Coverage Report

Created: 2025-06-10 07:19

/src/ghostpdl/base/gsht.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* setscreen operator for Ghostscript library */
18
#include "memory_.h"
19
#include "string_.h"
20
#include "assert_.h"
21
#include <stdlib.h>             /* for qsort */
22
#include "gx.h"
23
#include "gserrors.h"
24
#include "gsstruct.h"
25
#include "gsutil.h"             /* for gs_next_ids */
26
#include "gxarith.h"            /* for igcd */
27
#include "gzstate.h"
28
#include "gxdevice.h"           /* for gzht.h */
29
#include "gzht.h"
30
#include "gxfmap.h"             /* For effective transfer usage in threshold */
31
#include "gp.h"
32
33
#define DUMP_SCREENS 0
34
35
/* Forward declarations */
36
void gx_set_effective_transfer(gs_gstate *);
37
38
/* Structure types */
39
public_st_ht_order();
40
private_st_ht_order_component();
41
public_st_ht_order_comp_element();
42
public_st_halftone();
43
public_st_device_halftone();
44
45
/* GC procedures */
46
47
static
48
597k
ENUM_PTRS_WITH(ht_order_enum_ptrs, gx_ht_order *porder) return 0;
49
119k
case 0: ENUM_RETURN((porder->data_memory ? porder->levels : 0));
50
119k
case 1: ENUM_RETURN((porder->data_memory ? porder->bit_data : 0));
51
119k
case 2: ENUM_RETURN(porder->cache);
52
119k
case 3: ENUM_RETURN(porder->transfer);
53
597k
ENUM_PTRS_END
54
static
55
119k
RELOC_PTRS_WITH(ht_order_reloc_ptrs, gx_ht_order *porder)
56
119k
{
57
119k
    if (porder->data_memory) {
58
79.6k
        RELOC_VAR(porder->levels);
59
79.6k
        RELOC_VAR(porder->bit_data);
60
79.6k
    }
61
119k
    RELOC_VAR(porder->cache);
62
119k
    RELOC_VAR(porder->transfer);
63
119k
}
64
119k
RELOC_PTRS_END
65
66
static
67
39.8k
ENUM_PTRS_WITH(halftone_enum_ptrs, gs_halftone *hptr) return 0;
68
39.8k
case 0:
69
39.8k
switch (hptr->type)
70
39.8k
{
71
0
    case ht_type_spot:
72
0
        ENUM_RETURN((hptr->params.spot.transfer == 0 ?
73
0
                     hptr->params.spot.transfer_closure.data :
74
0
                     0));
75
0
    case ht_type_threshold:
76
0
        ENUM_RETURN_CONST_STRING_PTR(gs_halftone, params.threshold.thresholds);
77
0
    case ht_type_threshold2:
78
0
        return ENUM_CONST_BYTESTRING(&hptr->params.threshold2.thresholds);
79
0
    case ht_type_client_order:
80
0
        ENUM_RETURN(hptr->params.client_order.client_data);
81
0
    case ht_type_multiple:
82
0
    case ht_type_multiple_colorscreen:
83
0
        ENUM_RETURN(hptr->params.multiple.components);
84
0
    case ht_type_none:
85
0
    case ht_type_screen:
86
39.8k
    case ht_type_colorscreen:
87
39.8k
        return 0;
88
39.8k
}
89
/* fall through */
90
0
case 1:
91
0
switch (hptr->type) {
92
0
    case ht_type_threshold:
93
0
        ENUM_RETURN((hptr->params.threshold.transfer == 0 ?
94
0
                     hptr->params.threshold.transfer_closure.data :
95
0
                     0));
96
0
    case ht_type_threshold2:
97
0
        ENUM_RETURN(hptr->params.threshold2.transfer_closure.data);
98
0
    case ht_type_client_order:
99
0
        ENUM_RETURN(hptr->params.client_order.transfer_closure.data);
100
0
    default:
101
0
        return 0;
102
0
}
103
39.8k
ENUM_PTRS_END
104
105
39.8k
static RELOC_PTRS_WITH(halftone_reloc_ptrs, gs_halftone *hptr)
106
39.8k
{
107
39.8k
    switch (hptr->type) {
108
0
        case ht_type_spot:
109
0
            if (hptr->params.spot.transfer == 0)
110
0
                RELOC_PTR(gs_halftone, params.spot.transfer_closure.data);
111
0
            break;
112
0
        case ht_type_threshold:
113
0
            RELOC_CONST_STRING_PTR(gs_halftone, params.threshold.thresholds);
114
0
            if (hptr->params.threshold.transfer == 0)
115
0
                RELOC_PTR(gs_halftone, params.threshold.transfer_closure.data);
116
0
            break;
117
0
        case ht_type_threshold2:
118
0
            RELOC_CONST_BYTESTRING_VAR(hptr->params.threshold2.thresholds);
119
0
            RELOC_OBJ_VAR(hptr->params.threshold2.transfer_closure.data);
120
0
            break;
121
0
        case ht_type_client_order:
122
0
            RELOC_PTR(gs_halftone, params.client_order.client_data);
123
0
            RELOC_PTR(gs_halftone, params.client_order.transfer_closure.data);
124
0
            break;
125
0
        case ht_type_multiple:
126
0
        case ht_type_multiple_colorscreen:
127
0
            RELOC_PTR(gs_halftone, params.multiple.components);
128
0
            break;
129
0
        case ht_type_none:
130
0
        case ht_type_screen:
131
39.8k
        case ht_type_colorscreen:
132
39.8k
            break;
133
39.8k
    }
134
39.8k
}
135
39.8k
RELOC_PTRS_END
136
137
/* setscreen */
138
int
139
gs_setscreen(gs_gstate * pgs, gs_screen_halftone * phsp)
140
0
{
141
0
    gs_screen_enum senum;
142
0
    int code = gx_ht_process_screen(&senum, pgs, phsp,
143
0
                                    gs_currentaccuratescreens(pgs->memory));
144
145
0
    if (code < 0)
146
0
        return code;
147
0
    return gs_screen_install(&senum);
148
0
}
149
150
/* currentscreen */
151
int
152
gs_currentscreen(const gs_gstate * pgs, gs_screen_halftone * phsp)
153
0
{
154
0
    switch (pgs->halftone->type) {
155
0
        case ht_type_screen:
156
0
            *phsp = pgs->halftone->params.screen;
157
0
            return 0;
158
0
        case ht_type_colorscreen:
159
0
            *phsp = pgs->halftone->params.colorscreen.screens.colored.gray;
160
0
            return 0;
161
0
        default:
162
0
            return_error(gs_error_undefined);
163
0
    }
164
0
}
165
166
/* .currentscreenlevels */
167
int
168
gs_currentscreenlevels(const gs_gstate * pgs)
169
0
{
170
0
    int gi = 0;
171
172
0
    if (pgs->device != NULL)
173
0
        gi = pgs->device->color_info.gray_index;
174
0
    if (gi != GX_CINFO_COMP_NO_INDEX)
175
0
        return pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[gi].corder.num_levels;
176
0
    else
177
0
        return pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
178
0
}
179
180
/* .setscreenphase */
181
int
182
gx_gstate_setscreenphase(gs_gstate * pgs, int x, int y,
183
                         gs_color_select_t select)
184
3.17M
{
185
3.17M
    if (select == gs_color_select_all) {
186
1.05M
        int i;
187
188
3.17M
        for (i = 0; i < gs_color_select_count; ++i)
189
2.11M
            gx_gstate_setscreenphase(pgs, x, y, (gs_color_select_t) i);
190
1.05M
        return 0;
191
2.12M
    } else if ((int)select < 0 || (int)select >= gs_color_select_count)
192
0
        return_error(gs_error_rangecheck);
193
2.12M
    pgs->screen_phase[select].x = x;
194
2.12M
    pgs->screen_phase[select].y = y;
195
2.12M
    return 0;
196
3.17M
}
197
int
198
gs_setscreenphase(gs_gstate * pgs, int x, int y, gs_color_select_t select)
199
0
{
200
0
    int code = gx_gstate_setscreenphase(pgs, x, y,
201
0
                                        select);
202
203
    /*
204
     * If we're only setting the source phase, we don't need to do
205
     * unset_dev_color, because the source phase doesn't affect painting
206
     * with the current color.
207
     */
208
0
    if (code >= 0 && (select == gs_color_select_texture ||
209
0
                      select == gs_color_select_all)
210
0
        )
211
0
        gx_unset_dev_color(pgs);
212
0
    return code;
213
0
}
214
215
int
216
gs_currentscreenphase_pgs(const gs_gstate * pgs, gs_int_point * pphase,
217
                      gs_color_select_t select)
218
0
{
219
0
    if ((int)select < 0 || (int)select >= gs_color_select_count)
220
0
        return_error(gs_error_rangecheck);
221
0
    *pphase = pgs->screen_phase[select];
222
0
    return 0;
223
0
}
224
225
/* .currentscreenphase */
226
int
227
gs_currentscreenphase(const gs_gstate * pgs, gs_int_point * pphase,
228
                      gs_color_select_t select)
229
0
{
230
0
    return gs_currentscreenphase_pgs((const gs_gstate *)pgs, pphase, select);
231
0
}
232
233
/* currenthalftone */
234
int
235
gs_currenthalftone(gs_gstate * pgs, gs_halftone * pht)
236
9.57k
{
237
9.57k
    *pht = *pgs->halftone;
238
9.57k
    return 0;
239
9.57k
}
240
241
/* ------ Internal routines ------ */
242
243
/* Process one screen plane. */
244
int
245
gx_ht_process_screen_memory(gs_screen_enum * penum, gs_gstate * pgs,
246
                gs_screen_halftone * phsp, bool accurate, gs_memory_t * mem)
247
211k
{
248
211k
    gs_point pt;
249
211k
    int code = gs_screen_init_memory(penum, pgs, phsp, accurate, mem);
250
251
211k
    if (code < 0)
252
0
        return code;
253
3.81M
    while ((code = gs_screen_currentpoint(penum, &pt)) == 0)
254
3.60M
        if ((code = gs_screen_next(penum, (*phsp->spot_function) (pt.x, pt.y))) < 0)
255
0
            return code;
256
211k
    return 0;
257
211k
}
258
259
/*
260
 * Internal procedure to allocate and initialize either an internally
261
 * generated or a client-defined halftone order.  For spot halftones,
262
 * the client is responsible for calling gx_compute_cell_values.
263
 */
264
int
265
gx_ht_alloc_ht_order(gx_ht_order * porder, uint width, uint height,
266
                     uint num_levels, uint num_bits, uint strip_shift,
267
                     const gx_ht_order_procs_t *procs, gs_memory_t * mem)
268
568k
{
269
568k
    porder->threshold = NULL;
270
568k
    porder->width = width;
271
568k
    porder->height = height;
272
568k
    porder->raster = bitmap_raster(width);
273
568k
    porder->shift = strip_shift;
274
568k
    porder->orig_height = porder->height;
275
568k
    porder->orig_shift = porder->shift;
276
568k
    porder->full_height = ht_order_full_height(porder);
277
568k
    porder->num_levels = num_levels;
278
568k
    porder->num_bits = num_bits;
279
568k
    porder->procs = procs;
280
568k
    porder->data_memory = mem;
281
282
568k
    if (num_levels > 0) {
283
568k
        porder->levels =
284
568k
            (uint *)gs_alloc_byte_array(mem, porder->num_levels, sizeof(uint),
285
568k
                                        "alloc_ht_order_data(levels)");
286
568k
        if (porder->levels == 0)
287
0
            return_error(gs_error_VMerror);
288
568k
        memset(porder->levels, 0, sizeof(uint) * porder->num_levels);
289
568k
    } else
290
0
        porder->levels = 0;
291
292
568k
    if (num_bits > 0) {
293
568k
        porder->bit_data =
294
568k
            gs_alloc_byte_array(mem, porder->num_bits,
295
568k
                                porder->procs->bit_data_elt_size,
296
568k
                                "alloc_ht_order_data(bit_data)");
297
568k
        if (porder->bit_data == 0) {
298
0
            gs_free_object(mem, porder->levels, "alloc_ht_order_data(levels)");
299
0
            porder->levels = 0;
300
0
            return_error(gs_error_VMerror);
301
0
        }
302
568k
    } else
303
0
        porder->bit_data = 0;
304
305
568k
    porder->cache = 0;
306
568k
    porder->transfer = 0;
307
568k
    return 0;
308
568k
}
309
310
/*
311
 * Procedure to copy a halftone order.
312
 */
313
static int
314
gx_ht_copy_ht_order(gx_ht_order * pdest, gx_ht_order * psrc, gs_memory_t * mem)
315
204k
{
316
204k
    int code;
317
318
204k
    *pdest = *psrc;
319
320
204k
    code = gx_ht_alloc_ht_order(pdest, psrc->width, psrc->height,
321
204k
                     psrc->num_levels, psrc->num_bits, psrc->shift,
322
204k
                     psrc->procs, mem);
323
204k
    if (code < 0)
324
0
        return code;
325
204k
    if (pdest->levels != NULL)
326
204k
        memcpy(pdest->levels, psrc->levels, psrc->num_levels * sizeof(uint));
327
204k
    if (pdest->bit_data != NULL)
328
204k
        memcpy(pdest->bit_data, psrc->bit_data,
329
204k
               (size_t)psrc->num_bits * psrc->procs->bit_data_elt_size);
330
204k
    pdest->transfer = psrc->transfer;
331
204k
    rc_increment(pdest->transfer);
332
204k
    return 0;
333
204k
}
334
335
/*
336
 * Set the destination component to match the source component, and
337
 * "assume ownership" of all of the refrernced data structures.
338
 */
339
static void
340
gx_ht_move_ht_order(gx_ht_order * pdest, gx_ht_order * psrc)
341
0
{
342
0
    uint    width = psrc->width, height = psrc->height, shift = psrc->shift;
343
344
0
    pdest->params = psrc->params;
345
0
    pdest->width = width;
346
0
    pdest->height = height;
347
0
    pdest->raster = bitmap_raster(width);
348
0
    pdest->shift = shift;
349
0
    pdest->orig_height = height;
350
0
    pdest->orig_shift = shift;
351
0
    pdest->full_height = ht_order_full_height(pdest);
352
0
    pdest->num_levels = psrc->num_levels;
353
0
    pdest->num_bits = psrc->num_bits;
354
0
    pdest->procs = psrc->procs;
355
0
    pdest->data_memory = psrc->data_memory;
356
0
    pdest->levels = psrc->levels;
357
0
    pdest->bit_data = psrc->bit_data;
358
0
    pdest->cache = psrc->cache;    /* should be 0 */
359
0
    pdest->transfer = psrc->transfer;
360
0
}
361
362
/* Allocate and initialize the contents of a halftone order. */
363
/* The client must have set the defining values in porder->params. */
364
int
365
gx_ht_alloc_order(gx_ht_order * porder, uint width, uint height,
366
                  uint strip_shift, uint num_levels, gs_memory_t * mem)
367
213k
{
368
213k
    gx_ht_order order;
369
213k
    int code;
370
371
213k
    order = *porder;
372
213k
    gx_compute_cell_values(&order.params);
373
213k
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
374
213k
                                width * height, strip_shift,
375
213k
                                &ht_order_procs_default, mem);
376
213k
    if (code < 0)
377
0
        return code;
378
213k
    *porder = order;
379
213k
    return 0;
380
213k
}
381
382
/*
383
 * Allocate and initialize a threshold order, which may use the short
384
 * representation.
385
 */
386
int
387
gx_ht_alloc_threshold_order(gx_ht_order * porder, uint width, uint height,
388
                            uint num_levels, gs_memory_t * mem)
389
0
{
390
0
    gx_ht_order order;
391
392
0
    unsigned long num_bits = bitmap_raster(width) * (unsigned long)8 * height;
393
0
    const gx_ht_order_procs_t *procs;
394
0
    int code;
395
396
0
    if (num_bits <= 2000)
397
0
        procs = &ht_order_procs_default;
398
0
    else if (num_bits <= max_ushort + 1)  /* We can index 0 to 65535 so a size of 65536 (max_ushort + 1) is OK */
399
0
        procs = &ht_order_procs_short;
400
0
    else if (num_bits <= max_uint)
401
0
        procs = &ht_order_procs_uint;
402
0
    else
403
0
        return_error(gs_error_VMerror);  /* At this point in history, this is way too large of a screen */
404
405
0
    order = *porder;
406
0
    gx_compute_cell_values(&order.params);
407
0
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
408
0
                                width * height, 0, procs, mem);
409
0
    if (code < 0)
410
0
        return code;
411
0
    *porder = order;
412
0
    return 0;
413
0
}
414
415
/* Allocate and initialize the contents of a client-defined halftone order. */
416
int
417
gx_ht_alloc_client_order(gx_ht_order * porder, uint width, uint height,
418
                         uint num_levels, uint num_bits, gs_memory_t * mem)
419
0
{
420
0
    gx_ht_order order;
421
0
    int code;
422
423
0
    order = *porder;
424
0
    order.params.M = width, order.params.N = 0;
425
0
    order.params.R = 1;
426
0
    order.params.M1 = height, order.params.N1 = 0;
427
0
    order.params.R1 = 1;
428
0
    gx_compute_cell_values(&order.params);
429
0
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
430
0
                                num_bits, 0, &ht_order_procs_default, mem);
431
0
    if (code < 0)
432
0
        return code;
433
0
    *porder = order;
434
0
    return 0;
435
0
}
436
437
/* Compare keys ("masks", actually sample values) for qsort. */
438
static int
439
compare_samples(const void *p1, const void *p2)
440
20.2M
{
441
20.2M
    ht_sample_t m1 = ((const gx_ht_bit *)p1)->mask;
442
20.2M
    ht_sample_t m2 = ((const gx_ht_bit *)p2)->mask;
443
444
    /* force qsort() to be determinstic even if two masks are the same */
445
20.2M
    if (m1==m2) {
446
1.80M
      m1=((const gx_ht_bit *)p1)->offset;
447
1.80M
      m2=((const gx_ht_bit *)p2)->offset;
448
1.80M
    }
449
450
20.2M
    return (m1 < m2 ? -1 : m1 > m2 ? 1 : 0);
451
20.2M
}
452
/* Sort the halftone order by sample value. */
453
void
454
gx_sort_ht_order(gx_ht_bit * recs, uint N)
455
424k
{
456
424k
    int i;
457
458
    /* Tag each sample with its index, for sorting. */
459
7.63M
    for (i = 0; i < N; i++)
460
7.21M
        recs[i].offset = i;
461
424k
    qsort((void *)recs, N, sizeof(*recs), compare_samples);
462
#ifdef DEBUG
463
    if (gs_debug_c('H')) {
464
        uint i;
465
466
        dlputs("[H]Sorted samples:\n");
467
        for (i = 0; i < N; i++)
468
            dlprintf3("%5u: %5u: %u\n",
469
                      i, recs[i].offset, recs[i].mask);
470
    }
471
#endif
472
424k
}
473
474
/*
475
 * Construct the halftone order from a sampled spot function.  Only width x
476
 * strip samples have been filled in; we must replicate the resulting sorted
477
 * order vertically, shifting it by shift each time.  See gxdht.h regarding
478
 * the invariants that must be restored.
479
 */
480
void
481
gx_ht_construct_spot_order(gx_ht_order * porder)
482
424k
{
483
424k
    uint width = porder->width;
484
424k
    uint num_levels = porder->num_levels;       /* = width x strip */
485
424k
    uint strip = num_levels / width;
486
424k
    gx_ht_bit *bits = (gx_ht_bit *)porder->bit_data;
487
424k
    uint *levels = porder->levels;
488
424k
    uint shift = porder->orig_shift;
489
424k
    uint full_height = porder->full_height;
490
424k
    uint num_bits = porder->num_bits;
491
424k
    uint copies = num_bits / (width * strip);
492
424k
    gx_ht_bit *bp = bits + num_bits - 1;
493
424k
    uint i;
494
495
424k
    gx_sort_ht_order(bits, num_levels);
496
424k
    if_debug5('h',
497
424k
              "[h]spot order: num_levels=%u w=%u h=%u strip=%u shift=%u\n",
498
424k
              num_levels, width, porder->orig_height, strip, shift);
499
    /* Fill in the levels array, replicating the bits vertically */
500
    /* if needed. */
501
7.63M
    for (i = num_levels; i > 0;) {
502
7.21M
        uint offset = bits[--i].offset;
503
7.21M
        uint x = offset % width;
504
7.21M
        uint hy = offset - x;
505
7.21M
        uint k;
506
507
7.21M
        levels[i] = i * copies;
508
73.9M
        for (k = 0; k < copies;
509
66.7M
             k++, bp--, hy += num_levels, x = (x + width - shift) % width
510
7.21M
            )
511
66.7M
            bp->offset = hy + x;
512
7.21M
    }
513
    /* If we have a complete halftone, restore the invariant. */
514
424k
    if (num_bits == width * full_height) {
515
424k
        porder->height = full_height;
516
424k
        porder->shift = 0;
517
424k
    }
518
424k
    gx_ht_construct_bits(porder);
519
424k
}
520
521
/* Construct a single offset/mask. */
522
void
523
gx_ht_construct_bit(gx_ht_bit * bit, int width, int bit_num)
524
66.7M
{
525
66.7M
    uint padding = bitmap_raster(width) * 8 - width;
526
66.7M
    int pix = bit_num;
527
66.7M
    ht_mask_t mask;
528
66.7M
    byte *pb;
529
530
66.7M
    pix += pix / width * padding;
531
66.7M
    bit->offset = (pix >> 3) & -size_of(mask);
532
66.7M
    mask = (ht_mask_t) 1 << (~pix & (ht_mask_bits - 1));
533
    /* Replicate the mask bits. */
534
66.7M
    pix = ht_mask_bits - width;
535
94.0M
    while ((pix -= width) >= 0)
536
27.2M
        mask |= mask >> width;
537
    /* Store the mask, reversing bytes if necessary. */
538
66.7M
    bit->mask = 0;
539
66.7M
    for (pb = (byte *) & bit->mask + (sizeof(mask) - 1);
540
297M
         mask != 0;
541
231M
         mask >>= 8, pb--
542
66.7M
        )
543
231M
        *pb = (byte) mask;
544
66.7M
}
545
546
/* Construct offset/masks from the whitening order. */
547
/* porder->bits[i].offset contains the index of the bit position */
548
/* that is i'th in the whitening order. */
549
void
550
gx_ht_construct_bits(gx_ht_order * porder)
551
424k
{
552
424k
    uint i;
553
424k
    gx_ht_bit *phb;
554
555
424k
    for (i = 0, phb = (gx_ht_bit *)porder->bit_data;
556
67.1M
         i < porder->num_bits;
557
66.7M
         i++, phb++)
558
66.7M
        gx_ht_construct_bit(phb, porder->width, phb->offset);
559
#ifdef DEBUG
560
    if (gs_debug_c('H')) {
561
        dmlprintf1(porder->data_memory, "[H]Halftone order bits "PRI_INTPTR":\n", (intptr_t)porder->bit_data);
562
        for (i = 0, phb = (gx_ht_bit *)porder->bit_data;
563
             i < porder->num_bits;
564
             i++, phb++)
565
            dmlprintf3(porder->data_memory, "%4d: %u:0x%lx\n", i, phb->offset,
566
                      (ulong) phb->mask);
567
    }
568
#endif
569
424k
}
570
571
/* Release a gx_device_halftone by freeing its components. */
572
/* (Don't free the gx_device_halftone itself.) */
573
void
574
gx_ht_order_release(gx_ht_order * porder, gs_memory_t * mem, bool free_cache)
575
772k
{
576
    /* "free cache" is a proxy for "differs from default" */
577
772k
    if (free_cache) {
578
363k
        if (porder->cache != NULL)
579
204k
            gx_ht_free_cache(mem, porder->cache);
580
363k
    }
581
772k
    porder->cache = 0;
582
772k
    rc_decrement(porder->transfer, "gx_ht_order_release(transfer)");
583
772k
    porder->transfer = 0;
584
772k
    if (porder->data_memory != NULL) {
585
568k
        gs_free_object(porder->data_memory, porder->bit_data,
586
568k
                       "gx_ht_order_release(bit_data)");
587
568k
        gs_free_object(porder->data_memory, porder->levels,
588
568k
                       "gx_ht_order_release(levels)");
589
568k
        if (porder->threshold != NULL) {
590
73.0k
            gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
591
73.0k
                       "gx_ht_order_release(threshold)");
592
73.0k
        }
593
568k
    }
594
772k
    porder->threshold = 0;
595
772k
    porder->levels = 0;
596
772k
    porder->bit_data = 0;
597
772k
}
598
599
void
600
gx_device_halftone_release(gx_device_halftone * pdht, gs_memory_t * mem)
601
258k
{
602
258k
    if (pdht->components) {
603
257k
        int i;
604
605
        /* One of the components might be the same as the default */
606
        /* order, so check that we don't free it twice. */
607
673k
        for (i = 0; i < pdht->num_comp; ++i)
608
416k
            if (pdht->components[i].corder.bit_data !=
609
416k
                pdht->order.bit_data
610
416k
                ) {             /* Currently, all orders except the default one */
611
                /* own their caches. */
612
363k
                gx_ht_order_release(&pdht->components[i].corder, mem, true);
613
363k
            }
614
257k
        gs_free_object(mem, pdht->components,
615
257k
                       "gx_dev_ht_release(components)");
616
257k
        pdht->components = 0;
617
257k
        pdht->num_comp = 0;
618
257k
    }
619
258k
    gx_ht_order_release(&pdht->order, mem, false);
620
258k
}
621
622
/*
623
 * This routine will take a color name (defined by a ptr and size) and
624
 * check if this is a valid colorant name for the current device.  If
625
 * so then the device's colorant number is returned.
626
 *
627
 * Two other checks are also made.  If the name is "Default" then a value
628
 * of GX_DEVICE_COLOR_MAX_COMPONENTS is returned.  This is done to
629
 * simplify the handling of default halftones.  Note:  The device also
630
 * uses GX_DEVICE_COLOR_MAX_COMPONENTS to indicate colorants which are
631
 * known but not being used due to the SeparationOrder parameter.  In this
632
 * case we return -1 since the colorant is not currently being used by the
633
 * device.
634
 *
635
 * If the halftone type is colorscreen or multiple colorscreen, then we
636
 * also check for Red/Cyan, Green/Magenta, Blue/Yellow, and Gray/Black
637
 * component name pairs.  This is done since the setcolorscreen and
638
 * sethalftone types 2 and 4 imply the dual name sets.
639
 *
640
 * A negative value is returned if the color name is not found.
641
 */
642
int
643
gs_color_name_component_number(gx_device * dev, const char * pname,
644
                                int name_size, int halftonetype)
645
213k
{
646
213k
    int num_colorant;
647
648
213k
#define check_colorant_name(dev, name) \
649
213k
    ((*dev_proc(dev, get_color_comp_index)) (dev, name, strlen(name), NO_COMP_NAME_TYPE_HT))
650
651
213k
#define check_colorant_name_length(dev, name, length) \
652
213k
    ((*dev_proc(dev, get_color_comp_index)) (dev, name, length, NO_COMP_NAME_TYPE_HT))
653
654
213k
#define check_name(str, pname, length) \
655
477k
    ((strlen(str) == length) && (strncmp(pname, str, length) == 0))
656
657
    /*
658
     * Check if this is a device colorant.
659
     */
660
213k
    num_colorant = check_colorant_name_length(dev, pname, name_size);
661
213k
    if (num_colorant >= 0) {
662
        /*
663
         * The device will return GX_DEVICE_COLOR_MAX_COMPONENTS if the
664
         * colorant is logically present in the device but not being used
665
         * because a SeparationOrder parameter is specified.  Since we are
666
         * using this value to indicate 'Default', we use -1 to indicate
667
         * that the colorant is not really being used.
668
         */
669
52.9k
        if (num_colorant == GX_DEVICE_COLOR_MAX_COMPONENTS)
670
0
            num_colorant = -1;
671
52.9k
        return num_colorant;
672
52.9k
    }
673
674
    /*
675
     * Check if this is the default component
676
     */
677
160k
    if (check_name("Default", pname, name_size))
678
1.23k
        return GX_DEVICE_COLOR_MAX_COMPONENTS;
679
680
    /* Halftones set by setcolorscreen, and (we think) */
681
    /* Type 2 and Type 4 halftones, are supposed to work */
682
    /* for both RGB and CMYK, so we need a special check here. */
683
158k
    if (halftonetype == ht_type_colorscreen ||
684
158k
        halftonetype == ht_type_multiple_colorscreen) {
685
158k
        if (check_name("Red", pname, name_size))
686
52.9k
            num_colorant = check_colorant_name(dev, "Cyan");
687
105k
        else if (check_name("Green", pname, name_size))
688
52.9k
            num_colorant = check_colorant_name(dev, "Magenta");
689
52.9k
        else if (check_name("Blue", pname, name_size))
690
52.9k
            num_colorant = check_colorant_name(dev, "Yellow");
691
0
        else if (check_name("Gray", pname, name_size))
692
0
            num_colorant = check_colorant_name(dev, "Black");
693
        /*
694
         * The device will return GX_DEVICE_COLOR_MAX_COMPONENTS if the
695
         * colorant is logically present in the device but not being used
696
         * because a SeparationOrder parameter is specified.  Since we are
697
         * using this value to indicate 'Default', we use -1 to indicate
698
         * that the colorant is not really being used.
699
         */
700
158k
        if (num_colorant == GX_DEVICE_COLOR_MAX_COMPONENTS)
701
0
            num_colorant = -1;
702
703
158k
#undef check_colorant_name
704
158k
#undef check_colorant_name_length
705
158k
#undef check_name
706
707
158k
    }
708
158k
    return num_colorant;
709
160k
}
710
711
/*
712
 * See gs_color_name_component_number for main description.
713
 *
714
 * This version converts a name index value into a string and size and
715
 * then call gs_color_name_component_number.
716
 */
717
int
718
gs_cname_to_colorant_number(gs_gstate * pgs, byte * pname, uint name_size,
719
                int halftonetype)
720
1.23k
{
721
1.23k
    gx_device * dev = pgs->device;
722
723
1.23k
    return gs_color_name_component_number(dev, (char *)pname, name_size,
724
1.23k
                    halftonetype);
725
1.23k
}
726
727
/*
728
 * Install a device halftone into the gs_gstate.
729
 *
730
 * To allow halftones to be shared between graphic states, the
731
 * gs_gstate contains a pointer to a device halftone structure. Thus, when
732
 * we say a halftone is "in" the gs_gstate, we are only claiming
733
 * that the halftone pointer in the gs_gstate points to that halftone.
734
 *
735
 * Though the operand halftone uses the same structure as the halftone
736
 * "in" the gs_gstate, not all of its fields are filled in, and the
737
 * organization of components differs. Specifically, the following fields
738
 * are not filled in:
739
 *
740
 *  rc          The operand device halftone has only a transient existence,
741
 *              its reference count information is not initialized. In many
742
 *              cases, the operand device halftone structure is allocated
743
 *              on the stack by clients.
744
 *
745
 *  id          A halftone is not considered to have an identity until it
746
 *              is installed in the gs_gstate. This is a design error
747
 *              which reflects the PostScript origins of this code. In
748
 *              PostScript, it is impossible to check if two halftone
749
 *              specifications (sets of operands to setscreen/setcolorscreen
750
 *              or halftone dictionaries) are the same. Hence, the only way
751
 *              a halftone could be identified was by the graphic state in
752
 *              which it was included. In PCL it is possible to directly
753
 *              identify a halftone specification, but currently there is
754
 *              no way to use this knowledge in the graphic library.
755
 *
756
 *              (An altogether more reasonable approach would be to apply
757
 *              id's to halftone orders.)
758
 *
759
 *  type        This is filled in by the type operand. It is used by
760
 *              PostScript's currentscreen/currentcolorscreen operators to
761
 *              determine if a sampling procedure or a halftone dictionary
762
 *              should be pushed onto the stack. More importantly, it is
763
 *              also used to determine if specific halftone components can
764
 *              be used for either the additive or subtractive version of
765
 *              that component in the process color model. For example, a
766
 *              RedThreshold in a HalftoneType 4 dictionary can be applied
767
 *              to either the component "Red" or the component "Cyan", but
768
 *              the value of the key "Red" in a HalftoneType 5 dictionary
769
 *              can only be used for a "Red" component (not a "Cyan"
770
 *              component).
771
 *
772
 *  num_comp    For the operand halftone, this is the number of halftone
773
 *              components included in the specification. For the device
774
 *              halftone in the gs_gstate, this is always the same as
775
 *              the number of color model components (see num_dev_comp).
776
 *
777
 *  num_dev_comp The number of components in the device process color model
778
 *              when the operand halftone was created.  With some compositor
779
 *              devices (for example PDF 1.4) we can have differences in the
780
 *              process color model of the compositor versus the output device.
781
 *              These compositor devices do not halftone.
782
 *
783
 *  components  For the operand halftone, this field is non-null only if
784
 *              multiple halftones are provided. In that case, the size
785
 *              of the array pointed is the same as the number of
786
 *              components provided. One of these components will usually
787
 *              be the same as that identified by the "order" field.
788
 *
789
 *              For the device halftone in the gs_gstate, this field is
790
 *              always non-null, and the size of the array pointed to will
791
 *              be the same as the number of components in the process
792
 *              color model.
793
 *
794
 *  lcm_width,  These fields provide the least common multiple of the
795
 *  lcm_height  halftone dimensions of the individual component orders.
796
 *              They represent the dimensions of the smallest tile that
797
 *              repeats for all color components (this is of interest
798
 *              because Ghostscript uses a "chunky" raster format for all
799
 *              drawing procedures). These fields cannot be set in the
800
 *              operand device halftone as we do not yet know which of
801
 *              the halftone components will actually be used.
802
 *
803
 * Conversely, the "order" field is significant only in the operand device
804
 * halftone. There it represents the default halftone component, which will
805
 * be used for all device color components for which a named halftone is
806
 * not available. It is ignored (filled with 0's) in the device halftone
807
 * in the gs_gstate.
808
 *
809
 * The ordering of entries and the set of fields initialized in the
810
 * components array also vary between the operand device halftone and
811
 * the device halftone in the gs_gstate.
812
 *
813
 * If the components array is present in the operand device halftone, the
814
 * cname field in each entry of the array will contain a name index
815
 * identifying the colorant name, and the comp_number field will provide the
816
 * index of the corresponding component in the process color model. The
817
 * order of entries in the components array is essentially arbitrary,
818
 * but in some common cases will reflect the order in which the halftone
819
 * specification is provided. By convention, if no explicit default order
820
 * is provided (i.e.: via a HalftoneType 5 dictionary), the first
821
 * entry of the array will be the same as the "order" (default) field.
822
 *
823
 * For the device halftone in the gs_gstate, the components array is
824
 * always present, but the cname and comp_number fields of individual
825
 * entries are ignored. The order of the entries in the array always
826
 * matches the order of components in the device color model.
827
 *
828
 * The distinction between the operand device halftone and the one in
829
 * the graphic state extends even to the individual fields of the
830
 * gx_ht_order structure incorporated in the order field of the halftone
831
 * and the corder field of the elements of the components array. The
832
 * fields of this structure that are handled differently in the operand
833
 * and gs_gstate device halftones are:
834
 *
835
 *  params          Provides a set of parameters that are required for
836
 *                  converting a halftone specification to a single
837
 *                  component order. This field is used only in the
838
 *                  operand device halftone; it is not set in the device
839
 *                  halftone in the gs_gstate.
840
 *
841
 *  orig_height,   The height and shift values of the halftone cell,
842
 *  orig_shift     prior to any replication. These fields are currently
843
 *                 unused, and will always be the same as the height
844
 *                 and width fields in the device halftone in the
845
 *                 gs_gstate.
846
 *
847
 *  full_height    The height of the smallest replicated tile whose shift
848
 *                 value is 0. This is calculated as part of the
849
 *                 installation process; it may be set in the operand
850
 *                 device halftone, but its value is ignored.
851
 *
852
 *
853
 *  data_memory    Points to the memory structure used to allocate the
854
 *                 levels and bit_data arrays. The handling of this field
855
 *                 is a bit complicated. For orders that are "taken over"
856
 *                 by the installation process, this field will have the
857
 *                 same value in the operand device halftone and the
858
 *                 device halftone in the gs_gstate. For halftones
859
 *                 that are copied by the installation process, this
860
 *                 field will have the same value as the memory field in
861
 *                 the gs_gstate (the two are usually the same).
862
 *
863
 *  cache          Pointer to a cache of tiles representing various
864
 *                 levels of the halftone. This may or may not be
865
 *                 provided in the operand device halftone (in principle
866
 *                 this should always be a null pointer in the operand
867
 *                 device halftone, but this is not the manner in which
868
 *                 the cache was handled historically).
869
 *
870
 *  screen_params  This structure contains transformation information
871
 *                 that is required when reading the sample data for a
872
 *                 screen. It is no longer required once the halftone
873
 *                 order has been constructed.
874
 *
875
 * In addition to what is noted above, this procedure is made somewhat
876
 * more complex than expected due to memory management considerations. To
877
 * clarify this, it is necessary to consider the properties of the pieces
878
 * that constitute a device halftone.
879
 *
880
 *  The gx_device_halftone structure itself is shareable and uses
881
 *  reference counts.
882
 *
883
 *  The gx_ht_order_component array (components array entry) is in
884
 *  principle shareable, though it does not provide any reference
885
 *  counting mechanism. Hence any sharing needs to be done with
886
 *  caution.
887
 *
888
 *  Individual component orders are not shareable, as they are part of
889
 *  the gx_ht_order_commponent structure (a major design error).
890
 *
891
 *  The levels, bit_data, and cache structures referenced by the
892
 *  gx_ht_order structure are in principle shareable, but they also do
893
 *  not provide any reference counting mechanism. Traditionally, one set
894
 *  of two component orders could share these structures, using the
895
 *  halftone's "order" field and various scattered bits of special case
896
 *  code. This practice has been ended because it did not extend to
897
 *  sharing amongst more than two components.
898
 *
899
 *  The gx_transfer_map structure referenced by the gx_ht_order structure
900
 *  is shareable, and uses reference counts. Traditionally this structure
901
 *  was not shared, but this is no longer the case.
902
 *
903
 * As noted, the rc field of the operand halftone is not initialized, so
904
 * this procedure cannot simply take ownership of the operand device
905
 * halftone structure (i.e.: an ostensibly shareable structure is not
906
 * shareable). Hence, this procedure will always create a new copy of the
907
 * gx_device_halftone structure, either by allocating a new structure or
908
 * re-using the structure already referenced by the gs_gstate. This
909
 * feature must be retained, as in several cases the calling code will
910
 * allocate the operand device halftone structure on the stack.
911
 *
912
 * Traditionally, this procedure took ownership of all of the structures
913
 * referenced by the operand device halftone structure. This implied
914
 * that all structures referenced by the gx_device_halftone structure
915
 * needed to be allocated on the heap, and should not be released once
916
 * the call to gx_gstate_dev_ht_install completes.
917
 *
918
 * There were two problems with this approach:
919
 *
920
 *  1. In the event of an error, the calling code most likely would have
921
 *     to release referenced components, as the gs_gstate had not yet
922
 *     take ownership of them. In many cases, the code did not do this.
923
 *
924
 *  2. When the structures referenced by a single order needed to be
925
 *     shared amongst more than one component, there was no easy way to
926
 *     discover this sharing when the gs_gstate's device halftone
927
 *     subsequently needed to be released. Hence, objects would be
928
 *     released multiple times.
929
 *
930
 * Subsequently, the code in this routine was changed to copy most of
931
 * the referenced structures (everything except the transfer functions).
932
 * Unfortunately, the calling code was not changed, which caused memory
933
 * leaks.
934
 *
935
 * The approach now taken uses a mixture of the two approaches.
936
 * Ownership to structures referenced by the operand device halftone is
937
 * assumed by the device halftone in the gs_gstate where this is
938
 * possible. In these cases, the corresponding references are removed in
939
 * the operand device halftone (hence, this operand is no longer
940
 * qualified as const). When a structure is required but ownership cannot
941
 * be assumed, a copy is made and the reference in the operand device
942
 * halftone is left undisturbed. The calling code has also been modified
943
 * to release any remaining referenced structures when this routine
944
 * returns, whether or not an error is indicated.
945
 */
946
int
947
gx_gstate_dev_ht_install(
948
    gs_gstate *       pgs,
949
    gx_device_halftone *    pdht,
950
    gs_halftone_type        type,
951
    const gx_device *       dev,
952
    gs_HT_objtype_t objtype )
953
204k
{
954
204k
    gx_device_halftone      dht;
955
204k
    int                     num_comps = pdht->num_dev_comp;
956
204k
    int                     i, code = 0;
957
204k
    bool                    used_default = false;
958
204k
    int                     lcm_width = 1, lcm_height = 1;
959
204k
    bool                    mem_diff = pdht->rc.memory != pgs->memory;
960
204k
    uint w, h;
961
204k
    int dw, dh;
962
963
204k
    assert(objtype < HT_OBJTYPE_COUNT);
964
965
    /* construct the new device halftone structure */
966
204k
    memset(&dht.order, 0, sizeof(dht.order));
967
    /* the rc field is filled in later */
968
204k
    dht.id = gs_next_ids(pgs->memory, 1);
969
204k
    dht.type = type;
970
204k
    dht.components =  gs_alloc_struct_array(
971
204k
                          pgs->memory,
972
204k
                          num_comps,
973
204k
                          gx_ht_order_component,
974
204k
                          &st_ht_order_component_element,
975
204k
                          "gx_gstate_dev_ht_install(components)" );
976
204k
    if (dht.components == NULL)
977
0
        return_error(gs_error_VMerror);
978
204k
    dht.num_comp = dht.num_dev_comp = num_comps;
979
    /* lcm_width, lcm_height are filled in later */
980
981
    /* initialize the components array */
982
204k
    memset(dht.components, 0, num_comps * sizeof(dht.components[0]));
983
409k
    for (i = 0; i < num_comps; i++)
984
204k
        dht.components[i].comp_number = -1;
985
986
    /*
987
     * Duplicate any of the non-default components, but do not create copies
988
     * of the levels or bit_data arrays. If all goes according to plan, the
989
     * gs_gstate's device halftone will assume ownership of these arrays
990
     * by clearing the corresponding pointers in the operand halftone's
991
     * orders.
992
     */
993
204k
    if (pdht->components != NULL) {
994
203k
        int     input_ncomps = pdht->num_comp;
995
996
565k
        for (i = 0; i < input_ncomps && code >= 0; i++) {
997
362k
            gx_ht_order_component * p_s_comp = &pdht->components[i];
998
362k
            gx_ht_order *           p_s_order = &p_s_comp->corder;
999
362k
            int                     comp_num = p_s_comp->comp_number;
1000
1001
362k
            if (comp_num >= 0 && comp_num < GX_DEVICE_COLOR_MAX_COMPONENTS &&
1002
362k
                comp_num < dht.num_comp) {
1003
203k
                gx_ht_order *   p_d_order = &dht.components[comp_num].corder;
1004
1005
                /* indicate that this order has been filled in */
1006
203k
                dht.components[comp_num].comp_number = comp_num;
1007
1008
                /*
1009
                 * The component can be used only if it is from the
1010
                 * proper memory
1011
                 */
1012
203k
                if (mem_diff)
1013
203k
                    code = gx_ht_copy_ht_order( p_d_order,
1014
203k
                                                p_s_order,
1015
203k
                                                pgs->memory );
1016
0
                else {
1017
                    /* check if this is also the default component */
1018
0
                    used_default = used_default ||
1019
0
                                   p_s_order->bit_data == pdht->order.bit_data;
1020
1021
0
                    gx_ht_move_ht_order(p_d_order, p_s_order);
1022
0
                }
1023
203k
            }
1024
362k
        }
1025
203k
    }
1026
1027
    /*
1028
     * Copy the default order to any remaining components.
1029
     */
1030
1031
409k
    for (i = 0; i < num_comps && code >= 0; i++) {
1032
204k
        gx_ht_order *porder = &dht.components[i].corder;
1033
1034
204k
        if (dht.components[i].comp_number != i) {
1035
            /* Previously this code would 'move' the default order from pdht to the
1036
             * dht component here, if we hadn't already done so, and would NULL out the default
1037
             * order in pdht to prevent it being freed when we released the halftone.
1038
             * However this didn't account for the possibility that one or more of the components
1039
             * of dht was already sharing the default order of the halftone. See gx_device_halftone_release
1040
             * which carefully checks to see if the default order is used by any component, in
1041
             * order to avoid double freeing it.
1042
             * We could do that check here, but the tiny benefit in not copying the data would
1043
             * probably be lost by the checks, so lets just always *copy* the default order if we need to.
1044
             */
1045
1.23k
            code = gx_ht_copy_ht_order(porder, &pdht->order, pgs->memory);
1046
1.23k
            dht.components[i].comp_number = i;
1047
1.23k
        }
1048
1049
204k
        w = porder->width;
1050
204k
        h = porder->full_height;
1051
204k
        dw = igcd(lcm_width, w);
1052
204k
        dh = igcd(lcm_height, h);
1053
1054
204k
        lcm_width /= dw;
1055
204k
        lcm_height /= dh;
1056
204k
        lcm_width = (w > max_int / lcm_width ? max_int : lcm_width * w);
1057
204k
        lcm_height = (h > max_int / lcm_height ? max_int : lcm_height * h);
1058
1059
204k
        if (porder->cache == 0) {
1060
204k
            uint            tile_bytes, num_tiles, slots_wanted, rep_raster, rep_count;
1061
204k
            gx_ht_cache *   pcache;
1062
1063
204k
            tile_bytes = porder->raster
1064
204k
                          * (porder->num_bits / porder->width);
1065
204k
            num_tiles = 1 + gx_ht_cache_default_bits_size() / tile_bytes;
1066
            /*
1067
             * Limit num_tiles to a reasonable number allowing for width repition.
1068
             * The most we need is one cache slot per bit.
1069
             * This prevents allocations of large cache bits that will never
1070
             * be used. See rep_count limit in gxht.c
1071
             */
1072
204k
            slots_wanted = 1 + ( porder->width * porder->height );
1073
204k
            rep_raster = ((num_tiles*tile_bytes) / porder->height /
1074
204k
                            slots_wanted) & ~(align_bitmap_mod - 1);
1075
204k
            rep_count = rep_raster * 8 / porder->width;
1076
204k
            if (rep_count > sizeof(ulong) * 8 && (num_tiles >
1077
204k
                    1 + ((num_tiles * 8 * sizeof(ulong)) / rep_count) ))
1078
204k
                num_tiles = 1 + ((num_tiles * 8 * sizeof(ulong)) / rep_count);
1079
204k
            pcache = gx_ht_alloc_cache( pgs->memory, num_tiles,
1080
204k
                                        tile_bytes * num_tiles );
1081
204k
            if (pcache == NULL)
1082
0
                code = gs_error_VMerror;
1083
204k
            else {
1084
204k
                porder->cache = pcache;
1085
204k
                gx_ht_init_cache(pgs->memory, pcache, porder);
1086
204k
            }
1087
204k
        }
1088
204k
    }
1089
204k
    dht.lcm_width = lcm_width;
1090
204k
    dht.lcm_height = lcm_height;
1091
1092
    /*
1093
     * If everything is OK so far, allocate a unique copy of the device
1094
     * halftone reference by the gs_gstate.
1095
     *
1096
     * This code requires a special check for the case in which the
1097
     * deivce halftone referenced by the gs_gstate is already unique.
1098
     * In this case, we must explicitly release just the components array
1099
     * (and any structures it refers to) of the existing halftone. This
1100
     * cannot be done automatically, as the rc_unshare_struct macro only
1101
     * ensures that a unique instance of the top-level structure is
1102
     * created, not that any substructure references are updated.
1103
     *
1104
     * Though this is scheduled to be changed, for the time being the
1105
     * command list renderer may invoke this code with pdht == psi->dev_ht
1106
     * (in which case we know pgs->dev_ht.rc.ref_count == 1). Special
1107
     * handling is required in that case, to avoid releasing structures
1108
     * we still need.
1109
     */
1110
204k
    if (code >= 0) {
1111
204k
        gx_device_halftone **ppgsdht;
1112
204k
        rc_header tmp_rc;
1113
1114
        /* The pgsdht corresponds to the one we will be installing according to 'objtype' */
1115
204k
        ppgsdht = &(pgs->dev_ht[objtype]);
1116
204k
        if (*ppgsdht != NULL && (*ppgsdht)->rc.ref_count == 1) {
1117
23.2k
             if (pdht != *ppgsdht)
1118
23.2k
                gx_device_halftone_release(*ppgsdht, (*ppgsdht)->rc.memory);
1119
181k
        } else {
1120
181k
            rc_unshare_struct( *ppgsdht,
1121
181k
                               gx_device_halftone,
1122
181k
                               &st_device_halftone,
1123
181k
                               pgs->memory,
1124
181k
                               BEGIN code = gs_error_VMerror; goto err; END,
1125
181k
                               "gx_gstate_dev_ht_install" );
1126
181k
        }
1127
1128
        /*
1129
         * Everything worked. "Assume ownership" of the appropriate
1130
         * portions of the source device halftone by clearing the
1131
         * associated references.  Since we might have
1132
         * pdht == pgs->dev_ht[], this must done before updating pgs->dev_ht[].
1133
         *
1134
         * If the default order has been used for a device component, and
1135
         * any of the source component orders share their levels or bit_data
1136
         * arrays with the default order, clear the pointers in those orders
1137
         * now. This is necessary because the default order's pointers will
1138
         * be cleared immediately below, so subsequently it will not be
1139
         * possible to tell if that this information is being shared.
1140
         */
1141
204k
        if (pdht->components != NULL && !mem_diff) {
1142
0
            int     input_ncomps = pdht->num_comp;
1143
1144
0
            for (i = 0; i < input_ncomps; i++) {
1145
0
                gx_ht_order_component * p_s_comp = &pdht->components[i];
1146
0
                gx_ht_order *           p_s_order = &p_s_comp->corder;
1147
0
                int                     comp_num = p_s_comp->comp_number;
1148
1149
0
                if ( comp_num >= 0                            &&
1150
0
                     comp_num < GX_DEVICE_COLOR_MAX_COMPONENTS  ) {
1151
0
                    memset(p_s_order, 0, sizeof(*p_s_order));
1152
0
                } else if ( comp_num == GX_DEVICE_COLOR_MAX_COMPONENTS &&
1153
0
                            used_default                                 )
1154
0
                    memset(p_s_order, 0, sizeof(*p_s_order));
1155
0
            }
1156
0
        }
1157
204k
        if (used_default && !mem_diff) {
1158
0
            memset(&pdht->order, 0, sizeof(pdht->order));
1159
0
        }
1160
1161
204k
        tmp_rc = (*ppgsdht)->rc;
1162
204k
        **ppgsdht = dht;
1163
204k
        (*ppgsdht)->rc = tmp_rc;
1164
1165
        /* update the effective transfer function array */
1166
204k
        gx_gstate_set_effective_xfer(pgs);
1167
1168
204k
        return 0;
1169
204k
    }
1170
1171
    /* something went amiss; release all copied components */
1172
0
  err:
1173
0
    for (i = 0; i < num_comps; i++) {
1174
0
        gx_ht_order_component * pcomp = &dht.components[i];
1175
0
        gx_ht_order *           porder = &pcomp->corder;
1176
1177
0
        if (pcomp->comp_number == -1) {
1178
0
            gx_ht_order_release(porder, pgs->memory, true);
1179
0
        }
1180
0
        else if (porder->cache != NULL) {
1181
0
            gx_ht_free_cache(pgs->memory, porder->cache);
1182
0
            porder->cache = NULL;
1183
0
        }
1184
0
    }
1185
0
    gs_free_object(pgs->memory, dht.components, "gx_gstate_dev_ht_install");
1186
1187
0
    return code;
1188
204k
}
1189
1190
/*
1191
 * Copy the dev_ht[HT_OBJTYPE_DEFAULT] to the dev_ht[] for the specified object type.
1192
 */
1193
int
1194
gx_gstate_dev_ht_copy_to_objtype(gs_gstate *pgs, gs_HT_objtype_t objtype)
1195
0
{
1196
0
    gx_device_halftone *pdht = pgs->dev_ht[HT_OBJTYPE_DEFAULT]; /* the current dev_ht */
1197
1198
0
    if (objtype >= HT_OBJTYPE_COUNT) {
1199
0
        return_error(gs_error_undefined);
1200
0
    }
1201
0
    rc_increment(pdht);
1202
0
    pgs->dev_ht[objtype] = pdht;
1203
0
    return 0;
1204
0
}
1205
1206
/*
1207
 * Install a new halftone in the graphics state.  Note that we copy the top
1208
 * level of the gs_halftone and the gx_device_halftone, and take ownership
1209
 * of any substructures.
1210
 */
1211
int
1212
gx_ht_install(gs_gstate * pgs, const gs_halftone * pht,
1213
              gx_device_halftone * pdht)
1214
52.9k
{
1215
52.9k
    gs_memory_t *mem = pht->rc.memory;
1216
52.9k
    gs_halftone *old_ht = pgs->halftone;
1217
52.9k
    gs_halftone *new_ht;
1218
52.9k
    int code;
1219
1220
52.9k
    pdht->num_dev_comp = pgs->device->color_info.num_components;
1221
52.9k
    if (old_ht != NULL && old_ht->rc.memory == mem &&
1222
52.9k
        old_ht->rc.ref_count == 1
1223
52.9k
        )
1224
21.1k
        new_ht = old_ht;
1225
31.8k
    else
1226
52.9k
        rc_alloc_struct_1(new_ht, gs_halftone, &st_halftone,
1227
52.9k
                          mem, return_error(gs_error_VMerror),
1228
52.9k
                          "gx_ht_install(new halftone)");
1229
52.9k
    code = gx_gstate_dev_ht_install(pgs,
1230
52.9k
                             pdht, pht->type, gs_currentdevice_inline(pgs),
1231
52.9k
                             pht->objtype);
1232
52.9k
    if (code < 0) {
1233
0
        if (new_ht != old_ht)
1234
0
            gs_free_object(mem, new_ht, "gx_ht_install(new halftone)");
1235
0
        return code;
1236
0
    }
1237
1238
    /*
1239
     * Discard any unused components and the components array of the
1240
     * operand device halftone
1241
     */
1242
52.9k
    gx_device_halftone_release(pdht, pdht->rc.memory);
1243
1244
52.9k
    if (new_ht != old_ht)
1245
52.9k
        rc_decrement(old_ht, "gx_ht_install(old halftone)");
1246
52.9k
    {
1247
52.9k
        rc_header rc;
1248
1249
52.9k
        rc = new_ht->rc;
1250
52.9k
        *new_ht = *pht;
1251
52.9k
        new_ht->rc = rc;
1252
52.9k
    }
1253
52.9k
    pgs->halftone = new_ht;
1254
52.9k
    gx_unset_both_dev_colors(pgs);
1255
52.9k
    return 0;
1256
52.9k
}
1257
1258
/*
1259
 * This macro will determine the colorant number of a given color name.
1260
 * A value of -1 indicates that the name is not valid.
1261
 */
1262
#define check_colorant_name(name, dev) \
1263
   ((*dev_proc(dev, get_color_comp_index)) (dev, name, strlen(name), NO_NAME_TYPE))
1264
1265
/* Reestablish the effective transfer functions, taking into account */
1266
/* any overrides from halftone dictionaries. */
1267
void
1268
gx_gstate_set_effective_xfer(gs_gstate * pgs)
1269
692k
{
1270
692k
    gx_device_halftone *pdht = pgs->dev_ht[HT_OBJTYPE_DEFAULT];
1271
692k
    gx_transfer_map *pmap;
1272
692k
    gx_ht_order *porder;
1273
692k
    int i, component_num, non_id_count;
1274
1275
692k
    non_id_count = (pgs->set_transfer.gray->proc == &gs_identity_transfer) ? 0 : GX_DEVICE_COLOR_MAX_COMPONENTS;
1276
45.0M
    for (i = 0; i < GX_DEVICE_COLOR_MAX_COMPONENTS; i++)
1277
44.3M
        pgs->effective_transfer[i] = pgs->set_transfer.gray;    /* default */
1278
1279
    /* Check if we have a transfer functions from setcolortransfer */
1280
692k
    if (pgs->set_transfer.red) {
1281
3
        component_num = pgs->set_transfer.red_component_num;
1282
3
        if (component_num >= 0) {
1283
0
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1284
0
               non_id_count--;
1285
0
            pgs->effective_transfer[component_num] = pgs->set_transfer.red;
1286
0
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1287
0
               non_id_count++;
1288
0
        }
1289
3
    }
1290
692k
    if (pgs->set_transfer.green) {
1291
3
        component_num = pgs->set_transfer.green_component_num;
1292
3
        if (component_num >= 0) {
1293
0
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1294
0
               non_id_count--;
1295
0
            pgs->effective_transfer[component_num] = pgs->set_transfer.green;
1296
0
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1297
0
               non_id_count++;
1298
0
        }
1299
3
    }
1300
692k
    if (pgs->set_transfer.blue) {
1301
3
        component_num = pgs->set_transfer.blue_component_num;
1302
3
        if (component_num >= 0) {
1303
0
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1304
0
               non_id_count--;
1305
0
            pgs->effective_transfer[component_num] = pgs->set_transfer.blue;
1306
0
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1307
0
               non_id_count++;
1308
0
        }
1309
3
    }
1310
1311
    /* HT may not be initialized yet.  Only do if the target is a halftone device.
1312
       Per the spec, the HT is a self-contained description of a halftoning process.
1313
       We don't use any xfer function from the HT if we are not halftoning */
1314
692k
    if (pdht && !device_is_contone(pgs->device)) {
1315
1316
        /* Since the transfer function is pickled into the threshold array (if any)*/
1317
        /*  we need to free it so it can be reconstructed with the current transfer */
1318
577k
        porder = &(pdht->order);
1319
577k
        if (porder->threshold != NULL) {
1320
0
            gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
1321
0
                           "set_effective_transfer(threshold)");
1322
0
            porder->threshold = 0;
1323
0
        }
1324
1.15M
        for (i = 0; i < pdht->num_comp; i++) {
1325
577k
            pmap = pdht->components[i].corder.transfer;
1326
577k
            if (pmap != NULL) {
1327
0
                if (pgs->effective_transfer[i]->proc != &gs_identity_transfer)
1328
0
                    non_id_count--;
1329
0
                pgs->effective_transfer[i] = pmap;
1330
0
                if (pgs->effective_transfer[i]->proc != &gs_identity_transfer)
1331
0
                   non_id_count++;
1332
0
            }
1333
577k
            porder = &(pdht->components[i].corder);
1334
577k
            if (porder->threshold != NULL) {
1335
5
                gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
1336
5
                               "set_effective_transfer(threshold)");
1337
5
                porder->threshold = 0;
1338
5
            }
1339
577k
        }
1340
577k
    }
1341
1342
692k
    pgs->effective_transfer_non_identity_count = non_id_count;
1343
692k
}
1344
1345
void
1346
gx_set_effective_transfer(gs_gstate * pgs)
1347
53.8k
{
1348
53.8k
    gx_gstate_set_effective_xfer(pgs);
1349
53.8k
}
1350
1351
/* Check if the transfer function for a component is monotonic. */
1352
/* Used to determine if we can do fast halftoning   */
1353
bool
1354
gx_transfer_is_monotonic(const gs_gstate *pgs, int plane_index)
1355
73.7k
{
1356
73.7k
    if (pgs->effective_transfer[plane_index]->proc != gs_identity_transfer) {
1357
73.7k
        bool threshold_inverted;
1358
73.7k
        int t_level;
1359
73.7k
        frac mapped, prev;
1360
1361
73.7k
        prev = gx_map_color_frac(pgs, frac_0, effective_transfer[plane_index]);
1362
73.7k
        threshold_inverted = prev >
1363
73.7k
                             gx_map_color_frac(pgs, frac_1, effective_transfer[plane_index]);
1364
18.8M
        for (t_level = 1; t_level < 255; t_level++) {
1365
18.7M
            mapped = gx_map_color_frac(pgs, byte2frac(t_level), effective_transfer[plane_index]);
1366
18.7M
            if ((threshold_inverted && mapped > prev) ||
1367
18.7M
                (!threshold_inverted && mapped < prev))
1368
1
                return false;
1369
18.7M
            prev = mapped;
1370
18.7M
        }
1371
73.7k
    }
1372
73.7k
    return true;
1373
73.7k
}
1374
1375
/* This creates a threshold array from the tiles.  Threshold is allocated in
1376
   non-gc memory and is not known to the GC. The algorithm cycles through the
1377
   threshold values, computing the shade the same way as gx_render_device_DeviceN
1378
   so that the threshold matches the non-threshold halftoning.
1379
*/
1380
int
1381
gx_ht_construct_threshold( gx_ht_order *d_order, gx_device *dev,
1382
                           const gs_gstate * pgs, int plane_index)
1383
73.7k
{
1384
73.7k
    int i, j;
1385
73.7k
    unsigned char *thresh;
1386
73.7k
    gs_memory_t *memory = d_order ? d_order->data_memory->non_gc_memory : NULL;
1387
73.7k
    uint max_value;
1388
73.7k
    unsigned long hsize, nshades;
1389
73.7k
    int t_level;
1390
73.7k
    int row, col;
1391
73.7k
    int code;
1392
73.7k
    int num_repeat, shift, num_levels = d_order ? d_order->num_levels : 0;
1393
73.7k
    int row_kk, col_kk, kk;
1394
73.7k
    frac t_level_frac_color;
1395
73.7k
    int shade, base_shade = 0;
1396
73.7k
    bool have_transfer = false, threshold_inverted = false;
1397
1398
73.7k
    if (d_order == NULL) return -1;
1399
    /* We can have simple or complete orders.  Simple ones tile the threshold
1400
       with shifts.   To handle those we simply loop over the number of
1401
       repeats making sure to shift columns when we set our threshold values */
1402
73.7k
    num_repeat = d_order->full_height / d_order->height;
1403
73.7k
    shift = d_order->shift;
1404
1405
73.7k
    if (d_order->threshold != NULL) return 0;
1406
73.1k
    thresh = (byte *)gs_malloc(memory, (size_t)d_order->width * d_order->full_height, 1,
1407
73.1k
                              "gx_ht_construct_threshold");
1408
73.1k
    if (thresh == NULL) {
1409
0
        return -1 ;         /* error if allocation failed   */
1410
0
    }
1411
    /* Check if we need to apply a transfer function to the values */
1412
73.1k
    if (pgs->effective_transfer[plane_index]->proc != gs_identity_transfer) {
1413
73.0k
        have_transfer = true;
1414
73.0k
        threshold_inverted = gx_map_color_frac(pgs, frac_0, effective_transfer[plane_index]) >
1415
73.0k
                                gx_map_color_frac(pgs, frac_1, effective_transfer[plane_index]);
1416
73.0k
    }
1417
    /* Adjustments to ensure that we properly map our 256 levels into
1418
      the number of shades that we have in our halftone screen.  For example
1419
      if we have a 16x16 screen, we have 257 shadings that we can represent
1420
      if we have a  2x2  screen, we have 5 shadings that we can represent.
1421
      Calculations are performed to match what happens in the tile filling
1422
      code */
1423
73.1k
    max_value = (dev->color_info.gray_index == plane_index) ?
1424
73.1k
         dev->color_info.dither_grays - 1 :
1425
73.1k
         dev->color_info.dither_colors - 1;
1426
73.1k
    hsize = num_levels;
1427
73.1k
    nshades = hsize * max_value + 1;
1428
1429
    /* search upwards to find the correct value for the last threshold value */
1430
    /* Use this to initialize the threshold array (transition to all white) */
1431
73.1k
    t_level = 0;
1432
17.4M
    do {
1433
17.4M
        t_level++;
1434
17.4M
        t_level_frac_color = byte2frac(threshold_inverted ? 255 - t_level : t_level);
1435
17.4M
        if (have_transfer)
1436
17.4M
            t_level_frac_color = gx_map_color_frac(pgs, t_level_frac_color, effective_transfer[plane_index]);
1437
17.4M
        shade = t_level_frac_color * nshades / (frac_1_long + 1);
1438
17.4M
    } while (shade < num_levels && t_level < 255);
1439
    /* Initialize the thresholds to the lowest level that will be all white */
1440
2.70M
    for( i = 0; i < d_order->width * d_order->full_height; i++ ) {
1441
2.63M
        thresh[i] = t_level;
1442
2.63M
    }
1443
18.7M
    for (t_level = 1; t_level < 256; t_level++) {
1444
18.6M
        t_level_frac_color = byte2frac(threshold_inverted ? 255 - t_level : t_level);
1445
18.6M
        if (have_transfer)
1446
18.6M
            t_level_frac_color = gx_map_color_frac(pgs, t_level_frac_color, effective_transfer[plane_index]);
1447
18.6M
        shade = t_level_frac_color * nshades / (frac_1_long + 1);
1448
18.6M
        if (shade < num_levels && shade > base_shade) {
1449
1.24M
            if (d_order->levels[shade] > d_order->levels[base_shade]) {
1450
                /* Loop over the number of dots that we have to set in going
1451
                   to this new shade from the old shade */
1452
3.72M
                for (j = d_order->levels[base_shade]; j < d_order->levels[shade]; j++) {
1453
2.48M
                    gs_int_point ppt;
1454
2.48M
                    code = d_order->procs->bit_index(d_order, j, &ppt);
1455
2.48M
                    if (code < 0)
1456
0
                        return code;
1457
2.48M
                    row = ppt.y;
1458
2.48M
                    col = ppt.x;
1459
2.48M
                    if( col < (int)d_order->width ) {
1460
4.97M
                        for (kk = 0; kk < num_repeat; kk++) {
1461
2.48M
                            row_kk = row + kk * d_order->height;
1462
2.48M
                            col_kk = col + kk * shift;
1463
2.48M
                            col_kk = col_kk % d_order->width;
1464
2.48M
                            *(thresh + col_kk + (row_kk * d_order->width)) = t_level;
1465
2.48M
                        }
1466
2.48M
                    }
1467
2.48M
                }
1468
1.24M
            }
1469
1.24M
            base_shade = shade;
1470
1.24M
        }
1471
18.6M
    }
1472
73.1k
    d_order->threshold = thresh;
1473
73.1k
    d_order->threshold_inverted = threshold_inverted;
1474
73.1k
    if (dev->color_info.polarity == GX_CINFO_POLARITY_SUBTRACTIVE) {
1475
0
        for(i = 0; i < (int)d_order->height; i++ ) {
1476
0
            for( j=(int)d_order->width-1; j>=0; j-- )
1477
0
                *(thresh+j+(i*d_order->width)) = 255 - *(thresh+j+(i*d_order->width));
1478
0
        }
1479
0
    }
1480
#ifdef DEBUG
1481
    if ( gs_debug_c('h') ) {
1482
         dmprintf3(memory, "threshold array component %d [ %d x %d ]:\n",
1483
                  plane_index, (int)(d_order->full_height), (int)(d_order->width));
1484
         for( i=0; i<(int)d_order->full_height; i++ ) {
1485
            dmprintf1(memory, "row %3d= ", i);
1486
            for( j=0; j<(int)(d_order->width); j++ ) {
1487
                dmprintf1(memory, "%02x ", *(thresh+j+(i*d_order->width)) );
1488
                if ((j&31) == 31)
1489
                    dmprintf(memory, "\n         ");
1490
            }
1491
            if ((j&31) != 0)
1492
                dmprintf(memory, "\n");
1493
        }
1494
   }
1495
#endif
1496
/* Large screens are easier to see as images */
1497
#if DUMP_SCREENS
1498
    {
1499
        char file_name[50];
1500
        gp_file *fid;
1501
1502
        snprintf(file_name, 50, "Screen_From_Tiles_%dx%d.raw", d_order->width, d_order->full_height);
1503
        fid = gp_fopen(memory, file_name, "wb");
1504
        if (fid) {
1505
            gp_fwrite(thresh, sizeof(unsigned char), d_order->width * d_order->full_height, fid);
1506
            gp_fclose(fid);
1507
        }
1508
    }
1509
#endif
1510
1511
73.1k
    return 0;
1512
73.1k
}