Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/google/api_core/timeout.py: 36%

64 statements  

« prev     ^ index     » next       coverage.py v7.3.2, created at 2023-12-08 06:45 +0000

1# Copyright 2017 Google LLC 

2# 

3# Licensed under the Apache License, Version 2.0 (the "License"); 

4# you may not use this file except in compliance with the License. 

5# You may obtain a copy of the License at 

6# 

7# http://www.apache.org/licenses/LICENSE-2.0 

8# 

9# Unless required by applicable law or agreed to in writing, software 

10# distributed under the License is distributed on an "AS IS" BASIS, 

11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

12# See the License for the specific language governing permissions and 

13# limitations under the License. 

14 

15"""Decorators for applying timeout arguments to functions. 

16 

17These decorators are used to wrap API methods to apply either a 

18Deadline-dependent (recommended), constant (DEPRECATED) or exponential 

19(DEPRECATED) timeout argument. 

20 

21For example, imagine an API method that can take a while to return results, 

22such as one that might block until a resource is ready: 

23 

24.. code-block:: python 

25 

26 def is_thing_ready(timeout=None): 

27 response = requests.get('https://example.com/is_thing_ready') 

28 response.raise_for_status() 

29 return response.json() 

30 

31This module allows a function like this to be wrapped so that timeouts are 

32automatically determined, for example: 

33 

34.. code-block:: python 

35 

36 timeout_ = timeout.ExponentialTimeout() 

37 is_thing_ready_with_timeout = timeout_(is_thing_ready) 

38 

39 for n in range(10): 

40 try: 

41 is_thing_ready_with_timeout({'example': 'data'}) 

42 except: 

43 pass 

44 

45In this example the first call to ``is_thing_ready`` will have a relatively 

46small timeout (like 1 second). If the resource is available and the request 

47completes quickly, the loop exits. But, if the resource isn't yet available 

48and the request times out, it'll be retried - this time with a larger timeout. 

49 

50In the broader context these decorators are typically combined with 

51:mod:`google.api_core.retry` to implement API methods with a signature that 

52matches ``api_method(request, timeout=None, retry=None)``. 

53""" 

54 

55from __future__ import unicode_literals 

56 

57import datetime 

58import functools 

59 

60from google.api_core import datetime_helpers 

61 

62_DEFAULT_INITIAL_TIMEOUT = 5.0 # seconds 

63_DEFAULT_MAXIMUM_TIMEOUT = 30.0 # seconds 

64_DEFAULT_TIMEOUT_MULTIPLIER = 2.0 

65# If specified, must be in seconds. If none, deadline is not used in the 

66# timeout calculation. 

67_DEFAULT_DEADLINE = None 

68 

69 

70class TimeToDeadlineTimeout(object): 

71 """A decorator that decreases timeout set for an RPC based on how much time 

72 has left till its deadline. The deadline is calculated as 

73 ``now + initial_timeout`` when this decorator is first called for an rpc. 

74 

75 In other words this decorator implements deadline semantics in terms of a 

76 sequence of decreasing timeouts t0 > t1 > t2 ... tn >= 0. 

77 

78 Args: 

79 timeout (Optional[float]): the timeout (in seconds) to applied to the 

80 wrapped function. If `None`, the target function is expected to 

81 never timeout. 

82 """ 

83 

84 def __init__(self, timeout=None, clock=datetime_helpers.utcnow): 

85 self._timeout = timeout 

86 self._clock = clock 

87 

88 def __call__(self, func): 

89 """Apply the timeout decorator. 

90 

91 Args: 

92 func (Callable): The function to apply the timeout argument to. 

93 This function must accept a timeout keyword argument. 

94 

95 Returns: 

96 Callable: The wrapped function. 

97 """ 

98 

99 first_attempt_timestamp = self._clock().timestamp() 

100 

101 @functools.wraps(func) 

102 def func_with_timeout(*args, **kwargs): 

103 """Wrapped function that adds timeout.""" 

104 

105 remaining_timeout = self._timeout 

106 if remaining_timeout is not None: 

107 # All calculations are in seconds 

108 now_timestamp = self._clock().timestamp() 

109 

110 # To avoid usage of nonlocal but still have round timeout 

111 # numbers for first attempt (in most cases the only attempt made 

112 # for an RPC. 

113 if now_timestamp - first_attempt_timestamp < 0.001: 

114 now_timestamp = first_attempt_timestamp 

115 

116 time_since_first_attempt = now_timestamp - first_attempt_timestamp 

117 # Avoid setting negative timeout 

118 kwargs["timeout"] = max(0, self._timeout - time_since_first_attempt) 

119 

120 return func(*args, **kwargs) 

121 

122 return func_with_timeout 

123 

124 def __str__(self): 

125 return "<TimeToDeadlineTimeout timeout={:.1f}>".format(self._timeout) 

126 

127 

128class ConstantTimeout(object): 

129 """A decorator that adds a constant timeout argument. 

130 

131 DEPRECATED: use ``TimeToDeadlineTimeout`` instead. 

132 

133 This is effectively equivalent to 

134 ``functools.partial(func, timeout=timeout)``. 

135 

136 Args: 

137 timeout (Optional[float]): the timeout (in seconds) to applied to the 

138 wrapped function. If `None`, the target function is expected to 

139 never timeout. 

140 """ 

141 

142 def __init__(self, timeout=None): 

143 self._timeout = timeout 

144 

145 def __call__(self, func): 

146 """Apply the timeout decorator. 

147 

148 Args: 

149 func (Callable): The function to apply the timeout argument to. 

150 This function must accept a timeout keyword argument. 

151 

152 Returns: 

153 Callable: The wrapped function. 

154 """ 

155 

156 @functools.wraps(func) 

157 def func_with_timeout(*args, **kwargs): 

158 """Wrapped function that adds timeout.""" 

159 kwargs["timeout"] = self._timeout 

160 return func(*args, **kwargs) 

161 

162 return func_with_timeout 

163 

164 def __str__(self): 

165 return "<ConstantTimeout timeout={:.1f}>".format(self._timeout) 

166 

167 

168def _exponential_timeout_generator(initial, maximum, multiplier, deadline): 

169 """A generator that yields exponential timeout values. 

170 

171 Args: 

172 initial (float): The initial timeout. 

173 maximum (float): The maximum timeout. 

174 multiplier (float): The multiplier applied to the timeout. 

175 deadline (float): The overall deadline across all invocations. 

176 

177 Yields: 

178 float: A timeout value. 

179 """ 

180 if deadline is not None: 

181 deadline_datetime = datetime_helpers.utcnow() + datetime.timedelta( 

182 seconds=deadline 

183 ) 

184 else: 

185 deadline_datetime = datetime.datetime.max 

186 

187 timeout = initial 

188 while True: 

189 now = datetime_helpers.utcnow() 

190 yield min( 

191 # The calculated timeout based on invocations. 

192 timeout, 

193 # The set maximum timeout. 

194 maximum, 

195 # The remaining time before the deadline is reached. 

196 float((deadline_datetime - now).seconds), 

197 ) 

198 timeout = timeout * multiplier 

199 

200 

201class ExponentialTimeout(object): 

202 """A decorator that adds an exponentially increasing timeout argument. 

203 

204 DEPRECATED: the concept of incrementing timeout exponentially has been 

205 deprecated. Use ``TimeToDeadlineTimeout`` instead. 

206 

207 This is useful if a function is called multiple times. Each time the 

208 function is called this decorator will calculate a new timeout parameter 

209 based on the the number of times the function has been called. 

210 

211 For example 

212 

213 .. code-block:: python 

214 

215 Args: 

216 initial (float): The initial timeout to pass. 

217 maximum (float): The maximum timeout for any one call. 

218 multiplier (float): The multiplier applied to the timeout for each 

219 invocation. 

220 deadline (Optional[float]): The overall deadline across all 

221 invocations. This is used to prevent a very large calculated 

222 timeout from pushing the overall execution time over the deadline. 

223 This is especially useful in conjunction with 

224 :mod:`google.api_core.retry`. If ``None``, the timeouts will not 

225 be adjusted to accommodate an overall deadline. 

226 """ 

227 

228 def __init__( 

229 self, 

230 initial=_DEFAULT_INITIAL_TIMEOUT, 

231 maximum=_DEFAULT_MAXIMUM_TIMEOUT, 

232 multiplier=_DEFAULT_TIMEOUT_MULTIPLIER, 

233 deadline=_DEFAULT_DEADLINE, 

234 ): 

235 self._initial = initial 

236 self._maximum = maximum 

237 self._multiplier = multiplier 

238 self._deadline = deadline 

239 

240 def with_deadline(self, deadline): 

241 """Return a copy of this timeout with the given deadline. 

242 

243 Args: 

244 deadline (float): The overall deadline across all invocations. 

245 

246 Returns: 

247 ExponentialTimeout: A new instance with the given deadline. 

248 """ 

249 return ExponentialTimeout( 

250 initial=self._initial, 

251 maximum=self._maximum, 

252 multiplier=self._multiplier, 

253 deadline=deadline, 

254 ) 

255 

256 def __call__(self, func): 

257 """Apply the timeout decorator. 

258 

259 Args: 

260 func (Callable): The function to apply the timeout argument to. 

261 This function must accept a timeout keyword argument. 

262 

263 Returns: 

264 Callable: The wrapped function. 

265 """ 

266 timeouts = _exponential_timeout_generator( 

267 self._initial, self._maximum, self._multiplier, self._deadline 

268 ) 

269 

270 @functools.wraps(func) 

271 def func_with_timeout(*args, **kwargs): 

272 """Wrapped function that adds timeout.""" 

273 kwargs["timeout"] = next(timeouts) 

274 return func(*args, **kwargs) 

275 

276 return func_with_timeout 

277 

278 def __str__(self): 

279 return ( 

280 "<ExponentialTimeout initial={:.1f}, maximum={:.1f}, " 

281 "multiplier={:.1f}, deadline={:.1f}>".format( 

282 self._initial, self._maximum, self._multiplier, self._deadline 

283 ) 

284 )