Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/IPython/core/magics/execution.py: 18%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

645 statements  

1# -*- coding: utf-8 -*- 

2"""Implementation of execution-related magic functions.""" 

3 

4# Copyright (c) IPython Development Team. 

5# Distributed under the terms of the Modified BSD License. 

6 

7 

8import ast 

9import bdb 

10import builtins as builtin_mod 

11import copy 

12import cProfile as profile 

13import gc 

14import itertools 

15import math 

16import os 

17import pstats 

18import re 

19import shlex 

20import sys 

21import time 

22import timeit 

23import signal 

24from typing import Dict, Any 

25from ast import ( 

26 Assign, 

27 Call, 

28 Expr, 

29 Load, 

30 Module, 

31 Name, 

32 NodeTransformer, 

33 Store, 

34 parse, 

35 unparse, 

36) 

37from io import StringIO 

38from logging import error 

39from pathlib import Path 

40from pdb import Restart 

41from textwrap import dedent, indent 

42from warnings import warn 

43 

44from IPython.core import magic_arguments, oinspect, page 

45from IPython.core.displayhook import DisplayHook 

46from IPython.core.error import UsageError 

47from IPython.core.macro import Macro 

48from IPython.core.magic import ( 

49 Magics, 

50 cell_magic, 

51 line_cell_magic, 

52 line_magic, 

53 magics_class, 

54 needs_local_scope, 

55 no_var_expand, 

56 on_off, 

57 output_can_be_silenced, 

58) 

59from IPython.testing.skipdoctest import skip_doctest 

60from IPython.utils.capture import capture_output 

61from IPython.utils.contexts import preserve_keys 

62from IPython.utils.ipstruct import Struct 

63from IPython.utils.module_paths import find_mod 

64from IPython.utils.path import get_py_filename, shellglob 

65from IPython.utils.timing import clock, clock2 

66from IPython.core.magics.ast_mod import ReplaceCodeTransformer 

67 

68#----------------------------------------------------------------------------- 

69# Magic implementation classes 

70#----------------------------------------------------------------------------- 

71 

72 

73class TimeitResult: 

74 """ 

75 Object returned by the timeit magic with info about the run. 

76 

77 Contains the following attributes: 

78 

79 loops: int 

80 number of loops done per measurement 

81 

82 repeat: int 

83 number of times the measurement was repeated 

84 

85 best: float 

86 best execution time / number 

87 

88 all_runs : list[float] 

89 execution time of each run (in s) 

90 

91 compile_time: float 

92 time of statement compilation (s) 

93 

94 """ 

95 def __init__(self, loops, repeat, best, worst, all_runs, compile_time, precision): 

96 self.loops = loops 

97 self.repeat = repeat 

98 self.best = best 

99 self.worst = worst 

100 self.all_runs = all_runs 

101 self.compile_time = compile_time 

102 self._precision = precision 

103 self.timings = [dt / self.loops for dt in all_runs] 

104 

105 @property 

106 def average(self): 

107 return math.fsum(self.timings) / len(self.timings) 

108 

109 @property 

110 def stdev(self): 

111 mean = self.average 

112 return (math.fsum([(x - mean) ** 2 for x in self.timings]) / len(self.timings)) ** 0.5 

113 

114 def __str__(self): 

115 pm = '+-' 

116 if hasattr(sys.stdout, 'encoding') and sys.stdout.encoding: 

117 try: 

118 "\xb1".encode(sys.stdout.encoding) 

119 pm = "\xb1" 

120 except: 

121 pass 

122 return "{mean} {pm} {std} per loop (mean {pm} std. dev. of {runs} run{run_plural}, {loops:,} loop{loop_plural} each)".format( 

123 pm=pm, 

124 runs=self.repeat, 

125 loops=self.loops, 

126 loop_plural="" if self.loops == 1 else "s", 

127 run_plural="" if self.repeat == 1 else "s", 

128 mean=_format_time(self.average, self._precision), 

129 std=_format_time(self.stdev, self._precision), 

130 ) 

131 

132 def _repr_pretty_(self, p , cycle): 

133 unic = self.__str__() 

134 p.text("<TimeitResult : " + unic + ">") 

135 

136 

137class TimeitTemplateFiller(ast.NodeTransformer): 

138 """Fill in the AST template for timing execution. 

139 

140 This is quite closely tied to the template definition, which is in 

141 :meth:`ExecutionMagics.timeit`. 

142 """ 

143 def __init__(self, ast_setup, ast_stmt): 

144 self.ast_setup = ast_setup 

145 self.ast_stmt = ast_stmt 

146 

147 def visit_FunctionDef(self, node): 

148 "Fill in the setup statement" 

149 self.generic_visit(node) 

150 if node.name == "inner": 

151 node.body[:1] = self.ast_setup.body 

152 

153 return node 

154 

155 def visit_For(self, node): 

156 "Fill in the statement to be timed" 

157 if getattr(getattr(node.body[0], 'value', None), 'id', None) == 'stmt': 

158 node.body = self.ast_stmt.body 

159 return node 

160 

161 

162class Timer(timeit.Timer): 

163 """Timer class that explicitly uses self.inner 

164 

165 which is an undocumented implementation detail of CPython, 

166 not shared by PyPy. 

167 """ 

168 

169 # Timer.timeit copied from CPython 3.4.2 

170 def timeit(self, number=timeit.default_number): 

171 """Time 'number' executions of the main statement. 

172 

173 To be precise, this executes the setup statement once, and 

174 then returns the time it takes to execute the main statement 

175 a number of times, as a float measured in seconds. The 

176 argument is the number of times through the loop, defaulting 

177 to one million. The main statement, the setup statement and 

178 the timer function to be used are passed to the constructor. 

179 """ 

180 it = itertools.repeat(None, number) 

181 gcold = gc.isenabled() 

182 gc.disable() 

183 try: 

184 timing = self.inner(it, self.timer) 

185 finally: 

186 if gcold: 

187 gc.enable() 

188 return timing 

189 

190 

191@magics_class 

192class ExecutionMagics(Magics): 

193 """Magics related to code execution, debugging, profiling, etc.""" 

194 

195 _transformers: Dict[str, Any] = {} 

196 

197 def __init__(self, shell): 

198 super(ExecutionMagics, self).__init__(shell) 

199 # Default execution function used to actually run user code. 

200 self.default_runner = None 

201 

202 @skip_doctest 

203 @no_var_expand 

204 @line_cell_magic 

205 def prun(self, parameter_s='', cell=None): 

206 """Run a statement through the python code profiler. 

207 

208 **Usage, in line mode**:: 

209 

210 %prun [options] statement 

211 

212 **Usage, in cell mode**:: 

213 

214 %%prun [options] [statement] 

215 code... 

216 code... 

217 

218 In cell mode, the additional code lines are appended to the (possibly 

219 empty) statement in the first line. Cell mode allows you to easily 

220 profile multiline blocks without having to put them in a separate 

221 function. 

222 

223 The given statement (which doesn't require quote marks) is run via the 

224 python profiler in a manner similar to the profile.run() function. 

225 Namespaces are internally managed to work correctly; profile.run 

226 cannot be used in IPython because it makes certain assumptions about 

227 namespaces which do not hold under IPython. 

228 

229 Options: 

230 

231 -l <limit> 

232 you can place restrictions on what or how much of the 

233 profile gets printed. The limit value can be: 

234 

235 * A string: only information for function names containing this string 

236 is printed. 

237 

238 * An integer: only these many lines are printed. 

239 

240 * A float (between 0 and 1): this fraction of the report is printed 

241 (for example, use a limit of 0.4 to see the topmost 40% only). 

242 

243 You can combine several limits with repeated use of the option. For 

244 example, ``-l __init__ -l 5`` will print only the topmost 5 lines of 

245 information about class constructors. 

246 

247 -r 

248 return the pstats.Stats object generated by the profiling. This 

249 object has all the information about the profile in it, and you can 

250 later use it for further analysis or in other functions. 

251 

252 -s <key> 

253 sort profile by given key. You can provide more than one key 

254 by using the option several times: '-s key1 -s key2 -s key3...'. The 

255 default sorting key is 'time'. 

256 

257 The following is copied verbatim from the profile documentation 

258 referenced below: 

259 

260 When more than one key is provided, additional keys are used as 

261 secondary criteria when the there is equality in all keys selected 

262 before them. 

263 

264 Abbreviations can be used for any key names, as long as the 

265 abbreviation is unambiguous. The following are the keys currently 

266 defined: 

267 

268 ============ ===================== 

269 Valid Arg Meaning 

270 ============ ===================== 

271 "calls" call count 

272 "cumulative" cumulative time 

273 "file" file name 

274 "module" file name 

275 "pcalls" primitive call count 

276 "line" line number 

277 "name" function name 

278 "nfl" name/file/line 

279 "stdname" standard name 

280 "time" internal time 

281 ============ ===================== 

282 

283 Note that all sorts on statistics are in descending order (placing 

284 most time consuming items first), where as name, file, and line number 

285 searches are in ascending order (i.e., alphabetical). The subtle 

286 distinction between "nfl" and "stdname" is that the standard name is a 

287 sort of the name as printed, which means that the embedded line 

288 numbers get compared in an odd way. For example, lines 3, 20, and 40 

289 would (if the file names were the same) appear in the string order 

290 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the 

291 line numbers. In fact, sort_stats("nfl") is the same as 

292 sort_stats("name", "file", "line"). 

293 

294 -T <filename> 

295 save profile results as shown on screen to a text 

296 file. The profile is still shown on screen. 

297 

298 -D <filename> 

299 save (via dump_stats) profile statistics to given 

300 filename. This data is in a format understood by the pstats module, and 

301 is generated by a call to the dump_stats() method of profile 

302 objects. The profile is still shown on screen. 

303 

304 -q 

305 suppress output to the pager. Best used with -T and/or -D above. 

306 

307 If you want to run complete programs under the profiler's control, use 

308 ``%run -p [prof_opts] filename.py [args to program]`` where prof_opts 

309 contains profiler specific options as described here. 

310 

311 You can read the complete documentation for the profile module with:: 

312 

313 In [1]: import profile; profile.help() 

314 

315 .. versionchanged:: 7.3 

316 User variables are no longer expanded, 

317 the magic line is always left unmodified. 

318 

319 """ 

320 # TODO: port to magic_arguments as currently this is duplicated in IPCompleter._extract_code 

321 opts, arg_str = self.parse_options(parameter_s, 'D:l:rs:T:q', 

322 list_all=True, posix=False) 

323 if cell is not None: 

324 arg_str += '\n' + cell 

325 arg_str = self.shell.transform_cell(arg_str) 

326 return self._run_with_profiler(arg_str, opts, self.shell.user_ns) 

327 

328 def _run_with_profiler(self, code, opts, namespace): 

329 """ 

330 Run `code` with profiler. Used by ``%prun`` and ``%run -p``. 

331 

332 Parameters 

333 ---------- 

334 code : str 

335 Code to be executed. 

336 opts : Struct 

337 Options parsed by `self.parse_options`. 

338 namespace : dict 

339 A dictionary for Python namespace (e.g., `self.shell.user_ns`). 

340 

341 """ 

342 

343 # Fill default values for unspecified options: 

344 opts.merge(Struct(D=[''], l=[], s=['time'], T=[''])) 

345 

346 prof = profile.Profile() 

347 try: 

348 prof = prof.runctx(code, namespace, namespace) 

349 sys_exit = '' 

350 except SystemExit: 

351 sys_exit = """*** SystemExit exception caught in code being profiled.""" 

352 

353 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s) 

354 

355 lims = opts.l 

356 if lims: 

357 lims = [] # rebuild lims with ints/floats/strings 

358 for lim in opts.l: 

359 try: 

360 lims.append(int(lim)) 

361 except ValueError: 

362 try: 

363 lims.append(float(lim)) 

364 except ValueError: 

365 lims.append(lim) 

366 

367 # Trap output. 

368 stdout_trap = StringIO() 

369 stats_stream = stats.stream 

370 try: 

371 stats.stream = stdout_trap 

372 stats.print_stats(*lims) 

373 finally: 

374 stats.stream = stats_stream 

375 

376 output = stdout_trap.getvalue() 

377 output = output.rstrip() 

378 

379 if 'q' not in opts: 

380 page.page(output) 

381 print(sys_exit, end=' ') 

382 

383 dump_file = opts.D[0] 

384 text_file = opts.T[0] 

385 if dump_file: 

386 prof.dump_stats(dump_file) 

387 print( 

388 f"\n*** Profile stats marshalled to file {repr(dump_file)}.{sys_exit}" 

389 ) 

390 if text_file: 

391 pfile = Path(text_file) 

392 pfile.touch(exist_ok=True) 

393 pfile.write_text(output, encoding="utf-8") 

394 

395 print( 

396 f"\n*** Profile printout saved to text file {repr(text_file)}.{sys_exit}" 

397 ) 

398 

399 if 'r' in opts: 

400 return stats 

401 

402 return None 

403 

404 @line_magic 

405 def pdb(self, parameter_s=''): 

406 """Control the automatic calling of the pdb interactive debugger. 

407 

408 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without 

409 argument it works as a toggle. 

410 

411 When an exception is triggered, IPython can optionally call the 

412 interactive pdb debugger after the traceback printout. %pdb toggles 

413 this feature on and off. 

414 

415 The initial state of this feature is set in your configuration 

416 file (the option is ``InteractiveShell.pdb``). 

417 

418 If you want to just activate the debugger AFTER an exception has fired, 

419 without having to type '%pdb on' and rerunning your code, you can use 

420 the %debug magic.""" 

421 

422 par = parameter_s.strip().lower() 

423 

424 if par: 

425 try: 

426 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par] 

427 except KeyError: 

428 print ('Incorrect argument. Use on/1, off/0, ' 

429 'or nothing for a toggle.') 

430 return 

431 else: 

432 # toggle 

433 new_pdb = not self.shell.call_pdb 

434 

435 # set on the shell 

436 self.shell.call_pdb = new_pdb 

437 print('Automatic pdb calling has been turned',on_off(new_pdb)) 

438 

439 @magic_arguments.magic_arguments() 

440 @magic_arguments.argument('--breakpoint', '-b', metavar='FILE:LINE', 

441 help=""" 

442 Set break point at LINE in FILE. 

443 """ 

444 ) 

445 @magic_arguments.kwds( 

446 epilog=""" 

447 Any remaining arguments will be treated as code to run in the debugger. 

448 """ 

449 ) 

450 @no_var_expand 

451 @line_cell_magic 

452 @needs_local_scope 

453 def debug(self, line="", cell=None, local_ns=None): 

454 """Activate the interactive debugger. 

455 

456 This magic command support two ways of activating debugger. 

457 One is to activate debugger before executing code. This way, you 

458 can set a break point, to step through the code from the point. 

459 You can use this mode by giving statements to execute and optionally 

460 a breakpoint. 

461 

462 The other one is to activate debugger in post-mortem mode. You can 

463 activate this mode simply running %debug without any argument. 

464 If an exception has just occurred, this lets you inspect its stack 

465 frames interactively. Note that this will always work only on the last 

466 traceback that occurred, so you must call this quickly after an 

467 exception that you wish to inspect has fired, because if another one 

468 occurs, it clobbers the previous one. 

469 

470 If you want IPython to automatically do this on every exception, see 

471 the %pdb magic for more details. 

472 

473 .. versionchanged:: 7.3 

474 When running code, user variables are no longer expanded, 

475 the magic line is always left unmodified. 

476 

477 """ 

478 args, extra = magic_arguments.parse_argstring(self.debug, line, partial=True) 

479 

480 if not (args.breakpoint or extra or cell): 

481 self._debug_post_mortem() 

482 elif not (args.breakpoint or cell): 

483 # If there is no breakpoints, the line is just code to execute 

484 self._debug_exec(line, None, local_ns) 

485 else: 

486 # Here we try to reconstruct the code from the output of 

487 # parse_argstring. This might not work if the code has spaces 

488 # For example this fails for `print("a b")` 

489 code = " ".join(extra) 

490 if cell: 

491 code += "\n" + cell 

492 self._debug_exec(code, args.breakpoint, local_ns) 

493 

494 def _debug_post_mortem(self): 

495 self.shell.debugger(force=True) 

496 

497 def _debug_exec(self, code, breakpoint, local_ns=None): 

498 if breakpoint: 

499 (filename, bp_line) = breakpoint.rsplit(':', 1) 

500 bp_line = int(bp_line) 

501 else: 

502 (filename, bp_line) = (None, None) 

503 self._run_with_debugger( 

504 code, self.shell.user_ns, filename, bp_line, local_ns=local_ns 

505 ) 

506 

507 @line_magic 

508 def tb(self, s): 

509 """Print the last traceback. 

510 

511 Optionally, specify an exception reporting mode, tuning the 

512 verbosity of the traceback. By default the currently-active exception 

513 mode is used. See %xmode for changing exception reporting modes. 

514 

515 Valid modes: Plain, Context, Verbose, and Minimal. 

516 """ 

517 interactive_tb = self.shell.InteractiveTB 

518 if s: 

519 # Switch exception reporting mode for this one call. 

520 # Ensure it is switched back. 

521 def xmode_switch_err(name): 

522 warn('Error changing %s exception modes.\n%s' % 

523 (name,sys.exc_info()[1])) 

524 

525 new_mode = s.strip().capitalize() 

526 original_mode = interactive_tb.mode 

527 try: 

528 try: 

529 interactive_tb.set_mode(mode=new_mode) 

530 except Exception: 

531 xmode_switch_err('user') 

532 else: 

533 self.shell.showtraceback() 

534 finally: 

535 interactive_tb.set_mode(mode=original_mode) 

536 else: 

537 self.shell.showtraceback() 

538 

539 @skip_doctest 

540 @line_magic 

541 def run(self, parameter_s='', runner=None, 

542 file_finder=get_py_filename): 

543 """Run the named file inside IPython as a program. 

544 

545 Usage:: 

546 

547 %run [-n -i -e -G] 

548 [( -t [-N<N>] | -d [-b<N>] | -p [profile options] )] 

549 ( -m mod | filename ) [args] 

550 

551 The filename argument should be either a pure Python script (with 

552 extension ``.py``), or a file with custom IPython syntax (such as 

553 magics). If the latter, the file can be either a script with ``.ipy`` 

554 extension, or a Jupyter notebook with ``.ipynb`` extension. When running 

555 a Jupyter notebook, the output from print statements and other 

556 displayed objects will appear in the terminal (even matplotlib figures 

557 will open, if a terminal-compliant backend is being used). Note that, 

558 at the system command line, the ``jupyter run`` command offers similar 

559 functionality for executing notebooks (albeit currently with some 

560 differences in supported options). 

561 

562 Parameters after the filename are passed as command-line arguments to 

563 the program (put in sys.argv). Then, control returns to IPython's 

564 prompt. 

565 

566 This is similar to running at a system prompt ``python file args``, 

567 but with the advantage of giving you IPython's tracebacks, and of 

568 loading all variables into your interactive namespace for further use 

569 (unless -p is used, see below). 

570 

571 The file is executed in a namespace initially consisting only of 

572 ``__name__=='__main__'`` and sys.argv constructed as indicated. It thus 

573 sees its environment as if it were being run as a stand-alone program 

574 (except for sharing global objects such as previously imported 

575 modules). But after execution, the IPython interactive namespace gets 

576 updated with all variables defined in the program (except for ``__name__`` 

577 and ``sys.argv``). This allows for very convenient loading of code for 

578 interactive work, while giving each program a 'clean sheet' to run in. 

579 

580 Arguments are expanded using shell-like glob match. Patterns 

581 '*', '?', '[seq]' and '[!seq]' can be used. Additionally, 

582 tilde '~' will be expanded into user's home directory. Unlike 

583 real shells, quotation does not suppress expansions. Use 

584 *two* back slashes (e.g. ``\\\\*``) to suppress expansions. 

585 To completely disable these expansions, you can use -G flag. 

586 

587 On Windows systems, the use of single quotes `'` when specifying 

588 a file is not supported. Use double quotes `"`. 

589 

590 Options: 

591 

592 -n 

593 __name__ is NOT set to '__main__', but to the running file's name 

594 without extension (as python does under import). This allows running 

595 scripts and reloading the definitions in them without calling code 

596 protected by an ``if __name__ == "__main__"`` clause. 

597 

598 -i 

599 run the file in IPython's namespace instead of an empty one. This 

600 is useful if you are experimenting with code written in a text editor 

601 which depends on variables defined interactively. 

602 

603 -e 

604 ignore sys.exit() calls or SystemExit exceptions in the script 

605 being run. This is particularly useful if IPython is being used to 

606 run unittests, which always exit with a sys.exit() call. In such 

607 cases you are interested in the output of the test results, not in 

608 seeing a traceback of the unittest module. 

609 

610 -t 

611 print timing information at the end of the run. IPython will give 

612 you an estimated CPU time consumption for your script, which under 

613 Unix uses the resource module to avoid the wraparound problems of 

614 time.clock(). Under Unix, an estimate of time spent on system tasks 

615 is also given (for Windows platforms this is reported as 0.0). 

616 

617 If -t is given, an additional ``-N<N>`` option can be given, where <N> 

618 must be an integer indicating how many times you want the script to 

619 run. The final timing report will include total and per run results. 

620 

621 For example (testing the script myscript.py):: 

622 

623 In [1]: run -t myscript 

624 

625 IPython CPU timings (estimated): 

626 User : 0.19597 s. 

627 System: 0.0 s. 

628 

629 In [2]: run -t -N5 myscript 

630 

631 IPython CPU timings (estimated): 

632 Total runs performed: 5 

633 Times : Total Per run 

634 User : 0.910862 s, 0.1821724 s. 

635 System: 0.0 s, 0.0 s. 

636 

637 -d 

638 run your program under the control of pdb, the Python debugger. 

639 This allows you to execute your program step by step, watch variables, 

640 etc. Internally, what IPython does is similar to calling:: 

641 

642 pdb.run('execfile("YOURFILENAME")') 

643 

644 with a breakpoint set on line 1 of your file. You can change the line 

645 number for this automatic breakpoint to be <N> by using the -bN option 

646 (where N must be an integer). For example:: 

647 

648 %run -d -b40 myscript 

649 

650 will set the first breakpoint at line 40 in myscript.py. Note that 

651 the first breakpoint must be set on a line which actually does 

652 something (not a comment or docstring) for it to stop execution. 

653 

654 Or you can specify a breakpoint in a different file:: 

655 

656 %run -d -b myotherfile.py:20 myscript 

657 

658 When the pdb debugger starts, you will see a (Pdb) prompt. You must 

659 first enter 'c' (without quotes) to start execution up to the first 

660 breakpoint. 

661 

662 Entering 'help' gives information about the use of the debugger. You 

663 can easily see pdb's full documentation with "import pdb;pdb.help()" 

664 at a prompt. 

665 

666 -p 

667 run program under the control of the Python profiler module (which 

668 prints a detailed report of execution times, function calls, etc). 

669 

670 You can pass other options after -p which affect the behavior of the 

671 profiler itself. See the docs for %prun for details. 

672 

673 In this mode, the program's variables do NOT propagate back to the 

674 IPython interactive namespace (because they remain in the namespace 

675 where the profiler executes them). 

676 

677 Internally this triggers a call to %prun, see its documentation for 

678 details on the options available specifically for profiling. 

679 

680 There is one special usage for which the text above doesn't apply: 

681 if the filename ends with .ipy[nb], the file is run as ipython script, 

682 just as if the commands were written on IPython prompt. 

683 

684 -m 

685 specify module name to load instead of script path. Similar to 

686 the -m option for the python interpreter. Use this option last if you 

687 want to combine with other %run options. Unlike the python interpreter 

688 only source modules are allowed no .pyc or .pyo files. 

689 For example:: 

690 

691 %run -m example 

692 

693 will run the example module. 

694 

695 -G 

696 disable shell-like glob expansion of arguments. 

697 

698 """ 

699 

700 # Logic to handle issue #3664 

701 # Add '--' after '-m <module_name>' to ignore additional args passed to a module. 

702 if '-m' in parameter_s and '--' not in parameter_s: 

703 argv = shlex.split(parameter_s, posix=(os.name == 'posix')) 

704 for idx, arg in enumerate(argv): 

705 if arg and arg.startswith('-') and arg != '-': 

706 if arg == '-m': 

707 argv.insert(idx + 2, '--') 

708 break 

709 else: 

710 # Positional arg, break 

711 break 

712 parameter_s = ' '.join(shlex.quote(arg) for arg in argv) 

713 

714 # get arguments and set sys.argv for program to be run. 

715 opts, arg_lst = self.parse_options(parameter_s, 

716 'nidtN:b:pD:l:rs:T:em:G', 

717 mode='list', list_all=1) 

718 if "m" in opts: 

719 modulename = opts["m"][0] 

720 modpath = find_mod(modulename) 

721 if modpath is None: 

722 msg = '%r is not a valid modulename on sys.path'%modulename 

723 raise Exception(msg) 

724 arg_lst = [modpath] + arg_lst 

725 try: 

726 fpath = None # initialize to make sure fpath is in scope later 

727 fpath = arg_lst[0] 

728 filename = file_finder(fpath) 

729 except IndexError as e: 

730 msg = 'you must provide at least a filename.' 

731 raise Exception(msg) from e 

732 except IOError as e: 

733 try: 

734 msg = str(e) 

735 except UnicodeError: 

736 msg = e.message 

737 if os.name == 'nt' and re.match(r"^'.*'$",fpath): 

738 warn('For Windows, use double quotes to wrap a filename: %run "mypath\\myfile.py"') 

739 raise Exception(msg) from e 

740 except TypeError: 

741 if fpath in sys.meta_path: 

742 filename = "" 

743 else: 

744 raise 

745 

746 if filename.lower().endswith(('.ipy', '.ipynb')): 

747 with preserve_keys(self.shell.user_ns, '__file__'): 

748 self.shell.user_ns['__file__'] = filename 

749 self.shell.safe_execfile_ipy(filename, raise_exceptions=True) 

750 return 

751 

752 # Control the response to exit() calls made by the script being run 

753 exit_ignore = 'e' in opts 

754 

755 # Make sure that the running script gets a proper sys.argv as if it 

756 # were run from a system shell. 

757 save_argv = sys.argv # save it for later restoring 

758 

759 if 'G' in opts: 

760 args = arg_lst[1:] 

761 else: 

762 # tilde and glob expansion 

763 args = shellglob(map(os.path.expanduser, arg_lst[1:])) 

764 

765 sys.argv = [filename] + args # put in the proper filename 

766 

767 if 'n' in opts: 

768 name = Path(filename).stem 

769 else: 

770 name = '__main__' 

771 

772 if 'i' in opts: 

773 # Run in user's interactive namespace 

774 prog_ns = self.shell.user_ns 

775 __name__save = self.shell.user_ns['__name__'] 

776 prog_ns['__name__'] = name 

777 main_mod = self.shell.user_module 

778 

779 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must 

780 # set the __file__ global in the script's namespace 

781 # TK: Is this necessary in interactive mode? 

782 prog_ns['__file__'] = filename 

783 else: 

784 # Run in a fresh, empty namespace 

785 

786 # The shell MUST hold a reference to prog_ns so after %run 

787 # exits, the python deletion mechanism doesn't zero it out 

788 # (leaving dangling references). See interactiveshell for details 

789 main_mod = self.shell.new_main_mod(filename, name) 

790 prog_ns = main_mod.__dict__ 

791 

792 # pickle fix. See interactiveshell for an explanation. But we need to 

793 # make sure that, if we overwrite __main__, we replace it at the end 

794 main_mod_name = prog_ns['__name__'] 

795 

796 if main_mod_name == '__main__': 

797 restore_main = sys.modules['__main__'] 

798 else: 

799 restore_main = False 

800 

801 # This needs to be undone at the end to prevent holding references to 

802 # every single object ever created. 

803 sys.modules[main_mod_name] = main_mod 

804 

805 if 'p' in opts or 'd' in opts: 

806 if 'm' in opts: 

807 code = 'run_module(modulename, prog_ns)' 

808 code_ns = { 

809 'run_module': self.shell.safe_run_module, 

810 'prog_ns': prog_ns, 

811 'modulename': modulename, 

812 } 

813 else: 

814 if 'd' in opts: 

815 # allow exceptions to raise in debug mode 

816 code = 'execfile(filename, prog_ns, raise_exceptions=True)' 

817 else: 

818 code = 'execfile(filename, prog_ns)' 

819 code_ns = { 

820 'execfile': self.shell.safe_execfile, 

821 'prog_ns': prog_ns, 

822 'filename': get_py_filename(filename), 

823 } 

824 

825 try: 

826 stats = None 

827 if 'p' in opts: 

828 stats = self._run_with_profiler(code, opts, code_ns) 

829 else: 

830 if 'd' in opts: 

831 bp_file, bp_line = parse_breakpoint( 

832 opts.get('b', ['1'])[0], filename) 

833 self._run_with_debugger( 

834 code, code_ns, filename, bp_line, bp_file) 

835 else: 

836 if 'm' in opts: 

837 def run(): 

838 self.shell.safe_run_module(modulename, prog_ns) 

839 else: 

840 if runner is None: 

841 runner = self.default_runner 

842 if runner is None: 

843 runner = self.shell.safe_execfile 

844 

845 def run(): 

846 runner(filename, prog_ns, prog_ns, 

847 exit_ignore=exit_ignore) 

848 

849 if 't' in opts: 

850 # timed execution 

851 try: 

852 nruns = int(opts['N'][0]) 

853 if nruns < 1: 

854 error('Number of runs must be >=1') 

855 return 

856 except (KeyError): 

857 nruns = 1 

858 self._run_with_timing(run, nruns) 

859 else: 

860 # regular execution 

861 run() 

862 

863 if 'i' in opts: 

864 self.shell.user_ns['__name__'] = __name__save 

865 else: 

866 # update IPython interactive namespace 

867 

868 # Some forms of read errors on the file may mean the 

869 # __name__ key was never set; using pop we don't have to 

870 # worry about a possible KeyError. 

871 prog_ns.pop('__name__', None) 

872 

873 with preserve_keys(self.shell.user_ns, '__file__'): 

874 self.shell.user_ns.update(prog_ns) 

875 finally: 

876 # It's a bit of a mystery why, but __builtins__ can change from 

877 # being a module to becoming a dict missing some key data after 

878 # %run. As best I can see, this is NOT something IPython is doing 

879 # at all, and similar problems have been reported before: 

880 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html 

881 # Since this seems to be done by the interpreter itself, the best 

882 # we can do is to at least restore __builtins__ for the user on 

883 # exit. 

884 self.shell.user_ns['__builtins__'] = builtin_mod 

885 

886 # Ensure key global structures are restored 

887 sys.argv = save_argv 

888 if restore_main: 

889 sys.modules['__main__'] = restore_main 

890 if '__mp_main__' in sys.modules: 

891 sys.modules['__mp_main__'] = restore_main 

892 else: 

893 # Remove from sys.modules the reference to main_mod we'd 

894 # added. Otherwise it will trap references to objects 

895 # contained therein. 

896 del sys.modules[main_mod_name] 

897 

898 return stats 

899 

900 def _run_with_debugger( 

901 self, code, code_ns, filename=None, bp_line=None, bp_file=None, local_ns=None 

902 ): 

903 """ 

904 Run `code` in debugger with a break point. 

905 

906 Parameters 

907 ---------- 

908 code : str 

909 Code to execute. 

910 code_ns : dict 

911 A namespace in which `code` is executed. 

912 filename : str 

913 `code` is ran as if it is in `filename`. 

914 bp_line : int, optional 

915 Line number of the break point. 

916 bp_file : str, optional 

917 Path to the file in which break point is specified. 

918 `filename` is used if not given. 

919 local_ns : dict, optional 

920 A local namespace in which `code` is executed. 

921 

922 Raises 

923 ------ 

924 UsageError 

925 If the break point given by `bp_line` is not valid. 

926 

927 """ 

928 deb = self.shell.InteractiveTB.pdb 

929 if not deb: 

930 self.shell.InteractiveTB.pdb = self.shell.InteractiveTB.debugger_cls() 

931 deb = self.shell.InteractiveTB.pdb 

932 

933 # reset Breakpoint state, which is moronically kept 

934 # in a class 

935 bdb.Breakpoint.next = 1 

936 bdb.Breakpoint.bplist = {} 

937 bdb.Breakpoint.bpbynumber = [None] 

938 deb.clear_all_breaks() 

939 if bp_line is not None: 

940 # Set an initial breakpoint to stop execution 

941 maxtries = 10 

942 bp_file = bp_file or filename 

943 checkline = deb.checkline(bp_file, bp_line) 

944 if not checkline: 

945 for bp in range(bp_line + 1, bp_line + maxtries + 1): 

946 if deb.checkline(bp_file, bp): 

947 break 

948 else: 

949 msg = ("\nI failed to find a valid line to set " 

950 "a breakpoint\n" 

951 "after trying up to line: %s.\n" 

952 "Please set a valid breakpoint manually " 

953 "with the -b option." % bp) 

954 raise UsageError(msg) 

955 # if we find a good linenumber, set the breakpoint 

956 deb.do_break('%s:%s' % (bp_file, bp_line)) 

957 

958 if filename: 

959 # Mimic Pdb._runscript(...) 

960 deb._wait_for_mainpyfile = True 

961 deb.mainpyfile = deb.canonic(filename) 

962 

963 # Start file run 

964 print("NOTE: Enter 'c' at the %s prompt to continue execution." % deb.prompt) 

965 try: 

966 if filename: 

967 # save filename so it can be used by methods on the deb object 

968 deb._exec_filename = filename 

969 while True: 

970 try: 

971 trace = sys.gettrace() 

972 deb.run(code, code_ns, local_ns) 

973 except Restart: 

974 print("Restarting") 

975 if filename: 

976 deb._wait_for_mainpyfile = True 

977 deb.mainpyfile = deb.canonic(filename) 

978 continue 

979 else: 

980 break 

981 finally: 

982 sys.settrace(trace) 

983 

984 # Perform proper cleanup of the session in case if 

985 # it exited with "continue" and not "quit" command 

986 if hasattr(deb, "rcLines"): 

987 # Run this code defensively in case if custom debugger 

988 # class does not implement rcLines, which although public 

989 # is an implementation detail of `pdb.Pdb` and not part of 

990 # the more generic basic debugger framework (`bdb.Bdb`). 

991 deb.set_quit() 

992 deb.rcLines.extend(["q"]) 

993 try: 

994 deb.run("", code_ns, local_ns) 

995 except StopIteration: 

996 # Stop iteration is raised on quit command 

997 pass 

998 

999 except Exception: 

1000 etype, value, tb = sys.exc_info() 

1001 # Skip three frames in the traceback: the %run one, 

1002 # one inside bdb.py, and the command-line typed by the 

1003 # user (run by exec in pdb itself). 

1004 self.shell.InteractiveTB(etype, value, tb, tb_offset=3) 

1005 

1006 @staticmethod 

1007 def _run_with_timing(run, nruns): 

1008 """ 

1009 Run function `run` and print timing information. 

1010 

1011 Parameters 

1012 ---------- 

1013 run : callable 

1014 Any callable object which takes no argument. 

1015 nruns : int 

1016 Number of times to execute `run`. 

1017 

1018 """ 

1019 twall0 = time.perf_counter() 

1020 if nruns == 1: 

1021 t0 = clock2() 

1022 run() 

1023 t1 = clock2() 

1024 t_usr = t1[0] - t0[0] 

1025 t_sys = t1[1] - t0[1] 

1026 print("\nIPython CPU timings (estimated):") 

1027 print(" User : %10.2f s." % t_usr) 

1028 print(" System : %10.2f s." % t_sys) 

1029 else: 

1030 runs = range(nruns) 

1031 t0 = clock2() 

1032 for nr in runs: 

1033 run() 

1034 t1 = clock2() 

1035 t_usr = t1[0] - t0[0] 

1036 t_sys = t1[1] - t0[1] 

1037 print("\nIPython CPU timings (estimated):") 

1038 print("Total runs performed:", nruns) 

1039 print(" Times : %10s %10s" % ('Total', 'Per run')) 

1040 print(" User : %10.2f s, %10.2f s." % (t_usr, t_usr / nruns)) 

1041 print(" System : %10.2f s, %10.2f s." % (t_sys, t_sys / nruns)) 

1042 twall1 = time.perf_counter() 

1043 print("Wall time: %10.2f s." % (twall1 - twall0)) 

1044 

1045 @skip_doctest 

1046 @no_var_expand 

1047 @line_cell_magic 

1048 @needs_local_scope 

1049 def timeit(self, line='', cell=None, local_ns=None): 

1050 """Time execution of a Python statement or expression 

1051 

1052 **Usage, in line mode**:: 

1053 

1054 %timeit [-n<N> -r<R> [-t|-c] -q -p<P> [-o|-v <V>]] statement 

1055 

1056 **or in cell mode**:: 

1057 

1058 %%timeit [-n<N> -r<R> [-t|-c] -q -p<P> [-o|-v <V>]] setup_code 

1059 code 

1060 code... 

1061 

1062 Time execution of a Python statement or expression using the timeit 

1063 module. This function can be used both as a line and cell magic: 

1064 

1065 - In line mode you can time a single-line statement (though multiple 

1066 ones can be chained with using semicolons). 

1067 

1068 - In cell mode, the statement in the first line is used as setup code 

1069 (executed but not timed) and the body of the cell is timed. The cell 

1070 body has access to any variables created in the setup code. 

1071 

1072 Options: 

1073 

1074 -n<N> 

1075 Execute the given statement N times in a loop. If N is not 

1076 provided, N is determined so as to get sufficient accuracy. 

1077 

1078 -r<R> 

1079 Number of repeats R, each consisting of N loops, and take the 

1080 average result. 

1081 Default: 7 

1082 

1083 -t 

1084 Use ``time.time`` to measure the time, which is the default on Unix. 

1085 This function measures wall time. 

1086 

1087 -c 

1088 Use ``time.clock`` to measure the time, which is the default on 

1089 Windows and measures wall time. On Unix, ``resource.getrusage`` is used 

1090 instead and returns the CPU user time. 

1091 

1092 -p<P> 

1093 Use a precision of P digits to display the timing result. 

1094 Default: 3 

1095 

1096 -q 

1097 Quiet, do not print result. 

1098 

1099 -o 

1100 Return a ``TimeitResult`` that can be stored in a variable to inspect 

1101 the result in more details. 

1102 

1103 -v <V> 

1104 Like ``-o``, but save the ``TimeitResult`` directly to variable <V>. 

1105 

1106 .. versionchanged:: 7.3 

1107 User variables are no longer expanded, 

1108 the magic line is always left unmodified. 

1109 

1110 Examples 

1111 -------- 

1112 :: 

1113 

1114 In [1]: %timeit pass 

1115 8.26 ns ± 0.12 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each) 

1116 

1117 In [2]: u = None 

1118 

1119 In [3]: %timeit u is None 

1120 29.9 ns ± 0.643 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each) 

1121 

1122 In [4]: %timeit -r 4 u == None 

1123 

1124 In [5]: import time 

1125 

1126 In [6]: %timeit -n1 time.sleep(2) 

1127 

1128 The times reported by ``%timeit`` will be slightly higher than those 

1129 reported by the timeit.py script when variables are accessed. This is 

1130 due to the fact that ``%timeit`` executes the statement in the namespace 

1131 of the shell, compared with timeit.py, which uses a single setup 

1132 statement to import function or create variables. Generally, the bias 

1133 does not matter as long as results from timeit.py are not mixed with 

1134 those from ``%timeit``.""" 

1135 

1136 # TODO: port to magic_arguments as currently this is duplicated in IPCompleter._extract_code 

1137 opts, stmt = self.parse_options( 

1138 line, "n:r:tcp:qov:", posix=False, strict=False, preserve_non_opts=True 

1139 ) 

1140 if stmt == "" and cell is None: 

1141 return 

1142 

1143 timefunc = timeit.default_timer 

1144 number = int(getattr(opts, "n", 0)) 

1145 default_repeat = 7 if timeit.default_repeat < 7 else timeit.default_repeat 

1146 repeat = int(getattr(opts, "r", default_repeat)) 

1147 precision = int(getattr(opts, "p", 3)) 

1148 quiet = "q" in opts 

1149 return_result = "o" in opts 

1150 save_result = "v" in opts 

1151 if hasattr(opts, "t"): 

1152 timefunc = time.time 

1153 if hasattr(opts, "c"): 

1154 timefunc = clock 

1155 

1156 timer = Timer(timer=timefunc) 

1157 # this code has tight coupling to the inner workings of timeit.Timer, 

1158 # but is there a better way to achieve that the code stmt has access 

1159 # to the shell namespace? 

1160 transform = self.shell.transform_cell 

1161 

1162 if cell is None: 

1163 # called as line magic 

1164 ast_setup = self.shell.compile.ast_parse("pass") 

1165 ast_stmt = self.shell.compile.ast_parse(transform(stmt)) 

1166 else: 

1167 ast_setup = self.shell.compile.ast_parse(transform(stmt)) 

1168 ast_stmt = self.shell.compile.ast_parse(transform(cell)) 

1169 

1170 ast_setup = self.shell.transform_ast(ast_setup) 

1171 ast_stmt = self.shell.transform_ast(ast_stmt) 

1172 

1173 # Check that these compile to valid Python code *outside* the timer func 

1174 # Invalid code may become valid when put inside the function & loop, 

1175 # which messes up error messages. 

1176 # https://github.com/ipython/ipython/issues/10636 

1177 self.shell.compile(ast_setup, "<magic-timeit-setup>", "exec") 

1178 self.shell.compile(ast_stmt, "<magic-timeit-stmt>", "exec") 

1179 

1180 # This codestring is taken from timeit.template - we fill it in as an 

1181 # AST, so that we can apply our AST transformations to the user code 

1182 # without affecting the timing code. 

1183 timeit_ast_template = ast.parse('def inner(_it, _timer):\n' 

1184 ' setup\n' 

1185 ' _t0 = _timer()\n' 

1186 ' for _i in _it:\n' 

1187 ' stmt\n' 

1188 ' _t1 = _timer()\n' 

1189 ' return _t1 - _t0\n') 

1190 

1191 timeit_ast = TimeitTemplateFiller(ast_setup, ast_stmt).visit(timeit_ast_template) 

1192 timeit_ast = ast.fix_missing_locations(timeit_ast) 

1193 

1194 # Track compilation time so it can be reported if too long 

1195 # Minimum time above which compilation time will be reported 

1196 tc_min = 0.1 

1197 

1198 t0 = clock() 

1199 code = self.shell.compile(timeit_ast, "<magic-timeit>", "exec") 

1200 tc = clock()-t0 

1201 

1202 ns = {} 

1203 glob = self.shell.user_ns 

1204 # handles global vars with same name as local vars. We store them in conflict_globs. 

1205 conflict_globs = {} 

1206 if local_ns and cell is None: 

1207 for var_name, var_val in glob.items(): 

1208 if var_name in local_ns: 

1209 conflict_globs[var_name] = var_val 

1210 glob.update(local_ns) 

1211 

1212 exec(code, glob, ns) 

1213 timer.inner = ns["inner"] 

1214 

1215 # This is used to check if there is a huge difference between the 

1216 # best and worst timings. 

1217 # Issue: https://github.com/ipython/ipython/issues/6471 

1218 if number == 0: 

1219 # determine number so that 0.2 <= total time < 2.0 

1220 for index in range(0, 10): 

1221 number = 10 ** index 

1222 time_number = timer.timeit(number) 

1223 if time_number >= 0.2: 

1224 break 

1225 

1226 all_runs = timer.repeat(repeat, number) 

1227 best = min(all_runs) / number 

1228 worst = max(all_runs) / number 

1229 timeit_result = TimeitResult(number, repeat, best, worst, all_runs, tc, precision) 

1230 

1231 # Restore global vars from conflict_globs 

1232 if conflict_globs: 

1233 glob.update(conflict_globs) 

1234 

1235 if not quiet: 

1236 # Check best timing is greater than zero to avoid a 

1237 # ZeroDivisionError. 

1238 # In cases where the slowest timing is lesser than a microsecond 

1239 # we assume that it does not really matter if the fastest 

1240 # timing is 4 times faster than the slowest timing or not. 

1241 if worst > 4 * best and best > 0 and worst > 1e-6: 

1242 print("The slowest run took %0.2f times longer than the " 

1243 "fastest. This could mean that an intermediate result " 

1244 "is being cached." % (worst / best)) 

1245 

1246 print( timeit_result ) 

1247 

1248 if tc > tc_min: 

1249 print("Compiler time: %.2f s" % tc) 

1250 

1251 if save_result: 

1252 self.shell.user_ns[opts.v] = timeit_result 

1253 

1254 if return_result: 

1255 return timeit_result 

1256 

1257 @no_var_expand 

1258 @magic_arguments.magic_arguments() 

1259 @magic_arguments.argument( 

1260 "--no-raise-error", 

1261 action="store_true", 

1262 dest="no_raise_error", 

1263 help="If given, don't re-raise exceptions", 

1264 ) 

1265 @magic_arguments.kwds( 

1266 epilog=""" 

1267 Any remaining arguments will be treated as code to run. 

1268 """ 

1269 ) 

1270 @skip_doctest 

1271 @needs_local_scope 

1272 @line_cell_magic 

1273 @output_can_be_silenced 

1274 def time(self, line="", cell=None, local_ns=None): 

1275 """Time execution of a Python statement or expression. 

1276 

1277 The CPU and wall clock times are printed, and the value of the 

1278 expression (if any) is returned. Note that under Win32, system time 

1279 is always reported as 0, since it can not be measured. 

1280 

1281 This function can be used both as a line and cell magic: 

1282 

1283 - In line mode you can time a single-line statement (though multiple 

1284 ones can be chained with using semicolons). 

1285 

1286 - In cell mode, you can time the cell body (a directly 

1287 following statement raises an error). 

1288 

1289 This function provides very basic timing functionality. Use the timeit 

1290 magic for more control over the measurement. 

1291 

1292 .. versionchanged:: 7.3 

1293 User variables are no longer expanded, 

1294 the magic line is always left unmodified. 

1295 

1296 .. versionchanged:: 8.3 

1297 The time magic now correctly propagates system-exiting exceptions 

1298 (such as ``KeyboardInterrupt`` invoked when interrupting execution) 

1299 rather than just printing out the exception traceback. 

1300 The non-system-exception will still be caught as before. 

1301 

1302 Examples 

1303 -------- 

1304 :: 

1305 

1306 In [1]: %time 2**128 

1307 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s 

1308 Wall time: 0.00 

1309 Out[1]: 340282366920938463463374607431768211456L 

1310 

1311 In [2]: n = 1000000 

1312 

1313 In [3]: %time sum(range(n)) 

1314 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s 

1315 Wall time: 1.37 

1316 Out[3]: 499999500000L 

1317 

1318 In [4]: %time print('hello world') 

1319 hello world 

1320 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s 

1321 Wall time: 0.00 

1322 

1323 .. note:: 

1324 The time needed by Python to compile the given expression will be 

1325 reported if it is more than 0.1s. 

1326 

1327 In the example below, the actual exponentiation is done by Python 

1328 at compilation time, so while the expression can take a noticeable 

1329 amount of time to compute, that time is purely due to the 

1330 compilation:: 

1331 

1332 In [5]: %time 3**9999; 

1333 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s 

1334 Wall time: 0.00 s 

1335 

1336 In [6]: %time 3**999999; 

1337 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s 

1338 Wall time: 0.00 s 

1339 Compiler : 0.78 s 

1340 """ 

1341 args, extra = magic_arguments.parse_argstring(self.time, line, partial=True) 

1342 line = " ".join(extra) 

1343 

1344 if line and cell: 

1345 raise UsageError("Can't use statement directly after '%%time'!") 

1346 

1347 if cell: 

1348 expr = self.shell.transform_cell(cell) 

1349 else: 

1350 expr = self.shell.transform_cell(line) 

1351 

1352 # Minimum time above which parse time will be reported 

1353 tp_min = 0.1 

1354 

1355 t0 = clock() 

1356 expr_ast = self.shell.compile.ast_parse(expr) 

1357 tp = clock() - t0 

1358 

1359 # Apply AST transformations 

1360 expr_ast = self.shell.transform_ast(expr_ast) 

1361 

1362 # Minimum time above which compilation time will be reported 

1363 tc_min = 0.1 

1364 

1365 expr_val = None 

1366 if len(expr_ast.body) == 1 and isinstance(expr_ast.body[0], ast.Expr): 

1367 mode = 'eval' 

1368 source = '<timed eval>' 

1369 expr_ast = ast.Expression(expr_ast.body[0].value) 

1370 else: 

1371 mode = 'exec' 

1372 source = '<timed exec>' 

1373 # multi-line %%time case 

1374 if len(expr_ast.body) > 1 and isinstance(expr_ast.body[-1], ast.Expr): 

1375 expr_val = expr_ast.body[-1] 

1376 expr_ast = expr_ast.body[:-1] 

1377 expr_ast = Module(expr_ast, []) 

1378 expr_val = ast.Expression(expr_val.value) 

1379 

1380 t0 = clock() 

1381 code = self.shell.compile(expr_ast, source, mode) 

1382 tc = clock() - t0 

1383 

1384 # skew measurement as little as possible 

1385 glob = self.shell.user_ns 

1386 wtime = time.time 

1387 # time execution 

1388 wall_st = wtime() 

1389 # Track whether to propagate exceptions or exit 

1390 exit_on_interrupt = False 

1391 interrupt_occured = False 

1392 captured_exception = None 

1393 

1394 if mode == "eval": 

1395 st = clock2() 

1396 try: 

1397 out = eval(code, glob, local_ns) 

1398 except KeyboardInterrupt as e: 

1399 captured_exception = e 

1400 interrupt_occured = True 

1401 exit_on_interrupt = True 

1402 except Exception as e: 

1403 captured_exception = e 

1404 interrupt_occured = True 

1405 if not args.no_raise_error: 

1406 exit_on_interrupt = True 

1407 end = clock2() 

1408 else: 

1409 st = clock2() 

1410 try: 

1411 exec(code, glob, local_ns) 

1412 out = None 

1413 # multi-line %%time case 

1414 if expr_val is not None: 

1415 code_2 = self.shell.compile(expr_val, source, 'eval') 

1416 out = eval(code_2, glob, local_ns) 

1417 except KeyboardInterrupt as e: 

1418 captured_exception = e 

1419 interrupt_occured = True 

1420 exit_on_interrupt = True 

1421 except Exception as e: 

1422 captured_exception = e 

1423 interrupt_occured = True 

1424 if not args.no_raise_error: 

1425 exit_on_interrupt = True 

1426 end = clock2() 

1427 wall_end = wtime() 

1428 # Compute actual times and report 

1429 wall_time = wall_end - wall_st 

1430 cpu_user = end[0] - st[0] 

1431 cpu_sys = end[1] - st[1] 

1432 cpu_tot = cpu_user + cpu_sys 

1433 # On windows cpu_sys is always zero, so only total is displayed 

1434 if sys.platform != "win32": 

1435 print( 

1436 f"CPU times: user {_format_time(cpu_user)}, sys: {_format_time(cpu_sys)}, total: {_format_time(cpu_tot)}" 

1437 ) 

1438 else: 

1439 print(f"CPU times: total: {_format_time(cpu_tot)}") 

1440 print(f"Wall time: {_format_time(wall_time)}") 

1441 if tc > tc_min: 

1442 print(f"Compiler : {_format_time(tc)}") 

1443 if tp > tp_min: 

1444 print(f"Parser : {_format_time(tp)}") 

1445 if interrupt_occured: 

1446 if exit_on_interrupt and captured_exception: 

1447 raise captured_exception 

1448 return 

1449 return out 

1450 

1451 @skip_doctest 

1452 @line_magic 

1453 def macro(self, parameter_s=''): 

1454 """Define a macro for future re-execution. It accepts ranges of history, 

1455 filenames or string objects. 

1456 

1457 Usage:: 

1458 

1459 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ... 

1460 

1461 Options: 

1462 

1463 -r 

1464 Use 'raw' input. By default, the 'processed' history is used, 

1465 so that magics are loaded in their transformed version to valid 

1466 Python. If this option is given, the raw input as typed at the 

1467 command line is used instead. 

1468 

1469 -q 

1470 Quiet macro definition. By default, a tag line is printed 

1471 to indicate the macro has been created, and then the contents of 

1472 the macro are printed. If this option is given, then no printout 

1473 is produced once the macro is created. 

1474 

1475 This will define a global variable called `name` which is a string 

1476 made of joining the slices and lines you specify (n1,n2,... numbers 

1477 above) from your input history into a single string. This variable 

1478 acts like an automatic function which re-executes those lines as if 

1479 you had typed them. You just type 'name' at the prompt and the code 

1480 executes. 

1481 

1482 The syntax for indicating input ranges is described in %history. 

1483 

1484 Note: as a 'hidden' feature, you can also use traditional python slice 

1485 notation, where N:M means numbers N through M-1. 

1486 

1487 For example, if your history contains (print using %hist -n ):: 

1488 

1489 44: x=1 

1490 45: y=3 

1491 46: z=x+y 

1492 47: print(x) 

1493 48: a=5 

1494 49: print('x',x,'y',y) 

1495 

1496 you can create a macro with lines 44 through 47 (included) and line 49 

1497 called my_macro with:: 

1498 

1499 In [55]: %macro my_macro 44-47 49 

1500 

1501 Now, typing `my_macro` (without quotes) will re-execute all this code 

1502 in one pass. 

1503 

1504 You don't need to give the line-numbers in order, and any given line 

1505 number can appear multiple times. You can assemble macros with any 

1506 lines from your input history in any order. 

1507 

1508 The macro is a simple object which holds its value in an attribute, 

1509 but IPython's display system checks for macros and executes them as 

1510 code instead of printing them when you type their name. 

1511 

1512 You can view a macro's contents by explicitly printing it with:: 

1513 

1514 print(macro_name) 

1515 

1516 """ 

1517 opts,args = self.parse_options(parameter_s,'rq',mode='list') 

1518 if not args: # List existing macros 

1519 return sorted(k for k,v in self.shell.user_ns.items() if isinstance(v, Macro)) 

1520 if len(args) == 1: 

1521 raise UsageError( 

1522 "%macro insufficient args; usage '%macro name n1-n2 n3-4...") 

1523 name, codefrom = args[0], " ".join(args[1:]) 

1524 

1525 # print('rng',ranges) # dbg 

1526 try: 

1527 lines = self.shell.find_user_code(codefrom, 'r' in opts) 

1528 except (ValueError, TypeError) as e: 

1529 print(e.args[0]) 

1530 return 

1531 macro = Macro(lines) 

1532 self.shell.define_macro(name, macro) 

1533 if "q" not in opts: 

1534 print( 

1535 "Macro `%s` created. To execute, type its name (without quotes)." % name 

1536 ) 

1537 print("=== Macro contents: ===") 

1538 print(macro, end=" ") 

1539 

1540 @magic_arguments.magic_arguments() 

1541 @magic_arguments.argument( 

1542 "output", 

1543 type=str, 

1544 default="", 

1545 nargs="?", 

1546 help=""" 

1547 

1548 The name of the variable in which to store output. 

1549 This is a ``utils.io.CapturedIO`` object with stdout/err attributes 

1550 for the text of the captured output. 

1551 

1552 CapturedOutput also has a ``show()`` method for displaying the output, 

1553 and ``__call__`` as well, so you can use that to quickly display the 

1554 output. 

1555 

1556 If unspecified, captured output is discarded. 

1557 """, 

1558 ) 

1559 @magic_arguments.argument( 

1560 "--no-stderr", action="store_true", help="""Don't capture stderr.""" 

1561 ) 

1562 @magic_arguments.argument( 

1563 "--no-stdout", action="store_true", help="""Don't capture stdout.""" 

1564 ) 

1565 @magic_arguments.argument( 

1566 "--no-display", 

1567 action="store_true", 

1568 help="""Don't capture IPython's rich display.""" 

1569 ) 

1570 @cell_magic 

1571 def capture(self, line, cell): 

1572 """run the cell, capturing stdout, stderr, and IPython's rich display() calls.""" 

1573 args = magic_arguments.parse_argstring(self.capture, line) 

1574 out = not args.no_stdout 

1575 err = not args.no_stderr 

1576 disp = not args.no_display 

1577 with capture_output(out, err, disp) as io: 

1578 self.shell.run_cell(cell) 

1579 if DisplayHook.semicolon_at_end_of_expression(cell): 

1580 if args.output in self.shell.user_ns: 

1581 del self.shell.user_ns[args.output] 

1582 elif args.output: 

1583 self.shell.user_ns[args.output] = io 

1584 

1585 @skip_doctest 

1586 @magic_arguments.magic_arguments() 

1587 @magic_arguments.argument("name", type=str, default="default", nargs="?") 

1588 @magic_arguments.argument( 

1589 "--remove", action="store_true", help="remove the current transformer" 

1590 ) 

1591 @magic_arguments.argument( 

1592 "--list", action="store_true", help="list existing transformers name" 

1593 ) 

1594 @magic_arguments.argument( 

1595 "--list-all", 

1596 action="store_true", 

1597 help="list existing transformers name and code template", 

1598 ) 

1599 @line_cell_magic 

1600 def code_wrap(self, line, cell=None): 

1601 """ 

1602 Simple magic to quickly define a code transformer for all IPython's future input. 

1603 

1604 ``__code__`` and ``__ret__`` are special variable that represent the code to run 

1605 and the value of the last expression of ``__code__`` respectively. 

1606 

1607 Examples 

1608 -------- 

1609 

1610 .. ipython:: 

1611 

1612 In [1]: %%code_wrap before_after 

1613 ...: print('before') 

1614 ...: __code__ 

1615 ...: print('after') 

1616 ...: __ret__ 

1617 

1618 

1619 In [2]: 1 

1620 before 

1621 after 

1622 Out[2]: 1 

1623 

1624 In [3]: %code_wrap --list 

1625 before_after 

1626 

1627 In [4]: %code_wrap --list-all 

1628 before_after : 

1629 print('before') 

1630 __code__ 

1631 print('after') 

1632 __ret__ 

1633 

1634 In [5]: %code_wrap --remove before_after 

1635 

1636 """ 

1637 args = magic_arguments.parse_argstring(self.code_wrap, line) 

1638 

1639 if args.list: 

1640 for name in self._transformers.keys(): 

1641 print(name) 

1642 return 

1643 if args.list_all: 

1644 for name, _t in self._transformers.items(): 

1645 print(name, ":") 

1646 print(indent(ast.unparse(_t.template), " ")) 

1647 print() 

1648 return 

1649 

1650 to_remove = self._transformers.pop(args.name, None) 

1651 if to_remove in self.shell.ast_transformers: 

1652 self.shell.ast_transformers.remove(to_remove) 

1653 if cell is None or args.remove: 

1654 return 

1655 

1656 _trs = ReplaceCodeTransformer(ast.parse(cell)) 

1657 

1658 self._transformers[args.name] = _trs 

1659 self.shell.ast_transformers.append(_trs) 

1660 

1661 

1662def parse_breakpoint(text, current_file): 

1663 '''Returns (file, line) for file:line and (current_file, line) for line''' 

1664 colon = text.find(':') 

1665 if colon == -1: 

1666 return current_file, int(text) 

1667 else: 

1668 return text[:colon], int(text[colon+1:]) 

1669 

1670 

1671def _format_time(timespan, precision=3): 

1672 """Formats the timespan in a human readable form""" 

1673 

1674 if timespan >= 60.0: 

1675 # we have more than a minute, format that in a human readable form 

1676 # Idea from http://snipplr.com/view/5713/ 

1677 parts = [("d", 60 * 60 * 24), ("h", 60 * 60), ("min", 60), ("s", 1)] 

1678 time = [] 

1679 leftover = timespan 

1680 for suffix, length in parts: 

1681 value = int(leftover / length) 

1682 if value > 0: 

1683 leftover = leftover % length 

1684 time.append("%s%s" % (str(value), suffix)) 

1685 if leftover < 1: 

1686 break 

1687 return " ".join(time) 

1688 

1689 # Unfortunately characters outside of range(128) can cause problems in 

1690 # certain terminals. 

1691 # See bug: https://bugs.launchpad.net/ipython/+bug/348466 

1692 # Try to prevent crashes by being more secure than it needs to 

1693 # E.g. eclipse is able to print a µ, but has no sys.stdout.encoding set. 

1694 units = ["s", "ms", "us", "ns"] # the safe value 

1695 if hasattr(sys.stdout, "encoding") and sys.stdout.encoding: 

1696 try: 

1697 "μ".encode(sys.stdout.encoding) 

1698 units = ["s", "ms", "μs", "ns"] 

1699 except: 

1700 pass 

1701 scaling = [1, 1e3, 1e6, 1e9] 

1702 

1703 if timespan > 0.0: 

1704 order = min(-int(math.floor(math.log10(timespan)) // 3), 3) 

1705 else: 

1706 order = 3 

1707 return "%.*g %s" % (precision, timespan * scaling[order], units[order])