/src/ghostpdl/base/gdevddrw.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Copyright (C) 2001-2021 Artifex Software, Inc. |
2 | | All Rights Reserved. |
3 | | |
4 | | This software is provided AS-IS with no warranty, either express or |
5 | | implied. |
6 | | |
7 | | This software is distributed under license and may not be copied, |
8 | | modified or distributed except as expressly authorized under the terms |
9 | | of the license contained in the file LICENSE in this distribution. |
10 | | |
11 | | Refer to licensing information at http://www.artifex.com or contact |
12 | | Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato, |
13 | | CA 94945, U.S.A., +1(415)492-9861, for further information. |
14 | | */ |
15 | | |
16 | | /* Default polygon and image drawing device procedures */ |
17 | | #include "math_.h" |
18 | | #include "memory_.h" |
19 | | #include "stdint_.h" |
20 | | #include "gx.h" |
21 | | #include "gpcheck.h" |
22 | | #include "gserrors.h" |
23 | | #include "gsrect.h" |
24 | | #include "gxfixed.h" |
25 | | #include "gxmatrix.h" |
26 | | #include "gxdcolor.h" |
27 | | #include "gxdevice.h" |
28 | | #include "gxiparam.h" |
29 | | #include "gxgstate.h" |
30 | | #include "gxhldevc.h" |
31 | | #include "gdevddrw.h" |
32 | | /* |
33 | | #include "gxdtfill.h" - Do not remove this comment. |
34 | | "gxdtfill.h" is included below. |
35 | | */ |
36 | | |
37 | | #define SWAP(a, b, t)\ |
38 | 286k | (t = a, a = b, b = t) |
39 | | |
40 | | /* ---------------- Polygon and line drawing ---------------- */ |
41 | | |
42 | | /* Define the 'remainder' analogue of fixed_mult_quo. */ |
43 | | static fixed |
44 | | fixed_mult_rem(fixed a, fixed b, fixed c) |
45 | 898k | { |
46 | | /* All kinds of truncation may happen here, but it's OK. */ |
47 | 898k | return a * b - fixed_mult_quo(a, b, c) * c; |
48 | 898k | } |
49 | | |
50 | | /* |
51 | | * The trapezoid fill algorithm uses trap_line structures to keep track of |
52 | | * the left and right edges during the Bresenham loop. |
53 | | */ |
54 | | typedef struct trap_line_s { |
55 | | /* |
56 | | * h is the y extent of the line (edge.end.y - edge.start.y). |
57 | | * We know h > 0. |
58 | | */ |
59 | | fixed h; |
60 | | /* |
61 | | * The dx/dy ratio for the line is di + df/h. |
62 | | * (The quotient refers to the l.s.b. of di, not fixed_1.) |
63 | | * We know 0 <= df < h. |
64 | | */ |
65 | | int di; |
66 | | fixed df; |
67 | | /* |
68 | | * The intersection of the line with a scan line is x + xf/h + 1. |
69 | | * (The 1 refers to the least significant bit of x, not fixed_1; |
70 | | * similarly, the quotient refers to the l.s.b. of x.) |
71 | | * We know -h <= xf < 0. |
72 | | * |
73 | | * This rational value preciselly represents the mathematical line |
74 | | * (with no machine arithmetic error). |
75 | | * |
76 | | * Note that the fractional part is negative to simplify |
77 | | * some conditions in the Bresenham algorithm. |
78 | | * Due to that some expressions are inobvious. |
79 | | * We believe that it's a kind of archaic |
80 | | * for the modern hyperthreading architecture, |
81 | | * we still keep it because the code passed a huge testing |
82 | | * on various platforms. |
83 | | */ |
84 | | fixed x, xf; |
85 | | /* |
86 | | * We increment (x,xf) by (ldi,ldf) after each scan line. |
87 | | * (ldi,ldf) is just (di,df) converted to fixed point. |
88 | | * We know 0 <= ldf < h. |
89 | | */ |
90 | | fixed ldi, ldf; |
91 | | } trap_line; |
92 | | |
93 | | /* |
94 | | * The linear color trapezoid fill algorithm uses trap_color structures to keep track of |
95 | | * the color change during the Bresenham loop. |
96 | | */ |
97 | | typedef struct trap_gradient_s { |
98 | | frac31 *c; /* integer part of the color in frac32 units. */ |
99 | | int32_t *f; /* the fraction part numerator */ |
100 | | int32_t *num; /* the gradient numerator */ |
101 | | int32_t den; /* color gradient denominator */ |
102 | | } trap_gradient; |
103 | | |
104 | | /* |
105 | | * Compute the di and df members of a trap_line structure. The x extent |
106 | | * (edge.end.x - edge.start.x) is a parameter; the y extent (h member) |
107 | | * has already been set. Also adjust x for the initial y. |
108 | | */ |
109 | | static inline void |
110 | | compute_dx(trap_line *tl, fixed xd, fixed ys) |
111 | 3.91M | { |
112 | 3.91M | fixed h = tl->h; |
113 | 3.91M | int di; |
114 | | |
115 | 3.91M | if (xd >= 0) { |
116 | 1.19M | if (xd < h) |
117 | 660k | tl->di = 0, tl->df = xd; |
118 | 530k | else { |
119 | 530k | tl->di = di = (int)(xd / h); |
120 | 530k | tl->df = xd - di * h; |
121 | 530k | tl->x += ys * di; |
122 | 530k | } |
123 | 2.72M | } else { |
124 | 2.72M | if ((tl->df = xd + h) >= 0 /* xd >= -h */) |
125 | 1.40M | tl->di = -1, tl->x -= ys; |
126 | 1.31M | else { |
127 | 1.31M | tl->di = di = (int)((xd + 1) / h - 1); |
128 | 1.31M | tl->df = xd - di * h; |
129 | 1.31M | tl->x += ys * di; |
130 | 1.31M | } |
131 | 2.72M | } |
132 | 3.91M | } |
133 | | |
134 | 11.1M | #define YMULT_LIMIT (max_fixed / fixed_1) |
135 | | |
136 | | /* Compute ldi, ldf, and xf similarly. */ |
137 | | static inline void |
138 | | compute_ldx(trap_line *tl, fixed ys) |
139 | 4.35M | { |
140 | 4.35M | int di = tl->di; |
141 | 4.35M | fixed df = tl->df; |
142 | 4.35M | fixed h = tl->h; |
143 | | |
144 | 4.35M | if ( df < YMULT_LIMIT ) { |
145 | 4.35M | if ( df == 0 ) /* vertical edge, worth checking for */ |
146 | 529k | tl->ldi = int2fixed(di), tl->ldf = 0, tl->xf = -h; |
147 | 3.82M | else { |
148 | 3.82M | tl->ldi = int2fixed(di) + int2fixed(df) / h; |
149 | 3.82M | tl->ldf = int2fixed(df) % h; |
150 | 3.82M | tl->xf = |
151 | 3.82M | (ys < fixed_1 ? ys * df % h : fixed_mult_rem(ys, df, h)) - h; |
152 | 3.82M | } |
153 | 4.35M | } |
154 | 541 | else { |
155 | 541 | tl->ldi = int2fixed(di) + fixed_mult_quo(fixed_1, df, h); |
156 | 541 | tl->ldf = fixed_mult_rem(fixed_1, df, h); |
157 | 541 | tl->xf = fixed_mult_rem(ys, df, h) - h; |
158 | 541 | } |
159 | 4.35M | } |
160 | | |
161 | | static inline int |
162 | | init_gradient(trap_gradient *g, const gs_fill_attributes *fa, |
163 | | const gs_linear_color_edge *e, const gs_linear_color_edge *e1, |
164 | | const trap_line *l, fixed ybot, int num_components) |
165 | 0 | { |
166 | 0 | int i; |
167 | 0 | int64_t c; |
168 | 0 | int32_t d; |
169 | |
|
170 | 0 | if (e->c1 == NULL || e->c0 == NULL) |
171 | 0 | g->den = 0; /* A wedge - the color is axial along another edge. */ |
172 | 0 | else { |
173 | 0 | bool ends_from_fa = (e1->c1 == NULL || e1->c0 == NULL); |
174 | |
|
175 | 0 | if (ends_from_fa) |
176 | 0 | g->den = fa->yend - fa->ystart; |
177 | 0 | else { |
178 | 0 | g->den = e->end.y - e->start.y; |
179 | 0 | if (g->den != l->h) |
180 | 0 | return_error(gs_error_unregistered); /* Must not happen. */ |
181 | 0 | } |
182 | 0 | for (i = 0; i < num_components; i++) { |
183 | 0 | g->num[i] = e->c1[i] - e->c0[i]; |
184 | 0 | c = (int64_t)g->num[i] * (uint32_t)(ybot - |
185 | 0 | (ends_from_fa ? fa->ystart : e->start.y)); |
186 | 0 | d = (int32_t)(c / g->den); |
187 | 0 | g->c[i] = e->c0[i] + d; |
188 | 0 | c -= (int64_t)d * g->den; |
189 | 0 | if (c < 0) { |
190 | 0 | g->c[i]--; |
191 | 0 | c += g->den; |
192 | 0 | } |
193 | 0 | g->f[i] = (int32_t)c; |
194 | 0 | } |
195 | 0 | } |
196 | 0 | return 0; |
197 | 0 | } |
198 | | |
199 | | static inline void |
200 | | step_gradient(trap_gradient *g, int num_components) |
201 | 0 | { |
202 | 0 | int i; |
203 | |
|
204 | 0 | if (g->den == 0) |
205 | 0 | return; |
206 | 0 | for (i = 0; i < num_components; i++) { |
207 | 0 | int64_t fc = g->f[i] + (int64_t)g->num[i] * fixed_1; |
208 | 0 | int32_t fc32; |
209 | |
|
210 | 0 | g->c[i] += (int32_t)(fc / g->den); |
211 | 0 | fc32 = (int32_t)(fc - fc / g->den * g->den); |
212 | 0 | if (fc32 < 0) { |
213 | 0 | fc32 += g->den; |
214 | 0 | g->c[i]--; |
215 | 0 | } |
216 | 0 | g->f[i] = fc32; |
217 | 0 | } |
218 | 0 | } |
219 | | |
220 | | static inline bool |
221 | | check_gradient_overflow(const gs_linear_color_edge *le, const gs_linear_color_edge *re) |
222 | 0 | { |
223 | 0 | if (le->c1 == NULL || re->c1 == NULL) { |
224 | | /* A wedge doesn't use a gradient by X. */ |
225 | 0 | return false; |
226 | 0 | } else { |
227 | | /* Check whether set_x_gradient, fill_linear_color_scanline can overflow. |
228 | | |
229 | | dev_proc(dev, fill_linear_color_scanline) can perform its computation in 32-bit fractions, |
230 | | so we assume it never overflows. Devices which implement it with no this |
231 | | assumption must implement the check in gx_default_fill_linear_color_trapezoid, |
232 | | gx_default_fill_linear_color_triangle with a function other than this one. |
233 | | |
234 | | Since set_x_gradient perform computations in int64_t, which provides 63 bits |
235 | | while multiplying a 32-bits color value to a coordinate, |
236 | | we must restrict the X span with 63 - 32 = 31 bits. |
237 | | */ |
238 | 0 | int32_t xl = min(le->start.x, le->end.x); |
239 | 0 | int32_t xr = min(re->start.x, re->end.x); |
240 | | /* The pixel span boundaries : */ |
241 | 0 | return arith_rshift_1(xr) - arith_rshift_1(xl) >= 0x3FFFFFFE; |
242 | 0 | } |
243 | 0 | } |
244 | | |
245 | | static inline int |
246 | | set_x_gradient_nowedge(trap_gradient *xg, const trap_gradient *lg, const trap_gradient *rg, |
247 | | const trap_line *l, const trap_line *r, int il, int ir, int num_components) |
248 | 0 | { |
249 | | /* Ignoring the ending coordinats fractions, |
250 | | so the gridient is slightly shifted to the left (in <1 'fixed' unit). */ |
251 | 0 | int32_t xl = l->x - (l->xf == -l->h ? 1 : 0) - fixed_half; /* Revert the GX_FILL_TRAPEZOID shift. */ |
252 | 0 | int32_t xr = r->x - (r->xf == -r->h ? 1 : 0) - fixed_half; /* Revert the GX_FILL_TRAPEZOID shift. */ |
253 | | /* The pixel span boundaries : */ |
254 | 0 | int32_t x0 = int2fixed(il) + fixed_half; /* Shift to the pixel center. */ |
255 | 0 | int32_t x1 = int2fixed(ir) - fixed_half; /* The center of the last pixel to paint. */ |
256 | 0 | int i; |
257 | |
|
258 | | # ifdef DEBUG |
259 | | if (arith_rshift_1(xr) - arith_rshift_1(xl) >= 0x3FFFFFFE) /* Can overflow ? */ |
260 | | return_error(gs_error_unregistered); /* Must not happen. */ |
261 | | # endif |
262 | | /* We cannot compute the color of the 'ir' pixel |
263 | | because it can overflow 'c1' due to the pixel ir center |
264 | | may be greater that r->x . |
265 | | Therefore we base the proportion on the pixel index ir-1 (see comment to 'x1'). |
266 | | Debugged with CET 12-14O.PS SpecialTestJ02Test12. |
267 | | */ |
268 | 0 | xg->den = fixed2int(x1 - x0); |
269 | 0 | if (xg->den <= 0) { |
270 | | /* The span contains a single pixel, will construct a degenerate gradient. */ |
271 | 0 | xg->den = 1; /* Safety (against zerodivide). */ |
272 | 0 | } |
273 | 0 | for (i = 0; i < num_components; i++) { |
274 | | /* Ignoring the ending colors fractions, |
275 | | so the color gets a slightly smaller value |
276 | | (in <1 'frac31' unit), but it's not important due to |
277 | | the further conversion to [0, 1 << cinfo->comp_bits[j]], |
278 | | which drops the fraction anyway. */ |
279 | 0 | int32_t cl = lg->c[i]; |
280 | 0 | int32_t cr = rg->c[i]; |
281 | 0 | int32_t c0 = (int32_t)(cl + ((int64_t)cr - cl) * (x0 - xl) / (xr - xl)); |
282 | 0 | int32_t c1 = (int32_t)(cl + ((int64_t)cr - cl) * (x1 - xl) / (xr - xl)); |
283 | |
|
284 | 0 | xg->c[i] = c0; |
285 | 0 | xg->f[i] = 0; /* Insufficient bits to compute it better. |
286 | | The color so the color gets a slightly smaller value |
287 | | (in <1 'frac31' unit), but it's not important due to |
288 | | the further conversion to [0, 1 << cinfo->comp_bits[j]], |
289 | | which drops the fraction anyway. |
290 | | So setting 0 appears pretty good and fast. */ |
291 | 0 | xg->num[i] = c1 - c0; |
292 | 0 | } |
293 | 0 | return 0; |
294 | 0 | } |
295 | | |
296 | | static inline int |
297 | | set_x_gradient(trap_gradient *xg, const trap_gradient *lg, const trap_gradient *rg, |
298 | | const trap_line *l, const trap_line *r, int il, int ir, int num_components) |
299 | 0 | { |
300 | 0 | if (lg->den == 0 || rg->den == 0) { |
301 | | /* A wedge doesn't use a gradient by X. */ |
302 | 0 | int i; |
303 | |
|
304 | 0 | xg->den = 1; |
305 | 0 | for (i = 0; i < num_components; i++) { |
306 | 0 | xg->c[i] = (lg->den == 0 ? rg->c[i] : lg->c[i]); |
307 | 0 | xg->f[i] = 0; /* Compatible to set_x_gradient_nowedge. */ |
308 | 0 | xg->num[i] = 0; |
309 | 0 | } |
310 | 0 | return 0; |
311 | 0 | } else |
312 | 0 | return set_x_gradient_nowedge(xg, lg, rg, l, r, il, ir, num_components); |
313 | 0 | } |
314 | | |
315 | | /* |
316 | | * Fill a trapezoid. |
317 | | * Since we need several statically defined variants of this algorithm, |
318 | | * we stored it in gxdtfill.h and include it configuring with |
319 | | * macros defined here. |
320 | | */ |
321 | 63.8M | #define LINEAR_COLOR 0 /* Common for shading variants. */ |
322 | | #define EDGE_TYPE gs_fixed_edge /* Common for non-shading variants. */ |
323 | | #define FILL_ATTRS gs_logical_operation_t /* Common for non-shading variants. */ |
324 | | |
325 | | #define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_as_fd |
326 | | #define CONTIGUOUS_FILL 0 |
327 | 2.17M | #define SWAP_AXES 1 |
328 | 2.17M | #define FILL_DIRECT 1 |
329 | | #include "gxdtfill.h" |
330 | | #undef GX_FILL_TRAPEZOID |
331 | | #undef CONTIGUOUS_FILL |
332 | | #undef SWAP_AXES |
333 | | #undef FILL_DIRECT |
334 | | |
335 | | #define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_as_nd |
336 | | #define CONTIGUOUS_FILL 0 |
337 | 6.35M | #define SWAP_AXES 1 |
338 | 6.35M | #define FILL_DIRECT 0 |
339 | | #include "gxdtfill.h" |
340 | | #undef GX_FILL_TRAPEZOID |
341 | | #undef CONTIGUOUS_FILL |
342 | | #undef SWAP_AXES |
343 | | #undef FILL_DIRECT |
344 | | |
345 | | #define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_ns_fd |
346 | | #define CONTIGUOUS_FILL 0 |
347 | 6.68M | #define SWAP_AXES 0 |
348 | 6.68M | #define FILL_DIRECT 1 |
349 | | #include "gxdtfill.h" |
350 | | #undef GX_FILL_TRAPEZOID |
351 | | #undef CONTIGUOUS_FILL |
352 | | #undef SWAP_AXES |
353 | | #undef FILL_DIRECT |
354 | | |
355 | | #define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_ns_nd |
356 | | #define CONTIGUOUS_FILL 0 |
357 | 5.93M | #define SWAP_AXES 0 |
358 | 5.93M | #define FILL_DIRECT 0 |
359 | | #include "gxdtfill.h" |
360 | | #undef GX_FILL_TRAPEZOID |
361 | | #undef CONTIGUOUS_FILL |
362 | | #undef SWAP_AXES |
363 | | #undef FILL_DIRECT |
364 | | |
365 | | #define GX_FILL_TRAPEZOID int gx_fill_trapezoid_cf_fd |
366 | | #define CONTIGUOUS_FILL 1 |
367 | 0 | #define SWAP_AXES 0 |
368 | 0 | #define FILL_DIRECT 1 |
369 | | #include "gxdtfill.h" |
370 | | #undef GX_FILL_TRAPEZOID |
371 | | #undef CONTIGUOUS_FILL |
372 | | #undef SWAP_AXES |
373 | | #undef FILL_DIRECT |
374 | | |
375 | | #define GX_FILL_TRAPEZOID int gx_fill_trapezoid_cf_nd |
376 | | #define CONTIGUOUS_FILL 1 |
377 | 0 | #define SWAP_AXES 0 |
378 | 0 | #define FILL_DIRECT 0 |
379 | | #include "gxdtfill.h" |
380 | | #undef GX_FILL_TRAPEZOID |
381 | | #undef CONTIGUOUS_FILL |
382 | | #undef SWAP_AXES |
383 | | #undef FILL_DIRECT |
384 | | |
385 | | #undef EDGE_TYPE |
386 | | #undef LINEAR_COLOR |
387 | | #undef FILL_ATTRS |
388 | | |
389 | 0 | #define LINEAR_COLOR 1 /* Common for shading variants. */ |
390 | | #define EDGE_TYPE gs_linear_color_edge /* Common for shading variants. */ |
391 | | #define FILL_ATTRS const gs_fill_attributes * /* Common for non-shading variants. */ |
392 | | |
393 | | #define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_ns_lc |
394 | | #define CONTIGUOUS_FILL 0 |
395 | | #define SWAP_AXES 0 |
396 | 0 | #define FILL_DIRECT 1 |
397 | | #include "gxdtfill.h" |
398 | | #undef GX_FILL_TRAPEZOID |
399 | | #undef CONTIGUOUS_FILL |
400 | | #undef SWAP_AXES |
401 | | #undef FILL_DIRECT |
402 | | |
403 | | #define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_as_lc |
404 | | #define CONTIGUOUS_FILL 0 |
405 | | #define SWAP_AXES 1 |
406 | 0 | #define FILL_DIRECT 1 |
407 | | #include "gxdtfill.h" |
408 | | #undef GX_FILL_TRAPEZOID |
409 | | #undef CONTIGUOUS_FILL |
410 | | #undef SWAP_AXES |
411 | | #undef FILL_DIRECT |
412 | | |
413 | | #undef EDGE_TYPE |
414 | | #undef LINEAR_COLOR |
415 | | #undef FILL_ATTRS |
416 | | |
417 | | int |
418 | | gx_default_fill_trapezoid(gx_device * dev, const gs_fixed_edge * left, |
419 | | const gs_fixed_edge * right, fixed ybot, fixed ytop, bool swap_axes, |
420 | | const gx_device_color * pdevc, gs_logical_operation_t lop) |
421 | 3.89M | { |
422 | 3.89M | bool fill_direct = color_writes_pure(pdevc, lop); |
423 | | |
424 | 3.89M | if (swap_axes) { |
425 | 360k | if (fill_direct) |
426 | 315k | return gx_fill_trapezoid_as_fd(dev, left, right, ybot, ytop, 0, pdevc, lop); |
427 | 44.6k | else |
428 | 44.6k | return gx_fill_trapezoid_as_nd(dev, left, right, ybot, ytop, 0, pdevc, lop); |
429 | 3.53M | } else { |
430 | 3.53M | if (fill_direct) |
431 | 3.46M | return gx_fill_trapezoid_ns_fd(dev, left, right, ybot, ytop, 0, pdevc, lop); |
432 | 71.9k | else |
433 | 71.9k | return gx_fill_trapezoid_ns_nd(dev, left, right, ybot, ytop, 0, pdevc, lop); |
434 | 3.53M | } |
435 | 3.89M | } |
436 | | |
437 | | static inline int |
438 | | fill_linear_color_trapezoid_nocheck(gx_device *dev, const gs_fill_attributes *fa, |
439 | | const gs_linear_color_edge *le, const gs_linear_color_edge *re) |
440 | 0 | { |
441 | 0 | fixed y02 = max(le->start.y, re->start.y), ymin = max(y02, fa->clip->p.y); |
442 | 0 | fixed y13 = min(le->end.y, re->end.y), ymax = min(y13, fa->clip->q.y); |
443 | 0 | int code; |
444 | |
|
445 | 0 | code = (fa->swap_axes ? gx_fill_trapezoid_as_lc : gx_fill_trapezoid_ns_lc)(dev, |
446 | 0 | le, re, ymin, ymax, 0, NULL, fa); |
447 | 0 | if (code < 0) |
448 | 0 | return code; |
449 | 0 | return !code; |
450 | 0 | } |
451 | | |
452 | | /* Fill a trapezoid with a linear color. |
453 | | [p0 : p1] - left edge, from bottom to top. |
454 | | [p2 : p3] - right edge, from bottom to top. |
455 | | The filled area is within Y-spans of both edges. |
456 | | |
457 | | This implemetation actually handles a bilinear color, |
458 | | in which the generatrix keeps a parallelizm to the X axis. |
459 | | In general a bilinear function doesn't keep the generatrix parallelizm, |
460 | | so the caller must decompose/approximate such functions. |
461 | | |
462 | | Return values : |
463 | | 1 - success; |
464 | | 0 - Too big. The area isn't filled. The client must decompose the area. |
465 | | <0 - error. |
466 | | */ |
467 | | int |
468 | | gx_default_fill_linear_color_trapezoid(gx_device *dev, const gs_fill_attributes *fa, |
469 | | const gs_fixed_point *p0, const gs_fixed_point *p1, |
470 | | const gs_fixed_point *p2, const gs_fixed_point *p3, |
471 | | const frac31 *c0, const frac31 *c1, |
472 | | const frac31 *c2, const frac31 *c3) |
473 | 0 | { |
474 | 0 | gs_linear_color_edge le, re; |
475 | |
|
476 | 0 | le.start = *p0; |
477 | 0 | le.end = *p1; |
478 | 0 | le.c0 = c0; |
479 | 0 | le.c1 = c1; |
480 | 0 | le.clip_x = fa->clip->p.x; |
481 | 0 | re.start = *p2; |
482 | 0 | re.end = *p3; |
483 | 0 | re.c0 = c2; |
484 | 0 | re.c1 = c3; |
485 | 0 | re.clip_x = fa->clip->q.x; |
486 | 0 | if (check_gradient_overflow(&le, &re)) |
487 | 0 | return 0; |
488 | 0 | return fill_linear_color_trapezoid_nocheck(dev, fa, &le, &re); |
489 | 0 | } |
490 | | |
491 | | static inline int |
492 | | fill_linear_color_triangle(gx_device *dev, const gs_fill_attributes *fa, |
493 | | const gs_fixed_point *p0, const gs_fixed_point *p1, |
494 | | const gs_fixed_point *p2, |
495 | | const frac31 *c0, const frac31 *c1, const frac31 *c2) |
496 | 0 | { /* p0 must be the lowest vertex. */ |
497 | 0 | int code; |
498 | 0 | gs_linear_color_edge e0, e1, e2; |
499 | |
|
500 | 0 | if (p0->y == p1->y) |
501 | 0 | return gx_default_fill_linear_color_trapezoid(dev, fa, p0, p2, p1, p2, c0, c2, c1, c2); |
502 | 0 | if (p1->y == p2->y) |
503 | 0 | return gx_default_fill_linear_color_trapezoid(dev, fa, p0, p2, p0, p1, c0, c2, c0, c1); |
504 | 0 | e0.start = *p0; |
505 | 0 | e0.end = *p2; |
506 | 0 | e0.c0 = c0; |
507 | 0 | e0.c1 = c2; |
508 | 0 | e0.clip_x = fa->clip->p.x; |
509 | 0 | e1.start = *p0; |
510 | 0 | e1.end = *p1; |
511 | 0 | e1.c0 = c0; |
512 | 0 | e1.c1 = c1; |
513 | 0 | e1.clip_x = fa->clip->q.x; |
514 | 0 | if (p0->y < p1->y && p1->y < p2->y) { |
515 | 0 | e2.start = *p1; |
516 | 0 | e2.end = *p2; |
517 | 0 | e2.c0 = c1; |
518 | 0 | e2.c1 = c2; |
519 | 0 | e2.clip_x = fa->clip->q.x; |
520 | 0 | if (check_gradient_overflow(&e0, &e1)) |
521 | 0 | return 0; |
522 | 0 | if (check_gradient_overflow(&e0, &e2)) |
523 | 0 | return 0; |
524 | 0 | code = fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e1); |
525 | 0 | if (code <= 0) /* Sic! */ |
526 | 0 | return code; |
527 | 0 | return fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e2); |
528 | 0 | } else { /* p0->y < p2->y && p2->y < p1->y */ |
529 | 0 | e2.start = *p2; |
530 | 0 | e2.end = *p1; |
531 | 0 | e2.c0 = c2; |
532 | 0 | e2.c1 = c1; |
533 | 0 | e2.clip_x = fa->clip->q.x; |
534 | 0 | if (check_gradient_overflow(&e0, &e1)) |
535 | 0 | return 0; |
536 | 0 | if (check_gradient_overflow(&e2, &e1)) |
537 | 0 | return 0; |
538 | 0 | code = fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e1); |
539 | 0 | if (code <= 0) /* Sic! */ |
540 | 0 | return code; |
541 | 0 | return fill_linear_color_trapezoid_nocheck(dev, fa, &e2, &e1); |
542 | 0 | } |
543 | 0 | } |
544 | | |
545 | | /* Fill a triangle with a linear color. */ |
546 | | int |
547 | | gx_default_fill_linear_color_triangle(gx_device *dev, const gs_fill_attributes *fa, |
548 | | const gs_fixed_point *p0, const gs_fixed_point *p1, |
549 | | const gs_fixed_point *p2, |
550 | | const frac31 *c0, const frac31 *c1, const frac31 *c2) |
551 | 0 | { |
552 | 0 | fixed dx1 = p1->x - p0->x, dy1 = p1->y - p0->y; |
553 | 0 | fixed dx2 = p2->x - p0->x, dy2 = p2->y - p0->y; |
554 | |
|
555 | 0 | if ((int64_t)dx1 * dy2 < (int64_t)dx2 * dy1) { |
556 | 0 | const gs_fixed_point *p = p1; |
557 | 0 | const frac31 *c = c1; |
558 | |
|
559 | 0 | p1 = p2; |
560 | 0 | p2 = p; |
561 | 0 | c1 = c2; |
562 | 0 | c2 = c; |
563 | 0 | } |
564 | 0 | if (p0->y <= p1->y && p0->y <= p2->y) |
565 | 0 | return fill_linear_color_triangle(dev, fa, p0, p1, p2, c0, c1, c2); |
566 | 0 | if (p1->y <= p0->y && p1->y <= p2->y) |
567 | 0 | return fill_linear_color_triangle(dev, fa, p1, p2, p0, c1, c2, c0); |
568 | 0 | else |
569 | 0 | return fill_linear_color_triangle(dev, fa, p2, p0, p1, c2, c0, c1); |
570 | 0 | } |
571 | | |
572 | | /* Fill a parallelogram whose points are p, p+a, p+b, and p+a+b. */ |
573 | | /* We should swap axes to get best accuracy, but we don't. */ |
574 | | /* We must be very careful to follow the center-of-pixel rule in all cases. */ |
575 | | int |
576 | | gx_default_fill_parallelogram(gx_device * dev, |
577 | | fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by, |
578 | | const gx_device_color * pdevc, gs_logical_operation_t lop) |
579 | 58.1k | { |
580 | 58.1k | fixed t; |
581 | 58.1k | fixed qx, qy, ym; |
582 | 58.1k | dev_proc_fill_trapezoid((*fill_trapezoid)); |
583 | 58.1k | gs_fixed_edge left, right; |
584 | 58.1k | int code; |
585 | | |
586 | | /* Make a special fast check for rectangles. */ |
587 | 58.1k | if (PARALLELOGRAM_IS_RECT(ax, ay, bx, by)) { |
588 | 287 | gs_int_rect r; |
589 | | |
590 | 287 | INT_RECT_FROM_PARALLELOGRAM(&r, px, py, ax, ay, bx, by); |
591 | 287 | return gx_fill_rectangle_device_rop(r.p.x, r.p.y, r.q.x - r.p.x, |
592 | 287 | r.q.y - r.p.y, pdevc, dev, lop); |
593 | 287 | } |
594 | | /* |
595 | | * Not a rectangle. Ensure that the 'a' line is to the left of |
596 | | * the 'b' line. Testing ax <= bx is neither sufficient nor |
597 | | * necessary: in general, we need to compare the slopes. |
598 | | */ |
599 | | /* Ensure ay >= 0, by >= 0. */ |
600 | 57.8k | if (ay < 0) |
601 | 16.0k | px += ax, py += ay, ax = -ax, ay = -ay; |
602 | 57.8k | if (by < 0) |
603 | 0 | px += bx, py += by, bx = -bx, by = -by; |
604 | 57.8k | qx = px + ax + bx; |
605 | 57.8k | if ((ax ^ bx) < 0) { /* In this case, the test ax <= bx is sufficient. */ |
606 | 16.8k | if (ax > bx) |
607 | 788 | SWAP(ax, bx, t), SWAP(ay, by, t); |
608 | 41.0k | } else { /* |
609 | | * Compare the slopes. We know that ay >= 0, by >= 0, |
610 | | * and ax and bx have the same sign; the lines are in the |
611 | | * correct order iff |
612 | | * ay/ax >= by/bx, or |
613 | | * ay*bx >= by*ax |
614 | | * Eventually we can probably find a better way to test this, |
615 | | * without using floating point. |
616 | | */ |
617 | 41.0k | if ((double)ay * bx < (double)by * ax) |
618 | 0 | SWAP(ax, bx, t), SWAP(ay, by, t); |
619 | 41.0k | } |
620 | 57.8k | fill_trapezoid = dev_proc(dev, fill_trapezoid); |
621 | 57.8k | qy = py + ay + by; |
622 | 57.8k | left.start.x = right.start.x = px; |
623 | 57.8k | left.start.y = right.start.y = py; |
624 | 57.8k | left.end.x = px + ax; |
625 | 57.8k | left.end.y = py + ay; |
626 | 57.8k | right.end.x = px + bx; |
627 | 57.8k | right.end.y = py + by; |
628 | 57.8k | #define ROUNDED_SAME(p1, p2)\ |
629 | 173k | (fixed_pixround(p1) == fixed_pixround(p2)) |
630 | 57.8k | if (ay < by) { |
631 | 0 | if (!ROUNDED_SAME(py, left.end.y)) { |
632 | 0 | code = (*fill_trapezoid) (dev, &left, &right, py, left.end.y, |
633 | 0 | false, pdevc, lop); |
634 | 0 | if (code < 0) |
635 | 0 | return code; |
636 | 0 | } |
637 | 0 | left.start = left.end; |
638 | 0 | left.end.x = qx, left.end.y = qy; |
639 | 0 | ym = right.end.y; |
640 | 0 | if (!ROUNDED_SAME(left.start.y, ym)) { |
641 | 0 | code = (*fill_trapezoid) (dev, &left, &right, left.start.y, ym, |
642 | 0 | false, pdevc, lop); |
643 | 0 | if (code < 0) |
644 | 0 | return code; |
645 | 0 | } |
646 | 0 | right.start = right.end; |
647 | 0 | right.end.x = qx, right.end.y = qy; |
648 | 57.8k | } else { |
649 | 57.8k | if (!ROUNDED_SAME(py, right.end.y)) { |
650 | 784 | code = (*fill_trapezoid) (dev, &left, &right, py, right.end.y, |
651 | 784 | false, pdevc, lop); |
652 | 784 | if (code < 0) |
653 | 0 | return code; |
654 | 784 | } |
655 | 57.8k | right.start = right.end; |
656 | 57.8k | right.end.x = qx, right.end.y = qy; |
657 | 57.8k | ym = left.end.y; |
658 | 57.8k | if (!ROUNDED_SAME(right.start.y, ym)) { |
659 | 52.2k | code = (*fill_trapezoid) (dev, &left, &right, right.start.y, ym, |
660 | 52.2k | false, pdevc, lop); |
661 | 52.2k | if (code < 0) |
662 | 0 | return code; |
663 | 52.2k | } |
664 | 57.8k | left.start = left.end; |
665 | 57.8k | left.end.x = qx, left.end.y = qy; |
666 | 57.8k | } |
667 | 57.8k | if (!ROUNDED_SAME(ym, qy)) |
668 | 784 | return (*fill_trapezoid) (dev, &left, &right, ym, qy, |
669 | 784 | false, pdevc, lop); |
670 | 57.0k | else |
671 | 57.0k | return 0; |
672 | 57.8k | #undef ROUNDED_SAME |
673 | 57.8k | } |
674 | | |
675 | | /* Fill a triangle whose points are p, p+a, and p+b. */ |
676 | | /* We should swap axes to get best accuracy, but we don't. */ |
677 | | int |
678 | | gx_default_fill_triangle(gx_device * dev, |
679 | | fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by, |
680 | | const gx_device_color * pdevc, gs_logical_operation_t lop) |
681 | 0 | { |
682 | 0 | fixed t; |
683 | 0 | fixed ym; |
684 | |
|
685 | 0 | dev_proc_fill_trapezoid((*fill_trapezoid)) = |
686 | 0 | dev_proc(dev, fill_trapezoid); |
687 | 0 | gs_fixed_edge left, right; |
688 | 0 | int code; |
689 | | |
690 | | /* Ensure ay >= 0, by >= 0. */ |
691 | 0 | if (ay < 0) |
692 | 0 | px += ax, py += ay, bx -= ax, by -= ay, ax = -ax, ay = -ay; |
693 | 0 | if (by < 0) |
694 | 0 | px += bx, py += by, ax -= bx, ay -= by, bx = -bx, by = -by; |
695 | | /* Ensure ay <= by. */ |
696 | 0 | if (ay > by) |
697 | 0 | SWAP(ax, bx, t), SWAP(ay, by, t); |
698 | | /* |
699 | | * Make a special check for a flat bottom or top, |
700 | | * which we can handle with a single call on fill_trapezoid. |
701 | | */ |
702 | 0 | left.start.x = right.start.x = px; |
703 | 0 | left.start.y = right.start.y = py; |
704 | 0 | if (ay == 0) { |
705 | | /* Flat top */ |
706 | 0 | if (ax < 0) |
707 | 0 | left.start.x = px + ax; |
708 | 0 | else |
709 | 0 | right.start.x = px + ax; |
710 | 0 | left.end.x = right.end.x = px + bx; |
711 | 0 | left.end.y = right.end.y = py + by; |
712 | 0 | ym = py; |
713 | 0 | } else if (ay == by) { |
714 | | /* Flat bottom */ |
715 | 0 | if (ax < bx) |
716 | 0 | left.end.x = px + ax, right.end.x = px + bx; |
717 | 0 | else |
718 | 0 | left.end.x = px + bx, right.end.x = px + ax; |
719 | 0 | left.end.y = right.end.y = py + by; |
720 | 0 | ym = py; |
721 | 0 | } else { |
722 | 0 | ym = py + ay; |
723 | 0 | if (fixed_mult_quo(bx, ay, by) < ax) { |
724 | | /* The 'b' line is to the left of the 'a' line. */ |
725 | 0 | left.end.x = px + bx, left.end.y = py + by; |
726 | 0 | right.end.x = px + ax, right.end.y = py + ay; |
727 | 0 | code = (*fill_trapezoid) (dev, &left, &right, py, ym, |
728 | 0 | false, pdevc, lop); |
729 | 0 | right.start = right.end; |
730 | 0 | right.end = left.end; |
731 | 0 | } else { |
732 | | /* The 'a' line is to the left of the 'b' line. */ |
733 | 0 | left.end.x = px + ax, left.end.y = py + ay; |
734 | 0 | right.end.x = px + bx, right.end.y = py + by; |
735 | 0 | code = (*fill_trapezoid) (dev, &left, &right, py, ym, |
736 | 0 | false, pdevc, lop); |
737 | 0 | left.start = left.end; |
738 | 0 | left.end = right.end; |
739 | 0 | } |
740 | 0 | if (code < 0) |
741 | 0 | return code; |
742 | 0 | } |
743 | 0 | return (*fill_trapezoid) (dev, &left, &right, ym, right.end.y, |
744 | 0 | false, pdevc, lop); |
745 | 0 | } |
746 | | |
747 | | /* Draw a one-pixel-wide line. */ |
748 | | int |
749 | | gx_default_draw_thin_line(gx_device * dev, |
750 | | fixed fx0, fixed fy0, fixed fx1, fixed fy1, |
751 | | const gx_device_color * pdevc, gs_logical_operation_t lop, |
752 | | fixed adjustx, fixed adjusty) |
753 | 367k | { |
754 | 367k | int ix, iy, itox, itoy; |
755 | 367k | int epsilon; |
756 | | |
757 | 367k | return_if_interrupt(dev->memory); |
758 | | |
759 | | /* This function was updated in revision 10391 to fix problems with |
760 | | * mispositioned thin lines. This introduced a regression (see bug |
761 | | * 691030). The code was then reworked to behave in what we believe is |
762 | | * the correct manner, but this causes unacceptable problems with PCL |
763 | | * output. While the current PCL work is underway, we have therefore |
764 | | * amended this code to take note of the fill adjust values; if non- |
765 | | * zero (i.e. postscript) we do "the correct thing". If zero, we do |
766 | | * what we used to. |
767 | | * |
768 | | * The one case where this doesn't work is in the case where our PCL |
769 | | * implementation thickens lines slightly to try and approximate HP |
770 | | * printer behaviour. Here we do use a non-zero fill_adjust and hence |
771 | | * have differences; tests show that these are acceptable though. |
772 | | * |
773 | | * It is hoped that this difference in behaviour will be short lived. |
774 | | */ |
775 | | |
776 | 367k | epsilon = ((adjustx | adjusty) == 0 ? fixed_epsilon : 0); |
777 | | |
778 | 367k | { |
779 | 367k | fixed h = fy1 - fy0; |
780 | 367k | fixed w = fx1 - fx0; |
781 | 367k | fixed tf; |
782 | 367k | bool swap_axes; |
783 | 367k | gs_fixed_edge left, right; |
784 | | |
785 | 367k | if ((w < 0 ? -w : w) <= (h < 0 ? -h : h)) { |
786 | | /* A "mostly-vertical" line */ |
787 | 70.8k | if (h < 0) |
788 | 53.6k | SWAP(fx0, fx1, tf), SWAP(fy0, fy1, tf), |
789 | 53.6k | h = -h; |
790 | | /* So we are plotting a trapezoid with horizontal thin edges. |
791 | | * If we are drawing a non-axis aligned trap, then we check |
792 | | * for whether a triangular extension area on the end covers an |
793 | | * additional pixel centre; if so, we fill an extra pixel. |
794 | | * If we are drawing an axis aligned trap and fill adjust is 0, |
795 | | * then we shouldn't need to do this. |
796 | | * If we are drawing an axis aligned trap, and fill adjust is non |
797 | | * zero, then perform the check, but with a "butt cap" rather than |
798 | | * a "triangle cap" region. |
799 | | * See bug 687721 and bug 693212 for this history of this. |
800 | | */ |
801 | 70.8k | if (w == 0 && adjusty) { |
802 | 5.76k | int deltay; |
803 | 5.76k | deltay = int2fixed(fixed2int_var(fy1)) + fixed_half -fy1; |
804 | | |
805 | 5.76k | if ((deltay > 0) && (deltay <= fixed_half)) |
806 | 5.15k | { |
807 | 5.15k | int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1), |
808 | 5.15k | fixed2int_var(fy1), |
809 | 5.15k | 1,1,pdevc,dev,lop); |
810 | 5.15k | if (c < 0) return c; |
811 | 5.15k | } |
812 | 5.76k | deltay = int2fixed(fixed2int_var(fy0)) + fixed_half -fy0; |
813 | | |
814 | 5.76k | if ((deltay < 0) && (deltay >= -fixed_half)) |
815 | 755 | { |
816 | 755 | int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0), |
817 | 755 | fixed2int_var(fy0), |
818 | 755 | 1,1,pdevc,dev,lop); |
819 | 755 | if (c < 0) return c; |
820 | 755 | } |
821 | 65.0k | } else if (w != 0) { |
822 | 65.0k | int deltax, deltay; |
823 | 65.0k | deltay = int2fixed(fixed2int_var(fy1)) + fixed_half -fy1; |
824 | 65.0k | deltax = int2fixed(fixed2int_var(fx1)) + fixed_half -fx1; |
825 | | |
826 | 65.0k | if (deltax < 0) deltax=-deltax; |
827 | 65.0k | if ((deltay > 0) && (deltay <= fixed_half) && |
828 | 65.0k | (deltay+deltax <= fixed_half)) |
829 | 14.5k | { |
830 | 14.5k | int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1), |
831 | 14.5k | fixed2int_var(fy1), |
832 | 14.5k | 1,1,pdevc,dev,lop); |
833 | 14.5k | if (c < 0) return c; |
834 | 14.5k | } |
835 | 65.0k | deltay = int2fixed(fixed2int_var(fy0)) + fixed_half -fy0; |
836 | 65.0k | deltax = int2fixed(fixed2int_var(fx0)) + fixed_half -fx0; |
837 | | |
838 | 65.0k | if (deltax < 0) deltax=-deltax; |
839 | 65.0k | if ((deltay < 0) && (deltay >= -fixed_half) && |
840 | 65.0k | (-deltay+deltax <= fixed_half)) |
841 | 18.9k | { |
842 | 18.9k | int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0), |
843 | 18.9k | fixed2int_var(fy0), |
844 | 18.9k | 1,1,pdevc,dev,lop); |
845 | 18.9k | if (c < 0) return c; |
846 | 18.9k | } |
847 | 65.0k | } |
848 | | /* Can we treat it as a vertical rectangle? */ |
849 | 70.8k | ix = fixed2int_var(fx0-epsilon); |
850 | 70.8k | itox = fixed2int_var(fx1-epsilon); |
851 | 70.8k | if (itox == ix) { |
852 | | /* Figure out the start/height, allowing for our "covers |
853 | | * centre of pixel" rule. */ |
854 | 30.0k | iy = fixed2int_var(fy0+fixed_half-fixed_epsilon); |
855 | 30.0k | itoy = fixed2int_var(fy1+fixed_half-fixed_epsilon); |
856 | 30.0k | itoy = itoy - iy; |
857 | 30.0k | if (itoy <= 0) { |
858 | | /* Zero height; drawing this as a trapezoid wouldn't |
859 | | * fill any pixels, so just exit. */ |
860 | 11.3k | return 0; |
861 | 11.3k | } |
862 | 18.6k | return gx_fill_rectangle_device_rop(ix, iy, 1, itoy, |
863 | 30.0k | pdevc, dev, lop); |
864 | 30.0k | } |
865 | 40.7k | left.start.x = fx0 - fixed_half + fixed_epsilon - epsilon; |
866 | 40.7k | right.start.x = left.start.x + fixed_1; |
867 | 40.7k | left.end.x = fx1 - fixed_half + fixed_epsilon - epsilon; |
868 | 40.7k | right.end.x = left.end.x + fixed_1; |
869 | 40.7k | left.start.y = right.start.y = fy0; |
870 | 40.7k | left.end.y = right.end.y = fy1; |
871 | 40.7k | swap_axes = false; |
872 | 296k | } else { |
873 | | /* A "mostly-horizontal" line */ |
874 | 296k | if (w < 0) |
875 | 88.8k | SWAP(fx0, fx1, tf), SWAP(fy0, fy1, tf), |
876 | 88.8k | w = -w; |
877 | | /* So we are plotting a trapezoid with vertical thin edges |
878 | | * Check for whether a triangular extension area on the end |
879 | | * covers an additional pixel centre. */ |
880 | 296k | if (h == 0 && adjustx) { |
881 | 243k | int deltax; |
882 | 243k | deltax = int2fixed(fixed2int_var(fx1)) + fixed_half -fx1; |
883 | | |
884 | 243k | if ((deltax > 0) && (deltax <= fixed_half)) |
885 | 121k | { |
886 | 121k | int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1), |
887 | 121k | fixed2int_var(fy1), |
888 | 121k | 1,1,pdevc,dev,lop); |
889 | 121k | if (c < 0) return c; |
890 | 121k | } |
891 | 243k | deltax = int2fixed(fixed2int_var(fx0)) + fixed_half -fx0; |
892 | | |
893 | 243k | if ((deltax < 0) && (deltax >= -fixed_half)) |
894 | 120k | { |
895 | 120k | int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0), |
896 | 120k | fixed2int_var(fy0), |
897 | 120k | 1,1,pdevc,dev,lop); |
898 | 120k | if (c < 0) return c; |
899 | 120k | } |
900 | 243k | } else if (h != 0) { |
901 | 52.8k | int deltax, deltay; |
902 | 52.8k | deltax = int2fixed(fixed2int_var(fx1)) + fixed_half -fx1; |
903 | 52.8k | deltay = int2fixed(fixed2int_var(fy1)) + fixed_half -fy1; |
904 | | |
905 | 52.8k | if (deltay < 0) deltay=-deltay; |
906 | 52.8k | if ((deltax > 0) && (deltax <= fixed_half) && |
907 | 52.8k | (deltax+deltay <= fixed_half)) |
908 | 13.1k | { |
909 | 13.1k | int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1), |
910 | 13.1k | fixed2int_var(fy1), |
911 | 13.1k | 1,1,pdevc,dev,lop); |
912 | 13.1k | if (c < 0) return c; |
913 | 13.1k | } |
914 | 52.8k | deltax = int2fixed(fixed2int_var(fx0)) + fixed_half -fx0; |
915 | 52.8k | deltay = int2fixed(fixed2int_var(fy0)) + fixed_half -fy0; |
916 | | |
917 | 52.8k | if (deltay < 0) deltay=-deltay; |
918 | 52.8k | if ((deltax < 0) && (deltax >= -fixed_half) && |
919 | 52.8k | (-deltax+deltay <= fixed_half)) |
920 | 12.2k | { |
921 | 12.2k | int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0), |
922 | 12.2k | fixed2int_var(fy0), |
923 | 12.2k | 1,1,pdevc,dev,lop); |
924 | 12.2k | if (c < 0) return c; |
925 | 12.2k | } |
926 | 52.8k | } |
927 | | /* Can we treat this as a horizontal rectangle? */ |
928 | 296k | iy = fixed2int_var(fy0 - epsilon); |
929 | 296k | itoy = fixed2int_var(fy1 - epsilon); |
930 | 296k | if (itoy == iy) { |
931 | | /* Figure out the start/width, allowing for our "covers |
932 | | * centre of pixel" rule. */ |
933 | 282k | ix = fixed2int_var(fx0+fixed_half-fixed_epsilon); |
934 | 282k | itox = fixed2int_var(fx1+fixed_half-fixed_epsilon); |
935 | 282k | itox = itox - ix; |
936 | 282k | if (itox <= 0) { |
937 | | /* Zero width; drawing this as a trapezoid wouldn't |
938 | | * fill any pixels, so just exit. */ |
939 | 59.6k | return 0; |
940 | 59.6k | } |
941 | 222k | return gx_fill_rectangle_device_rop(ix, iy, itox, 1, |
942 | 282k | pdevc, dev, lop); |
943 | 282k | } |
944 | 14.5k | left.start.x = fy0 - fixed_half + fixed_epsilon - epsilon; |
945 | 14.5k | right.start.x = left.start.x + fixed_1; |
946 | 14.5k | left.end.x = fy1 - fixed_half + fixed_epsilon - epsilon; |
947 | 14.5k | right.end.x = left.end.x + fixed_1; |
948 | 14.5k | left.start.y = right.start.y = fx0; |
949 | 14.5k | left.end.y = right.end.y = fx1; |
950 | 14.5k | swap_axes = true; |
951 | 14.5k | } |
952 | 55.3k | return (*dev_proc(dev, fill_trapezoid)) (dev, &left, &right, |
953 | 55.3k | left.start.y, left.end.y, |
954 | 55.3k | swap_axes, pdevc, lop); |
955 | 367k | } |
956 | 367k | } |
957 | | |
958 | | /* ---------------- Image drawing ---------------- */ |
959 | | |
960 | | /* GC structures for image enumerator */ |
961 | | public_st_gx_image_enum_common(); |
962 | | |
963 | | static |
964 | 0 | ENUM_PTRS_WITH(image_enum_common_enum_ptrs, gx_image_enum_common_t *eptr) |
965 | 0 | return 0; |
966 | 0 | case 0: return ENUM_OBJ(gx_device_enum_ptr(eptr->dev)); |
967 | 0 | ENUM_PTRS_END |
968 | | |
969 | 0 | static RELOC_PTRS_WITH(image_enum_common_reloc_ptrs, gx_image_enum_common_t *eptr) |
970 | 0 | { |
971 | 0 | eptr->dev = gx_device_reloc_ptr(eptr->dev, gcst); |
972 | 0 | } |
973 | 0 | RELOC_PTRS_END |
974 | | |
975 | | int |
976 | | gx_default_begin_typed_image(gx_device * dev, |
977 | | const gs_gstate * pgs, const gs_matrix * pmat, |
978 | | const gs_image_common_t * pic, const gs_int_rect * prect, |
979 | | const gx_drawing_color * pdcolor, const gx_clip_path * pcpath, |
980 | | gs_memory_t * memory, gx_image_enum_common_t ** pinfo) |
981 | 50.0k | { |
982 | 50.0k | return (*pic->type->begin_typed_image) |
983 | 50.0k | (dev, pgs, pmat, pic, prect, pdcolor, pcpath, memory, pinfo); |
984 | 50.0k | } |
985 | | |
986 | | int |
987 | | gx_default_fillpage(gx_device *dev, gs_gstate * pgs, gx_device_color *pdevc) |
988 | 56.5k | { |
989 | 56.5k | bool hl_color_available = gx_hld_is_hl_color_available(pgs, pdevc); |
990 | 56.5k | int code = 0; |
991 | | |
992 | | /* Fill the page directly, ignoring clipping. */ |
993 | | /* Use the default RasterOp. */ |
994 | 56.5k | if (hl_color_available) { |
995 | 0 | gs_fixed_rect rect; |
996 | |
|
997 | 0 | rect.p.x = rect.p.y = 0; |
998 | 0 | rect.q.x = int2fixed(dev->width); |
999 | 0 | rect.q.y = int2fixed(dev->height); |
1000 | 0 | code = dev_proc(dev, fill_rectangle_hl_color)(dev, |
1001 | 0 | &rect, (const gs_gstate *)pgs, pdevc, NULL); |
1002 | 0 | } |
1003 | 56.5k | if (!hl_color_available || code == gs_error_rangecheck) |
1004 | 56.5k | code = gx_fill_rectangle_device_rop(0, 0, dev->width, dev->height, pdevc, dev, lop_default); |
1005 | 56.5k | return code; |
1006 | 56.5k | } |