/src/geos/include/geos/geom/CircularArc.h
Line | Count | Source |
1 | | /********************************************************************** |
2 | | * |
3 | | * GEOS - Geometry Engine Open Source |
4 | | * http://geos.osgeo.org |
5 | | * |
6 | | * Copyright (C) 2024 ISciences, LLC |
7 | | * |
8 | | * This is free software; you can redistribute and/or modify it under |
9 | | * the terms of the GNU Lesser General Public Licence as published |
10 | | * by the Free Software Foundation. |
11 | | * See the COPYING file for more information. |
12 | | * |
13 | | **********************************************************************/ |
14 | | |
15 | | #pragma once |
16 | | |
17 | | #include <geos/export.h> |
18 | | #include <geos/geom/Coordinate.h> |
19 | | #include <geos/geom/Quadrant.h> |
20 | | #include <geos/algorithm/CircularArcs.h> |
21 | | #include <geos/algorithm/Orientation.h> |
22 | | #include <geos/triangulate/quadedge/TrianglePredicate.h> |
23 | | |
24 | | namespace geos { |
25 | | namespace geom { |
26 | | |
27 | | /// A CircularArc is a reference to three points that define a circular arc. |
28 | | /// It provides for the lazy calculation of various arc properties such as the center, radius, and orientation |
29 | | class GEOS_DLL CircularArc { |
30 | | public: |
31 | | |
32 | | using CoordinateXY = geom::CoordinateXY; |
33 | | |
34 | | CircularArc(const CoordinateXY& q0, const CoordinateXY& q1, const CoordinateXY& q2) |
35 | 0 | : p0(q0) |
36 | 0 | , p1(q1) |
37 | 0 | , p2(q2) |
38 | 0 | , m_center_known(false) |
39 | 0 | , m_radius_known(false) |
40 | 0 | , m_orientation_known(false) |
41 | 0 | {} |
42 | | |
43 | | const CoordinateXY& p0; |
44 | | const CoordinateXY& p1; |
45 | | const CoordinateXY& p2; |
46 | | |
47 | | /// Return the orientation of the arc as one of: |
48 | | /// - algorithm::Orientation::CLOCKWISE, |
49 | | /// - algorithm::Orientation::COUNTERCLOCKWISE |
50 | | /// - algorithm::Orientation::COLLINEAR |
51 | 0 | int orientation() const { |
52 | 0 | if (!m_orientation_known) { |
53 | 0 | m_orientation = algorithm::Orientation::index(p0, p1, p2); |
54 | 0 | m_orientation_known = true; |
55 | 0 | } |
56 | 0 | return m_orientation; |
57 | 0 | } |
58 | | |
59 | | /// Return the center point of the circle associated with this arc |
60 | 0 | const CoordinateXY& getCenter() const { |
61 | 0 | if (!m_center_known) { |
62 | 0 | m_center = algorithm::CircularArcs::getCenter(p0, p1, p2); |
63 | 0 | m_center_known = true; |
64 | 0 | } |
65 | |
|
66 | 0 | return m_center; |
67 | 0 | } |
68 | | |
69 | | /// Return the radius of the circle associated with this arc |
70 | 0 | double getRadius() const { |
71 | 0 | if (!m_radius_known) { |
72 | 0 | m_radius = getCenter().distance(p0); |
73 | 0 | m_radius_known = true; |
74 | 0 | } |
75 | |
|
76 | 0 | return m_radius; |
77 | 0 | } |
78 | | |
79 | | /// Return whether this arc forms a complete circle |
80 | 0 | bool isCircle() const { |
81 | 0 | return p0.equals(p2); |
82 | 0 | } |
83 | | |
84 | | /// Returns whether this arc forms a straight line (p0, p1, and p2 are collinear) |
85 | 0 | bool isLinear() const { |
86 | 0 | return std::isnan(getRadius()); |
87 | 0 | } |
88 | | |
89 | | /// Return the inner angle of the sector associated with this arc |
90 | 0 | double getAngle() const { |
91 | 0 | if (isCircle()) { |
92 | 0 | return 2*MATH_PI; |
93 | 0 | } |
94 | | |
95 | | /// Even Rouault: |
96 | | /// potential optimization?: using crossproduct(p0 - center, p2 - center) = radius * radius * sin(angle) |
97 | | /// could yield the result by just doing a single asin(), instead of 2 atan2() |
98 | | /// actually one should also likely compute dotproduct(p0 - center, p2 - center) = radius * radius * cos(angle), |
99 | | /// and thus angle = atan2(crossproduct(p0 - center, p2 - center) , dotproduct(p0 - center, p2 - center) ) |
100 | 0 | auto t0 = theta0(); |
101 | 0 | auto t2 = theta2(); |
102 | |
|
103 | 0 | if (orientation() == algorithm::Orientation::COUNTERCLOCKWISE) { |
104 | 0 | std::swap(t0, t2); |
105 | 0 | } |
106 | |
|
107 | 0 | if (t0 < t2) { |
108 | 0 | t0 += 2*MATH_PI; |
109 | 0 | } |
110 | |
|
111 | 0 | auto diff = t0-t2; |
112 | |
|
113 | 0 | return diff; |
114 | 0 | } |
115 | | |
116 | | /// Return the length of the arc |
117 | 0 | double getLength() const { |
118 | 0 | if (isLinear()) { |
119 | 0 | return p0.distance(p2); |
120 | 0 | } |
121 | | |
122 | 0 | return getAngle()*getRadius(); |
123 | 0 | } |
124 | | |
125 | | /// Return the area enclosed by the arc p0-p1-p2 and the line segment p2-p0 |
126 | 0 | double getArea() const { |
127 | 0 | if (isLinear()) { |
128 | 0 | return 0; |
129 | 0 | } |
130 | | |
131 | 0 | auto R = getRadius(); |
132 | 0 | auto theta = getAngle(); |
133 | 0 | return R*R/2*(theta - std::sin(theta)); |
134 | 0 | } |
135 | | |
136 | | /// Return the angle of p0 |
137 | 0 | double theta0() const { |
138 | 0 | return std::atan2(p0.y - getCenter().y, p0.x - getCenter().x); |
139 | 0 | } |
140 | | |
141 | | /// Return the angle of p2 |
142 | 0 | double theta2() const { |
143 | 0 | return std::atan2(p2.y - getCenter().y, p2.x - getCenter().x); |
144 | 0 | } |
145 | | |
146 | | /// Check to see if a coordinate lies on the arc |
147 | | /// Only the angle is checked, so it is assumed that the point lies on |
148 | | /// the circle of which this arc is a part. |
149 | 0 | bool containsPointOnCircle(const CoordinateXY& q) const { |
150 | 0 | double theta = std::atan2(q.y - getCenter().y, q.x - getCenter().x); |
151 | 0 | return containsAngle(theta); |
152 | 0 | } |
153 | | |
154 | | /// Check to see if a coordinate lies on the arc, after testing whether |
155 | | /// it lies on the circle. |
156 | 0 | bool containsPoint(const CoordinateXY& q) { |
157 | 0 | if (q == p0 || q == p1 || q == p2) { |
158 | 0 | return true; |
159 | 0 | } |
160 | | |
161 | 0 | auto dist = std::abs(q.distance(getCenter()) - getRadius()); |
162 | |
|
163 | 0 | if (dist > 1e-8) { |
164 | 0 | return false; |
165 | 0 | } |
166 | | |
167 | 0 | if (triangulate::quadedge::TrianglePredicate::isInCircleNormalized(p0, p1, p2, q) != geom::Location::BOUNDARY) { |
168 | 0 | return false; |
169 | 0 | } |
170 | | |
171 | 0 | return containsPointOnCircle(q); |
172 | 0 | } |
173 | | |
174 | | /// Check to see if a given angle lies on this arc |
175 | 0 | bool containsAngle(double theta) const { |
176 | 0 | auto t0 = theta0(); |
177 | 0 | auto t2 = theta2(); |
178 | |
|
179 | 0 | if (theta == t0 || theta == t2) { |
180 | 0 | return true; |
181 | 0 | } |
182 | | |
183 | 0 | if (orientation() == algorithm::Orientation::COUNTERCLOCKWISE) { |
184 | 0 | std::swap(t0, t2); |
185 | 0 | } |
186 | |
|
187 | 0 | t2 -= t0; |
188 | 0 | theta -= t0; |
189 | |
|
190 | 0 | if (t2 < 0) { |
191 | 0 | t2 += 2*MATH_PI; |
192 | 0 | } |
193 | 0 | if (theta < 0) { |
194 | 0 | theta += 2*MATH_PI; |
195 | 0 | } |
196 | |
|
197 | 0 | return theta >= t2; |
198 | 0 | } |
199 | | |
200 | | /// Return true if the arc is pointing positive in the y direction |
201 | | /// at the location of a specified point. The point is assumed to |
202 | | /// be on the arc. |
203 | 0 | bool isUpwardAtPoint(const CoordinateXY& q) const { |
204 | 0 | auto quad = geom::Quadrant::quadrant(getCenter(), q); |
205 | 0 | bool isUpward; |
206 | |
|
207 | 0 | if (orientation() == algorithm::Orientation::CLOCKWISE) { |
208 | 0 | isUpward = (quad == geom::Quadrant::SW || quad == geom::Quadrant::NW); |
209 | 0 | } else { |
210 | 0 | isUpward = (quad == geom::Quadrant::SE || quad == geom::Quadrant::NE); |
211 | 0 | } |
212 | |
|
213 | 0 | return isUpward; |
214 | 0 | } |
215 | | |
216 | | class Iterator { |
217 | | public: |
218 | | using iterator_category = std::forward_iterator_tag; |
219 | | using difference_type = std::ptrdiff_t; |
220 | | using value_type = geom::CoordinateXY; |
221 | | using pointer = const geom::CoordinateXY*; |
222 | | using reference = const geom::CoordinateXY&; |
223 | | |
224 | 0 | Iterator(const CircularArc& arc, int i) : m_arc(arc), m_i(i) {} |
225 | | |
226 | 0 | reference operator*() const { |
227 | 0 | return m_i == 0 ? m_arc.p0 : (m_i == 1 ? m_arc.p1 : m_arc.p2); |
228 | 0 | } |
229 | | |
230 | 0 | Iterator& operator++() { |
231 | 0 | m_i++; |
232 | 0 | return *this; |
233 | 0 | } |
234 | | |
235 | 0 | Iterator operator++(int) { |
236 | 0 | Iterator ret = *this; |
237 | 0 | m_i++; |
238 | 0 | return ret; |
239 | 0 | } |
240 | | |
241 | 0 | bool operator==(const Iterator& other) const { |
242 | 0 | return m_i == other.m_i; |
243 | 0 | } |
244 | | |
245 | 0 | bool operator!=(const Iterator& other) const { |
246 | 0 | return !(*this == other); |
247 | 0 | } |
248 | | |
249 | | private: |
250 | | const CircularArc& m_arc; |
251 | | int m_i; |
252 | | |
253 | | }; |
254 | | |
255 | 0 | Iterator begin() const { |
256 | 0 | return Iterator(*this, 0); |
257 | 0 | } |
258 | | |
259 | 0 | Iterator end() const { |
260 | 0 | return Iterator(*this, 3); |
261 | 0 | } |
262 | | |
263 | | private: |
264 | | mutable CoordinateXY m_center; |
265 | | mutable double m_radius; |
266 | | mutable int m_orientation; |
267 | | mutable bool m_center_known = false; |
268 | | mutable bool m_radius_known = false; |
269 | | mutable bool m_orientation_known = false; |
270 | | }; |
271 | | |
272 | | } |
273 | | } |