: ignore
35except ImportError:
36 pyarrow = None
37
38try:
39 import db_dtypes # type: ignore
40except ImportError:
41 db_dtypes = None
42
43try:
44 import geopandas # type: ignore
45except ImportError:
46 geopandas = None
47finally:
48 _COORDINATE_REFERENCE_SYSTEM = "EPSG:4326"
49
50try:
51 import shapely # type: ignore
52 from shapely import wkt # type: ignore
53except ImportError:
54 shapely = None
55else:
56 _read_wkt = wkt.loads
57
58import google.api_core.exceptions
59from google.api_core.page_iterator import HTTPIterator
60
61import google.cloud._helpers # type: ignore
62from google.cloud.bigquery import _helpers
63from google.cloud.bigquery import _pandas_helpers
64from google.cloud.bigquery import _versions_helpers
65from google.cloud.bigquery import exceptions as bq_exceptions
66from google.cloud.bigquery._tqdm_helpers import get_progress_bar
67from google.cloud.bigquery.encryption_configuration import EncryptionConfiguration
68from google.cloud.bigquery.enums import DefaultPandasDTypes
69from google.cloud.bigquery.external_config import ExternalConfig
70from google.cloud.bigquery import schema as _schema
71from google.cloud.bigquery.schema import _build_schema_resource
72from google.cloud.bigquery.schema import _parse_schema_resource
73from google.cloud.bigquery.schema import _to_schema_fields
74from google.cloud.bigquery import external_config
75
76if typing.TYPE_CHECKING: # pragma: NO COVER
77 # Unconditionally import optional dependencies again to tell pytype that
78 # they are not None, avoiding false "no attribute" errors.
79 import pandas
80 import pyarrow
81 import geopandas # type: ignore
82 from google.cloud import bigquery_storage # type: ignore
83 from google.cloud.bigquery.dataset import DatasetReference
84
85
86_NO_GEOPANDAS_ERROR = (
87 "The geopandas library is not installed, please install "
88 "geopandas to use the to_geodataframe() function."
89)
90_NO_PYARROW_ERROR = (
91 "The pyarrow library is not installed, please install "
92 "pyarrow to use the to_arrow() function."
93)
94_NO_SHAPELY_ERROR = (
95 "The shapely library is not installed, please install "
96 "shapely to use the geography_as_object option."
97)
98
99_TABLE_HAS_NO_SCHEMA = 'Table has no schema: call "client.get_table()"'
100
101_NO_SUPPORTED_DTYPE = (
102 "The dtype cannot to be converted to a pandas ExtensionArray "
103 "because the necessary `__from_arrow__` attribute is missing."
104)
105
106_RANGE_PYARROW_WARNING = (
107 "Unable to represent RANGE schema as struct using pandas ArrowDtype. Using "
108 "`object` instead. To use ArrowDtype, use pandas >= 1.5 and "
109 "pyarrow >= 10.0.1."
110)
111
112# How many of the total rows need to be downloaded already for us to skip
113# calling the BQ Storage API?
114#
115# In microbenchmarks on 2024-05-21, I (tswast@) measure that at about 2 MB of
116# remaining results, it's faster to use the BQ Storage Read API to download
117# the results than use jobs.getQueryResults. Since we don't have a good way to
118# know the remaining bytes, we estimate by remaining number of rows.
119#
120# Except when rows themselves are larger, I observe that the a single page of
121# results will be around 10 MB. Therefore, the proportion of rows already
122# downloaded should be 10 (first page) / 12 (all results) or less for it to be
123# worth it to make a call to jobs.getQueryResults.
124ALMOST_COMPLETELY_CACHED_RATIO = 0.833333
125
126
127def _reference_getter(table):
128 """A :class:`~google.cloud.bigquery.table.TableReference` pointing to
129 this table.
130
131 Returns:
132 google.cloud.bigquery.table.TableReference: pointer to this table.
133 """
134 from google.cloud.bigquery import dataset
135
136 dataset_ref = dataset.DatasetReference(table.project, table.dataset_id)
137 return TableReference(dataset_ref, table.table_id)
138
139
140def _view_use_legacy_sql_getter(
141 table: Union["Table", "TableListItem"]
142) -> Optional[bool]:
143 """bool: Specifies whether to execute the view with Legacy or Standard SQL.
144
145 This boolean specifies whether to execute the view with Legacy SQL
146 (:data:`True`) or Standard SQL (:data:`False`). The client side default is
147 :data:`False`. The server-side default is :data:`True`. If this table is
148 not a view, :data:`None` is returned.
149
150 Raises:
151 ValueError: For invalid value types.
152 """
153
154 view: Optional[Dict[str, Any]] = table._properties.get("view")
155 if view is not None:
156 # The server-side default for useLegacySql is True.
157 return view.get("useLegacySql", True) if view is not None else True
158 # In some cases, such as in a table list no view object is present, but the
159 # resource still represents a view. Use the type as a fallback.
160 if table.table_type == "VIEW":
161 # The server-side default for useLegacySql is True.
162 return True
163 return None # explicit return statement to appease mypy
164
165
166class _TableBase:
167 """Base class for Table-related classes with common functionality."""
168
169 _PROPERTY_TO_API_FIELD: Dict[str, Union[str, List[str]]] = {
170 "dataset_id": ["tableReference", "datasetId"],
171 "project": ["tableReference", "projectId"],
172 "table_id": ["tableReference", "tableId"],
173 }
174
175 def __init__(self):
176 self._properties = {}
177
178 @property
179 def project(self) -> str:
180 """Project bound to the table."""
181 return _helpers._get_sub_prop(
182 self._properties, self._PROPERTY_TO_API_FIELD["project"]
183 )
184
185 @property
186 def dataset_id(self) -> str:
187 """ID of dataset containing the table."""
188 return _helpers._get_sub_prop(
189 self._properties, self._PROPERTY_TO_API_FIELD["dataset_id"]
190 )
191
192 @property
193 def table_id(self) -> str:
194 """The table ID."""
195 return _helpers._get_sub_prop(
196 self._properties, self._PROPERTY_TO_API_FIELD["table_id"]
197 )
198
199 @property
200 def path(self) -> str:
201 """URL path for the table's APIs."""
202 return (
203 f"/projects/{self.project}/datasets/{self.dataset_id}"
204 f"/tables/{self.table_id}"
205 )
206
207 def __eq__(self, other):
208 if isinstance(other, _TableBase):
209 return (
210 self.project == other.project
211 and self.dataset_id == other.dataset_id
212 and self.table_id == other.table_id
213 )
214 else:
215 return NotImplemented
216
217 def __hash__(self):
218 return hash((self.project, self.dataset_id, self.table_id))
219
220
221class TableReference(_TableBase):
222 """TableReferences are pointers to tables.
223
224 See
225 https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#tablereference
226
227 Args:
228 dataset_ref: A pointer to the dataset
229 table_id: The ID of the table
230 """
231
232 _PROPERTY_TO_API_FIELD = {
233 "dataset_id": "datasetId",
234 "project": "projectId",
235 "table_id": "tableId",
236 }
237
238 def __init__(self, dataset_ref: "DatasetReference", table_id: str):
239 self._properties = {}
240
241 _helpers._set_sub_prop(
242 self._properties,
243 self._PROPERTY_TO_API_FIELD["project"],
244 dataset_ref.project,
245 )
246 _helpers._set_sub_prop(
247 self._properties,
248 self._PROPERTY_TO_API_FIELD["dataset_id"],
249 dataset_ref.dataset_id,
250 )
251 _helpers._set_sub_prop(
252 self._properties,
253 self._PROPERTY_TO_API_FIELD["table_id"],
254 table_id,
255 )
256
257 @classmethod
258 def from_string(
259 cls, table_id: str, default_project: Optional[str] = None
260 ) -> "TableReference":
261 """Construct a table reference from table ID string.
262
263 Args:
264 table_id (str):
265 A table ID in standard SQL format. If ``default_project``
266 is not specified, this must included a project ID, dataset
267 ID, and table ID, each separated by ``.``.
268 default_project (Optional[str]):
269 The project ID to use when ``table_id`` does not
270 include a project ID.
271
272 Returns:
273 TableReference: Table reference parsed from ``table_id``.
274
275 Examples:
276 >>> TableReference.from_string('my-project.mydataset.mytable')
277 TableRef...(DatasetRef...('my-project', 'mydataset'), 'mytable')
278
279 Raises:
280 ValueError:
281 If ``table_id`` is not a fully-qualified table ID in
282 standard SQL format.
283 """
284 from google.cloud.bigquery.dataset import DatasetReference
285
286 (
287 output_project_id,
288 output_dataset_id,
289 output_table_id,
290 ) = _helpers._parse_3_part_id(
291 table_id, default_project=default_project, property_name="table_id"
292 )
293
294 return cls(
295 DatasetReference(output_project_id, output_dataset_id), output_table_id
296 )
297
298 @classmethod
299 def from_api_repr(cls, resource: dict) -> "TableReference":
300 """Factory: construct a table reference given its API representation
301
302 Args:
303 resource (Dict[str, object]):
304 Table reference representation returned from the API
305
306 Returns:
307 google.cloud.bigquery.table.TableReference:
308 Table reference parsed from ``resource``.
309 """
310 from google.cloud.bigquery.dataset import DatasetReference
311
312 project = resource["projectId"]
313 dataset_id = resource["datasetId"]
314 table_id = resource["tableId"]
315
316 return cls(DatasetReference(project, dataset_id), table_id)
317
318 def to_api_repr(self) -> dict:
319 """Construct the API resource representation of this table reference.
320
321 Returns:
322 Dict[str, object]: Table reference represented as an API resource
323 """
324 return copy.deepcopy(self._properties)
325
326 def to_bqstorage(self) -> str:
327 """Construct a BigQuery Storage API representation of this table.
328
329 Install the ``google-cloud-bigquery-storage`` package to use this
330 feature.
331
332 If the ``table_id`` contains a partition identifier (e.g.
333 ``my_table$201812``) or a snapshot identifier (e.g.
334 ``mytable@1234567890``), it is ignored. Use
335 :class:`google.cloud.bigquery_storage.types.ReadSession.TableReadOptions`
336 to filter rows by partition. Use
337 :class:`google.cloud.bigquery_storage.types.ReadSession.TableModifiers`
338 to select a specific snapshot to read from.
339
340 Returns:
341 str: A reference to this table in the BigQuery Storage API.
342 """
343
344 table_id, _, _ = self.table_id.partition("@")
345 table_id, _, _ = table_id.partition("$")
346
347 table_ref = (
348 f"projects/{self.project}/datasets/{self.dataset_id}/tables/{table_id}"
349 )
350 return table_ref
351
352 def __str__(self):
353 return f"{self.project}.{self.dataset_id}.{self.table_id}"
354
355 def __repr__(self):
356 from google.cloud.bigquery.dataset import DatasetReference
357
358 dataset_ref = DatasetReference(self.project, self.dataset_id)
359 return f"TableReference({dataset_ref!r}, '{self.table_id}')"
360
361
362class Table(_TableBase):
363 """Tables represent a set of rows whose values correspond to a schema.
364
365 See
366 https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource-table
367
368 Args:
369 table_ref (Union[google.cloud.bigquery.table.TableReference, str]):
370 A pointer to a table. If ``table_ref`` is a string, it must
371 included a project ID, dataset ID, and table ID, each separated
372 by ``.``.
373 schema (Optional[Sequence[Union[ \
374 :class:`~google.cloud.bigquery.schema.SchemaField`, \
375 Mapping[str, Any] \
376 ]]]):
377 The table's schema. If any item is a mapping, its content must be
378 compatible with
379 :meth:`~google.cloud.bigquery.schema.SchemaField.from_api_repr`.
380 """
381
382 _PROPERTY_TO_API_FIELD: Dict[str, Any] = {
383 **_TableBase._PROPERTY_TO_API_FIELD,
384 "biglake_configuration": "biglakeConfiguration",
385 "clustering_fields": "clustering",
386 "created": "creationTime",
387 "description": "description",
388 "encryption_configuration": "encryptionConfiguration",
389 "etag": "etag",
390 "expires": "expirationTime",
391 "external_data_configuration": "externalDataConfiguration",
392 "friendly_name": "friendlyName",
393 "full_table_id": "id",
394 "labels": "labels",
395 "location": "location",
396 "modified": "lastModifiedTime",
397 "mview_enable_refresh": "materializedView",
398 "mview_last_refresh_time": ["materializedView", "lastRefreshTime"],
399 "mview_query": "materializedView",
400 "mview_refresh_interval": "materializedView",
401 "mview_allow_non_incremental_definition": "materializedView",
402 "num_bytes": "numBytes",
403 "num_rows": "numRows",
404 "partition_expiration": "timePartitioning",
405 "partitioning_type": "timePartitioning",
406 "range_partitioning": "rangePartitioning",
407 "time_partitioning": "timePartitioning",
408 "schema": ["schema", "fields"],
409 "snapshot_definition": "snapshotDefinition",
410 "clone_definition": "cloneDefinition",
411 "streaming_buffer": "streamingBuffer",
412 "self_link": "selfLink",
413 "type": "type",
414 "view_use_legacy_sql": "view",
415 "view_query": "view",
416 "require_partition_filter": "requirePartitionFilter",
417 "table_constraints": "tableConstraints",
418 "max_staleness": "maxStaleness",
419 "resource_tags": "resourceTags",
420 "external_catalog_table_options": "externalCatalogTableOptions",
421 "foreign_type_info": ["schema", "foreignTypeInfo"],
422 }
423
424 def __init__(self, table_ref, schema=None) -> None:
425 table_ref = _table_arg_to_table_ref(table_ref)
426 self._properties: Dict[str, Any] = {
427 "tableReference": table_ref.to_api_repr(),
428 "labels": {},
429 }
430 # Let the @property do validation.
431 if schema is not None:
432 self.schema = schema
433
434 reference = property(_reference_getter)
435
436 @property
437 def biglake_configuration(self):
438 """google.cloud.bigquery.table.BigLakeConfiguration: Configuration
439 for managed tables for Apache Iceberg.
440
441 See https://cloud.google.com/bigquery/docs/iceberg-tables for more information.
442 """
443 prop = self._properties.get(
444 self._PROPERTY_TO_API_FIELD["biglake_configuration"]
445 )
446 if prop is not None:
447 prop = BigLakeConfiguration.from_api_repr(prop)
448 return prop
449
450 @biglake_configuration.setter
451 def biglake_configuration(self, value):
452 api_repr = value
453 if value is not None:
454 api_repr = value.to_api_repr()
455 self._properties[
456 self._PROPERTY_TO_API_FIELD["biglake_configuration"]
457 ] = api_repr
458
459 @property
460 def require_partition_filter(self):
461 """bool: If set to true, queries over the partitioned table require a
462 partition filter that can be used for partition elimination to be
463 specified.
464 """
465 return self._properties.get(
466 self._PROPERTY_TO_API_FIELD["require_partition_filter"]
467 )
468
469 @require_partition_filter.setter
470 def require_partition_filter(self, value):
471 self._properties[
472 self._PROPERTY_TO_API_FIELD["require_partition_filter"]
473 ] = value
474
475 @property
476 def schema(self):
477 """Sequence[Union[ \
478 :class:`~google.cloud.bigquery.schema.SchemaField`, \
479 Mapping[str, Any] \
480 ]]:
481 Table's schema.
482
483 Raises:
484 Exception:
485 If ``schema`` is not a sequence, or if any item in the sequence
486 is not a :class:`~google.cloud.bigquery.schema.SchemaField`
487 instance or a compatible mapping representation of the field.
488
489 .. Note::
490 If you are referencing a schema for an external catalog table such
491 as a Hive table, it will also be necessary to populate the foreign_type_info
492 attribute. This is not necessary if defining the schema for a BigQuery table.
493
494 For details, see:
495 https://cloud.google.com/bigquery/docs/external-tables
496 https://cloud.google.com/bigquery/docs/datasets-intro#external_datasets
497
498 """
499 prop = _helpers._get_sub_prop(
500 self._properties, self._PROPERTY_TO_API_FIELD["schema"]
501 )
502 if not prop:
503 return []
504 else:
505 return _parse_schema_resource(prop)
506
507 @schema.setter
508 def schema(self, value):
509 api_field = self._PROPERTY_TO_API_FIELD["schema"]
510
511 if value is None:
512 _helpers._set_sub_prop(
513 self._properties,
514 api_field,
515 None,
516 )
517 elif isinstance(value, Sequence):
518 value = _to_schema_fields(value)
519 value = _build_schema_resource(value)
520 _helpers._set_sub_prop(
521 self._properties,
522 api_field,
523 value,
524 )
525 else:
526 raise TypeError("Schema must be a Sequence (e.g. a list) or None.")
527
528 @property
529 def labels(self):
530 """Dict[str, str]: Labels for the table.
531
532 This method always returns a dict. To change a table's labels,
533 modify the dict, then call ``Client.update_table``. To delete a
534 label, set its value to :data:`None` before updating.
535
536 Raises:
537 ValueError: If ``value`` type is invalid.
538 """
539 return self._properties.setdefault(self._PROPERTY_TO_API_FIELD["labels"], {})
540
541 @labels.setter
542 def labels(self, value):
543 if not isinstance(value, dict):
544 raise ValueError("Pass a dict")
545 self._properties[self._PROPERTY_TO_API_FIELD["labels"]] = value
546
547 @property
548 def encryption_configuration(self):
549 """google.cloud.bigquery.encryption_configuration.EncryptionConfiguration: Custom
550 encryption configuration for the table.
551
552 Custom encryption configuration (e.g., Cloud KMS keys) or :data:`None`
553 if using default encryption.
554
555 See `protecting data with Cloud KMS keys
556 <https://cloud.google.com/bigquery/docs/customer-managed-encryption>`_
557 in the BigQuery documentation.
558 """
559 prop = self._properties.get(
560 self._PROPERTY_TO_API_FIELD["encryption_configuration"]
561 )
562 if prop is not None:
563 prop = EncryptionConfiguration.from_api_repr(prop)
564 return prop
565
566 @encryption_configuration.setter
567 def encryption_configuration(self, value):
568 api_repr = value
569 if value is not None:
570 api_repr = value.to_api_repr()
571 self._properties[
572 self._PROPERTY_TO_API_FIELD["encryption_configuration"]
573 ] = api_repr
574
575 @property
576 def created(self):
577 """Union[datetime.datetime, None]: Datetime at which the table was
578 created (:data:`None` until set from the server).
579 """
580 creation_time = self._properties.get(self._PROPERTY_TO_API_FIELD["created"])
581 if creation_time is not None:
582 # creation_time will be in milliseconds.
583 return google.cloud._helpers._datetime_from_microseconds(
584 1000.0 * float(creation_time)
585 )
586
587 @property
588 def etag(self):
589 """Union[str, None]: ETag for the table resource (:data:`None` until
590 set from the server).
591 """
592 return self._properties.get(self._PROPERTY_TO_API_FIELD["etag"])
593
594 @property
595 def modified(self):
596 """Union[datetime.datetime, None]: Datetime at which the table was last
597 modified (:data:`None` until set from the server).
598 """
599 modified_time = self._properties.get(self._PROPERTY_TO_API_FIELD["modified"])
600 if modified_time is not None:
601 # modified_time will be in milliseconds.
602 return google.cloud._helpers._datetime_from_microseconds(
603 1000.0 * float(modified_time)
604 )
605
606 @property
607 def num_bytes(self):
608 """Union[int, None]: The size of the table in bytes (:data:`None` until
609 set from the server).
610 """
611 return _helpers._int_or_none(
612 self._properties.get(self._PROPERTY_TO_API_FIELD["num_bytes"])
613 )
614
615 @property
616 def num_rows(self):
617 """Union[int, None]: The number of rows in the table (:data:`None`
618 until set from the server).
619 """
620 return _helpers._int_or_none(
621 self._properties.get(self._PROPERTY_TO_API_FIELD["num_rows"])
622 )
623
624 @property
625 def self_link(self):
626 """Union[str, None]: URL for the table resource (:data:`None` until set
627 from the server).
628 """
629 return self._properties.get(self._PROPERTY_TO_API_FIELD["self_link"])
630
631 @property
632 def full_table_id(self):
633 """Union[str, None]: ID for the table (:data:`None` until set from the
634 server).
635
636 In the format ``project-id:dataset_id.table_id``.
637 """
638 return self._properties.get(self._PROPERTY_TO_API_FIELD["full_table_id"])
639
640 @property
641 def table_type(self):
642 """Union[str, None]: The type of the table (:data:`None` until set from
643 the server).
644
645 Possible values are ``'TABLE'``, ``'VIEW'``, ``'MATERIALIZED_VIEW'`` or
646 ``'EXTERNAL'``.
647 """
648 return self._properties.get(self._PROPERTY_TO_API_FIELD["type"])
649
650 @property
651 def range_partitioning(self):
652 """Optional[google.cloud.bigquery.table.RangePartitioning]:
653 Configures range-based partitioning for a table.
654
655 .. note::
656 **Beta**. The integer range partitioning feature is in a
657 pre-release state and might change or have limited support.
658
659 Only specify at most one of
660 :attr:`~google.cloud.bigquery.table.Table.time_partitioning` or
661 :attr:`~google.cloud.bigquery.table.Table.range_partitioning`.
662
663 Raises:
664 ValueError:
665 If the value is not
666 :class:`~google.cloud.bigquery.table.RangePartitioning` or
667 :data:`None`.
668 """
669 resource = self._properties.get(
670 self._PROPERTY_TO_API_FIELD["range_partitioning"]
671 )
672 if resource is not None:
673 return RangePartitioning(_properties=resource)
674
675 @range_partitioning.setter
676 def range_partitioning(self, value):
677 resource = value
678 if isinstance(value, RangePartitioning):
679 resource = value._properties
680 elif value is not None:
681 raise ValueError(
682 "Expected value to be RangePartitioning or None, got {}.".format(value)
683 )
684 self._properties[self._PROPERTY_TO_API_FIELD["range_partitioning"]] = resource
685
686 @property
687 def time_partitioning(self):
688 """Optional[google.cloud.bigquery.table.TimePartitioning]: Configures time-based
689 partitioning for a table.
690
691 Only specify at most one of
692 :attr:`~google.cloud.bigquery.table.Table.time_partitioning` or
693 :attr:`~google.cloud.bigquery.table.Table.range_partitioning`.
694
695 Raises:
696 ValueError:
697 If the value is not
698 :class:`~google.cloud.bigquery.table.TimePartitioning` or
699 :data:`None`.
700 """
701 prop = self._properties.get(self._PROPERTY_TO_API_FIELD["time_partitioning"])
702 if prop is not None:
703 return TimePartitioning.from_api_repr(prop)
704
705 @time_partitioning.setter
706 def time_partitioning(self, value):
707 api_repr = value
708 if isinstance(value, TimePartitioning):
709 api_repr = value.to_api_repr()
710 elif value is not None:
711 raise ValueError(
712 "value must be google.cloud.bigquery.table.TimePartitioning " "or None"
713 )
714 self._properties[self._PROPERTY_TO_API_FIELD["time_partitioning"]] = api_repr
715
716 @property
717 def partitioning_type(self):
718 """Union[str, None]: Time partitioning of the table if it is
719 partitioned (Defaults to :data:`None`).
720
721 """
722 warnings.warn(
723 "This method will be deprecated in future versions. Please use "
724 "Table.time_partitioning.type_ instead.",
725 PendingDeprecationWarning,
726 stacklevel=2,
727 )
728 if self.time_partitioning is not None:
729 return self.time_partitioning.type_
730
731 @partitioning_type.setter
732 def partitioning_type(self, value):
733 warnings.warn(
734 "This method will be deprecated in future versions. Please use "
735 "Table.time_partitioning.type_ instead.",
736 PendingDeprecationWarning,
737 stacklevel=2,
738 )
739 api_field = self._PROPERTY_TO_API_FIELD["partitioning_type"]
740 if self.time_partitioning is None:
741 self._properties[api_field] = {}
742 self._properties[api_field]["type"] = value
743
744 @property
745 def partition_expiration(self):
746 """Union[int, None]: Expiration time in milliseconds for a partition.
747
748 If :attr:`partition_expiration` is set and :attr:`type_` is
749 not set, :attr:`type_` will default to
750 :attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`.
751 """
752 warnings.warn(
753 "This method will be deprecated in future versions. Please use "
754 "Table.time_partitioning.expiration_ms instead.",
755 PendingDeprecationWarning,
756 stacklevel=2,
757 )
758 if self.time_partitioning is not None:
759 return self.time_partitioning.expiration_ms
760
761 @partition_expiration.setter
762 def partition_expiration(self, value):
763 warnings.warn(
764 "This method will be deprecated in future versions. Please use "
765 "Table.time_partitioning.expiration_ms instead.",
766 PendingDeprecationWarning,
767 stacklevel=2,
768 )
769 api_field = self._PROPERTY_TO_API_FIELD["partition_expiration"]
770
771 if self.time_partitioning is None:
772 self._properties[api_field] = {"type": TimePartitioningType.DAY}
773
774 if value is None:
775 self._properties[api_field]["expirationMs"] = None
776 else:
777 self._properties[api_field]["expirationMs"] = str(value)
778
779 @property
780 def clustering_fields(self):
781 """Union[List[str], None]: Fields defining clustering for the table
782
783 (Defaults to :data:`None`).
784
785 Clustering fields are immutable after table creation.
786
787 .. note::
788
789 BigQuery supports clustering for both partitioned and
790 non-partitioned tables.
791 """
792 prop = self._properties.get(self._PROPERTY_TO_API_FIELD["clustering_fields"])
793 if prop is not None:
794 return list(prop.get("fields", ()))
795
796 @clustering_fields.setter
797 def clustering_fields(self, value):
798 """Union[List[str], None]: Fields defining clustering for the table
799
800 (Defaults to :data:`None`).
801 """
802 api_field = self._PROPERTY_TO_API_FIELD["clustering_fields"]
803
804 if value is not None:
805 prop = self._properties.setdefault(api_field, {})
806 prop["fields"] = value
807 else:
808 # In order to allow unsetting clustering fields completely, we explicitly
809 # set this property to None (as oposed to merely removing the key).
810 self._properties[api_field] = None
811
812 @property
813 def description(self):
814 """Union[str, None]: Description of the table (defaults to
815 :data:`None`).
816
817 Raises:
818 ValueError: For invalid value types.
819 """
820 return self._properties.get(self._PROPERTY_TO_API_FIELD["description"])
821
822 @description.setter
823 def description(self, value):
824 if not isinstance(value, str) and value is not None:
825 raise ValueError("Pass a string, or None")
826 self._properties[self._PROPERTY_TO_API_FIELD["description"]] = value
827
828 @property
829 def expires(self):
830 """Union[datetime.datetime, None]: Datetime at which the table will be
831 deleted.
832
833 Raises:
834 ValueError: For invalid value types.
835 """
836 expiration_time = self._properties.get(self._PROPERTY_TO_API_FIELD["expires"])
837 if expiration_time is not None:
838 # expiration_time will be in milliseconds.
839 return google.cloud._helpers._datetime_from_microseconds(
840 1000.0 * float(expiration_time)
841 )
842
843 @expires.setter
844 def expires(self, value):
845 if not isinstance(value, datetime.datetime) and value is not None:
846 raise ValueError("Pass a datetime, or None")
847 value_ms = google.cloud._helpers._millis_from_datetime(value)
848 self._properties[
849 self._PROPERTY_TO_API_FIELD["expires"]
850 ] = _helpers._str_or_none(value_ms)
851
852 @property
853 def friendly_name(self):
854 """Union[str, None]: Title of the table (defaults to :data:`None`).
855
856 Raises:
857 ValueError: For invalid value types.
858 """
859 return self._properties.get(self._PROPERTY_TO_API_FIELD["friendly_name"])
860
861 @friendly_name.setter
862 def friendly_name(self, value):
863 if not isinstance(value, str) and value is not None:
864 raise ValueError("Pass a string, or None")
865 self._properties[self._PROPERTY_TO_API_FIELD["friendly_name"]] = value
866
867 @property
868 def location(self):
869 """Union[str, None]: Location in which the table is hosted
870
871 Defaults to :data:`None`.
872 """
873 return self._properties.get(self._PROPERTY_TO_API_FIELD["location"])
874
875 @property
876 def view_query(self):
877 """Union[str, None]: SQL query defining the table as a view (defaults
878 to :data:`None`).
879
880 By default, the query is treated as Standard SQL. To use Legacy
881 SQL, set :attr:`view_use_legacy_sql` to :data:`True`.
882
883 Raises:
884 ValueError: For invalid value types.
885 """
886 api_field = self._PROPERTY_TO_API_FIELD["view_query"]
887 return _helpers._get_sub_prop(self._properties, [api_field, "query"])
888
889 @view_query.setter
890 def view_query(self, value):
891 if not isinstance(value, str):
892 raise ValueError("Pass a string")
893
894 api_field = self._PROPERTY_TO_API_FIELD["view_query"]
895 _helpers._set_sub_prop(self._properties, [api_field, "query"], value)
896 view = self._properties[api_field]
897 # The service defaults useLegacySql to True, but this
898 # client uses Standard SQL by default.
899 if view.get("useLegacySql") is None:
900 view["useLegacySql"] = False
901
902 @view_query.deleter
903 def view_query(self):
904 """Delete SQL query defining the table as a view."""
905 self._properties.pop(self._PROPERTY_TO_API_FIELD["view_query"], None)
906
907 view_use_legacy_sql = property(_view_use_legacy_sql_getter)
908
909 @view_use_legacy_sql.setter # type: ignore # (redefinition from above)
910 def view_use_legacy_sql(self, value):
911 if not isinstance(value, bool):
912 raise ValueError("Pass a boolean")
913
914 api_field = self._PROPERTY_TO_API_FIELD["view_query"]
915 if self._properties.get(api_field) is None:
916 self._properties[api_field] = {}
917 self._properties[api_field]["useLegacySql"] = value
918
919 @property
920 def mview_query(self):
921 """Optional[str]: SQL query defining the table as a materialized
922 view (defaults to :data:`None`).
923 """
924 api_field = self._PROPERTY_TO_API_FIELD["mview_query"]
925 return _helpers._get_sub_prop(self._properties, [api_field, "query"])
926
927 @mview_query.setter
928 def mview_query(self, value):
929 api_field = self._PROPERTY_TO_API_FIELD["mview_query"]
930 _helpers._set_sub_prop(self._properties, [api_field, "query"], str(value))
931
932 @mview_query.deleter
933 def mview_query(self):
934 """Delete SQL query defining the table as a materialized view."""
935 self._properties.pop(self._PROPERTY_TO_API_FIELD["mview_query"], None)
936
937 @property
938 def mview_last_refresh_time(self):
939 """Optional[datetime.datetime]: Datetime at which the materialized view was last
940 refreshed (:data:`None` until set from the server).
941 """
942 refresh_time = _helpers._get_sub_prop(
943 self._properties, self._PROPERTY_TO_API_FIELD["mview_last_refresh_time"]
944 )
945 if refresh_time is not None:
946 # refresh_time will be in milliseconds.
947 return google.cloud._helpers._datetime_from_microseconds(
948 1000 * int(refresh_time)
949 )
950
951 @property
952 def mview_enable_refresh(self):
953 """Optional[bool]: Enable automatic refresh of the materialized view
954 when the base table is updated. The default value is :data:`True`.
955 """
956 api_field = self._PROPERTY_TO_API_FIELD["mview_enable_refresh"]
957 return _helpers._get_sub_prop(self._properties, [api_field, "enableRefresh"])
958
959 @mview_enable_refresh.setter
960 def mview_enable_refresh(self, value):
961 api_field = self._PROPERTY_TO_API_FIELD["mview_enable_refresh"]
962 return _helpers._set_sub_prop(
963 self._properties, [api_field, "enableRefresh"], value
964 )
965
966 @property
967 def mview_refresh_interval(self):
968 """Optional[datetime.timedelta]: The maximum frequency at which this
969 materialized view will be refreshed. The default value is 1800000
970 milliseconds (30 minutes).
971 """
972 api_field = self._PROPERTY_TO_API_FIELD["mview_refresh_interval"]
973 refresh_interval = _helpers._get_sub_prop(
974 self._properties, [api_field, "refreshIntervalMs"]
975 )
976 if refresh_interval is not None:
977 return datetime.timedelta(milliseconds=int(refresh_interval))
978
979 @mview_refresh_interval.setter
980 def mview_refresh_interval(self, value):
981 if value is None:
982 refresh_interval_ms = None
983 else:
984 refresh_interval_ms = str(value // datetime.timedelta(milliseconds=1))
985
986 api_field = self._PROPERTY_TO_API_FIELD["mview_refresh_interval"]
987 _helpers._set_sub_prop(
988 self._properties,
989 [api_field, "refreshIntervalMs"],
990 refresh_interval_ms,
991 )
992
993 @property
994 def mview_allow_non_incremental_definition(self):
995 """Optional[bool]: This option declares the intention to construct a
996 materialized view that isn't refreshed incrementally.
997 The default value is :data:`False`.
998 """
999 api_field = self._PROPERTY_TO_API_FIELD[
1000 "mview_allow_non_incremental_definition"
1001 ]
1002 return _helpers._get_sub_prop(
1003 self._properties, [api_field, "allowNonIncrementalDefinition"]
1004 )
1005
1006 @mview_allow_non_incremental_definition.setter
1007 def mview_allow_non_incremental_definition(self, value):
1008 api_field = self._PROPERTY_TO_API_FIELD[
1009 "mview_allow_non_incremental_definition"
1010 ]
1011 _helpers._set_sub_prop(
1012 self._properties, [api_field, "allowNonIncrementalDefinition"], value
1013 )
1014
1015 @property
1016 def streaming_buffer(self):
1017 """google.cloud.bigquery.StreamingBuffer: Information about a table's
1018 streaming buffer.
1019 """
1020 sb = self._properties.get(self._PROPERTY_TO_API_FIELD["streaming_buffer"])
1021 if sb is not None:
1022 return StreamingBuffer(sb)
1023
1024 @property
1025 def external_data_configuration(self):
1026 """Union[google.cloud.bigquery.ExternalConfig, None]: Configuration for
1027 an external data source (defaults to :data:`None`).
1028
1029 Raises:
1030 ValueError: For invalid value types.
1031 """
1032 prop = self._properties.get(
1033 self._PROPERTY_TO_API_FIELD["external_data_configuration"]
1034 )
1035 if prop is not None:
1036 prop = ExternalConfig.from_api_repr(prop)
1037 return prop
1038
1039 @external_data_configuration.setter
1040 def external_data_configuration(self, value):
1041 if not (value is None or isinstance(value, ExternalConfig)):
1042 raise ValueError("Pass an ExternalConfig or None")
1043 api_repr = value
1044 if value is not None:
1045 api_repr = value.to_api_repr()
1046 self._properties[
1047 self._PROPERTY_TO_API_FIELD["external_data_configuration"]
1048 ] = api_repr
1049
1050 @property
1051 def snapshot_definition(self) -> Optional["SnapshotDefinition"]:
1052 """Information about the snapshot. This value is set via snapshot creation.
1053
1054 See: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#Table.FIELDS.snapshot_definition
1055 """
1056 snapshot_info = self._properties.get(
1057 self._PROPERTY_TO_API_FIELD["snapshot_definition"]
1058 )
1059 if snapshot_info is not None:
1060 snapshot_info = SnapshotDefinition(snapshot_info)
1061 return snapshot_info
1062
1063 @property
1064 def clone_definition(self) -> Optional["CloneDefinition"]:
1065 """Information about the clone. This value is set via clone creation.
1066
1067 See: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#Table.FIELDS.clone_definition
1068 """
1069 clone_info = self._properties.get(
1070 self._PROPERTY_TO_API_FIELD["clone_definition"]
1071 )
1072 if clone_info is not None:
1073 clone_info = CloneDefinition(clone_info)
1074 return clone_info
1075
1076 @property
1077 def table_constraints(self) -> Optional["TableConstraints"]:
1078 """Tables Primary Key and Foreign Key information."""
1079 table_constraints = self._properties.get(
1080 self._PROPERTY_TO_API_FIELD["table_constraints"]
1081 )
1082 if table_constraints is not None:
1083 table_constraints = TableConstraints.from_api_repr(table_constraints)
1084 return table_constraints
1085
1086 @table_constraints.setter
1087 def table_constraints(self, value):
1088 """Tables Primary Key and Foreign Key information."""
1089 api_repr = value
1090 if not isinstance(value, TableConstraints) and value is not None:
1091 raise ValueError(
1092 "value must be google.cloud.bigquery.table.TableConstraints or None"
1093 )
1094 api_repr = value.to_api_repr() if value else None
1095 self._properties[self._PROPERTY_TO_API_FIELD["table_constraints"]] = api_repr
1096
1097 @property
1098 def resource_tags(self):
1099 """Dict[str, str]: Resource tags for the table.
1100
1101 See: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#Table.FIELDS.resource_tags
1102 """
1103 return self._properties.setdefault(
1104 self._PROPERTY_TO_API_FIELD["resource_tags"], {}
1105 )
1106
1107 @resource_tags.setter
1108 def resource_tags(self, value):
1109 if not isinstance(value, dict) and value is not None:
1110 raise ValueError("resource_tags must be a dict or None")
1111 self._properties[self._PROPERTY_TO_API_FIELD["resource_tags"]] = value
1112
1113 @property
1114 def external_catalog_table_options(
1115 self,
1116 ) -> Optional[external_config.ExternalCatalogTableOptions]:
1117 """Options defining open source compatible datasets living in the
1118 BigQuery catalog. Contains metadata of open source database, schema
1119 or namespace represented by the current dataset."""
1120
1121 prop = self._properties.get(
1122 self._PROPERTY_TO_API_FIELD["external_catalog_table_options"]
1123 )
1124 if prop is not None:
1125 return external_config.ExternalCatalogTableOptions.from_api_repr(prop)
1126 return None
1127
1128 @external_catalog_table_options.setter
1129 def external_catalog_table_options(
1130 self, value: Union[external_config.ExternalCatalogTableOptions, dict, None]
1131 ):
1132 value = _helpers._isinstance_or_raise(
1133 value,
1134 (external_config.ExternalCatalogTableOptions, dict),
1135 none_allowed=True,
1136 )
1137 if isinstance(value, external_config.ExternalCatalogTableOptions):
1138 self._properties[
1139 self._PROPERTY_TO_API_FIELD["external_catalog_table_options"]
1140 ] = value.to_api_repr()
1141 else:
1142 self._properties[
1143 self._PROPERTY_TO_API_FIELD["external_catalog_table_options"]
1144 ] = value
1145
1146 @property
1147 def foreign_type_info(self) -> Optional[_schema.ForeignTypeInfo]:
1148 """Optional. Specifies metadata of the foreign data type definition in
1149 field schema (TableFieldSchema.foreign_type_definition).
1150 Returns:
1151 Optional[schema.ForeignTypeInfo]:
1152 Foreign type information, or :data:`None` if not set.
1153 .. Note::
1154 foreign_type_info is only required if you are referencing an
1155 external catalog such as a Hive table.
1156 For details, see:
1157 https://cloud.google.com/bigquery/docs/external-tables
1158 https://cloud.google.com/bigquery/docs/datasets-intro#external_datasets
1159 """
1160
1161 prop = _helpers._get_sub_prop(
1162 self._properties, self._PROPERTY_TO_API_FIELD["foreign_type_info"]
1163 )
1164 if prop is not None:
1165 return _schema.ForeignTypeInfo.from_api_repr(prop)
1166 return None
1167
1168 @foreign_type_info.setter
1169 def foreign_type_info(self, value: Union[_schema.ForeignTypeInfo, dict, None]):
1170 value = _helpers._isinstance_or_raise(
1171 value,
1172 (_schema.ForeignTypeInfo, dict),
1173 none_allowed=True,
1174 )
1175 if isinstance(value, _schema.ForeignTypeInfo):
1176 value = value.to_api_repr()
1177 _helpers._set_sub_prop(
1178 self._properties, self._PROPERTY_TO_API_FIELD["foreign_type_info"], value
1179 )
1180
1181 @classmethod
1182 def from_string(cls, full_table_id: str) -> "Table":
1183 """Construct a table from fully-qualified table ID.
1184
1185 Args:
1186 full_table_id (str):
1187 A fully-qualified table ID in standard SQL format. Must
1188 included a project ID, dataset ID, and table ID, each
1189 separated by ``.``.
1190
1191 Returns:
1192 Table: Table parsed from ``full_table_id``.
1193
1194 Examples:
1195 >>> Table.from_string('my-project.mydataset.mytable')
1196 Table(TableRef...(D...('my-project', 'mydataset'), 'mytable'))
1197
1198 Raises:
1199 ValueError:
1200 If ``full_table_id`` is not a fully-qualified table ID in
1201 standard SQL format.
1202 """
1203 return cls(TableReference.from_string(full_table_id))
1204
1205 @classmethod
1206 def from_api_repr(cls, resource: dict) -> "Table":
1207 """Factory: construct a table given its API representation
1208
1209 Args:
1210 resource (Dict[str, object]):
1211 Table resource representation from the API
1212
1213 Returns:
1214 google.cloud.bigquery.table.Table: Table parsed from ``resource``.
1215
1216 Raises:
1217 KeyError:
1218 If the ``resource`` lacks the key ``'tableReference'``, or if
1219 the ``dict`` stored within the key ``'tableReference'`` lacks
1220 the keys ``'tableId'``, ``'projectId'``, or ``'datasetId'``.
1221 """
1222 from google.cloud.bigquery import dataset
1223
1224 if (
1225 "tableReference" not in resource
1226 or "tableId" not in resource["tableReference"]
1227 ):
1228 raise KeyError(
1229 "Resource lacks required identity information:"
1230 '["tableReference"]["tableId"]'
1231 )
1232 project_id = _helpers._get_sub_prop(
1233 resource, cls._PROPERTY_TO_API_FIELD["project"]
1234 )
1235 table_id = _helpers._get_sub_prop(
1236 resource, cls._PROPERTY_TO_API_FIELD["table_id"]
1237 )
1238 dataset_id = _helpers._get_sub_prop(
1239 resource, cls._PROPERTY_TO_API_FIELD["dataset_id"]
1240 )
1241 dataset_ref = dataset.DatasetReference(project_id, dataset_id)
1242
1243 table = cls(dataset_ref.table(table_id))
1244 table._properties = resource
1245
1246 return table
1247
1248 def to_api_repr(self) -> dict:
1249 """Constructs the API resource of this table
1250
1251 Returns:
1252 Dict[str, object]: Table represented as an API resource
1253 """
1254 return copy.deepcopy(self._properties)
1255
1256 def to_bqstorage(self) -> str:
1257 """Construct a BigQuery Storage API representation of this table.
1258
1259 Returns:
1260 str: A reference to this table in the BigQuery Storage API.
1261 """
1262 return self.reference.to_bqstorage()
1263
1264 def _build_resource(self, filter_fields):
1265 """Generate a resource for ``update``."""
1266 return _helpers._build_resource_from_properties(self, filter_fields)
1267
1268 def __repr__(self):
1269 return "Table({})".format(repr(self.reference))
1270
1271 def __str__(self):
1272 return f"{self.project}.{self.dataset_id}.{self.table_id}"
1273
1274 @property
1275 def max_staleness(self):
1276 """Union[str, None]: The maximum staleness of data that could be returned when the table is queried.
1277
1278 Staleness encoded as a string encoding of sql IntervalValue type.
1279 This property is optional and defaults to None.
1280
1281 According to the BigQuery API documentation, maxStaleness specifies the maximum time
1282 interval for which stale data can be returned when querying the table.
1283 It helps control data freshness in scenarios like metadata-cached external tables.
1284
1285 Returns:
1286 Optional[str]: A string representing the maximum staleness interval
1287 (e.g., '1h', '30m', '15s' for hours, minutes, seconds respectively).
1288 """
1289 return self._properties.get(self._PROPERTY_TO_API_FIELD["max_staleness"])
1290
1291 @max_staleness.setter
1292 def max_staleness(self, value):
1293 """Set the maximum staleness for the table.
1294
1295 Args:
1296 value (Optional[str]): A string representing the maximum staleness interval.
1297 Must be a valid time interval string.
1298 Examples include '1h' (1 hour), '30m' (30 minutes), '15s' (15 seconds).
1299
1300 Raises:
1301 ValueError: If the value is not None and not a string.
1302 """
1303 if value is not None and not isinstance(value, str):
1304 raise ValueError("max_staleness must be a string or None")
1305
1306 self._properties[self._PROPERTY_TO_API_FIELD["max_staleness"]] = value
1307
1308
1309class TableListItem(_TableBase):
1310 """A read-only table resource from a list operation.
1311
1312 For performance reasons, the BigQuery API only includes some of the table
1313 properties when listing tables. Notably,
1314 :attr:`~google.cloud.bigquery.table.Table.schema` and
1315 :attr:`~google.cloud.bigquery.table.Table.num_rows` are missing.
1316
1317 For a full list of the properties that the BigQuery API returns, see the
1318 `REST documentation for tables.list
1319 <https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/list>`_.
1320
1321
1322 Args:
1323 resource (Dict[str, object]):
1324 A table-like resource object from a table list response. A
1325 ``tableReference`` property is required.
1326
1327 Raises:
1328 ValueError:
1329 If ``tableReference`` or one of its required members is missing
1330 from ``resource``.
1331 """
1332
1333 def __init__(self, resource):
1334 if "tableReference" not in resource:
1335 raise ValueError("resource must contain a tableReference value")
1336 if "projectId" not in resource["tableReference"]:
1337 raise ValueError(
1338 "resource['tableReference'] must contain a projectId value"
1339 )
1340 if "datasetId" not in resource["tableReference"]:
1341 raise ValueError(
1342 "resource['tableReference'] must contain a datasetId value"
1343 )
1344 if "tableId" not in resource["tableReference"]:
1345 raise ValueError("resource['tableReference'] must contain a tableId value")
1346
1347 self._properties = resource
1348
1349 @property
1350 def created(self):
1351 """Union[datetime.datetime, None]: Datetime at which the table was
1352 created (:data:`None` until set from the server).
1353 """
1354 creation_time = self._properties.get("creationTime")
1355 if creation_time is not None:
1356 # creation_time will be in milliseconds.
1357 return google.cloud._helpers._datetime_from_microseconds(
1358 1000.0 * float(creation_time)
1359 )
1360
1361 @property
1362 def expires(self):
1363 """Union[datetime.datetime, None]: Datetime at which the table will be
1364 deleted.
1365 """
1366 expiration_time = self._properties.get("expirationTime")
1367 if expiration_time is not None:
1368 # expiration_time will be in milliseconds.
1369 return google.cloud._helpers._datetime_from_microseconds(
1370 1000.0 * float(expiration_time)
1371 )
1372
1373 reference = property(_reference_getter)
1374
1375 @property
1376 def labels(self):
1377 """Dict[str, str]: Labels for the table.
1378
1379 This method always returns a dict. To change a table's labels,
1380 modify the dict, then call ``Client.update_table``. To delete a
1381 label, set its value to :data:`None` before updating.
1382 """
1383 return self._properties.setdefault("labels", {})
1384
1385 @property
1386 def full_table_id(self):
1387 """Union[str, None]: ID for the table (:data:`None` until set from the
1388 server).
1389
1390 In the format ``project_id:dataset_id.table_id``.
1391 """
1392 return self._properties.get("id")
1393
1394 @property
1395 def table_type(self):
1396 """Union[str, None]: The type of the table (:data:`None` until set from
1397 the server).
1398
1399 Possible values are ``'TABLE'``, ``'VIEW'``, or ``'EXTERNAL'``.
1400 """
1401 return self._properties.get("type")
1402
1403 @property
1404 def time_partitioning(self):
1405 """google.cloud.bigquery.table.TimePartitioning: Configures time-based
1406 partitioning for a table.
1407 """
1408 prop = self._properties.get("timePartitioning")
1409 if prop is not None:
1410 return TimePartitioning.from_api_repr(prop)
1411
1412 @property
1413 def partitioning_type(self):
1414 """Union[str, None]: Time partitioning of the table if it is
1415 partitioned (Defaults to :data:`None`).
1416 """
1417 warnings.warn(
1418 "This method will be deprecated in future versions. Please use "
1419 "TableListItem.time_partitioning.type_ instead.",
1420 PendingDeprecationWarning,
1421 stacklevel=2,
1422 )
1423 if self.time_partitioning is not None:
1424 return self.time_partitioning.type_
1425
1426 @property
1427 def partition_expiration(self):
1428 """Union[int, None]: Expiration time in milliseconds for a partition.
1429
1430 If this property is set and :attr:`type_` is not set, :attr:`type_`
1431 will default to :attr:`TimePartitioningType.DAY`.
1432 """
1433 warnings.warn(
1434 "This method will be deprecated in future versions. Please use "
1435 "TableListItem.time_partitioning.expiration_ms instead.",
1436 PendingDeprecationWarning,
1437 stacklevel=2,
1438 )
1439 if self.time_partitioning is not None:
1440 return self.time_partitioning.expiration_ms
1441
1442 @property
1443 def friendly_name(self):
1444 """Union[str, None]: Title of the table (defaults to :data:`None`)."""
1445 return self._properties.get("friendlyName")
1446
1447 view_use_legacy_sql = property(_view_use_legacy_sql_getter)
1448
1449 @property
1450 def clustering_fields(self):
1451 """Union[List[str], None]: Fields defining clustering for the table
1452
1453 (Defaults to :data:`None`).
1454
1455 Clustering fields are immutable after table creation.
1456
1457 .. note::
1458
1459 BigQuery supports clustering for both partitioned and
1460 non-partitioned tables.
1461 """
1462 prop = self._properties.get("clustering")
1463 if prop is not None:
1464 return list(prop.get("fields", ()))
1465
1466 @classmethod
1467 def from_string(cls, full_table_id: str) -> "TableListItem":
1468 """Construct a table from fully-qualified table ID.
1469
1470 Args:
1471 full_table_id (str):
1472 A fully-qualified table ID in standard SQL format. Must
1473 included a project ID, dataset ID, and table ID, each
1474 separated by ``.``.
1475
1476 Returns:
1477 Table: Table parsed from ``full_table_id``.
1478
1479 Examples:
1480 >>> Table.from_string('my-project.mydataset.mytable')
1481 Table(TableRef...(D...('my-project', 'mydataset'), 'mytable'))
1482
1483 Raises:
1484 ValueError:
1485 If ``full_table_id`` is not a fully-qualified table ID in
1486 standard SQL format.
1487 """
1488 return cls(
1489 {"tableReference": TableReference.from_string(full_table_id).to_api_repr()}
1490 )
1491
1492 def to_bqstorage(self) -> str:
1493 """Construct a BigQuery Storage API representation of this table.
1494
1495 Returns:
1496 str: A reference to this table in the BigQuery Storage API.
1497 """
1498 return self.reference.to_bqstorage()
1499
1500 def to_api_repr(self) -> dict:
1501 """Constructs the API resource of this table
1502
1503 Returns:
1504 Dict[str, object]: Table represented as an API resource
1505 """
1506 return copy.deepcopy(self._properties)
1507
1508
1509def _row_from_mapping(mapping, schema):
1510 """Convert a mapping to a row tuple using the schema.
1511
1512 Args:
1513 mapping (Dict[str, object])
1514 Mapping of row data: must contain keys for all required fields in
1515 the schema. Keys which do not correspond to a field in the schema
1516 are ignored.
1517 schema (List[google.cloud.bigquery.schema.SchemaField]):
1518 The schema of the table destination for the rows
1519
1520 Returns:
1521 Tuple[object]:
1522 Tuple whose elements are ordered according to the schema.
1523
1524 Raises:
1525 ValueError: If schema is empty.
1526 """
1527 if len(schema) == 0:
1528 raise ValueError(_TABLE_HAS_NO_SCHEMA)
1529
1530 row = []
1531 for field in schema:
1532 if field.mode == "REQUIRED":
1533 row.append(mapping[field.name])
1534 elif field.mode == "REPEATED":
1535 row.append(mapping.get(field.name, ()))
1536 elif field.mode == "NULLABLE":
1537 row.append(mapping.get(field.name))
1538 else:
1539 raise ValueError("Unknown field mode: {}".format(field.mode))
1540 return tuple(row)
1541
1542
1543class StreamingBuffer(object):
1544 """Information about a table's streaming buffer.
1545
1546 See https://cloud.google.com/bigquery/streaming-data-into-bigquery.
1547
1548 Args:
1549 resource (Dict[str, object]):
1550 streaming buffer representation returned from the API
1551 """
1552
1553 def __init__(self, resource):
1554 self.estimated_bytes = None
1555 if "estimatedBytes" in resource:
1556 self.estimated_bytes = int(resource["estimatedBytes"])
1557 self.estimated_rows = None
1558 if "estimatedRows" in resource:
1559 self.estimated_rows = int(resource["estimatedRows"])
1560 self.oldest_entry_time = None
1561 if "oldestEntryTime" in resource:
1562 self.oldest_entry_time = google.cloud._helpers._datetime_from_microseconds(
1563 1000.0 * int(resource["oldestEntryTime"])
1564 )
1565
1566
1567class SnapshotDefinition:
1568 """Information about base table and snapshot time of the snapshot.
1569
1570 See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#snapshotdefinition
1571
1572 Args:
1573 resource: Snapshot definition representation returned from the API.
1574 """
1575
1576 def __init__(self, resource: Dict[str, Any]):
1577 self.base_table_reference = None
1578 if "baseTableReference" in resource:
1579 self.base_table_reference = TableReference.from_api_repr(
1580 resource["baseTableReference"]
1581 )
1582
1583 self.snapshot_time = None
1584 if "snapshotTime" in resource:
1585 self.snapshot_time = google.cloud._helpers._rfc3339_to_datetime(
1586 resource["snapshotTime"]
1587 )
1588
1589
1590class CloneDefinition:
1591 """Information about base table and clone time of the clone.
1592
1593 See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#clonedefinition
1594
1595 Args:
1596 resource: Clone definition representation returned from the API.
1597 """
1598
1599 def __init__(self, resource: Dict[str, Any]):
1600 self.base_table_reference = None
1601 if "baseTableReference" in resource:
1602 self.base_table_reference = TableReference.from_api_repr(
1603 resource["baseTableReference"]
1604 )
1605
1606 self.clone_time = None
1607 if "cloneTime" in resource:
1608 self.clone_time = google.cloud._helpers._rfc3339_to_datetime(
1609 resource["cloneTime"]
1610 )
1611
1612
1613class Row(object):
1614 """A BigQuery row.
1615
1616 Values can be accessed by position (index), by key like a dict,
1617 or as properties.
1618
1619 Args:
1620 values (Sequence[object]): The row values
1621 field_to_index (Dict[str, int]):
1622 A mapping from schema field names to indexes
1623 """
1624
1625 # Choose unusual field names to try to avoid conflict with schema fields.
1626 __slots__ = ("_xxx_values", "_xxx_field_to_index")
1627
1628 def __init__(self, values, field_to_index) -> None:
1629 self._xxx_values = values
1630 self._xxx_field_to_index = field_to_index
1631
1632 def values(self):
1633 """Return the values included in this row.
1634
1635 Returns:
1636 Sequence[object]: A sequence of length ``len(row)``.
1637 """
1638 return copy.deepcopy(self._xxx_values)
1639
1640 def keys(self) -> Iterable[str]:
1641 """Return the keys for using a row as a dict.
1642
1643 Returns:
1644 Iterable[str]: The keys corresponding to the columns of a row
1645
1646 Examples:
1647
1648 >>> list(Row(('a', 'b'), {'x': 0, 'y': 1}).keys())
1649 ['x', 'y']
1650 """
1651 return self._xxx_field_to_index.keys()
1652
1653 def items(self) -> Iterable[Tuple[str, Any]]:
1654 """Return items as ``(key, value)`` pairs.
1655
1656 Returns:
1657 Iterable[Tuple[str, object]]:
1658 The ``(key, value)`` pairs representing this row.
1659
1660 Examples:
1661
1662 >>> list(Row(('a', 'b'), {'x': 0, 'y': 1}).items())
1663 [('x', 'a'), ('y', 'b')]
1664 """
1665 for key, index in self._xxx_field_to_index.items():
1666 yield (key, copy.deepcopy(self._xxx_values[index]))
1667
1668 def get(self, key: str, default: Any = None) -> Any:
1669 """Return a value for key, with a default value if it does not exist.
1670
1671 Args:
1672 key (str): The key of the column to access
1673 default (object):
1674 The default value to use if the key does not exist. (Defaults
1675 to :data:`None`.)
1676
1677 Returns:
1678 object:
1679 The value associated with the provided key, or a default value.
1680
1681 Examples:
1682 When the key exists, the value associated with it is returned.
1683
1684 >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('x')
1685 'a'
1686
1687 The default value is :data:`None` when the key does not exist.
1688
1689 >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z')
1690 None
1691
1692 The default value can be overridden with the ``default`` parameter.
1693
1694 >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z', '')
1695 ''
1696
1697 >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z', default = '')
1698 ''
1699 """
1700 index = self._xxx_field_to_index.get(key)
1701 if index is None:
1702 return default
1703 return self._xxx_values[index]
1704
1705 def __getattr__(self, name):
1706 value = self._xxx_field_to_index.get(name)
1707 if value is None:
1708 raise AttributeError("no row field {!r}".format(name))
1709 return self._xxx_values[value]
1710
1711 def __len__(self):
1712 return len(self._xxx_values)
1713
1714 def __getitem__(self, key):
1715 if isinstance(key, str):
1716 value = self._xxx_field_to_index.get(key)
1717 if value is None:
1718 raise KeyError("no row field {!r}".format(key))
1719 key = value
1720 return self._xxx_values[key]
1721
1722 def __eq__(self, other):
1723 if not isinstance(other, Row):
1724 return NotImplemented
1725 return (
1726 self._xxx_values == other._xxx_values
1727 and self._xxx_field_to_index == other._xxx_field_to_index
1728 )
1729
1730 def __ne__(self, other):
1731 return not self == other
1732
1733 def __repr__(self):
1734 # sort field dict by value, for determinism
1735 items = sorted(self._xxx_field_to_index.items(), key=operator.itemgetter(1))
1736 f2i = "{" + ", ".join("%r: %d" % item for item in items) + "}"
1737 return "Row({}, {})".format(self._xxx_values, f2i)
1738
1739
1740class _NoopProgressBarQueue(object):
1741 """A fake Queue class that does nothing.
1742
1743 This is used when there is no progress bar to send updates to.
1744 """
1745
1746 def put_nowait(self, item):
1747 """Don't actually do anything with the item."""
1748
1749
1750class RowIterator(HTTPIterator):
1751 """A class for iterating through HTTP/JSON API row list responses.
1752
1753 Args:
1754 client (Optional[google.cloud.bigquery.Client]):
1755 The API client instance. This should always be non-`None`, except for
1756 subclasses that do not use it, namely the ``_EmptyRowIterator``.
1757 api_request (Callable[google.cloud._http.JSONConnection.api_request]):
1758 The function to use to make API requests.
1759 path (str): The method path to query for the list of items.
1760 schema (Sequence[Union[ \
1761 :class:`~google.cloud.bigquery.schema.SchemaField`, \
1762 Mapping[str, Any] \
1763 ]]):
1764 The table's schema. If any item is a mapping, its content must be
1765 compatible with
1766 :meth:`~google.cloud.bigquery.schema.SchemaField.from_api_repr`.
1767 page_token (str): A token identifying a page in a result set to start
1768 fetching results from.
1769 max_results (Optional[int]): The maximum number of results to fetch.
1770 page_size (Optional[int]): The maximum number of rows in each page
1771 of results from this request. Non-positive values are ignored.
1772 Defaults to a sensible value set by the API.
1773 extra_params (Optional[Dict[str, object]]):
1774 Extra query string parameters for the API call.
1775 table (Optional[Union[ \
1776 google.cloud.bigquery.table.Table, \
1777 google.cloud.bigquery.table.TableReference, \
1778 ]]):
1779 The table which these rows belong to, or a reference to it. Used to
1780 call the BigQuery Storage API to fetch rows.
1781 selected_fields (Optional[Sequence[google.cloud.bigquery.schema.SchemaField]]):
1782 A subset of columns to select from this table.
1783 total_rows (Optional[int]):
1784 Total number of rows in the table.
1785 first_page_response (Optional[dict]):
1786 API response for the first page of results. These are returned when
1787 the first page is requested.
1788 query (Optional[str]):
1789 The query text used.
1790 total_bytes_processed (Optional[int]):
1791 If representing query results, the total bytes processed by the associated query.
1792 slot_millis (Optional[int]):
1793 If representing query results, the number of slot ms billed for the associated query.
1794 created (Optional[datetime.datetime]):
1795 If representing query results, the creation time of the associated query.
1796 started (Optional[datetime.datetime]):
1797 If representing query results, the start time of the associated query.
1798 ended (Optional[datetime.datetime]):
1799 If representing query results, the end time of the associated query.
1800 """
1801
1802 def __init__(
1803 self,
1804 client,
1805 api_request,
1806 path,
1807 schema,
1808 page_token=None,
1809 max_results=None,
1810 page_size=None,
1811 extra_params=None,
1812 table=None,
1813 selected_fields=None,
1814 total_rows=None,
1815 first_page_response=None,
1816 location: Optional[str] = None,
1817 job_id: Optional[str] = None,
1818 query_id: Optional[str] = None,
1819 project: Optional[str] = None,
1820 num_dml_affected_rows: Optional[int] = None,
1821 query: Optional[str] = None,
1822 total_bytes_processed: Optional[int] = None,
1823 slot_millis: Optional[int] = None,
1824 created: Optional[datetime.datetime] = None,
1825 started: Optional[datetime.datetime] = None,
1826 ended: Optional[datetime.datetime] = None,
1827 ):
1828 super(RowIterator, self).__init__(
1829 client,
1830 api_request,
1831 path,
1832 item_to_value=_item_to_row,
1833 items_key="rows",
1834 page_token=page_token,
1835 max_results=max_results,
1836 extra_params=extra_params,
1837 page_start=_rows_page_start,
1838 next_token="pageToken",
1839 )
1840 schema = _to_schema_fields(schema) if schema else ()
1841 self._field_to_index = _helpers._field_to_index_mapping(schema)
1842 self._page_size = page_size
1843 self._preserve_order = False
1844 self._schema = schema
1845 self._selected_fields = selected_fields
1846 self._table = table
1847 self._total_rows = total_rows
1848 self._first_page_response = first_page_response
1849 self._location = location
1850 self._job_id = job_id
1851 self._query_id = query_id
1852 self._project = project
1853 self._num_dml_affected_rows = num_dml_affected_rows
1854 self._query = query
1855 self._total_bytes_processed = total_bytes_processed
1856 self._slot_millis = slot_millis
1857 self._job_created = created
1858 self._job_started = started
1859 self._job_ended = ended
1860
1861 @property
1862 def _billing_project(self) -> Optional[str]:
1863 """GCP Project ID where BQ API will bill to (if applicable)."""
1864 client = self.client
1865 return client.project if client is not None else None
1866
1867 @property
1868 def job_id(self) -> Optional[str]:
1869 """ID of the query job (if applicable).
1870
1871 To get the job metadata, call
1872 ``job = client.get_job(rows.job_id, location=rows.location)``.
1873 """
1874 return self._job_id
1875
1876 @property
1877 def location(self) -> Optional[str]:
1878 """Location where the query executed (if applicable).
1879
1880 See: https://cloud.google.com/bigquery/docs/locations
1881 """
1882 return self._location
1883
1884 @property
1885 def num_dml_affected_rows(self) -> Optional[int]:
1886 """If this RowIterator is the result of a DML query, the number of
1887 rows that were affected.
1888
1889 See:
1890 https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/query#body.QueryResponse.FIELDS.num_dml_affected_rows
1891 """
1892 return self._num_dml_affected_rows
1893
1894 @property
1895 def project(self) -> Optional[str]:
1896 """GCP Project ID where these rows are read from."""
1897 return self._project
1898
1899 @property
1900 def query_id(self) -> Optional[str]:
1901 """[Preview] ID of a completed query.
1902
1903 This ID is auto-generated and not guaranteed to be populated.
1904 """
1905 return self._query_id
1906
1907 @property
1908 def query(self) -> Optional[str]:
1909 """The query text used."""
1910 return self._query
1911
1912 @property
1913 def total_bytes_processed(self) -> Optional[int]:
1914 """total bytes processed from job statistics, if present."""
1915 return self._total_bytes_processed
1916
1917 @property
1918 def slot_millis(self) -> Optional[int]:
1919 """Number of slot ms the user is actually billed for."""
1920 return self._slot_millis
1921
1922 @property
1923 def created(self) -> Optional[datetime.datetime]:
1924 """If representing query results, the creation time of the associated query."""
1925 return self._job_created
1926
1927 @property
1928 def started(self) -> Optional[datetime.datetime]:
1929 """If representing query results, the start time of the associated query."""
1930 return self._job_started
1931
1932 @property
1933 def ended(self) -> Optional[datetime.datetime]:
1934 """If representing query results, the end time of the associated query."""
1935 return self._job_ended
1936
1937 def _is_almost_completely_cached(self):
1938 """Check if all results are completely cached.
1939
1940 This is useful to know, because we can avoid alternative download
1941 mechanisms.
1942 """
1943 if (
1944 not hasattr(self, "_first_page_response")
1945 or self._first_page_response is None
1946 ):
1947 return False
1948
1949 total_cached_rows = len(self._first_page_response.get(self._items_key, []))
1950 if self.max_results is not None and total_cached_rows >= self.max_results:
1951 return True
1952
1953 if (
1954 self.next_page_token is None
1955 and self._first_page_response.get(self._next_token) is None
1956 ):
1957 return True
1958
1959 if self._total_rows is not None:
1960 almost_completely = self._total_rows * ALMOST_COMPLETELY_CACHED_RATIO
1961 if total_cached_rows >= almost_completely:
1962 return True
1963
1964 return False
1965
1966 def _should_use_bqstorage(self, bqstorage_client, create_bqstorage_client):
1967 """Returns True if the BigQuery Storage API can be used.
1968
1969 Returns:
1970 bool
1971 True if the BigQuery Storage client can be used or created.
1972 """
1973 using_bqstorage_api = bqstorage_client or create_bqstorage_client
1974 if not using_bqstorage_api:
1975 return False
1976
1977 if self._table is None:
1978 return False
1979
1980 # The developer has already started paging through results if
1981 # next_page_token is set.
1982 if hasattr(self, "next_page_token") and self.next_page_token is not None:
1983 return False
1984
1985 if self._is_almost_completely_cached():
1986 return False
1987
1988 if self.max_results is not None:
1989 return False
1990
1991 try:
1992 _versions_helpers.BQ_STORAGE_VERSIONS.try_import(raise_if_error=True)
1993 except bq_exceptions.BigQueryStorageNotFoundError:
1994 warnings.warn(
1995 "BigQuery Storage module not found, fetch data with the REST "
1996 "endpoint instead."
1997 )
1998 return False
1999 except bq_exceptions.LegacyBigQueryStorageError as exc:
2000 warnings.warn(str(exc))
2001 return False
2002
2003 return True
2004
2005 def _get_next_page_response(self):
2006 """Requests the next page from the path provided.
2007
2008 Returns:
2009 Dict[str, object]:
2010 The parsed JSON response of the next page's contents.
2011 """
2012 if self._first_page_response:
2013 rows = self._first_page_response.get(self._items_key, [])[
2014 : self.max_results
2015 ]
2016 response = {
2017 self._items_key: rows,
2018 }
2019 if self._next_token in self._first_page_response:
2020 response[self._next_token] = self._first_page_response[self._next_token]
2021
2022 self._first_page_response = None
2023 return response
2024
2025 params = self._get_query_params()
2026
2027 # If the user has provided page_size and start_index, we need to pass
2028 # start_index for the first page, but for all subsequent pages, we
2029 # should not pass start_index. We make a shallow copy of params and do
2030 # not alter the original, so if the user iterates the results again,
2031 # start_index is preserved.
2032 params_copy = copy.copy(params)
2033 if self._page_size is not None:
2034 if self.page_number and "startIndex" in params:
2035 del params_copy["startIndex"]
2036
2037 return self.api_request(
2038 method=self._HTTP_METHOD, path=self.path, query_params=params_copy
2039 )
2040
2041 @property
2042 def schema(self):
2043 """List[google.cloud.bigquery.schema.SchemaField]: The subset of
2044 columns to be read from the table."""
2045 return list(self._schema)
2046
2047 @property
2048 def total_rows(self):
2049 """int: The total number of rows in the table or query results."""
2050 return self._total_rows
2051
2052 def _maybe_warn_max_results(
2053 self,
2054 bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"],
2055 ):
2056 """Issue a warning if BQ Storage client is not ``None`` with ``max_results`` set.
2057
2058 This helper method should be used directly in the relevant top-level public
2059 methods, so that the warning is issued for the correct line in user code.
2060
2061 Args:
2062 bqstorage_client:
2063 The BigQuery Storage client intended to use for downloading result rows.
2064 """
2065 if bqstorage_client is not None and self.max_results is not None:
2066 warnings.warn(
2067 "Cannot use bqstorage_client if max_results is set, "
2068 "reverting to fetching data with the REST endpoint.",
2069 stacklevel=3,
2070 )
2071
2072 def _to_page_iterable(
2073 self, bqstorage_download, tabledata_list_download, bqstorage_client=None
2074 ):
2075 if not self._should_use_bqstorage(bqstorage_client, False):
2076 bqstorage_client = None
2077
2078 result_pages = (
2079 bqstorage_download()
2080 if bqstorage_client is not None
2081 else tabledata_list_download()
2082 )
2083 yield from result_pages
2084
2085 def to_arrow_iterable(
2086 self,
2087 bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
2088 max_queue_size: int = _pandas_helpers._MAX_QUEUE_SIZE_DEFAULT, # type: ignore
2089 max_stream_count: Optional[int] = None,
2090 ) -> Iterator["pyarrow.RecordBatch"]:
2091 """[Beta] Create an iterable of class:`pyarrow.RecordBatch`, to process the table as a stream.
2092
2093 Args:
2094 bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
2095 A BigQuery Storage API client. If supplied, use the faster
2096 BigQuery Storage API to fetch rows from BigQuery.
2097
2098 This method requires the ``pyarrow`` and
2099 ``google-cloud-bigquery-storage`` libraries.
2100
2101 This method only exposes a subset of the capabilities of the
2102 BigQuery Storage API. For full access to all features
2103 (projections, filters, snapshots) use the Storage API directly.
2104
2105 max_queue_size (Optional[int]):
2106 The maximum number of result pages to hold in the internal queue when
2107 streaming query results over the BigQuery Storage API. Ignored if
2108 Storage API is not used.
2109
2110 By default, the max queue size is set to the number of BQ Storage streams
2111 created by the server. If ``max_queue_size`` is :data:`None`, the queue
2112 size is infinite.
2113
2114 max_stream_count (Optional[int]):
2115 The maximum number of parallel download streams when
2116 using BigQuery Storage API. Ignored if
2117 BigQuery Storage API is not used.
2118
2119 This setting also has no effect if the query result
2120 is deterministically ordered with ORDER BY,
2121 in which case, the number of download stream is always 1.
2122
2123 If set to 0 or None (the default), the number of download
2124 streams is determined by BigQuery the server. However, this behaviour
2125 can require a lot of memory to store temporary download result,
2126 especially with very large queries. In that case,
2127 setting this parameter value to a value > 0 can help
2128 reduce system resource consumption.
2129
2130 Returns:
2131 pyarrow.RecordBatch:
2132 A generator of :class:`~pyarrow.RecordBatch`.
2133
2134 .. versionadded:: 2.31.0
2135 """
2136 self._maybe_warn_max_results(bqstorage_client)
2137
2138 bqstorage_download = functools.partial(
2139 _pandas_helpers.download_arrow_bqstorage,
2140 self._billing_project,
2141 self._table,
2142 bqstorage_client,
2143 preserve_order=self._preserve_order,
2144 selected_fields=self._selected_fields,
2145 max_queue_size=max_queue_size,
2146 max_stream_count=max_stream_count,
2147 )
2148 tabledata_list_download = functools.partial(
2149 _pandas_helpers.download_arrow_row_iterator, iter(self.pages), self.schema
2150 )
2151 return self._to_page_iterable(
2152 bqstorage_download,
2153 tabledata_list_download,
2154 bqstorage_client=bqstorage_client,
2155 )
2156
2157 # If changing the signature of this method, make sure to apply the same
2158 # changes to job.QueryJob.to_arrow()
2159 def to_arrow(
2160 self,
2161 progress_bar_type: Optional[str] = None,
2162 bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
2163 create_bqstorage_client: bool = True,
2164 ) -> "pyarrow.Table":
2165 """[Beta] Create a class:`pyarrow.Table` by loading all pages of a
2166 table or query.
2167
2168 Args:
2169 progress_bar_type (Optional[str]):
2170 If set, use the `tqdm <https://tqdm.github.io/>`_ library to
2171 display a progress bar while the data downloads. Install the
2172 ``tqdm`` package to use this feature.
2173
2174 Possible values of ``progress_bar_type`` include:
2175
2176 ``None``
2177 No progress bar.
2178 ``'tqdm'``
2179 Use the :func:`tqdm.tqdm` function to print a progress bar
2180 to :data:`sys.stdout`.
2181 ``'tqdm_notebook'``
2182 Use the :func:`tqdm.notebook.tqdm` function to display a
2183 progress bar as a Jupyter notebook widget.
2184 ``'tqdm_gui'``
2185 Use the :func:`tqdm.tqdm_gui` function to display a
2186 progress bar as a graphical dialog box.
2187 bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
2188 A BigQuery Storage API client. If supplied, use the faster BigQuery
2189 Storage API to fetch rows from BigQuery. This API is a billable API.
2190
2191 This method requires ``google-cloud-bigquery-storage`` library.
2192
2193 This method only exposes a subset of the capabilities of the
2194 BigQuery Storage API. For full access to all features
2195 (projections, filters, snapshots) use the Storage API directly.
2196 create_bqstorage_client (Optional[bool]):
2197 If ``True`` (default), create a BigQuery Storage API client using
2198 the default API settings. The BigQuery Storage API is a faster way
2199 to fetch rows from BigQuery. See the ``bqstorage_client`` parameter
2200 for more information.
2201
2202 This argument does nothing if ``bqstorage_client`` is supplied.
2203
2204 .. versionadded:: 1.24.0
2205
2206 Returns:
2207 pyarrow.Table
2208 A :class:`pyarrow.Table` populated with row data and column
2209 headers from the query results. The column headers are derived
2210 from the destination table's schema.
2211
2212 Raises:
2213 ValueError: If the :mod:`pyarrow` library cannot be imported.
2214
2215
2216 .. versionadded:: 1.17.0
2217 """
2218 if pyarrow is None:
2219 raise ValueError(_NO_PYARROW_ERROR)
2220
2221 self._maybe_warn_max_results(bqstorage_client)
2222
2223 if not self._should_use_bqstorage(bqstorage_client, create_bqstorage_client):
2224 create_bqstorage_client = False
2225 bqstorage_client = None
2226
2227 owns_bqstorage_client = False
2228 if not bqstorage_client and create_bqstorage_client:
2229 bqstorage_client = self.client._ensure_bqstorage_client()
2230 owns_bqstorage_client = bqstorage_client is not None
2231
2232 try:
2233 progress_bar = get_progress_bar(
2234 progress_bar_type, "Downloading", self.total_rows, "rows"
2235 )
2236
2237 record_batches = []
2238 for record_batch in self.to_arrow_iterable(
2239 bqstorage_client=bqstorage_client
2240 ):
2241 record_batches.append(record_batch)
2242
2243 if progress_bar is not None:
2244 # In some cases, the number of total rows is not populated
2245 # until the first page of rows is fetched. Update the
2246 # progress bar's total to keep an accurate count.
2247 progress_bar.total = progress_bar.total or self.total_rows
2248 progress_bar.update(record_batch.num_rows)
2249
2250 if progress_bar is not None:
2251 # Indicate that the download has finished.
2252 progress_bar.close()
2253 finally:
2254 if owns_bqstorage_client:
2255 bqstorage_client._transport.grpc_channel.close() # type: ignore
2256
2257 if record_batches and bqstorage_client is not None:
2258 return pyarrow.Table.from_batches(record_batches)
2259 else:
2260 # No records (not record_batches), use schema based on BigQuery schema
2261 # **or**
2262 # we used the REST API (bqstorage_client is None),
2263 # which doesn't add arrow extension metadata, so we let
2264 # `bq_to_arrow_schema` do it.
2265 arrow_schema = _pandas_helpers.bq_to_arrow_schema(self._schema)
2266 return pyarrow.Table.from_batches(record_batches, schema=arrow_schema)
2267
2268 def to_dataframe_iterable(
2269 self,
2270 bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
2271 dtypes: Optional[Dict[str, Any]] = None,
2272 max_queue_size: int = _pandas_helpers._MAX_QUEUE_SIZE_DEFAULT, # type: ignore
2273 max_stream_count: Optional[int] = None,
2274 ) -> "pandas.DataFrame":
2275 """Create an iterable of pandas DataFrames, to process the table as a stream.
2276
2277 Args:
2278 bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
2279 A BigQuery Storage API client. If supplied, use the faster
2280 BigQuery Storage API to fetch rows from BigQuery.
2281
2282 This method requires ``google-cloud-bigquery-storage`` library.
2283
2284 This method only exposes a subset of the capabilities of the
2285 BigQuery Storage API. For full access to all features
2286 (projections, filters, snapshots) use the Storage API directly.
2287
2288 dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]):
2289 A dictionary of column names pandas ``dtype``s. The provided
2290 ``dtype`` is used when constructing the series for the column
2291 specified. Otherwise, the default pandas behavior is used.
2292
2293 max_queue_size (Optional[int]):
2294 The maximum number of result pages to hold in the internal queue when
2295 streaming query results over the BigQuery Storage API. Ignored if
2296 Storage API is not used.
2297
2298 By default, the max queue size is set to the number of BQ Storage streams
2299 created by the server. If ``max_queue_size`` is :data:`None`, the queue
2300 size is infinite.
2301
2302 .. versionadded:: 2.14.0
2303
2304 max_stream_count (Optional[int]):
2305 The maximum number of parallel download streams when
2306 using BigQuery Storage API. Ignored if
2307 BigQuery Storage API is not used.
2308
2309 This setting also has no effect if the query result
2310 is deterministically ordered with ORDER BY,
2311 in which case, the number of download stream is always 1.
2312
2313 If set to 0 or None (the default), the number of download
2314 streams is determined by BigQuery the server. However, this behaviour
2315 can require a lot of memory to store temporary download result,
2316 especially with very large queries. In that case,
2317 setting this parameter value to a value > 0 can help
2318 reduce system resource consumption.
2319
2320 Returns:
2321 pandas.DataFrame:
2322 A generator of :class:`~pandas.DataFrame`.
2323
2324 Raises:
2325 ValueError:
2326 If the :mod:`pandas` library cannot be imported.
2327 """
2328 _pandas_helpers.verify_pandas_imports()
2329
2330 if dtypes is None:
2331 dtypes = {}
2332
2333 self._maybe_warn_max_results(bqstorage_client)
2334
2335 column_names = [field.name for field in self._schema]
2336 bqstorage_download = functools.partial(
2337 _pandas_helpers.download_dataframe_bqstorage,
2338 self._billing_project,
2339 self._table,
2340 bqstorage_client,
2341 column_names,
2342 dtypes,
2343 preserve_order=self._preserve_order,
2344 selected_fields=self._selected_fields,
2345 max_queue_size=max_queue_size,
2346 max_stream_count=max_stream_count,
2347 )
2348 tabledata_list_download = functools.partial(
2349 _pandas_helpers.download_dataframe_row_iterator,
2350 iter(self.pages),
2351 self.schema,
2352 dtypes,
2353 )
2354 return self._to_page_iterable(
2355 bqstorage_download,
2356 tabledata_list_download,
2357 bqstorage_client=bqstorage_client,
2358 )
2359
2360 # If changing the signature of this method, make sure to apply the same
2361 # changes to job.QueryJob.to_dataframe()
2362 def to_dataframe(
2363 self,
2364 bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
2365 dtypes: Optional[Dict[str, Any]] = None,
2366 progress_bar_type: Optional[str] = None,
2367 create_bqstorage_client: bool = True,
2368 geography_as_object: bool = False,
2369 bool_dtype: Union[Any, None] = DefaultPandasDTypes.BOOL_DTYPE,
2370 int_dtype: Union[Any, None] = DefaultPandasDTypes.INT_DTYPE,
2371 float_dtype: Union[Any, None] = None,
2372 string_dtype: Union[Any, None] = None,
2373 date_dtype: Union[Any, None] = DefaultPandasDTypes.DATE_DTYPE,
2374 datetime_dtype: Union[Any, None] = None,
2375 time_dtype: Union[Any, None] = DefaultPandasDTypes.TIME_DTYPE,
2376 timestamp_dtype: Union[Any, None] = None,
2377 range_date_dtype: Union[Any, None] = DefaultPandasDTypes.RANGE_DATE_DTYPE,
2378 range_datetime_dtype: Union[
2379 Any, None
2380 ] = DefaultPandasDTypes.RANGE_DATETIME_DTYPE,
2381 range_timestamp_dtype: Union[
2382 Any, None
2383 ] = DefaultPandasDTypes.RANGE_TIMESTAMP_DTYPE,
2384 ) -> "pandas.DataFrame":
2385 """Create a pandas DataFrame by loading all pages of a query.
2386
2387 Args:
2388 bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
2389 A BigQuery Storage API client. If supplied, use the faster
2390 BigQuery Storage API to fetch rows from BigQuery.
2391
2392 This method requires ``google-cloud-bigquery-storage`` library.
2393
2394 This method only exposes a subset of the capabilities of the
2395 BigQuery Storage API. For full access to all features
2396 (projections, filters, snapshots) use the Storage API directly.
2397
2398 dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]):
2399 A dictionary of column names pandas ``dtype``s. The provided
2400 ``dtype`` is used when constructing the series for the column
2401 specified. Otherwise, the default pandas behavior is used.
2402 progress_bar_type (Optional[str]):
2403 If set, use the `tqdm <https://tqdm.github.io/>`_ library to
2404 display a progress bar while the data downloads. Install the
2405 ``tqdm`` package to use this feature.
2406
2407 Possible values of ``progress_bar_type`` include:
2408
2409 ``None``
2410 No progress bar.
2411 ``'tqdm'``
2412 Use the :func:`tqdm.tqdm` function to print a progress bar
2413 to :data:`sys.stdout`.
2414 ``'tqdm_notebook'``
2415 Use the :func:`tqdm.notebook.tqdm` function to display a
2416 progress bar as a Jupyter notebook widget.
2417 ``'tqdm_gui'``
2418 Use the :func:`tqdm.tqdm_gui` function to display a
2419 progress bar as a graphical dialog box.
2420
2421 .. versionadded:: 1.11.0
2422
2423 create_bqstorage_client (Optional[bool]):
2424 If ``True`` (default), create a BigQuery Storage API client
2425 using the default API settings. The BigQuery Storage API
2426 is a faster way to fetch rows from BigQuery. See the
2427 ``bqstorage_client`` parameter for more information.
2428
2429 This argument does nothing if ``bqstorage_client`` is supplied.
2430
2431 .. versionadded:: 1.24.0
2432
2433 geography_as_object (Optional[bool]):
2434 If ``True``, convert GEOGRAPHY data to :mod:`shapely`
2435 geometry objects. If ``False`` (default), don't cast
2436 geography data to :mod:`shapely` geometry objects.
2437
2438 .. versionadded:: 2.24.0
2439
2440 bool_dtype (Optional[pandas.Series.dtype, None]):
2441 If set, indicate a pandas ExtensionDtype (e.g. ``pandas.BooleanDtype()``)
2442 to convert BigQuery Boolean type, instead of relying on the default
2443 ``pandas.BooleanDtype()``. If you explicitly set the value to ``None``,
2444 then the data type will be ``numpy.dtype("bool")``. BigQuery Boolean
2445 type can be found at:
2446 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#boolean_type
2447
2448 .. versionadded:: 3.8.0
2449
2450 int_dtype (Optional[pandas.Series.dtype, None]):
2451 If set, indicate a pandas ExtensionDtype (e.g. ``pandas.Int64Dtype()``)
2452 to convert BigQuery Integer types, instead of relying on the default
2453 ``pandas.Int64Dtype()``. If you explicitly set the value to ``None``,
2454 then the data type will be ``numpy.dtype("int64")``. A list of BigQuery
2455 Integer types can be found at:
2456 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#integer_types
2457
2458 .. versionadded:: 3.8.0
2459
2460 float_dtype (Optional[pandas.Series.dtype, None]):
2461 If set, indicate a pandas ExtensionDtype (e.g. ``pandas.Float32Dtype()``)
2462 to convert BigQuery Float type, instead of relying on the default
2463 ``numpy.dtype("float64")``. If you explicitly set the value to ``None``,
2464 then the data type will be ``numpy.dtype("float64")``. BigQuery Float
2465 type can be found at:
2466 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#floating_point_types
2467
2468 .. versionadded:: 3.8.0
2469
2470 string_dtype (Optional[pandas.Series.dtype, None]):
2471 If set, indicate a pandas ExtensionDtype (e.g. ``pandas.StringDtype()``) to
2472 convert BigQuery String type, instead of relying on the default
2473 ``numpy.dtype("object")``. If you explicitly set the value to ``None``,
2474 then the data type will be ``numpy.dtype("object")``. BigQuery String
2475 type can be found at:
2476 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#string_type
2477
2478 .. versionadded:: 3.8.0
2479
2480 date_dtype (Optional[pandas.Series.dtype, None]):
2481 If set, indicate a pandas ExtensionDtype (e.g.
2482 ``pandas.ArrowDtype(pyarrow.date32())``) to convert BigQuery Date
2483 type, instead of relying on the default ``db_dtypes.DateDtype()``.
2484 If you explicitly set the value to ``None``, then the data type will be
2485 ``numpy.dtype("datetime64[ns]")`` or ``object`` if out of bound. BigQuery
2486 Date type can be found at:
2487 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#date_type
2488
2489 .. versionadded:: 3.10.0
2490
2491 datetime_dtype (Optional[pandas.Series.dtype, None]):
2492 If set, indicate a pandas ExtensionDtype (e.g.
2493 ``pandas.ArrowDtype(pyarrow.timestamp("us"))``) to convert BigQuery Datetime
2494 type, instead of relying on the default ``numpy.dtype("datetime64[ns]``.
2495 If you explicitly set the value to ``None``, then the data type will be
2496 ``numpy.dtype("datetime64[ns]")`` or ``object`` if out of bound. BigQuery
2497 Datetime type can be found at:
2498 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#datetime_type
2499
2500 .. versionadded:: 3.10.0
2501
2502 time_dtype (Optional[pandas.Series.dtype, None]):
2503 If set, indicate a pandas ExtensionDtype (e.g.
2504 ``pandas.ArrowDtype(pyarrow.time64("us"))``) to convert BigQuery Time
2505 type, instead of relying on the default ``db_dtypes.TimeDtype()``.
2506 If you explicitly set the value to ``None``, then the data type will be
2507 ``numpy.dtype("object")``. BigQuery Time type can be found at:
2508 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#time_type
2509
2510 .. versionadded:: 3.10.0
2511
2512 timestamp_dtype (Optional[pandas.Series.dtype, None]):
2513 If set, indicate a pandas ExtensionDtype (e.g.
2514 ``pandas.ArrowDtype(pyarrow.timestamp("us", tz="UTC"))``) to convert BigQuery Timestamp
2515 type, instead of relying on the default ``numpy.dtype("datetime64[ns, UTC]")``.
2516 If you explicitly set the value to ``None``, then the data type will be
2517 ``numpy.dtype("datetime64[ns, UTC]")`` or ``object`` if out of bound. BigQuery
2518 Datetime type can be found at:
2519 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#timestamp_type
2520
2521 .. versionadded:: 3.10.0
2522
2523 range_date_dtype (Optional[pandas.Series.dtype, None]):
2524 If set, indicate a pandas ExtensionDtype, such as:
2525
2526 .. code-block:: python
2527
2528 pandas.ArrowDtype(pyarrow.struct(
2529 [("start", pyarrow.date32()), ("end", pyarrow.date32())]
2530 ))
2531
2532 to convert BigQuery RANGE<DATE> type, instead of relying on
2533 the default ``object``. If you explicitly set the value to
2534 ``None``, the data type will be ``object``. BigQuery Range type
2535 can be found at:
2536 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#range_type
2537
2538 .. versionadded:: 3.21.0
2539
2540 range_datetime_dtype (Optional[pandas.Series.dtype, None]):
2541 If set, indicate a pandas ExtensionDtype, such as:
2542
2543 .. code-block:: python
2544
2545 pandas.ArrowDtype(pyarrow.struct(
2546 [
2547 ("start", pyarrow.timestamp("us")),
2548 ("end", pyarrow.timestamp("us")),
2549 ]
2550 ))
2551
2552 to convert BigQuery RANGE<DATETIME> type, instead of relying on
2553 the default ``object``. If you explicitly set the value to
2554 ``None``, the data type will be ``object``. BigQuery Range type
2555 can be found at:
2556 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#range_type
2557
2558 .. versionadded:: 3.21.0
2559
2560 range_timestamp_dtype (Optional[pandas.Series.dtype, None]):
2561 If set, indicate a pandas ExtensionDtype, such as:
2562
2563 .. code-block:: python
2564
2565 pandas.ArrowDtype(pyarrow.struct(
2566 [
2567 ("start", pyarrow.timestamp("us", tz="UTC")),
2568 ("end", pyarrow.timestamp("us", tz="UTC")),
2569 ]
2570 ))
2571
2572 to convert BigQuery RANGE<TIMESTAMP> type, instead of relying
2573 on the default ``object``. If you explicitly set the value to
2574 ``None``, the data type will be ``object``. BigQuery Range type
2575 can be found at:
2576 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#range_type
2577
2578 .. versionadded:: 3.21.0
2579
2580 Returns:
2581 pandas.DataFrame:
2582 A :class:`~pandas.DataFrame` populated with row data and column
2583 headers from the query results. The column headers are derived
2584 from the destination table's schema.
2585
2586 Raises:
2587 ValueError:
2588 If the :mod:`pandas` library cannot be imported, or
2589 the :mod:`google.cloud.bigquery_storage_v1` module is
2590 required but cannot be imported. Also if
2591 `geography_as_object` is `True`, but the
2592 :mod:`shapely` library cannot be imported. Also if
2593 `bool_dtype`, `int_dtype` or other dtype parameters
2594 is not supported dtype.
2595
2596 """
2597 _pandas_helpers.verify_pandas_imports()
2598
2599 if geography_as_object and shapely is None:
2600 raise ValueError(_NO_SHAPELY_ERROR)
2601
2602 if bool_dtype is DefaultPandasDTypes.BOOL_DTYPE:
2603 bool_dtype = pandas.BooleanDtype()
2604
2605 if int_dtype is DefaultPandasDTypes.INT_DTYPE:
2606 int_dtype = pandas.Int64Dtype()
2607
2608 if time_dtype is DefaultPandasDTypes.TIME_DTYPE:
2609 time_dtype = db_dtypes.TimeDtype()
2610
2611 if range_date_dtype is DefaultPandasDTypes.RANGE_DATE_DTYPE:
2612 if _versions_helpers.SUPPORTS_RANGE_PYARROW:
2613 range_date_dtype = pandas.ArrowDtype(
2614 pyarrow.struct(
2615 [("start", pyarrow.date32()), ("end", pyarrow.date32())]
2616 )
2617 )
2618 else:
2619 warnings.warn(_RANGE_PYARROW_WARNING)
2620 range_date_dtype = None
2621
2622 if range_datetime_dtype is DefaultPandasDTypes.RANGE_DATETIME_DTYPE:
2623 if _versions_helpers.SUPPORTS_RANGE_PYARROW:
2624 range_datetime_dtype = pandas.ArrowDtype(
2625 pyarrow.struct(
2626 [
2627 ("start", pyarrow.timestamp("us")),
2628 ("end", pyarrow.timestamp("us")),
2629 ]
2630 )
2631 )
2632 else:
2633 warnings.warn(_RANGE_PYARROW_WARNING)
2634 range_datetime_dtype = None
2635
2636 if range_timestamp_dtype is DefaultPandasDTypes.RANGE_TIMESTAMP_DTYPE:
2637 if _versions_helpers.SUPPORTS_RANGE_PYARROW:
2638 range_timestamp_dtype = pandas.ArrowDtype(
2639 pyarrow.struct(
2640 [
2641 ("start", pyarrow.timestamp("us", tz="UTC")),
2642 ("end", pyarrow.timestamp("us", tz="UTC")),
2643 ]
2644 )
2645 )
2646 else:
2647 warnings.warn(_RANGE_PYARROW_WARNING)
2648 range_timestamp_dtype = None
2649
2650 if bool_dtype is not None and not hasattr(bool_dtype, "__from_arrow__"):
2651 raise ValueError("bool_dtype", _NO_SUPPORTED_DTYPE)
2652
2653 if int_dtype is not None and not hasattr(int_dtype, "__from_arrow__"):
2654 raise ValueError("int_dtype", _NO_SUPPORTED_DTYPE)
2655
2656 if float_dtype is not None and not hasattr(float_dtype, "__from_arrow__"):
2657 raise ValueError("float_dtype", _NO_SUPPORTED_DTYPE)
2658
2659 if string_dtype is not None and not hasattr(string_dtype, "__from_arrow__"):
2660 raise ValueError("string_dtype", _NO_SUPPORTED_DTYPE)
2661
2662 if (
2663 date_dtype is not None
2664 and date_dtype is not DefaultPandasDTypes.DATE_DTYPE
2665 and not hasattr(date_dtype, "__from_arrow__")
2666 ):
2667 raise ValueError("date_dtype", _NO_SUPPORTED_DTYPE)
2668
2669 if datetime_dtype is not None and not hasattr(datetime_dtype, "__from_arrow__"):
2670 raise ValueError("datetime_dtype", _NO_SUPPORTED_DTYPE)
2671
2672 if time_dtype is not None and not hasattr(time_dtype, "__from_arrow__"):
2673 raise ValueError("time_dtype", _NO_SUPPORTED_DTYPE)
2674
2675 if timestamp_dtype is not None and not hasattr(
2676 timestamp_dtype, "__from_arrow__"
2677 ):
2678 raise ValueError("timestamp_dtype", _NO_SUPPORTED_DTYPE)
2679
2680 if dtypes is None:
2681 dtypes = {}
2682
2683 self._maybe_warn_max_results(bqstorage_client)
2684
2685 if not self._should_use_bqstorage(bqstorage_client, create_bqstorage_client):
2686 create_bqstorage_client = False
2687 bqstorage_client = None
2688
2689 record_batch = self.to_arrow(
2690 progress_bar_type=progress_bar_type,
2691 bqstorage_client=bqstorage_client,
2692 create_bqstorage_client=create_bqstorage_client,
2693 )
2694
2695 # Default date dtype is `db_dtypes.DateDtype()` that could cause out of bounds error,
2696 # when pyarrow converts date values to nanosecond precision. To avoid the error, we
2697 # set the date_as_object parameter to True, if necessary.
2698 date_as_object = False
2699 if date_dtype is DefaultPandasDTypes.DATE_DTYPE:
2700 date_dtype = db_dtypes.DateDtype()
2701 date_as_object = not all(
2702 self.__can_cast_timestamp_ns(col)
2703 for col in record_batch
2704 # Type can be date32 or date64 (plus units).
2705 # See: https://arrow.apache.org/docs/python/api/datatypes.html
2706 if pyarrow.types.is_date(col.type)
2707 )
2708
2709 timestamp_as_object = False
2710 if datetime_dtype is None and timestamp_dtype is None:
2711 timestamp_as_object = not all(
2712 self.__can_cast_timestamp_ns(col)
2713 for col in record_batch
2714 # Type can be datetime and timestamp (plus units and time zone).
2715 # See: https://arrow.apache.org/docs/python/api/datatypes.html
2716 if pyarrow.types.is_timestamp(col.type)
2717 )
2718
2719 df = record_batch.to_pandas(
2720 date_as_object=date_as_object,
2721 timestamp_as_object=timestamp_as_object,
2722 integer_object_nulls=True,
2723 types_mapper=_pandas_helpers.default_types_mapper(
2724 date_as_object=date_as_object,
2725 bool_dtype=bool_dtype,
2726 int_dtype=int_dtype,
2727 float_dtype=float_dtype,
2728 string_dtype=string_dtype,
2729 date_dtype=date_dtype,
2730 datetime_dtype=datetime_dtype,
2731 time_dtype=time_dtype,
2732 timestamp_dtype=timestamp_dtype,
2733 range_date_dtype=range_date_dtype,
2734 range_datetime_dtype=range_datetime_dtype,
2735 range_timestamp_dtype=range_timestamp_dtype,
2736 ),
2737 )
2738
2739 for column in dtypes:
2740 df[column] = pandas.Series(df[column], dtype=dtypes[column], copy=False)
2741
2742 if geography_as_object:
2743 for field in self.schema:
2744 if field.field_type.upper() == "GEOGRAPHY" and field.mode != "REPEATED":
2745 df[field.name] = df[field.name].dropna().apply(_read_wkt)
2746
2747 return df
2748
2749 @staticmethod
2750 def __can_cast_timestamp_ns(column):
2751 try:
2752 column.cast("timestamp[ns]")
2753 except pyarrow.lib.ArrowInvalid:
2754 return False
2755 else:
2756 return True
2757
2758 # If changing the signature of this method, make sure to apply the same
2759 # changes to job.QueryJob.to_geodataframe()
2760 def to_geodataframe(
2761 self,
2762 bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
2763 dtypes: Optional[Dict[str, Any]] = None,
2764 progress_bar_type: Optional[str] = None,
2765 create_bqstorage_client: bool = True,
2766 geography_column: Optional[str] = None,
2767 bool_dtype: Union[Any, None] = DefaultPandasDTypes.BOOL_DTYPE,
2768 int_dtype: Union[Any, None] = DefaultPandasDTypes.INT_DTYPE,
2769 float_dtype: Union[Any, None] = None,
2770 string_dtype: Union[Any, None] = None,
2771 ) -> "geopandas.GeoDataFrame":
2772 """Create a GeoPandas GeoDataFrame by loading all pages of a query.
2773
2774 Args:
2775 bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]):
2776 A BigQuery Storage API client. If supplied, use the faster
2777 BigQuery Storage API to fetch rows from BigQuery.
2778
2779 This method requires the ``pyarrow`` and
2780 ``google-cloud-bigquery-storage`` libraries.
2781
2782 This method only exposes a subset of the capabilities of the
2783 BigQuery Storage API. For full access to all features
2784 (projections, filters, snapshots) use the Storage API directly.
2785
2786 dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]):
2787 A dictionary of column names pandas ``dtype``s. The provided
2788 ``dtype`` is used when constructing the series for the column
2789 specified. Otherwise, the default pandas behavior is used.
2790 progress_bar_type (Optional[str]):
2791 If set, use the `tqdm <https://tqdm.github.io/>`_ library to
2792 display a progress bar while the data downloads. Install the
2793 ``tqdm`` package to use this feature.
2794
2795 Possible values of ``progress_bar_type`` include:
2796
2797 ``None``
2798 No progress bar.
2799 ``'tqdm'``
2800 Use the :func:`tqdm.tqdm` function to print a progress bar
2801 to :data:`sys.stdout`.
2802 ``'tqdm_notebook'``
2803 Use the :func:`tqdm.notebook.tqdm` function to display a
2804 progress bar as a Jupyter notebook widget.
2805 ``'tqdm_gui'``
2806 Use the :func:`tqdm.tqdm_gui` function to display a
2807 progress bar as a graphical dialog box.
2808
2809 create_bqstorage_client (Optional[bool]):
2810 If ``True`` (default), create a BigQuery Storage API client
2811 using the default API settings. The BigQuery Storage API
2812 is a faster way to fetch rows from BigQuery. See the
2813 ``bqstorage_client`` parameter for more information.
2814
2815 This argument does nothing if ``bqstorage_client`` is supplied.
2816
2817 geography_column (Optional[str]):
2818 If there are more than one GEOGRAPHY column,
2819 identifies which one to use to construct a geopandas
2820 GeoDataFrame. This option can be ommitted if there's
2821 only one GEOGRAPHY column.
2822 bool_dtype (Optional[pandas.Series.dtype, None]):
2823 If set, indicate a pandas ExtensionDtype (e.g. ``pandas.BooleanDtype()``)
2824 to convert BigQuery Boolean type, instead of relying on the default
2825 ``pandas.BooleanDtype()``. If you explicitly set the value to ``None``,
2826 then the data type will be ``numpy.dtype("bool")``. BigQuery Boolean
2827 type can be found at:
2828 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#boolean_type
2829 int_dtype (Optional[pandas.Series.dtype, None]):
2830 If set, indicate a pandas ExtensionDtype (e.g. ``pandas.Int64Dtype()``)
2831 to convert BigQuery Integer types, instead of relying on the default
2832 ``pandas.Int64Dtype()``. If you explicitly set the value to ``None``,
2833 then the data type will be ``numpy.dtype("int64")``. A list of BigQuery
2834 Integer types can be found at:
2835 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#integer_types
2836 float_dtype (Optional[pandas.Series.dtype, None]):
2837 If set, indicate a pandas ExtensionDtype (e.g. ``pandas.Float32Dtype()``)
2838 to convert BigQuery Float type, instead of relying on the default
2839 ``numpy.dtype("float64")``. If you explicitly set the value to ``None``,
2840 then the data type will be ``numpy.dtype("float64")``. BigQuery Float
2841 type can be found at:
2842 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#floating_point_types
2843 string_dtype (Optional[pandas.Series.dtype, None]):
2844 If set, indicate a pandas ExtensionDtype (e.g. ``pandas.StringDtype()``) to
2845 convert BigQuery String type, instead of relying on the default
2846 ``numpy.dtype("object")``. If you explicitly set the value to ``None``,
2847 then the data type will be ``numpy.dtype("object")``. BigQuery String
2848 type can be found at:
2849 https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#string_type
2850
2851 Returns:
2852 geopandas.GeoDataFrame:
2853 A :class:`geopandas.GeoDataFrame` populated with row
2854 data and column headers from the query results. The
2855 column headers are derived from the destination
2856 table's schema.
2857
2858 Raises:
2859 ValueError:
2860 If the :mod:`geopandas` library cannot be imported, or the
2861 :mod:`google.cloud.bigquery_storage_v1` module is
2862 required but cannot be imported.
2863
2864 .. versionadded:: 2.24.0
2865 """
2866 if geopandas is None:
2867 raise ValueError(_NO_GEOPANDAS_ERROR)
2868
2869 geography_columns = set(
2870 field.name
2871 for field in self.schema
2872 if field.field_type.upper() == "GEOGRAPHY"
2873 )
2874 if not geography_columns:
2875 raise TypeError(
2876 "There must be at least one GEOGRAPHY column"
2877 " to create a GeoDataFrame"
2878 )
2879
2880 if geography_column:
2881 if geography_column not in geography_columns:
2882 raise ValueError(
2883 f"The given geography column, {geography_column}, doesn't name"
2884 f" a GEOGRAPHY column in the result."
2885 )
2886 elif len(geography_columns) == 1:
2887 [geography_column] = geography_columns
2888 else:
2889 raise ValueError(
2890 "There is more than one GEOGRAPHY column in the result. "
2891 "The geography_column argument must be used to specify which "
2892 "one to use to create a GeoDataFrame"
2893 )
2894
2895 df = self.to_dataframe(
2896 bqstorage_client,
2897 dtypes,
2898 progress_bar_type,
2899 create_bqstorage_client,
2900 geography_as_object=True,
2901 bool_dtype=bool_dtype,
2902 int_dtype=int_dtype,
2903 float_dtype=float_dtype,
2904 string_dtype=string_dtype,
2905 )
2906
2907 return geopandas.GeoDataFrame(
2908 df, crs=_COORDINATE_REFERENCE_SYSTEM, geometry=geography_column
2909 )
2910
2911
2912class _EmptyRowIterator(RowIterator):
2913 """An empty row iterator.
2914
2915 This class prevents API requests when there are no rows to fetch or rows
2916 are impossible to fetch, such as with query results for DDL CREATE VIEW
2917 statements.
2918 """
2919
2920 pages = ()
2921 total_rows = 0
2922
2923 def __init__(
2924 self, client=None, api_request=None, path=None, schema=(), *args, **kwargs
2925 ):
2926 super().__init__(
2927 client=client,
2928 api_request=api_request,
2929 path=path,
2930 schema=schema,
2931 *args,
2932 **kwargs,
2933 )
2934
2935 def to_arrow(
2936 self,
2937 progress_bar_type=None,
2938 bqstorage_client=None,
2939 create_bqstorage_client=True,
2940 ) -> "pyarrow.Table":
2941 """[Beta] Create an empty class:`pyarrow.Table`.
2942
2943 Args:
2944 progress_bar_type (str): Ignored. Added for compatibility with RowIterator.
2945 bqstorage_client (Any): Ignored. Added for compatibility with RowIterator.
2946 create_bqstorage_client (bool): Ignored. Added for compatibility with RowIterator.
2947
2948 Returns:
2949 pyarrow.Table: An empty :class:`pyarrow.Table`.
2950 """
2951 if pyarrow is None:
2952 raise ValueError(_NO_PYARROW_ERROR)
2953 return pyarrow.Table.from_arrays(())
2954
2955 def to_dataframe(
2956 self,
2957 bqstorage_client=None,
2958 dtypes=None,
2959 progress_bar_type=None,
2960 create_bqstorage_client=True,
2961 geography_as_object=False,
2962 bool_dtype=None,
2963 int_dtype=None,
2964 float_dtype=None,
2965 string_dtype=None,
2966 date_dtype=None,
2967 datetime_dtype=None,
2968 time_dtype=None,
2969 timestamp_dtype=None,
2970 range_date_dtype=None,
2971 range_datetime_dtype=None,
2972 range_timestamp_dtype=None,
2973 ) -> "pandas.DataFrame":
2974 """Create an empty dataframe.
2975
2976 Args:
2977 bqstorage_client (Any): Ignored. Added for compatibility with RowIterator.
2978 dtypes (Any): Ignored. Added for compatibility with RowIterator.
2979 progress_bar_type (Any): Ignored. Added for compatibility with RowIterator.
2980 create_bqstorage_client (bool): Ignored. Added for compatibility with RowIterator.
2981 geography_as_object (bool): Ignored. Added for compatibility with RowIterator.
2982 bool_dtype (Any): Ignored. Added for compatibility with RowIterator.
2983 int_dtype (Any): Ignored. Added for compatibility with RowIterator.
2984 float_dtype (Any): Ignored. Added for compatibility with RowIterator.
2985 string_dtype (Any): Ignored. Added for compatibility with RowIterator.
2986 date_dtype (Any): Ignored. Added for compatibility with RowIterator.
2987 datetime_dtype (Any): Ignored. Added for compatibility with RowIterator.
2988 time_dtype (Any): Ignored. Added for compatibility with RowIterator.
2989 timestamp_dtype (Any): Ignored. Added for compatibility with RowIterator.
2990 range_date_dtype (Any): Ignored. Added for compatibility with RowIterator.
2991 range_datetime_dtype (Any): Ignored. Added for compatibility with RowIterator.
2992 range_timestamp_dtype (Any): Ignored. Added for compatibility with RowIterator.
2993
2994 Returns:
2995 pandas.DataFrame: An empty :class:`~pandas.DataFrame`.
2996 """
2997 _pandas_helpers.verify_pandas_imports()
2998 return pandas.DataFrame()
2999
3000 def to_geodataframe(
3001 self,
3002 bqstorage_client=None,
3003 dtypes=None,
3004 progress_bar_type=None,
3005 create_bqstorage_client=True,
3006 geography_column: Optional[str] = None,
3007 bool_dtype: Union[Any, None] = DefaultPandasDTypes.BOOL_DTYPE,
3008 int_dtype: Union[Any, None] = DefaultPandasDTypes.INT_DTYPE,
3009 float_dtype: Union[Any, None] = None,
3010 string_dtype: Union[Any, None] = None,
3011 ) -> "pandas.DataFrame":
3012 """Create an empty dataframe.
3013
3014 Args:
3015 bqstorage_client (Any): Ignored. Added for compatibility with RowIterator.
3016 dtypes (Any): Ignored. Added for compatibility with RowIterator.
3017 progress_bar_type (Any): Ignored. Added for compatibility with RowIterator.
3018 create_bqstorage_client (bool): Ignored. Added for compatibility with RowIterator.
3019 geography_column (str): Ignored. Added for compatibility with RowIterator.
3020 bool_dtype (Any): Ignored. Added for compatibility with RowIterator.
3021 int_dtype (Any): Ignored. Added for compatibility with RowIterator.
3022 float_dtype (Any): Ignored. Added for compatibility with RowIterator.
3023 string_dtype (Any): Ignored. Added for compatibility with RowIterator.
3024
3025 Returns:
3026 pandas.DataFrame: An empty :class:`~pandas.DataFrame`.
3027 """
3028 if geopandas is None:
3029 raise ValueError(_NO_GEOPANDAS_ERROR)
3030
3031 # Since an empty GeoDataFrame has no geometry column, we do not CRS on it,
3032 # because that's deprecated.
3033 return geopandas.GeoDataFrame()
3034
3035 def to_dataframe_iterable(
3036 self,
3037 bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
3038 dtypes: Optional[Dict[str, Any]] = None,
3039 max_queue_size: Optional[int] = None,
3040 max_stream_count: Optional[int] = None,
3041 ) -> Iterator["pandas.DataFrame"]:
3042 """Create an iterable of pandas DataFrames, to process the table as a stream.
3043
3044 .. versionadded:: 2.21.0
3045
3046 Args:
3047 bqstorage_client:
3048 Ignored. Added for compatibility with RowIterator.
3049
3050 dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]):
3051 Ignored. Added for compatibility with RowIterator.
3052
3053 max_queue_size:
3054 Ignored. Added for compatibility with RowIterator.
3055
3056 max_stream_count:
3057 Ignored. Added for compatibility with RowIterator.
3058
3059 Returns:
3060 An iterator yielding a single empty :class:`~pandas.DataFrame`.
3061
3062 Raises:
3063 ValueError:
3064 If the :mod:`pandas` library cannot be imported.
3065 """
3066 _pandas_helpers.verify_pandas_imports()
3067 return iter((pandas.DataFrame(),))
3068
3069 def to_arrow_iterable(
3070 self,
3071 bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None,
3072 max_queue_size: Optional[int] = None,
3073 max_stream_count: Optional[int] = None,
3074 ) -> Iterator["pyarrow.RecordBatch"]:
3075 """Create an iterable of pandas DataFrames, to process the table as a stream.
3076
3077 .. versionadded:: 2.31.0
3078
3079 Args:
3080 bqstorage_client:
3081 Ignored. Added for compatibility with RowIterator.
3082
3083 max_queue_size:
3084 Ignored. Added for compatibility with RowIterator.
3085
3086 max_stream_count:
3087 Ignored. Added for compatibility with RowIterator.
3088
3089 Returns:
3090 An iterator yielding a single empty :class:`~pyarrow.RecordBatch`.
3091 """
3092 return iter((pyarrow.record_batch([]),))
3093
3094 def __iter__(self):
3095 return iter(())
3096
3097
3098class PartitionRange(object):
3099 """Definition of the ranges for range partitioning.
3100
3101 .. note::
3102 **Beta**. The integer range partitioning feature is in a pre-release
3103 state and might change or have limited support.
3104
3105 Args:
3106 start (Optional[int]):
3107 Sets the
3108 :attr:`~google.cloud.bigquery.table.PartitionRange.start`
3109 property.
3110 end (Optional[int]):
3111 Sets the
3112 :attr:`~google.cloud.bigquery.table.PartitionRange.end`
3113 property.
3114 interval (Optional[int]):
3115 Sets the
3116 :attr:`~google.cloud.bigquery.table.PartitionRange.interval`
3117 property.
3118 _properties (Optional[dict]):
3119 Private. Used to construct object from API resource.
3120 """
3121
3122 def __init__(self, start=None, end=None, interval=None, _properties=None) -> None:
3123 if _properties is None:
3124 _properties = {}
3125 self._properties = _properties
3126
3127 if start is not None:
3128 self.start = start
3129 if end is not None:
3130 self.end = end
3131 if interval is not None:
3132 self.interval = interval
3133
3134 @property
3135 def start(self):
3136 """int: The start of range partitioning, inclusive."""
3137 return _helpers._int_or_none(self._properties.get("start"))
3138
3139 @start.setter
3140 def start(self, value):
3141 self._properties["start"] = _helpers._str_or_none(value)
3142
3143 @property
3144 def end(self):
3145 """int: The end of range partitioning, exclusive."""
3146 return _helpers._int_or_none(self._properties.get("end"))
3147
3148 @end.setter
3149 def end(self, value):
3150 self._properties["end"] = _helpers._str_or_none(value)
3151
3152 @property
3153 def interval(self):
3154 """int: The width of each interval."""
3155 return _helpers._int_or_none(self._properties.get("interval"))
3156
3157 @interval.setter
3158 def interval(self, value):
3159 self._properties["interval"] = _helpers._str_or_none(value)
3160
3161 def _key(self):
3162 return tuple(sorted(self._properties.items()))
3163
3164 def __eq__(self, other):
3165 if not isinstance(other, PartitionRange):
3166 return NotImplemented
3167 return self._key() == other._key()
3168
3169 def __ne__(self, other):
3170 return not self == other
3171
3172 def __repr__(self):
3173 key_vals = ["{}={}".format(key, val) for key, val in self._key()]
3174 return "PartitionRange({})".format(", ".join(key_vals))
3175
3176
3177class RangePartitioning(object):
3178 """Range-based partitioning configuration for a table.
3179
3180 .. note::
3181 **Beta**. The integer range partitioning feature is in a pre-release
3182 state and might change or have limited support.
3183
3184 Args:
3185 range_ (Optional[google.cloud.bigquery.table.PartitionRange]):
3186 Sets the
3187 :attr:`google.cloud.bigquery.table.RangePartitioning.range_`
3188 property.
3189 field (Optional[str]):
3190 Sets the
3191 :attr:`google.cloud.bigquery.table.RangePartitioning.field`
3192 property.
3193 _properties (Optional[dict]):
3194 Private. Used to construct object from API resource.
3195 """
3196
3197 def __init__(self, range_=None, field=None, _properties=None) -> None:
3198 if _properties is None:
3199 _properties = {}
3200 self._properties: Dict[str, Any] = _properties
3201
3202 if range_ is not None:
3203 self.range_ = range_
3204 if field is not None:
3205 self.field = field
3206
3207 # Trailing underscore to prevent conflict with built-in range() function.
3208 @property
3209 def range_(self):
3210 """google.cloud.bigquery.table.PartitionRange: Defines the
3211 ranges for range partitioning.
3212
3213 Raises:
3214 ValueError:
3215 If the value is not a :class:`PartitionRange`.
3216 """
3217 range_properties = self._properties.setdefault("range", {})
3218 return PartitionRange(_properties=range_properties)
3219
3220 @range_.setter
3221 def range_(self, value):
3222 if not isinstance(value, PartitionRange):
3223 raise ValueError("Expected a PartitionRange, but got {}.".format(value))
3224 self._properties["range"] = value._properties
3225
3226 @property
3227 def field(self):
3228 """str: The table is partitioned by this field.
3229
3230 The field must be a top-level ``NULLABLE`` / ``REQUIRED`` field. The
3231 only supported type is ``INTEGER`` / ``INT64``.
3232 """
3233 return self._properties.get("field")
3234
3235 @field.setter
3236 def field(self, value):
3237 self._properties["field"] = value
3238
3239 def _key(self):
3240 return (("field", self.field), ("range_", self.range_))
3241
3242 def __eq__(self, other):
3243 if not isinstance(other, RangePartitioning):
3244 return NotImplemented
3245 return self._key() == other._key()
3246
3247 def __ne__(self, other):
3248 return not self == other
3249
3250 def __repr__(self):
3251 key_vals = ["{}={}".format(key, repr(val)) for key, val in self._key()]
3252 return "RangePartitioning({})".format(", ".join(key_vals))
3253
3254
3255class TimePartitioningType(object):
3256 """Specifies the type of time partitioning to perform."""
3257
3258 DAY = "DAY"
3259 """str: Generates one partition per day."""
3260
3261 HOUR = "HOUR"
3262 """str: Generates one partition per hour."""
3263
3264 MONTH = "MONTH"
3265 """str: Generates one partition per month."""
3266
3267 YEAR = "YEAR"
3268 """str: Generates one partition per year."""
3269
3270
3271class TimePartitioning(object):
3272 """Configures time-based partitioning for a table.
3273
3274 Args:
3275 type_ (Optional[google.cloud.bigquery.table.TimePartitioningType]):
3276 Specifies the type of time partitioning to perform. Defaults to
3277 :attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`.
3278
3279 Supported values are:
3280
3281 * :attr:`~google.cloud.bigquery.table.TimePartitioningType.HOUR`
3282 * :attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`
3283 * :attr:`~google.cloud.bigquery.table.TimePartitioningType.MONTH`
3284 * :attr:`~google.cloud.bigquery.table.TimePartitioningType.YEAR`
3285
3286 field (Optional[str]):
3287 If set, the table is partitioned by this field. If not set, the
3288 table is partitioned by pseudo column ``_PARTITIONTIME``. The field
3289 must be a top-level ``TIMESTAMP``, ``DATETIME``, or ``DATE``
3290 field. Its mode must be ``NULLABLE`` or ``REQUIRED``.
3291
3292 See the `time-unit column-partitioned tables guide
3293 <https://cloud.google.com/bigquery/docs/creating-column-partitions>`_
3294 in the BigQuery documentation.
3295 expiration_ms(Optional[int]):
3296 Number of milliseconds for which to keep the storage for a
3297 partition.
3298 require_partition_filter (Optional[bool]):
3299 DEPRECATED: Use
3300 :attr:`~google.cloud.bigquery.table.Table.require_partition_filter`,
3301 instead.
3302 """
3303
3304 def __init__(
3305 self, type_=None, field=None, expiration_ms=None, require_partition_filter=None
3306 ) -> None:
3307 self._properties: Dict[str, Any] = {}
3308 if type_ is None:
3309 self.type_ = TimePartitioningType.DAY
3310 else:
3311 self.type_ = type_
3312 if field is not None:
3313 self.field = field
3314 if expiration_ms is not None:
3315 self.expiration_ms = expiration_ms
3316 if require_partition_filter is not None:
3317 self.require_partition_filter = require_partition_filter
3318
3319 @property
3320 def type_(self):
3321 """google.cloud.bigquery.table.TimePartitioningType: The type of time
3322 partitioning to use.
3323 """
3324 return self._properties.get("type")
3325
3326 @type_.setter
3327 def type_(self, value):
3328 self._properties["type"] = value
3329
3330 @property
3331 def field(self):
3332 """str: Field in the table to use for partitioning"""
3333 return self._properties.get("field")
3334
3335 @field.setter
3336 def field(self, value):
3337 self._properties["field"] = value
3338
3339 @property
3340 def expiration_ms(self):
3341 """int: Number of milliseconds to keep the storage for a partition."""
3342 return _helpers._int_or_none(self._properties.get("expirationMs"))
3343
3344 @expiration_ms.setter
3345 def expiration_ms(self, value):
3346 if value is not None:
3347 # Allow explicitly setting the expiration to None.
3348 value = str(value)
3349 self._properties["expirationMs"] = value
3350
3351 @property
3352 def require_partition_filter(self):
3353 """bool: Specifies whether partition filters are required for queries
3354
3355 DEPRECATED: Use
3356 :attr:`~google.cloud.bigquery.table.Table.require_partition_filter`,
3357 instead.
3358 """
3359 warnings.warn(
3360 (
3361 "TimePartitioning.require_partition_filter will be removed in "
3362 "future versions. Please use Table.require_partition_filter "
3363 "instead."
3364 ),
3365 PendingDeprecationWarning,
3366 stacklevel=2,
3367 )
3368 return self._properties.get("requirePartitionFilter")
3369
3370 @require_partition_filter.setter
3371 def require_partition_filter(self, value):
3372 warnings.warn(
3373 (
3374 "TimePartitioning.require_partition_filter will be removed in "
3375 "future versions. Please use Table.require_partition_filter "
3376 "instead."
3377 ),
3378 PendingDeprecationWarning,
3379 stacklevel=2,
3380 )
3381 self._properties["requirePartitionFilter"] = value
3382
3383 @classmethod
3384 def from_api_repr(cls, api_repr: dict) -> "TimePartitioning":
3385 """Return a :class:`TimePartitioning` object deserialized from a dict.
3386
3387 This method creates a new ``TimePartitioning`` instance that points to
3388 the ``api_repr`` parameter as its internal properties dict. This means
3389 that when a ``TimePartitioning`` instance is stored as a property of
3390 another object, any changes made at the higher level will also appear
3391 here::
3392
3393 >>> time_partitioning = TimePartitioning()
3394 >>> table.time_partitioning = time_partitioning
3395 >>> table.time_partitioning.field = 'timecolumn'
3396 >>> time_partitioning.field
3397 'timecolumn'
3398
3399 Args:
3400 api_repr (Mapping[str, str]):
3401 The serialized representation of the TimePartitioning, such as
3402 what is output by :meth:`to_api_repr`.
3403
3404 Returns:
3405 google.cloud.bigquery.table.TimePartitioning:
3406 The ``TimePartitioning`` object.
3407 """
3408 instance = cls()
3409 instance._properties = api_repr
3410 return instance
3411
3412 def to_api_repr(self) -> dict:
3413 """Return a dictionary representing this object.
3414
3415 This method returns the properties dict of the ``TimePartitioning``
3416 instance rather than making a copy. This means that when a
3417 ``TimePartitioning`` instance is stored as a property of another
3418 object, any changes made at the higher level will also appear here.
3419
3420 Returns:
3421 dict:
3422 A dictionary representing the TimePartitioning object in
3423 serialized form.
3424 """
3425 return self._properties
3426
3427 def _key(self):
3428 # because we are only "renaming" top level keys shallow copy is sufficient here.
3429 properties = self._properties.copy()
3430 # calling repr for non built-in type objects.
3431 properties["type_"] = repr(properties.pop("type"))
3432 if "field" in properties:
3433 # calling repr for non built-in type objects.
3434 properties["field"] = repr(properties["field"])
3435 if "requirePartitionFilter" in properties:
3436 properties["require_partition_filter"] = properties.pop(
3437 "requirePartitionFilter"
3438 )
3439 if "expirationMs" in properties:
3440 properties["expiration_ms"] = properties.pop("expirationMs")
3441 return tuple(sorted(properties.items()))
3442
3443 def __eq__(self, other):
3444 if not isinstance(other, TimePartitioning):
3445 return NotImplemented
3446 return self._key() == other._key()
3447
3448 def __ne__(self, other):
3449 return not self == other
3450
3451 def __hash__(self):
3452 return hash(self._key())
3453
3454 def __repr__(self):
3455 key_vals = ["{}={}".format(key, val) for key, val in self._key()]
3456 return "TimePartitioning({})".format(",".join(key_vals))
3457
3458
3459class PrimaryKey:
3460 """Represents the primary key constraint on a table's columns.
3461
3462 Args:
3463 columns: The columns that are composed of the primary key constraint.
3464 """
3465
3466 def __init__(self, columns: List[str]):
3467 self.columns = columns
3468
3469 def __eq__(self, other):
3470 if not isinstance(other, PrimaryKey):
3471 raise TypeError("The value provided is not a BigQuery PrimaryKey.")
3472 return self.columns == other.columns
3473
3474
3475class ColumnReference:
3476 """The pair of the foreign key column and primary key column.
3477
3478 Args:
3479 referencing_column: The column that composes the foreign key.
3480 referenced_column: The column in the primary key that are referenced by the referencingColumn.
3481 """
3482
3483 def __init__(self, referencing_column: str, referenced_column: str):
3484 self.referencing_column = referencing_column
3485 self.referenced_column = referenced_column
3486
3487 def __eq__(self, other):
3488 if not isinstance(other, ColumnReference):
3489 raise TypeError("The value provided is not a BigQuery ColumnReference.")
3490 return (
3491 self.referencing_column == other.referencing_column
3492 and self.referenced_column == other.referenced_column
3493 )
3494
3495
3496class ForeignKey:
3497 """Represents a foreign key constraint on a table's columns.
3498
3499 Args:
3500 name: Set only if the foreign key constraint is named.
3501 referenced_table: The table that holds the primary key and is referenced by this foreign key.
3502 column_references: The columns that compose the foreign key.
3503 """
3504
3505 def __init__(
3506 self,
3507 name: str,
3508 referenced_table: TableReference,
3509 column_references: List[ColumnReference],
3510 ):
3511 self.name = name
3512 self.referenced_table = referenced_table
3513 self.column_references = column_references
3514
3515 def __eq__(self, other):
3516 if not isinstance(other, ForeignKey):
3517 raise TypeError("The value provided is not a BigQuery ForeignKey.")
3518 return (
3519 self.name == other.name
3520 and self.referenced_table == other.referenced_table
3521 and self.column_references == other.column_references
3522 )
3523
3524 @classmethod
3525 def from_api_repr(cls, api_repr: Dict[str, Any]) -> "ForeignKey":
3526 """Create an instance from API representation."""
3527 return cls(
3528 name=api_repr["name"],
3529 referenced_table=TableReference.from_api_repr(api_repr["referencedTable"]),
3530 column_references=[
3531 ColumnReference(
3532 column_reference_resource["referencingColumn"],
3533 column_reference_resource["referencedColumn"],
3534 )
3535 for column_reference_resource in api_repr["columnReferences"]
3536 ],
3537 )
3538
3539 def to_api_repr(self) -> Dict[str, Any]:
3540 """Return a dictionary representing this object."""
3541 return {
3542 "name": self.name,
3543 "referencedTable": self.referenced_table.to_api_repr(),
3544 "columnReferences": [
3545 {
3546 "referencingColumn": column_reference.referencing_column,
3547 "referencedColumn": column_reference.referenced_column,
3548 }
3549 for column_reference in self.column_references
3550 ],
3551 }
3552
3553
3554class TableConstraints:
3555 """The TableConstraints defines the primary key and foreign key.
3556
3557 Args:
3558 primary_key:
3559 Represents a primary key constraint on a table's columns. Present only if the table
3560 has a primary key. The primary key is not enforced.
3561 foreign_keys:
3562 Present only if the table has a foreign key. The foreign key is not enforced.
3563
3564 """
3565
3566 def __init__(
3567 self,
3568 primary_key: Optional[PrimaryKey],
3569 foreign_keys: Optional[List[ForeignKey]],
3570 ):
3571 self.primary_key = primary_key
3572 self.foreign_keys = foreign_keys
3573
3574 def __eq__(self, other):
3575 if not isinstance(other, TableConstraints) and other is not None:
3576 raise TypeError("The value provided is not a BigQuery TableConstraints.")
3577 return (
3578 self.primary_key == other.primary_key if other.primary_key else None
3579 ) and (self.foreign_keys == other.foreign_keys if other.foreign_keys else None)
3580
3581 @classmethod
3582 def from_api_repr(cls, resource: Dict[str, Any]) -> "TableConstraints":
3583 """Create an instance from API representation."""
3584 primary_key = None
3585 if "primaryKey" in resource:
3586 primary_key = PrimaryKey(resource["primaryKey"]["columns"])
3587
3588 foreign_keys = None
3589 if "foreignKeys" in resource:
3590 foreign_keys = [
3591 ForeignKey.from_api_repr(foreign_key_resource)
3592 for foreign_key_resource in resource["foreignKeys"]
3593 ]
3594 return cls(primary_key, foreign_keys)
3595
3596 def to_api_repr(self) -> Dict[str, Any]:
3597 """Return a dictionary representing this object."""
3598 resource: Dict[str, Any] = {}
3599 if self.primary_key:
3600 resource["primaryKey"] = {"columns": self.primary_key.columns}
3601 if self.foreign_keys:
3602 resource["foreignKeys"] = [
3603 foreign_key.to_api_repr() for foreign_key in self.foreign_keys
3604 ]
3605 return resource
3606
3607
3608class BigLakeConfiguration(object):
3609 """Configuration for managed tables for Apache Iceberg, formerly
3610 known as BigLake.
3611
3612 Args:
3613 connection_id (Optional[str]):
3614 The connection specifying the credentials to be used to read and write to external
3615 storage, such as Cloud Storage. The connection_id can have the form
3616 ``{project}.{location}.{connection_id}`` or
3617 ``projects/{project}/locations/{location}/connections/{connection_id}``.
3618 storage_uri (Optional[str]):
3619 The fully qualified location prefix of the external folder where table data is
3620 stored. The '*' wildcard character is not allowed. The URI should be in the
3621 format ``gs://bucket/path_to_table/``.
3622 file_format (Optional[str]):
3623 The file format the table data is stored in. See BigLakeFileFormat for available
3624 values.
3625 table_format (Optional[str]):
3626 The table format the metadata only snapshots are stored in. See BigLakeTableFormat
3627 for available values.
3628 _properties (Optional[dict]):
3629 Private. Used to construct object from API resource.
3630 """
3631
3632 def __init__(
3633 self,
3634 connection_id: Optional[str] = None,
3635 storage_uri: Optional[str] = None,
3636 file_format: Optional[str] = None,
3637 table_format: Optional[str] = None,
3638 _properties: Optional[dict] = None,
3639 ) -> None:
3640 if _properties is None:
3641 _properties = {}
3642 self._properties = _properties
3643 if connection_id is not None:
3644 self.connection_id = connection_id
3645 if storage_uri is not None:
3646 self.storage_uri = storage_uri
3647 if file_format is not None:
3648 self.file_format = file_format
3649 if table_format is not None:
3650 self.table_format = table_format
3651
3652 @property
3653 def connection_id(self) -> Optional[str]:
3654 """str: The connection specifying the credentials to be used to read and write to external
3655 storage, such as Cloud Storage."""
3656 return self._properties.get("connectionId")
3657
3658 @connection_id.setter
3659 def connection_id(self, value: Optional[str]):
3660 self._properties["connectionId"] = value
3661
3662 @property
3663 def storage_uri(self) -> Optional[str]:
3664 """str: The fully qualified location prefix of the external folder where table data is
3665 stored."""
3666 return self._properties.get("storageUri")
3667
3668 @storage_uri.setter
3669 def storage_uri(self, value: Optional[str]):
3670 self._properties["storageUri"] = value
3671
3672 @property
3673 def file_format(self) -> Optional[str]:
3674 """str: The file format the table data is stored in. See BigLakeFileFormat for available
3675 values."""
3676 return self._properties.get("fileFormat")
3677
3678 @file_format.setter
3679 def file_format(self, value: Optional[str]):
3680 self._properties["fileFormat"] = value
3681
3682 @property
3683 def table_format(self) -> Optional[str]:
3684 """str: The table format the metadata only snapshots are stored in. See BigLakeTableFormat
3685 for available values."""
3686 return self._properties.get("tableFormat")
3687
3688 @table_format.setter
3689 def table_format(self, value: Optional[str]):
3690 self._properties["tableFormat"] = value
3691
3692 def _key(self):
3693 return tuple(sorted(self._properties.items()))
3694
3695 def __eq__(self, other):
3696 if not isinstance(other, BigLakeConfiguration):
3697 return NotImplemented
3698 return self._key() == other._key()
3699
3700 def __ne__(self, other):
3701 return not self == other
3702
3703 def __hash__(self):
3704 return hash(self._key())
3705
3706 def __repr__(self):
3707 key_vals = ["{}={}".format(key, val) for key, val in self._key()]
3708 return "BigLakeConfiguration({})".format(",".join(key_vals))
3709
3710 @classmethod
3711 def from_api_repr(cls, resource: Dict[str, Any]) -> "BigLakeConfiguration":
3712 """Factory: construct a BigLakeConfiguration given its API representation.
3713
3714 Args:
3715 resource:
3716 BigLakeConfiguration representation returned from the API
3717
3718 Returns:
3719 BigLakeConfiguration parsed from ``resource``.
3720 """
3721 ref = cls()
3722 ref._properties = resource
3723 return ref
3724
3725 def to_api_repr(self) -> Dict[str, Any]:
3726 """Construct the API resource representation of this BigLakeConfiguration.
3727
3728 Returns:
3729 BigLakeConfiguration represented as an API resource.
3730 """
3731 return copy.deepcopy(self._properties)
3732
3733
3734def _item_to_row(iterator, resource):
3735 """Convert a JSON row to the native object.
3736
3737 .. note::
3738
3739 This assumes that the ``schema`` attribute has been
3740 added to the iterator after being created, which
3741 should be done by the caller.
3742
3743 Args:
3744 iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use.
3745 resource (Dict): An item to be converted to a row.
3746
3747 Returns:
3748 google.cloud.bigquery.table.Row: The next row in the page.
3749 """
3750 return Row(
3751 _helpers._row_tuple_from_json(resource, iterator.schema),
3752 iterator._field_to_index,
3753 )
3754
3755
3756def _row_iterator_page_columns(schema, response):
3757 """Make a generator of all the columns in a page from tabledata.list.
3758
3759 This enables creating a :class:`pandas.DataFrame` and other
3760 column-oriented data structures such as :class:`pyarrow.RecordBatch`
3761 """
3762 columns = []
3763 rows = response.get("rows", [])
3764
3765 def get_column_data(field_index, field):
3766 for row in rows:
3767 yield _helpers.DATA_FRAME_CELL_DATA_PARSER.to_py(
3768 row["f"][field_index]["v"], field
3769 )
3770
3771 for field_index, field in enumerate(schema):
3772 columns.append(get_column_data(field_index, field))
3773
3774 return columns
3775
3776
3777# pylint: disable=unused-argument
3778def _rows_page_start(iterator, page, response):
3779 """Grab total rows when :class:`~google.cloud.iterator.Page` starts.
3780
3781 Args:
3782 iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use.
3783 page (google.api_core.page_iterator.Page): The page that was just created.
3784 response (Dict): The JSON API response for a page of rows in a table.
3785 """
3786 # Make a (lazy) copy of the page in column-oriented format for use in data
3787 # science packages.
3788 page._columns = _row_iterator_page_columns(iterator._schema, response)
3789
3790 total_rows = response.get("totalRows")
3791 # Don't reset total_rows if it's not present in the next API response.
3792 if total_rows is not None:
3793 iterator._total_rows = int(total_rows)
3794
3795
3796# pylint: enable=unused-argument
3797
3798
3799def _table_arg_to_table_ref(value, default_project=None) -> TableReference:
3800 """Helper to convert a string or Table to TableReference.
3801
3802 This function keeps TableReference and other kinds of objects unchanged.
3803 """
3804 if isinstance(value, str):
3805 value = TableReference.from_string(value, default_project=default_project)
3806 if isinstance(value, (Table, TableListItem)):
3807 value = value.reference
3808 return value
3809
3810
3811def _table_arg_to_table(value, default_project=None) -> Table:
3812 """Helper to convert a string or TableReference to a Table.
3813
3814 This function keeps Table and other kinds of objects unchanged.
3815 """
3816 if isinstance(value, str):
3817 value = TableReference.from_string(value, default_project=default_project)
3818 if isinstance(value, TableReference):
3819 value = Table(value)
3820 if isinstance(value, TableListItem):
3821 newvalue = Table(value.reference)
3822 newvalue._properties = value._properties
3823 value = newvalue
3824
3825 return value