/src/gdal/frmts/grib/degrib/g2clib/specunpack.c
Line | Count | Source (jump to first uncovered line) |
1 | | #include <math.h> |
2 | | #include <float.h> |
3 | | #include <stdio.h> |
4 | | #include <stdlib.h> |
5 | | #include "grib2.h" |
6 | | |
7 | 0 | static float DoubleToFloatClamp(double val) { |
8 | 0 | if (val >= FLT_MAX) return FLT_MAX; |
9 | 0 | if (val <= -FLT_MAX) return -FLT_MAX; |
10 | 0 | return (float)val; |
11 | 0 | } |
12 | | |
13 | | g2int specunpack(unsigned char *cpack,g2int *idrstmpl,g2int ndpts,g2int JJ, |
14 | | g2int KK, g2int MM, g2float *fld) |
15 | | //$$$ SUBPROGRAM DOCUMENTATION BLOCK |
16 | | // . . . . |
17 | | // SUBPROGRAM: specunpack |
18 | | // PRGMMR: Gilbert ORG: W/NP11 DATE: 2000-06-21 |
19 | | // |
20 | | // ABSTRACT: This subroutine unpacks a spectral data field that was packed |
21 | | // using the complex packing algorithm for spherical harmonic data as |
22 | | // defined in the GRIB2 documentation, |
23 | | // using info from the GRIB2 Data Representation Template 5.51. |
24 | | // |
25 | | // PROGRAM HISTORY LOG: |
26 | | // 2000-06-21 Gilbert |
27 | | // |
28 | | // USAGE: int specunpack(unsigned char *cpack,g2int *idrstmpl, |
29 | | // g2int ndpts,g2int JJ,g2int KK,g2int MM,g2float *fld) |
30 | | // INPUT ARGUMENT LIST: |
31 | | // cpack - pointer to the packed data field. |
32 | | // idrstmpl - pointer to the array of values for Data Representation |
33 | | // Template 5.51 |
34 | | // ndpts - The number of data values to unpack (real and imaginary parts) |
35 | | // JJ - J - pentagonal resolution parameter |
36 | | // KK - K - pentagonal resolution parameter |
37 | | // MM - M - pentagonal resolution parameter |
38 | | // |
39 | | // OUTPUT ARGUMENT LIST: |
40 | | // fld() - Contains the unpacked data values. fld must be allocated |
41 | | // with at least ndpts*sizeof(g2float) bytes before |
42 | | // calling this routine. |
43 | | // |
44 | | // REMARKS: None |
45 | | // |
46 | | // ATTRIBUTES: |
47 | | // LANGUAGE: C |
48 | | // MACHINE: |
49 | | // |
50 | | //$$$ |
51 | 0 | { |
52 | |
|
53 | 0 | g2int *ifld,j,iofst,nbits; |
54 | 0 | g2float ref,bscale,dscale,*unpk; |
55 | 0 | g2float *pscale,tscale; |
56 | 0 | g2int Js,Ks,Ms,Ts,Ns,Nm,n,m; |
57 | 0 | g2int inc,incu,incp; |
58 | |
|
59 | 0 | rdieee(idrstmpl+0,&ref,1); |
60 | 0 | bscale = DoubleToFloatClamp(int_power(2.0,idrstmpl[1])); |
61 | 0 | dscale = DoubleToFloatClamp(int_power(10.0,-idrstmpl[2])); |
62 | 0 | nbits = idrstmpl[3]; |
63 | 0 | Js=idrstmpl[5]; |
64 | 0 | Ks=idrstmpl[6]; |
65 | 0 | Ms=idrstmpl[7]; |
66 | 0 | Ts=idrstmpl[8]; |
67 | |
|
68 | 0 | if (idrstmpl[9] == 1) { // unpacked floats are 32-bit IEEE |
69 | |
|
70 | 0 | unpk=(g2float *)malloc(ndpts*sizeof(g2float)); |
71 | 0 | ifld=(g2int *)malloc(ndpts*sizeof(g2int)); |
72 | |
|
73 | 0 | gbits(cpack,G2_UNKNOWN_SIZE,ifld,0,32,0,Ts); |
74 | 0 | iofst=32*Ts; |
75 | 0 | rdieee(ifld,unpk,Ts); // read IEEE unpacked floats |
76 | 0 | gbits(cpack,G2_UNKNOWN_SIZE,ifld,iofst,nbits,0,ndpts-Ts); // unpack scaled data |
77 | | // |
78 | | // Calculate Laplacian scaling factors for each possible wave number. |
79 | | // |
80 | 0 | pscale=(g2float *)calloc((JJ+MM+1),sizeof(g2float)); |
81 | 0 | tscale=(g2float)(idrstmpl[4]*1E-6); |
82 | 0 | for (n=Js;n<=JJ+MM;n++) |
83 | 0 | pscale[n]=(float)pow((g2float)(n*(n+1)),-tscale); |
84 | | // |
85 | | // Assemble spectral coeffs back to original order. |
86 | | // |
87 | 0 | inc=0; |
88 | 0 | incu=0; |
89 | 0 | incp=0; |
90 | 0 | for (m=0;m<=MM;m++) { |
91 | 0 | Nm=JJ; // triangular or trapezoidal |
92 | 0 | if ( KK == JJ+MM ) Nm=JJ+m; // rhombodial |
93 | 0 | Ns=Js; // triangular or trapezoidal |
94 | 0 | if ( Ks == Js+Ms ) Ns=Js+m; // rhombodial |
95 | 0 | for (n=m;n<=Nm;n++) { |
96 | 0 | if (n<=Ns && m<=Ms) { // grab unpacked value |
97 | 0 | fld[inc++]=unpk[incu++]; // real part |
98 | 0 | fld[inc++]=unpk[incu++]; // imaginary part |
99 | 0 | } |
100 | 0 | else { // Calc coeff from packed value |
101 | 0 | fld[inc++]=(((g2float)ifld[incp++]*bscale)+ref)* |
102 | 0 | dscale*pscale[n]; // real part |
103 | 0 | fld[inc++]=(((g2float)ifld[incp++]*bscale)+ref)* |
104 | 0 | dscale*pscale[n]; // imaginary part |
105 | 0 | } |
106 | 0 | } |
107 | 0 | } |
108 | |
|
109 | 0 | free(pscale); |
110 | 0 | free(unpk); |
111 | 0 | free(ifld); |
112 | |
|
113 | 0 | } |
114 | 0 | else { |
115 | 0 | printf("specunpack: Cannot handle 64 or 128-bit floats.\n"); |
116 | 0 | for (j=0;j<ndpts;j++) fld[j]=0.0; |
117 | 0 | return -3; |
118 | 0 | } |
119 | | |
120 | 0 | return 0; |
121 | 0 | } |