396 | 17.1M | } Unexecuted instantiation: gx_fill_trapezoid_cf_fd Unexecuted instantiation: gx_fill_trapezoid_cf_nd gdevddrw.c:gx_fill_trapezoid_as_fd Line | Count | Source | 137 | 180k | { | 138 | 180k | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 180k | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 180k | if (ymin >= ymax) | 142 | 5.15k | return 0; /* no scan lines to sample */ | 143 | 174k | { | 144 | 174k | int iy = fixed2int_var(ymin); | 145 | 174k | const int iy1 = fixed2int_var(ymax); | 146 | 174k | trap_line l, r; | 147 | 174k | register int rxl, rxr; | 148 | 174k | #if !LINEAR_COLOR | 149 | 174k | int ry; | 150 | 174k | #endif | 151 | 174k | const fixed | 152 | 174k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 174k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 174k | const fixed /* partial pixel offset to first line to sample */ | 155 | 174k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 174k | fixed fxl; | 157 | 174k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 174k | gx_color_index cindex = pdevc->colors.pure; | 178 | 174k | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 174k | dev_proc(dev, fill_rectangle); | 180 | 174k | # endif | 181 | | | 182 | 174k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 174k | l.h = left->end.y - left->start.y; | 185 | 174k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 174k | r.h = right->end.y - right->start.y; | 188 | 174k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 174k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 174k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 174k | #if !LINEAR_COLOR | 193 | 174k | ry = iy; | 194 | 174k | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 174k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 174k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 174k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 174k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 174k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 174k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 174k | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 174k | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 174k | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 174k | #define YMULT_QUO(ys, tl)\ | 228 | 174k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 174k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 174k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 174k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 174k | #endif | 264 | 174k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 13.4k | l.di = 0, l.df = 0; | 267 | 13.4k | fxl = 0; | 268 | 161k | } else { | 269 | 161k | compute_dx(&l, dxl, ysl); | 270 | 161k | fxl = YMULT_QUO(ysl, l); | 271 | 161k | l.x += fxl; | 272 | 161k | } | 273 | 174k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 13.1k | # if !LINEAR_COLOR | 277 | 13.1k | if (l.di == 0 && l.df == 0) { | 278 | 12.1k | rxl = fixed2int_var(l.x); | 279 | 12.1k | rxr = fixed2int_var(r.x); | 280 | 12.1k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 12.1k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 12.1k | goto xit; | 283 | 12.1k | } | 284 | 958 | # endif | 285 | 958 | r.di = 0, r.df = 0; | 286 | 958 | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 161k | else if (dxr == dxl && fxl != 0) { | 292 | 131k | if (l.di == 0) | 293 | 69.5k | r.di = 0, r.df = l.df; | 294 | 62.4k | else | 295 | 62.4k | compute_dx(&r, dxr, ysr); | 296 | 131k | if (ysr == ysl && r.h == l.h) | 297 | 131k | r.x += fxl; | 298 | 5 | else | 299 | 5 | r.x += YMULT_QUO(ysr, r); | 300 | 131k | } else { | 301 | 29.8k | compute_dx(&r, dxr, ysr); | 302 | 29.8k | r.x += YMULT_QUO(ysr, r); | 303 | 29.8k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 162k | compute_ldx(&l, ysl); | 306 | 162k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 162k | l.x += fixed_epsilon; | 310 | 162k | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 162k | #define rational_floor(tl)\ | 338 | 162k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 162k | #define STEP_LINE(ix, tl)\ | 340 | 162k | tl.x += tl.ldi;\ | 341 | 162k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 162k | ix = rational_floor(tl) | 343 | | | 344 | 162k | rxl = rational_floor(l); | 345 | 162k | rxr = rational_floor(r); | 346 | 162k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 6.37M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 6.21M | register int ixl, ixr; | 365 | | | 366 | 6.21M | STEP_LINE(ixl, l); | 367 | 6.21M | STEP_LINE(ixr, r); | 368 | 6.21M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 6.21M | if (ixl != rxl || ixr != rxr) { | 370 | 2.72M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 2.72M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 2.72M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 2.72M | if (code < 0) | 374 | 0 | goto xit; | 375 | 2.72M | rxl = ixl, rxr = ixr, ry = iy; | 376 | 2.72M | } | 377 | 6.21M | # endif | 378 | 6.21M | } | 379 | 162k | # if !LINEAR_COLOR | 380 | 162k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 162k | #undef STEP_LINE | 385 | 162k | #undef SET_MINIMAL_WIDTH | 386 | 162k | #undef CONNECT_RECTANGLES | 387 | 162k | #undef FILL_TRAP_RECT | 388 | 162k | #undef FILL_TRAP_RECT_DIRECT | 389 | 162k | #undef FILL_TRAP_RECT_INRECT | 390 | 162k | #undef YMULT_QUO | 391 | 174k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 174k | return_if_interrupt(dev->memory); | 394 | 174k | return code; | 395 | 174k | } | 396 | 174k | } |
gdevddrw.c:gx_fill_trapezoid_as_nd Line | Count | Source | 137 | 1.01M | { | 138 | 1.01M | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 1.01M | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 1.01M | if (ymin >= ymax) | 142 | 19.8k | return 0; /* no scan lines to sample */ | 143 | 995k | { | 144 | 995k | int iy = fixed2int_var(ymin); | 145 | 995k | const int iy1 = fixed2int_var(ymax); | 146 | 995k | trap_line l, r; | 147 | 995k | register int rxl, rxr; | 148 | 995k | #if !LINEAR_COLOR | 149 | 995k | int ry; | 150 | 995k | #endif | 151 | 995k | const fixed | 152 | 995k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 995k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 995k | const fixed /* partial pixel offset to first line to sample */ | 155 | 995k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 995k | fixed fxl; | 157 | 995k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 995k | gx_color_index cindex = pdevc->colors.pure; | 178 | 995k | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 995k | dev_proc(dev, fill_rectangle); | 180 | 995k | # endif | 181 | | | 182 | 995k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 995k | l.h = left->end.y - left->start.y; | 185 | 995k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 995k | r.h = right->end.y - right->start.y; | 188 | 995k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 995k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 995k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 995k | #if !LINEAR_COLOR | 193 | 995k | ry = iy; | 194 | 995k | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 995k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 995k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 995k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 995k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 995k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 995k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 995k | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 995k | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 995k | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 995k | #define YMULT_QUO(ys, tl)\ | 228 | 995k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 995k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 995k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 995k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 995k | #endif | 264 | 995k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 275k | l.di = 0, l.df = 0; | 267 | 275k | fxl = 0; | 268 | 719k | } else { | 269 | 719k | compute_dx(&l, dxl, ysl); | 270 | 719k | fxl = YMULT_QUO(ysl, l); | 271 | 719k | l.x += fxl; | 272 | 719k | } | 273 | 995k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 209k | # if !LINEAR_COLOR | 277 | 209k | if (l.di == 0 && l.df == 0) { | 278 | 199k | rxl = fixed2int_var(l.x); | 279 | 199k | rxr = fixed2int_var(r.x); | 280 | 199k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 199k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 199k | goto xit; | 283 | 199k | } | 284 | 9.75k | # endif | 285 | 9.75k | r.di = 0, r.df = 0; | 286 | 9.75k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 785k | else if (dxr == dxl && fxl != 0) { | 292 | 91.3k | if (l.di == 0) | 293 | 40.7k | r.di = 0, r.df = l.df; | 294 | 50.5k | else | 295 | 50.5k | compute_dx(&r, dxr, ysr); | 296 | 91.3k | if (ysr == ysl && r.h == l.h) | 297 | 91.3k | r.x += fxl; | 298 | 24 | else | 299 | 24 | r.x += YMULT_QUO(ysr, r); | 300 | 694k | } else { | 301 | 694k | compute_dx(&r, dxr, ysr); | 302 | 694k | r.x += YMULT_QUO(ysr, r); | 303 | 694k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 795k | compute_ldx(&l, ysl); | 306 | 795k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 795k | l.x += fixed_epsilon; | 310 | 795k | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 795k | #define rational_floor(tl)\ | 338 | 795k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 795k | #define STEP_LINE(ix, tl)\ | 340 | 795k | tl.x += tl.ldi;\ | 341 | 795k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 795k | ix = rational_floor(tl) | 343 | | | 344 | 795k | rxl = rational_floor(l); | 345 | 795k | rxr = rational_floor(r); | 346 | 795k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 100M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 99.7M | register int ixl, ixr; | 365 | | | 366 | 99.7M | STEP_LINE(ixl, l); | 367 | 99.7M | STEP_LINE(ixr, r); | 368 | 99.7M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 99.7M | if (ixl != rxl || ixr != rxr) { | 370 | 77.2M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 77.2M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 77.2M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 77.2M | if (code < 0) | 374 | 0 | goto xit; | 375 | 77.2M | rxl = ixl, rxr = ixr, ry = iy; | 376 | 77.2M | } | 377 | 99.7M | # endif | 378 | 99.7M | } | 379 | 795k | # if !LINEAR_COLOR | 380 | 795k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 795k | #undef STEP_LINE | 385 | 795k | #undef SET_MINIMAL_WIDTH | 386 | 795k | #undef CONNECT_RECTANGLES | 387 | 795k | #undef FILL_TRAP_RECT | 388 | 795k | #undef FILL_TRAP_RECT_DIRECT | 389 | 795k | #undef FILL_TRAP_RECT_INRECT | 390 | 795k | #undef YMULT_QUO | 391 | 995k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 995k | return_if_interrupt(dev->memory); | 394 | 995k | return code; | 395 | 995k | } | 396 | 995k | } |
gdevddrw.c:gx_fill_trapezoid_ns_fd Line | Count | Source | 137 | 1.97M | { | 138 | 1.97M | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 1.97M | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 1.97M | if (ymin >= ymax) | 142 | 153k | return 0; /* no scan lines to sample */ | 143 | 1.82M | { | 144 | 1.82M | int iy = fixed2int_var(ymin); | 145 | 1.82M | const int iy1 = fixed2int_var(ymax); | 146 | 1.82M | trap_line l, r; | 147 | 1.82M | register int rxl, rxr; | 148 | 1.82M | #if !LINEAR_COLOR | 149 | 1.82M | int ry; | 150 | 1.82M | #endif | 151 | 1.82M | const fixed | 152 | 1.82M | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 1.82M | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 1.82M | const fixed /* partial pixel offset to first line to sample */ | 155 | 1.82M | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 1.82M | fixed fxl; | 157 | 1.82M | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 1.82M | gx_color_index cindex = pdevc->colors.pure; | 178 | 1.82M | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 1.82M | dev_proc(dev, fill_rectangle); | 180 | 1.82M | # endif | 181 | | | 182 | 1.82M | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 1.82M | l.h = left->end.y - left->start.y; | 185 | 1.82M | if (l.h == 0) | 186 | 0 | return 0; | 187 | 1.82M | r.h = right->end.y - right->start.y; | 188 | 1.82M | if (r.h == 0) | 189 | 0 | return 0; | 190 | 1.82M | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 1.82M | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 1.82M | #if !LINEAR_COLOR | 193 | 1.82M | ry = iy; | 194 | 1.82M | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 1.82M | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 1.82M | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 1.82M | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 1.82M | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 1.82M | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 1.82M | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 1.82M | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 1.82M | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 1.82M | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 1.82M | #define YMULT_QUO(ys, tl)\ | 228 | 1.82M | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 1.82M | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 1.82M | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 1.82M | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 1.82M | #endif | 264 | 1.82M | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 689k | l.di = 0, l.df = 0; | 267 | 689k | fxl = 0; | 268 | 1.13M | } else { | 269 | 1.13M | compute_dx(&l, dxl, ysl); | 270 | 1.13M | fxl = YMULT_QUO(ysl, l); | 271 | 1.13M | l.x += fxl; | 272 | 1.13M | } | 273 | 1.82M | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 706k | # if !LINEAR_COLOR | 277 | 706k | if (l.di == 0 && l.df == 0) { | 278 | 605k | rxl = fixed2int_var(l.x); | 279 | 605k | rxr = fixed2int_var(r.x); | 280 | 605k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 605k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 605k | goto xit; | 283 | 605k | } | 284 | 100k | # endif | 285 | 100k | r.di = 0, r.df = 0; | 286 | 100k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 1.11M | else if (dxr == dxl && fxl != 0) { | 292 | 197k | if (l.di == 0) | 293 | 39.8k | r.di = 0, r.df = l.df; | 294 | 157k | else | 295 | 157k | compute_dx(&r, dxr, ysr); | 296 | 197k | if (ysr == ysl && r.h == l.h) | 297 | 126k | r.x += fxl; | 298 | 71.5k | else | 299 | 71.5k | r.x += YMULT_QUO(ysr, r); | 300 | 922k | } else { | 301 | 922k | compute_dx(&r, dxr, ysr); | 302 | 922k | r.x += YMULT_QUO(ysr, r); | 303 | 922k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 1.22M | compute_ldx(&l, ysl); | 306 | 1.22M | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 1.22M | l.x += fixed_epsilon; | 310 | 1.22M | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 1.22M | #define rational_floor(tl)\ | 338 | 1.22M | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 1.22M | #define STEP_LINE(ix, tl)\ | 340 | 1.22M | tl.x += tl.ldi;\ | 341 | 1.22M | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 1.22M | ix = rational_floor(tl) | 343 | | | 344 | 1.22M | rxl = rational_floor(l); | 345 | 1.22M | rxr = rational_floor(r); | 346 | 1.22M | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 16.7M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 15.5M | register int ixl, ixr; | 365 | | | 366 | 15.5M | STEP_LINE(ixl, l); | 367 | 15.5M | STEP_LINE(ixr, r); | 368 | 15.5M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 15.5M | if (ixl != rxl || ixr != rxr) { | 370 | 12.5M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 12.5M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 12.5M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 12.5M | if (code < 0) | 374 | 0 | goto xit; | 375 | 12.5M | rxl = ixl, rxr = ixr, ry = iy; | 376 | 12.5M | } | 377 | 15.5M | # endif | 378 | 15.5M | } | 379 | 1.22M | # if !LINEAR_COLOR | 380 | 1.22M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 1.22M | #undef STEP_LINE | 385 | 1.22M | #undef SET_MINIMAL_WIDTH | 386 | 1.22M | #undef CONNECT_RECTANGLES | 387 | 1.22M | #undef FILL_TRAP_RECT | 388 | 1.22M | #undef FILL_TRAP_RECT_DIRECT | 389 | 1.22M | #undef FILL_TRAP_RECT_INRECT | 390 | 1.22M | #undef YMULT_QUO | 391 | 1.82M | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 1.82M | return_if_interrupt(dev->memory); | 394 | 1.82M | return code; | 395 | 1.82M | } | 396 | 1.82M | } |
gdevddrw.c:gx_fill_trapezoid_ns_nd Line | Count | Source | 137 | 17.9M | { | 138 | 17.9M | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 17.9M | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 17.9M | if (ymin >= ymax) | 142 | 4.58M | return 0; /* no scan lines to sample */ | 143 | 13.4M | { | 144 | 13.4M | int iy = fixed2int_var(ymin); | 145 | 13.4M | const int iy1 = fixed2int_var(ymax); | 146 | 13.4M | trap_line l, r; | 147 | 13.4M | register int rxl, rxr; | 148 | 13.4M | #if !LINEAR_COLOR | 149 | 13.4M | int ry; | 150 | 13.4M | #endif | 151 | 13.4M | const fixed | 152 | 13.4M | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 13.4M | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 13.4M | const fixed /* partial pixel offset to first line to sample */ | 155 | 13.4M | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 13.4M | fixed fxl; | 157 | 13.4M | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 13.4M | gx_color_index cindex = pdevc->colors.pure; | 178 | 13.4M | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 13.4M | dev_proc(dev, fill_rectangle); | 180 | 13.4M | # endif | 181 | | | 182 | 13.4M | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 13.4M | l.h = left->end.y - left->start.y; | 185 | 13.4M | if (l.h == 0) | 186 | 0 | return 0; | 187 | 13.4M | r.h = right->end.y - right->start.y; | 188 | 13.4M | if (r.h == 0) | 189 | 0 | return 0; | 190 | 13.4M | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 13.4M | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 13.4M | #if !LINEAR_COLOR | 193 | 13.4M | ry = iy; | 194 | 13.4M | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 13.4M | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 13.4M | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 13.4M | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 13.4M | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 13.4M | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 13.4M | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 13.4M | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 13.4M | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 13.4M | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 13.4M | #define YMULT_QUO(ys, tl)\ | 228 | 13.4M | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 13.4M | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 13.4M | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 13.4M | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 13.4M | #endif | 264 | 13.4M | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 2.86M | l.di = 0, l.df = 0; | 267 | 2.86M | fxl = 0; | 268 | 10.5M | } else { | 269 | 10.5M | compute_dx(&l, dxl, ysl); | 270 | 10.5M | fxl = YMULT_QUO(ysl, l); | 271 | 10.5M | l.x += fxl; | 272 | 10.5M | } | 273 | 13.4M | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 3.25M | # if !LINEAR_COLOR | 277 | 3.25M | if (l.di == 0 && l.df == 0) { | 278 | 1.82M | rxl = fixed2int_var(l.x); | 279 | 1.82M | rxr = fixed2int_var(r.x); | 280 | 1.82M | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 1.82M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 1.82M | goto xit; | 283 | 1.82M | } | 284 | 1.43M | # endif | 285 | 1.43M | r.di = 0, r.df = 0; | 286 | 1.43M | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 10.1M | else if (dxr == dxl && fxl != 0) { | 292 | 615k | if (l.di == 0) | 293 | 116k | r.di = 0, r.df = l.df; | 294 | 499k | else | 295 | 499k | compute_dx(&r, dxr, ysr); | 296 | 615k | if (ysr == ysl && r.h == l.h) | 297 | 392k | r.x += fxl; | 298 | 222k | else | 299 | 222k | r.x += YMULT_QUO(ysr, r); | 300 | 9.54M | } else { | 301 | 9.54M | compute_dx(&r, dxr, ysr); | 302 | 9.54M | r.x += YMULT_QUO(ysr, r); | 303 | 9.54M | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 11.5M | compute_ldx(&l, ysl); | 306 | 11.5M | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 11.5M | l.x += fixed_epsilon; | 310 | 11.5M | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 11.5M | #define rational_floor(tl)\ | 338 | 11.5M | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 11.5M | #define STEP_LINE(ix, tl)\ | 340 | 11.5M | tl.x += tl.ldi;\ | 341 | 11.5M | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 11.5M | ix = rational_floor(tl) | 343 | | | 344 | 11.5M | rxl = rational_floor(l); | 345 | 11.5M | rxr = rational_floor(r); | 346 | 11.5M | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 489M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 478M | register int ixl, ixr; | 365 | | | 366 | 478M | STEP_LINE(ixl, l); | 367 | 478M | STEP_LINE(ixr, r); | 368 | 478M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 478M | if (ixl != rxl || ixr != rxr) { | 370 | 405M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 405M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 405M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 405M | if (code < 0) | 374 | 0 | goto xit; | 375 | 405M | rxl = ixl, rxr = ixr, ry = iy; | 376 | 405M | } | 377 | 478M | # endif | 378 | 478M | } | 379 | 11.5M | # if !LINEAR_COLOR | 380 | 11.5M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 11.5M | #undef STEP_LINE | 385 | 11.5M | #undef SET_MINIMAL_WIDTH | 386 | 11.5M | #undef CONNECT_RECTANGLES | 387 | 11.5M | #undef FILL_TRAP_RECT | 388 | 11.5M | #undef FILL_TRAP_RECT_DIRECT | 389 | 11.5M | #undef FILL_TRAP_RECT_INRECT | 390 | 11.5M | #undef YMULT_QUO | 391 | 13.4M | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 13.4M | return_if_interrupt(dev->memory); | 394 | 13.4M | return code; | 395 | 13.4M | } | 396 | 13.4M | } |
gdevddrw.c:gx_fill_trapezoid_as_lc Line | Count | Source | 137 | 61.6k | { | 138 | 61.6k | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 61.6k | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 61.6k | if (ymin >= ymax) | 142 | 1.20k | return 0; /* no scan lines to sample */ | 143 | 60.4k | { | 144 | 60.4k | int iy = fixed2int_var(ymin); | 145 | 60.4k | const int iy1 = fixed2int_var(ymax); | 146 | 60.4k | trap_line l, r; | 147 | 60.4k | register int rxl, rxr; | 148 | | #if !LINEAR_COLOR | 149 | | int ry; | 150 | | #endif | 151 | 60.4k | const fixed | 152 | 60.4k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 60.4k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 60.4k | const fixed /* partial pixel offset to first line to sample */ | 155 | 60.4k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 60.4k | fixed fxl; | 157 | 60.4k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | 60.4k | # if LINEAR_COLOR | 165 | 60.4k | int num_components = dev->color_info.num_components; | 166 | 60.4k | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | 60.4k | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | 60.4k | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | 60.4k | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | 60.4k | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | 60.4k | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | 60.4k | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | 60.4k | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | 60.4k | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | 60.4k | trap_gradient lg, rg, xg; | 176 | | # else | 177 | | gx_color_index cindex = pdevc->colors.pure; | 178 | | dev_proc_fill_rectangle((*fill_rect)) = | 179 | | dev_proc(dev, fill_rectangle); | 180 | | # endif | 181 | | | 182 | 60.4k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 60.4k | l.h = left->end.y - left->start.y; | 185 | 60.4k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 60.4k | r.h = right->end.y - right->start.y; | 188 | 60.4k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 60.4k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 60.4k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | | #if !LINEAR_COLOR | 193 | | ry = iy; | 194 | | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 60.4k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 60.4k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 60.4k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 60.4k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 60.4k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 60.4k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | 60.4k | #if LINEAR_COLOR | 210 | 60.4k | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | 60.4k | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 60.4k | #define YMULT_QUO(ys, tl)\ | 228 | 60.4k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 60.4k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 60.4k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 60.4k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 60.4k | #endif | 264 | 60.4k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 33.8k | l.di = 0, l.df = 0; | 267 | 33.8k | fxl = 0; | 268 | 33.8k | } else { | 269 | 26.5k | compute_dx(&l, dxl, ysl); | 270 | 26.5k | fxl = YMULT_QUO(ysl, l); | 271 | 26.5k | l.x += fxl; | 272 | 26.5k | } | 273 | 60.4k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | | # if !LINEAR_COLOR | 277 | | if (l.di == 0 && l.df == 0) { | 278 | | rxl = fixed2int_var(l.x); | 279 | | rxr = fixed2int_var(r.x); | 280 | | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | | goto xit; | 283 | | } | 284 | | # endif | 285 | 33.3k | r.di = 0, r.df = 0; | 286 | 33.3k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 27.1k | else if (dxr == dxl && fxl != 0) { | 292 | 15.6k | if (l.di == 0) | 293 | 7.61k | r.di = 0, r.df = l.df; | 294 | 8.00k | else | 295 | 8.00k | compute_dx(&r, dxr, ysr); | 296 | 15.6k | if (ysr == ysl && r.h == l.h) | 297 | 15.6k | r.x += fxl; | 298 | 0 | else | 299 | 0 | r.x += YMULT_QUO(ysr, r); | 300 | 15.6k | } else { | 301 | 11.5k | compute_dx(&r, dxr, ysr); | 302 | 11.5k | r.x += YMULT_QUO(ysr, r); | 303 | 11.5k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 60.4k | compute_ldx(&l, ysl); | 306 | 60.4k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 60.4k | l.x += fixed_epsilon; | 310 | 60.4k | r.x += fixed_epsilon; | 311 | 60.4k | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | 60.4k | lg.c = lgc; | 320 | 60.4k | lg.f = lgf; | 321 | 60.4k | lg.num = lgnum; | 322 | 60.4k | rg.c = rgc; | 323 | 60.4k | rg.f = rgf; | 324 | 60.4k | rg.num = rgnum; | 325 | 60.4k | xg.c = xgc; | 326 | 60.4k | xg.f = xgf; | 327 | 60.4k | xg.num = xgnum; | 328 | 60.4k | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | 60.4k | if (code < 0) | 330 | 0 | return code; | 331 | 60.4k | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | 60.4k | if (code < 0) | 333 | 0 | return code; | 334 | | | 335 | 60.4k | # endif | 336 | | | 337 | 60.4k | #define rational_floor(tl)\ | 338 | 60.4k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 60.4k | #define STEP_LINE(ix, tl)\ | 340 | 60.4k | tl.x += tl.ldi;\ | 341 | 60.4k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 60.4k | ix = rational_floor(tl) | 343 | | | 344 | 60.4k | rxl = rational_floor(l); | 345 | 60.4k | rxr = rational_floor(r); | 346 | 60.4k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 1.58M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | 1.58M | # if LINEAR_COLOR | 349 | 1.58M | if (rxl != rxr) { | 350 | 1.52M | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | 1.52M | if (code < 0) | 352 | 0 | goto xit; | 353 | 1.52M | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | 1.52M | if (code < 0) | 355 | 0 | goto xit; | 356 | 1.52M | } | 357 | 1.58M | if (++iy == iy1) | 358 | 60.4k | break; | 359 | 1.52M | STEP_LINE(rxl, l); | 360 | 1.52M | STEP_LINE(rxr, r); | 361 | 1.52M | step_gradient(&lg, num_components); | 362 | 1.52M | step_gradient(&rg, num_components); | 363 | | # else | 364 | | register int ixl, ixr; | 365 | | | 366 | | STEP_LINE(ixl, l); | 367 | | STEP_LINE(ixr, r); | 368 | | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | | if (ixl != rxl || ixr != rxr) { | 370 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | | if (code < 0) | 374 | | goto xit; | 375 | | rxl = ixl, rxr = ixr, ry = iy; | 376 | | } | 377 | | # endif | 378 | 1.52M | } | 379 | | # if !LINEAR_COLOR | 380 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | 60.4k | code = 0; | 383 | 60.4k | # endif | 384 | 60.4k | #undef STEP_LINE | 385 | 60.4k | #undef SET_MINIMAL_WIDTH | 386 | 60.4k | #undef CONNECT_RECTANGLES | 387 | 60.4k | #undef FILL_TRAP_RECT | 388 | 60.4k | #undef FILL_TRAP_RECT_DIRECT | 389 | 60.4k | #undef FILL_TRAP_RECT_INRECT | 390 | 60.4k | #undef YMULT_QUO | 391 | 60.4k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 60.4k | return_if_interrupt(dev->memory); | 394 | 60.4k | return code; | 395 | 60.4k | } | 396 | 60.4k | } |
gdevddrw.c:gx_fill_trapezoid_ns_lc Line | Count | Source | 137 | 1.14M | { | 138 | 1.14M | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 1.14M | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 1.14M | if (ymin >= ymax) | 142 | 422k | return 0; /* no scan lines to sample */ | 143 | 721k | { | 144 | 721k | int iy = fixed2int_var(ymin); | 145 | 721k | const int iy1 = fixed2int_var(ymax); | 146 | 721k | trap_line l, r; | 147 | 721k | register int rxl, rxr; | 148 | | #if !LINEAR_COLOR | 149 | | int ry; | 150 | | #endif | 151 | 721k | const fixed | 152 | 721k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 721k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 721k | const fixed /* partial pixel offset to first line to sample */ | 155 | 721k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 721k | fixed fxl; | 157 | 721k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | 721k | # if LINEAR_COLOR | 165 | 721k | int num_components = dev->color_info.num_components; | 166 | 721k | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | 721k | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | 721k | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | 721k | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | 721k | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | 721k | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | 721k | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | 721k | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | 721k | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | 721k | trap_gradient lg, rg, xg; | 176 | | # else | 177 | | gx_color_index cindex = pdevc->colors.pure; | 178 | | dev_proc_fill_rectangle((*fill_rect)) = | 179 | | dev_proc(dev, fill_rectangle); | 180 | | # endif | 181 | | | 182 | 721k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 721k | l.h = left->end.y - left->start.y; | 185 | 721k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 721k | r.h = right->end.y - right->start.y; | 188 | 721k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 721k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 721k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | | #if !LINEAR_COLOR | 193 | | ry = iy; | 194 | | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 721k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 721k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 721k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 721k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 721k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 721k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | 721k | #if LINEAR_COLOR | 210 | 721k | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | 721k | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 721k | #define YMULT_QUO(ys, tl)\ | 228 | 721k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 721k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 721k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 721k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 721k | #endif | 264 | 721k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 168k | l.di = 0, l.df = 0; | 267 | 168k | fxl = 0; | 268 | 553k | } else { | 269 | 553k | compute_dx(&l, dxl, ysl); | 270 | 553k | fxl = YMULT_QUO(ysl, l); | 271 | 553k | l.x += fxl; | 272 | 553k | } | 273 | 721k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | | # if !LINEAR_COLOR | 277 | | if (l.di == 0 && l.df == 0) { | 278 | | rxl = fixed2int_var(l.x); | 279 | | rxr = fixed2int_var(r.x); | 280 | | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | | goto xit; | 283 | | } | 284 | | # endif | 285 | 169k | r.di = 0, r.df = 0; | 286 | 169k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 552k | else if (dxr == dxl && fxl != 0) { | 292 | 41.6k | if (l.di == 0) | 293 | 14.0k | r.di = 0, r.df = l.df; | 294 | 27.6k | else | 295 | 27.6k | compute_dx(&r, dxr, ysr); | 296 | 41.6k | if (ysr == ysl && r.h == l.h) | 297 | 27.3k | r.x += fxl; | 298 | 14.3k | else | 299 | 14.3k | r.x += YMULT_QUO(ysr, r); | 300 | 510k | } else { | 301 | 510k | compute_dx(&r, dxr, ysr); | 302 | 510k | r.x += YMULT_QUO(ysr, r); | 303 | 510k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 721k | compute_ldx(&l, ysl); | 306 | 721k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 721k | l.x += fixed_epsilon; | 310 | 721k | r.x += fixed_epsilon; | 311 | 721k | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | 721k | lg.c = lgc; | 320 | 721k | lg.f = lgf; | 321 | 721k | lg.num = lgnum; | 322 | 721k | rg.c = rgc; | 323 | 721k | rg.f = rgf; | 324 | 721k | rg.num = rgnum; | 325 | 721k | xg.c = xgc; | 326 | 721k | xg.f = xgf; | 327 | 721k | xg.num = xgnum; | 328 | 721k | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | 721k | if (code < 0) | 330 | 0 | return code; | 331 | 721k | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | 721k | if (code < 0) | 333 | 0 | return code; | 334 | | | 335 | 721k | # endif | 336 | | | 337 | 721k | #define rational_floor(tl)\ | 338 | 721k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 721k | #define STEP_LINE(ix, tl)\ | 340 | 721k | tl.x += tl.ldi;\ | 341 | 721k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 721k | ix = rational_floor(tl) | 343 | | | 344 | 721k | rxl = rational_floor(l); | 345 | 721k | rxr = rational_floor(r); | 346 | 721k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 6.15M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | 6.15M | # if LINEAR_COLOR | 349 | 6.15M | if (rxl != rxr) { | 350 | 2.78M | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | 2.78M | if (code < 0) | 352 | 0 | goto xit; | 353 | 2.78M | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | 2.78M | if (code < 0) | 355 | 0 | goto xit; | 356 | 2.78M | } | 357 | 6.15M | if (++iy == iy1) | 358 | 721k | break; | 359 | 5.43M | STEP_LINE(rxl, l); | 360 | 5.43M | STEP_LINE(rxr, r); | 361 | 5.43M | step_gradient(&lg, num_components); | 362 | 5.43M | step_gradient(&rg, num_components); | 363 | | # else | 364 | | register int ixl, ixr; | 365 | | | 366 | | STEP_LINE(ixl, l); | 367 | | STEP_LINE(ixr, r); | 368 | | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | | if (ixl != rxl || ixr != rxr) { | 370 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | | if (code < 0) | 374 | | goto xit; | 375 | | rxl = ixl, rxr = ixr, ry = iy; | 376 | | } | 377 | | # endif | 378 | 5.43M | } | 379 | | # if !LINEAR_COLOR | 380 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | 721k | code = 0; | 383 | 721k | # endif | 384 | 721k | #undef STEP_LINE | 385 | 721k | #undef SET_MINIMAL_WIDTH | 386 | 721k | #undef CONNECT_RECTANGLES | 387 | 721k | #undef FILL_TRAP_RECT | 388 | 721k | #undef FILL_TRAP_RECT_DIRECT | 389 | 721k | #undef FILL_TRAP_RECT_INRECT | 390 | 721k | #undef YMULT_QUO | 391 | 721k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 721k | return_if_interrupt(dev->memory); | 394 | 721k | return code; | 395 | 721k | } | 396 | 721k | } |
|