/src/geos/src/geom/LineSegment.cpp
Line | Count | Source |
1 | | /********************************************************************** |
2 | | * |
3 | | * GEOS - Geometry Engine Open Source |
4 | | * http://geos.osgeo.org |
5 | | * |
6 | | * Copyright (C) 2009 2011 Sandro Santilli <strk@kbt.io> |
7 | | * Copyright (C) 2005-2006 Refractions Research Inc. |
8 | | * Copyright (C) 2001-2002 Vivid Solutions Inc. |
9 | | * |
10 | | * This is free software; you can redistribute and/or modify it under |
11 | | * the terms of the GNU Lesser General Public Licence as published |
12 | | * by the Free Software Foundation. |
13 | | * See the COPYING file for more information. |
14 | | * |
15 | | ********************************************************************** |
16 | | * |
17 | | * Last port: geom/LineSegment.java r18 (JTS-1.11) |
18 | | * |
19 | | **********************************************************************/ |
20 | | |
21 | | #include <geos/constants.h> |
22 | | #include <geos/geom/LineSegment.h> |
23 | | #include <geos/geom/LineString.h> // for toGeometry |
24 | | #include <geos/geom/CoordinateSequence.h> |
25 | | #include <geos/geom/GeometryFactory.h> |
26 | | #include <geos/algorithm/LineIntersector.h> |
27 | | #include <geos/algorithm/Intersection.h> |
28 | | #include <geos/util/IllegalStateException.h> |
29 | | #include <geos/profiler.h> |
30 | | #include <geos/util.h> |
31 | | |
32 | | #include <algorithm> // for max |
33 | | #include <sstream> |
34 | | #include <cmath> |
35 | | |
36 | | |
37 | | namespace geos { |
38 | | namespace geom { // geos::geom |
39 | | |
40 | | |
41 | | /*public*/ |
42 | | void |
43 | | LineSegment::reverse() |
44 | 0 | { |
45 | 0 | std::swap(p0, p1); |
46 | 0 | } |
47 | | |
48 | | /*public*/ |
49 | | double |
50 | | LineSegment::projectionFactor(const CoordinateXY& p) const |
51 | 0 | { |
52 | 0 | if(p == p0) { |
53 | 0 | return 0.0; |
54 | 0 | } |
55 | 0 | if(p == p1) { |
56 | 0 | return 1.0; |
57 | 0 | } |
58 | 0 | if(p0 == p1) { |
59 | 0 | return 0.0; |
60 | 0 | } |
61 | | // Otherwise, use comp.graphics.algorithms Frequently Asked Questions method |
62 | | /*(1) AC dot AB |
63 | | r = --------- |
64 | | ||AB||^2 |
65 | | r has the following meaning: |
66 | | r=0 P = A |
67 | | r=1 P = B |
68 | | r<0 P is on the backward extension of AB |
69 | | r>1 P is on the forward extension of AB |
70 | | 0<r<1 P is interior to AB |
71 | | */ |
72 | 0 | double dx = p1.x - p0.x; |
73 | 0 | double dy = p1.y - p0.y; |
74 | 0 | double len2 = dx * dx + dy * dy; |
75 | 0 | double r = ((p.x - p0.x) * dx + (p.y - p0.y) * dy) / len2; |
76 | 0 | return r; |
77 | 0 | } |
78 | | |
79 | | /*public*/ |
80 | | double |
81 | | LineSegment::segmentFraction(const CoordinateXY& inputPt) const |
82 | 0 | { |
83 | 0 | double segFrac = projectionFactor(inputPt); |
84 | 0 | if(segFrac < 0.0) { |
85 | 0 | segFrac = 0.0; |
86 | 0 | } |
87 | 0 | else if(segFrac > 1.0) { |
88 | 0 | segFrac = 1.0; |
89 | 0 | } |
90 | 0 | return segFrac; |
91 | 0 | } |
92 | | |
93 | | /*public*/ |
94 | | void |
95 | | LineSegment::project(const Coordinate& p, Coordinate& ret) const |
96 | 0 | { |
97 | 0 | if(p == p0 || p == p1) { |
98 | 0 | ret = p; |
99 | 0 | return; |
100 | 0 | } |
101 | 0 | double r = projectionFactor(p); |
102 | 0 | ret = Coordinate(p0.x + r * (p1.x - p0.x), p0.y + r * (p1.y - p0.y)); |
103 | 0 | } |
104 | | |
105 | | CoordinateXY |
106 | | LineSegment::project(const CoordinateXY& p) const |
107 | 0 | { |
108 | 0 | if(p == p0 || p == p1) { |
109 | 0 | return p; |
110 | 0 | } |
111 | 0 | double r = projectionFactor(p); |
112 | 0 | double x = p0.x + r * (p1.x - p0.x); |
113 | 0 | double y = p0.y + r * (p1.y - p0.y); |
114 | 0 | return CoordinateXY(x, y); |
115 | 0 | } |
116 | | |
117 | | |
118 | | |
119 | | /*private*/ |
120 | | void |
121 | | LineSegment::project(double factor, CoordinateXY& ret) const |
122 | 0 | { |
123 | 0 | if( factor == 1.0 ) |
124 | 0 | ret = p1; |
125 | 0 | else |
126 | 0 | ret = CoordinateXY(p0.x + factor * (p1.x - p0.x), p0.y + factor * (p1.y - p0.y)); |
127 | 0 | } |
128 | | |
129 | | bool |
130 | | LineSegment::project(const LineSegment& seg, LineSegment& ret) const |
131 | 0 | { |
132 | 0 | double pf0 = projectionFactor(seg.p0); |
133 | 0 | double pf1 = projectionFactor(seg.p1); |
134 | | // check if segment projects at all |
135 | |
|
136 | 0 | if(pf0 >= 1.0 && pf1 >= 1.0) { |
137 | 0 | return false; |
138 | 0 | } |
139 | | |
140 | 0 | if(pf0 <= 0.0 && pf1 <= 0.0) { |
141 | 0 | return false; |
142 | 0 | } |
143 | | |
144 | 0 | Coordinate newp0; |
145 | 0 | project(pf0, newp0); |
146 | 0 | if (pf0 < 0.0) newp0 = p0; |
147 | 0 | if (pf0 > 1.0) newp0 = p1; |
148 | |
|
149 | 0 | Coordinate newp1; |
150 | 0 | project(pf1, newp1); |
151 | 0 | if (pf1 < 0.0) newp1 = p0; |
152 | 0 | if (pf1 > 1.0) newp1 = p1; |
153 | |
|
154 | 0 | ret.setCoordinates(newp0, newp1); |
155 | |
|
156 | 0 | return true; |
157 | 0 | } |
158 | | |
159 | | //Coordinate* |
160 | | void |
161 | | LineSegment::closestPoint(const CoordinateXY& p, CoordinateXY& ret) const |
162 | 0 | { |
163 | 0 | double factor = projectionFactor(p); |
164 | 0 | if(factor > 0 && factor < 1) { |
165 | 0 | project(factor, ret); |
166 | 0 | return; |
167 | 0 | } |
168 | 0 | double dist0 = p0.distance(p); |
169 | 0 | double dist1 = p1.distance(p); |
170 | 0 | if(dist0 < dist1) { |
171 | 0 | ret = p0; |
172 | 0 | return; |
173 | 0 | } |
174 | 0 | ret = p1; |
175 | 0 | } |
176 | | |
177 | | /*public*/ |
178 | | bool |
179 | | LineSegment::equalsTopo(const LineSegment& other) const |
180 | 0 | { |
181 | 0 | return (p0 == other.p0 && p1 == other.p1) || (p0 == other.p1 && p1 == other.p0); |
182 | 0 | } |
183 | | |
184 | | /*public*/ |
185 | | int |
186 | | LineSegment::orientationIndex(const LineSegment& seg) const |
187 | 0 | { |
188 | 0 | int orient0 = algorithm::Orientation::index(p0, p1, seg.p0); |
189 | 0 | int orient1 = algorithm::Orientation::index(p0, p1, seg.p1); |
190 | | // this handles the case where the points are L or collinear |
191 | 0 | if(orient0 >= 0 && orient1 >= 0) { |
192 | 0 | return std::max(orient0, orient1); |
193 | 0 | } |
194 | | // this handles the case where the points are R or collinear |
195 | 0 | if(orient0 <= 0 && orient1 <= 0) { |
196 | 0 | return std::min(orient0, orient1); |
197 | 0 | } |
198 | | // points lie on opposite sides ==> indeterminate orientation |
199 | 0 | return 0; |
200 | 0 | } |
201 | | |
202 | | std::array<Coordinate, 2> |
203 | | LineSegment::closestPoints(const LineSegment& line) |
204 | 0 | { |
205 | | // test for intersection |
206 | 0 | Coordinate intPt = intersection(line); |
207 | 0 | if(!intPt.isNull()) { |
208 | 0 | return {{ intPt, intPt }}; |
209 | 0 | } |
210 | | |
211 | | /* |
212 | | * if no intersection closest pair contains at least one endpoint. |
213 | | * Test each endpoint in turn. |
214 | | */ |
215 | 0 | std::array<Coordinate, 2> closestPt; |
216 | |
|
217 | 0 | double dist; |
218 | |
|
219 | 0 | Coordinate close00; |
220 | 0 | closestPoint(line.p0, close00); |
221 | 0 | double minDistance = close00.distance(line.p0); |
222 | |
|
223 | 0 | closestPt[0] = close00; |
224 | 0 | closestPt[1] = line.p0; |
225 | |
|
226 | 0 | Coordinate close01; |
227 | 0 | closestPoint(line.p1, close01); |
228 | 0 | dist = close01.distance(line.p1); |
229 | 0 | if(dist < minDistance) { |
230 | 0 | minDistance = dist; |
231 | 0 | closestPt[0] = close01; |
232 | 0 | closestPt[1] = line.p1; |
233 | 0 | } |
234 | |
|
235 | 0 | Coordinate close10; |
236 | 0 | line.closestPoint(p0, close10); |
237 | 0 | dist = close10.distance(p0); |
238 | 0 | if(dist < minDistance) { |
239 | 0 | minDistance = dist; |
240 | 0 | closestPt[0] = p0; |
241 | 0 | closestPt[1] = close10; |
242 | 0 | } |
243 | |
|
244 | 0 | Coordinate close11; |
245 | 0 | line.closestPoint(p1, close11); |
246 | 0 | dist = close11.distance(p1); |
247 | 0 | if(dist < minDistance) { |
248 | 0 | closestPt[0] = p1; |
249 | 0 | closestPt[1] = close11; |
250 | 0 | } |
251 | |
|
252 | 0 | return closestPt; |
253 | 0 | } |
254 | | |
255 | | Coordinate |
256 | | LineSegment::intersection(const LineSegment& line) const |
257 | 0 | { |
258 | 0 | algorithm::LineIntersector li; |
259 | 0 | li.computeIntersection(p0, p1, line.p0, line.p1); |
260 | 0 | if(li.hasIntersection()) { |
261 | 0 | return li.getIntersection(0); |
262 | 0 | } |
263 | 0 | Coordinate rv; |
264 | 0 | rv.setNull(); |
265 | 0 | return rv; |
266 | 0 | } |
267 | | |
268 | | Coordinate |
269 | | LineSegment::lineIntersection(const LineSegment& line) const |
270 | 0 | { |
271 | | // TODO return a CoordinateXY here. |
272 | 0 | return Coordinate(algorithm::Intersection::intersection(p0, p1, line.p0, line.p1)); |
273 | 0 | } |
274 | | |
275 | | |
276 | | /* public */ |
277 | | void |
278 | | LineSegment::pointAlongOffset(double segmentLengthFraction, |
279 | | double offsetDistance, |
280 | | Coordinate& ret) const |
281 | 0 | { |
282 | | // the point on the segment line |
283 | 0 | double segx = p0.x + segmentLengthFraction * (p1.x - p0.x); |
284 | 0 | double segy = p0.y + segmentLengthFraction * (p1.y - p0.y); |
285 | |
|
286 | 0 | double dx = p1.x - p0.x; |
287 | 0 | double dy = p1.y - p0.y; |
288 | 0 | double len = std::sqrt(dx * dx + dy * dy); |
289 | |
|
290 | 0 | double ux = 0.0; |
291 | 0 | double uy = 0.0; |
292 | 0 | if(offsetDistance != 0.0) { |
293 | 0 | if(len <= 0.0) { |
294 | 0 | throw util::IllegalStateException("Cannot compute offset from zero-length line segment"); |
295 | 0 | } |
296 | | |
297 | | // u is the vector that is the length of the offset, |
298 | | // in the direction of the segment |
299 | 0 | ux = offsetDistance * dx / len; |
300 | 0 | uy = offsetDistance * dy / len; |
301 | 0 | } |
302 | | |
303 | | // the offset point is the seg point plus the offset |
304 | | // vector rotated 90 degrees CCW |
305 | 0 | double offsetx = segx - uy; |
306 | 0 | double offsety = segy + ux; |
307 | |
|
308 | 0 | ret = Coordinate(offsetx, offsety); |
309 | 0 | } |
310 | | |
311 | | /* public */ |
312 | | LineSegment |
313 | | LineSegment::offset(double offsetDistance) |
314 | 0 | { |
315 | 0 | Coordinate offset0, offset1; |
316 | 0 | pointAlongOffset(0, offsetDistance, offset0); |
317 | 0 | pointAlongOffset(1, offsetDistance, offset1); |
318 | 0 | LineSegment ls(offset0, offset1); |
319 | 0 | return ls; |
320 | 0 | } |
321 | | |
322 | | /* public */ |
323 | | double |
324 | | LineSegment::distancePerpendicularOriented(const CoordinateXY& p) const |
325 | 0 | { |
326 | 0 | if (p0.equals2D(p1)) |
327 | 0 | return p0.distance(p); |
328 | 0 | double dist = distancePerpendicular(p); |
329 | 0 | if (orientationIndex(p) < 0) |
330 | 0 | return -dist; |
331 | 0 | return dist; |
332 | 0 | } |
333 | | |
334 | | /* public */ |
335 | | std::unique_ptr<LineString> |
336 | | LineSegment::toGeometry(const GeometryFactory& gf) const |
337 | 0 | { |
338 | 0 | auto cl = detail::make_unique<CoordinateSequence>(2u); |
339 | |
|
340 | 0 | cl->setAt(p0, 0); |
341 | 0 | cl->setAt(p1, 1); |
342 | 0 | return gf.createLineString(std::move(cl)); |
343 | 0 | } |
344 | | |
345 | | /* public */ |
346 | | std::ostream& |
347 | | LineSegment::operator<< (std::ostream& os) |
348 | 0 | { |
349 | 0 | return os << "LINESEGMENT(" |
350 | 0 | << p0.x << " " << p0.y << "," |
351 | 0 | << p1.x << " " << p1.y << ")"; |
352 | 0 | } |
353 | | |
354 | | |
355 | | |
356 | | |
357 | | } // namespace geos::geom |
358 | | } // namespace geos |