Coverage Report

Created: 2025-06-10 07:19

/src/ghostpdl/base/gxshade.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Shading rendering support */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsrect.h"
22
#include "gxcspace.h"
23
#include "gscindex.h"
24
#include "gscie.h"    /* requires gscspace.h */
25
#include "gxdevcli.h"
26
#include "gxgstate.h"
27
#include "gxdht.h"    /* for computing # of different colors */
28
#include "gxpaint.h"
29
#include "gxshade.h"
30
#include "gxshade4.h"
31
#include "gsicc.h"
32
#include "gsicc_cache.h"
33
#include "gxcdevn.h"
34
#include "gximage.h"
35
36
/* Define a maximum smoothness value. */
37
/* smoothness > 0.2 produces severely blocky output. */
38
#define MAX_SMOOTHNESS 0.2
39
40
/* ================ Packed coordinate streams ================ */
41
42
/* Forward references */
43
static int cs_next_packed_value(shade_coord_stream_t *, int, uint *);
44
static int cs_next_array_value(shade_coord_stream_t *, int, uint *);
45
static int cs_next_packed_decoded(shade_coord_stream_t *, int,
46
                                   const float[2], float *);
47
static int cs_next_array_decoded(shade_coord_stream_t *, int,
48
                                  const float[2], float *);
49
static void cs_packed_align(shade_coord_stream_t *cs, int radix);
50
static void cs_array_align(shade_coord_stream_t *cs, int radix);
51
static bool cs_eod(const shade_coord_stream_t * cs);
52
53
/* Initialize a packed value stream. */
54
void
55
shade_next_init(shade_coord_stream_t * cs,
56
                const gs_shading_mesh_params_t * params,
57
                const gs_gstate * pgs)
58
179
{
59
179
    cs->params = params;
60
179
    cs->pctm = &pgs->ctm;
61
179
    if (data_source_is_stream(params->DataSource)) {
62
        /*
63
         * Rewind the data stream iff it is reusable -- either a reusable
64
         * file or a reusable string.
65
         */
66
179
        stream *s = cs->s = params->DataSource.data.strm;
67
68
179
        if ((s->file != 0 && s->file_limit != max_long) ||
69
179
            (s->file == 0 && s->strm == 0)
70
179
            )
71
179
            sseek(s, 0);
72
179
    } else {
73
0
        s_init(&cs->ds, NULL);
74
0
        sread_string(&cs->ds, params->DataSource.data.str.data,
75
0
                     params->DataSource.data.str.size);
76
0
        cs->s = &cs->ds;
77
0
    }
78
179
    if (data_source_is_array(params->DataSource)) {
79
0
        cs->get_value = cs_next_array_value;
80
0
        cs->get_decoded = cs_next_array_decoded;
81
0
        cs->align = cs_array_align;
82
179
    } else {
83
179
        cs->get_value = cs_next_packed_value;
84
179
        cs->get_decoded = cs_next_packed_decoded;
85
179
        cs->align = cs_packed_align;
86
179
    }
87
179
    cs->is_eod = cs_eod;
88
179
    cs->left = 0;
89
179
    cs->ds_EOF = false;
90
179
    cs->first_patch = 1;
91
179
}
92
93
/* Check for the End-Of-Data state form a stream. */
94
static bool
95
cs_eod(const shade_coord_stream_t * cs)
96
62
{
97
62
    return cs->ds_EOF;
98
62
}
99
100
/* Get the next (integer) value from a packed value stream. */
101
/* 1 <= num_bits <= sizeof(uint) * 8. */
102
static int
103
cs_next_packed_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
104
2.10M
{
105
2.10M
    uint bits = cs->bits;
106
2.10M
    int left = cs->left;
107
108
2.10M
    if (left >= num_bits) {
109
        /* We can satisfy this request with the current buffered bits. */
110
0
        cs->left = left -= num_bits;
111
0
        *pvalue = (bits >> left) & ((1 << num_bits) - 1);
112
2.10M
    } else {
113
        /* We need more bits. */
114
2.10M
        int needed = num_bits - left;
115
2.10M
        uint value = bits & ((1 << left) - 1);  /* all the remaining bits */
116
117
8.13M
        for (; needed >= 8; needed -= 8) {
118
6.02M
            int b = sgetc(cs->s);
119
120
6.02M
            if (b < 0) {
121
161
                cs->ds_EOF = true;
122
161
                return_error(gs_error_rangecheck);
123
161
            }
124
6.02M
            value = (value << 8) + b;
125
6.02M
        }
126
2.10M
        if (needed == 0) {
127
2.10M
            cs->left = 0;
128
2.10M
            *pvalue = value;
129
2.10M
        } else {
130
0
            int b = sgetc(cs->s);
131
132
0
            if (b < 0) {
133
0
                cs->ds_EOF = true;
134
0
                return_error(gs_error_rangecheck);
135
0
            }
136
0
            cs->bits = b;
137
0
            cs->left = left = 8 - needed;
138
0
            *pvalue = (value << needed) + (b >> left);
139
0
        }
140
2.10M
    }
141
2.10M
    return 0;
142
2.10M
}
143
144
/*
145
 * Get the next (integer) value from an unpacked array.  Note that
146
 * num_bits may be 0 if we are reading a coordinate or color value.
147
 */
148
static int
149
cs_next_array_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
150
0
{
151
0
    float value;
152
0
    uint read;
153
154
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
155
0
        read != sizeof(float)) {
156
0
        cs->ds_EOF = true;
157
0
        return_error(gs_error_rangecheck);
158
0
    }
159
0
    if (value < 0 || (num_bits != 0 && num_bits < sizeof(uint) * 8 &&
160
0
         value >= (1 << num_bits)) ||
161
0
        value != (uint)value
162
0
        )
163
0
        return_error(gs_error_rangecheck);
164
0
    *pvalue = (uint) value;
165
0
    return 0;
166
0
}
167
168
/* Get the next decoded floating point value. */
169
static int
170
cs_next_packed_decoded(shade_coord_stream_t * cs, int num_bits,
171
                       const float decode[2], float *pvalue)
172
2.07M
{
173
2.07M
    uint value;
174
2.07M
    int code = cs->get_value(cs, num_bits, &value);
175
2.07M
    double max_value = (double)(uint)
176
2.07M
        (num_bits == sizeof(uint) * 8 ? ~0 : ((1 << num_bits) - 1));
177
2.07M
    double dvalue = (double)value;
178
179
2.07M
    if (code < 0)
180
110
        return code;
181
2.07M
    *pvalue =
182
2.07M
        (decode == 0 ? dvalue / max_value :
183
2.07M
         decode[0] + dvalue * (decode[1] - decode[0]) / max_value);
184
2.07M
    return 0;
185
2.07M
}
186
187
/* Get the next floating point value from an array, without decoding. */
188
static int
189
cs_next_array_decoded(shade_coord_stream_t * cs, int num_bits,
190
                      const float decode[2], float *pvalue)
191
0
{
192
0
    float value;
193
0
    uint read;
194
195
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
196
0
        read != sizeof(float)
197
0
    ) {
198
0
        cs->ds_EOF = true;
199
0
        return_error(gs_error_rangecheck);
200
0
    }
201
0
    *pvalue = value;
202
0
    return 0;
203
0
}
204
205
static void
206
cs_packed_align(shade_coord_stream_t *cs, int radix)
207
370k
{
208
370k
    cs->left = cs->left / radix * radix;
209
370k
}
210
211
static void
212
cs_array_align(shade_coord_stream_t *cs, int radix)
213
0
{
214
0
}
215
216
/* Get the next flag value. */
217
/* Note that this always starts a new data byte. */
218
int
219
shade_next_flag(shade_coord_stream_t * cs, int BitsPerFlag)
220
30.7k
{
221
30.7k
    uint flag;
222
30.7k
    int code;
223
224
30.7k
    cs->left = 0;   /* start a new byte if packed */
225
30.7k
    code = cs->get_value(cs, BitsPerFlag, &flag);
226
30.7k
    return (code < 0 ? code : flag);
227
30.7k
}
228
229
/* Get one or more coordinate pairs. */
230
int
231
shade_next_coords(shade_coord_stream_t * cs, gs_fixed_point * ppt,
232
                  int num_points)
233
540k
{
234
540k
    int num_bits = cs->params->BitsPerCoordinate;
235
540k
    const float *decode = cs->params->Decode;
236
540k
    int code = 0;
237
540k
    int i;
238
239
1.24M
    for (i = 0; i < num_points; ++i) {
240
708k
        float x, y;
241
242
708k
        if ((code = cs->get_decoded(cs, num_bits, decode, &x)) < 0 ||
243
708k
            (code = cs->get_decoded(cs, num_bits, decode + 2, &y)) < 0 ||
244
708k
            (code = gs_point_transform2fixed(cs->pctm, x, y, &ppt[i])) < 0
245
708k
            )
246
93
            break;
247
708k
    }
248
540k
    return code;
249
540k
}
250
251
/* Get a color.  Currently all this does is look up Indexed colors. */
252
int
253
shade_next_color(shade_coord_stream_t * cs, float *pc)
254
422k
{
255
422k
    const float *decode = cs->params->Decode + 4; /* skip coord decode */
256
422k
    const gs_color_space *pcs = cs->params->ColorSpace;
257
422k
    gs_color_space_index index = gs_color_space_get_index(pcs);
258
422k
    int num_bits = cs->params->BitsPerComponent;
259
260
422k
    if (index == gs_color_space_index_Indexed) {
261
0
        int ncomp = gs_color_space_num_components(gs_cspace_base_space(pcs));
262
0
        int ci;
263
0
        float cf;
264
0
        int code = cs->get_decoded(cs, num_bits, decode, &cf);
265
0
        gs_client_color cc;
266
0
        int i;
267
268
0
        if (code < 0)
269
0
            return code;
270
0
        if (cf < 0)
271
0
            return_error(gs_error_rangecheck);
272
0
        ci = (int)cf;
273
0
        if (ci >= gs_cspace_indexed_num_entries(pcs))
274
0
            return_error(gs_error_rangecheck);
275
0
        code = gs_cspace_indexed_lookup(pcs, ci, &cc);
276
0
        if (code < 0)
277
0
            return code;
278
0
        for (i = 0; i < ncomp; ++i)
279
0
            pc[i] = cc.paint.values[i];
280
422k
    } else {
281
422k
        int i, code;
282
422k
        int ncomp = (cs->params->Function != 0 ? 1 :
283
422k
                     gs_color_space_num_components(pcs));
284
285
1.08M
        for (i = 0; i < ncomp; ++i) {
286
661k
            if ((code = cs->get_decoded(cs, num_bits, decode + i * 2, &pc[i])) < 0)
287
20
                return code;
288
661k
            if (cs->params->Function) {
289
337k
                gs_function_params_t *params = &cs->params->Function->params;
290
291
337k
                if (pc[i] < params->Domain[i + i])
292
0
                    pc[i] = params->Domain[i + i];
293
337k
                else if (pc[i] > params->Domain[i + i + 1])
294
0
                    pc[i] = params->Domain[i + i + 1];
295
337k
            }
296
661k
        }
297
422k
    }
298
422k
    return 0;
299
422k
}
300
301
/* Get the next vertex for a mesh element. */
302
int
303
shade_next_vertex(shade_coord_stream_t * cs, shading_vertex_t * vertex, patch_color_t *c)
304
342k
{   /* Assuming p->c == c, provides a non-const access. */
305
342k
    int code = shade_next_coords(cs, &vertex->p, 1);
306
307
342k
    if (code >= 0)
308
342k
        code = shade_next_color(cs, c->cc.paint.values);
309
342k
    if (code >= 0)
310
342k
        cs->align(cs, 8); /* CET 09-47J.PS SpecialTestI04Test01. */
311
342k
    return code;
312
342k
}
313
314
/* ================ Shading rendering ================ */
315
316
/* Initialize the common parts of the recursion state. */
317
int
318
shade_init_fill_state(shading_fill_state_t * pfs, const gs_shading_t * psh,
319
                      gx_device * dev, gs_gstate * pgs)
320
4.04k
{
321
4.04k
    const gs_color_space *pcs = psh->params.ColorSpace;
322
4.04k
    float max_error = min(pgs->smoothness, MAX_SMOOTHNESS);
323
4.04k
    bool is_lab;
324
4.04k
    bool cs_lin_test;
325
4.04k
    int code;
326
327
    /*
328
     * There's no point in trying to achieve smoothness beyond what
329
     * the device can implement, i.e., the number of representable
330
     * colors times the number of halftone levels.
331
     */
332
4.04k
    long num_colors =
333
4.04k
        max(dev->color_info.max_gray, dev->color_info.max_color) + 1;
334
4.04k
    const gs_range *ranges = 0;
335
4.04k
    int ci;
336
4.04k
    gsicc_rendering_param_t rendering_params;
337
338
4.04k
    pfs->cs_always_linear = false;
339
4.04k
    pfs->dev = dev;
340
4.04k
    pfs->pgs = pgs;
341
4.04k
top:
342
4.04k
    pfs->direct_space = pcs;
343
4.04k
    pfs->num_components = gs_color_space_num_components(pcs);
344
4.04k
    switch ( gs_color_space_get_index(pcs) )
345
4.04k
        {
346
0
        case gs_color_space_index_Indexed:
347
0
            pcs = gs_cspace_base_space(pcs);
348
0
            goto top;
349
0
        case gs_color_space_index_CIEDEFG:
350
0
            ranges = pcs->params.defg->RangeDEFG.ranges;
351
0
            break;
352
0
        case gs_color_space_index_CIEDEF:
353
0
            ranges = pcs->params.def->RangeDEF.ranges;
354
0
            break;
355
0
        case gs_color_space_index_CIEABC:
356
0
            ranges = pcs->params.abc->RangeABC.ranges;
357
0
            break;
358
0
        case gs_color_space_index_CIEA:
359
0
            ranges = &pcs->params.a->RangeA;
360
0
            break;
361
3.00k
        case gs_color_space_index_ICC:
362
3.00k
            ranges = pcs->cmm_icc_profile_data->Range.ranges;
363
3.00k
            break;
364
1.03k
        default:
365
1.03k
            break;
366
4.04k
        }
367
4.04k
    if (num_colors <= 32) {
368
        /****** WRONG FOR MULTI-PLANE HALFTONES ******/
369
546
        num_colors *= pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
370
546
    }
371
4.04k
    if (psh->head.type == 2 || psh->head.type == 3) {
372
3.86k
        max_error *= 0.25;
373
3.86k
        num_colors *= 2;
374
3.86k
    }
375
4.04k
    if (max_error < 1.0 / num_colors)
376
546
        max_error = 1.0 / num_colors;
377
14.7k
    for (ci = 0; ci < pfs->num_components; ++ci)
378
10.7k
        pfs->cc_max_error[ci] =
379
10.7k
            (ranges == 0 ? max_error :
380
10.7k
             max_error * (ranges[ci].rmax - ranges[ci].rmin));
381
4.04k
    if (pgs->has_transparency && pgs->trans_device != NULL) {
382
3.49k
        pfs->trans_device = pgs->trans_device;
383
3.49k
    } else {
384
546
        pfs->trans_device = dev;
385
546
    }
386
    /* If the CS is PS based and we have not yet converted to the ICC form
387
       then go ahead and do that now */
388
4.04k
    if (gs_color_space_is_PSCIE(pcs) && pcs->icc_equivalent == NULL) {
389
0
        code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &(is_lab), pgs->memory);
390
0
        if (code < 0)
391
0
            return code;
392
0
    }
393
4.04k
    rendering_params.black_point_comp = pgs->blackptcomp;
394
4.04k
    rendering_params.graphics_type_tag = GS_VECTOR_TAG;
395
4.04k
    rendering_params.override_icc = false;
396
4.04k
    rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
397
4.04k
    rendering_params.rendering_intent = pgs->renderingintent;
398
4.04k
    rendering_params.cmm = gsCMM_DEFAULT;
399
    /* Grab the icc link transform that we need now */
400
4.04k
    if (pcs->cmm_icc_profile_data != NULL) {
401
3.00k
        pfs->icclink = gsicc_get_link(pgs, pgs->trans_device, pcs, NULL,
402
3.00k
                                      &rendering_params, pgs->memory);
403
3.00k
        if (pfs->icclink == NULL)
404
2
            return_error(gs_error_VMerror);
405
3.00k
    } else {
406
1.03k
        if (pcs->icc_equivalent != NULL ) {
407
            /* We have a PS equivalent ICC profile.  We may need to go
408
               through special range adjustments in this case */
409
0
            pfs->icclink = gsicc_get_link(pgs, pgs->trans_device,
410
0
                                          pcs->icc_equivalent, NULL,
411
0
                                          &rendering_params, pgs->memory);
412
0
            if (pfs->icclink == NULL)
413
0
                return_error(gs_error_VMerror);
414
1.03k
        } else {
415
1.03k
            pfs->icclink = NULL;
416
1.03k
        }
417
1.03k
    }
418
    /* Two possible cases of interest here for performance.  One is that the
419
    * icclink is NULL, which could occur if the source space were DeviceN or
420
    * a separation color space, while at the same time, the output device
421
    * supports these colorants (e.g. a separation device).   The other case is
422
    * that the icclink is the identity.  This could happen for example if the
423
    * source space were CMYK and we are going out to a CMYK device. For both
424
    * of these cases we can avoid going through the standard
425
    * color mappings to determine linearity. This is true, provided that the
426
    * transfer function is linear.  It is likely that we can improve
427
    * things even in cases where the transfer function is nonlinear, but for
428
    * now, we will punt on those and let them go through the longer processing
429
    * steps */
430
4.03k
    if (pfs->icclink == NULL)
431
1.03k
            cs_lin_test = !(using_alt_color_space((gs_gstate*)pgs));
432
3.00k
    else
433
3.00k
        cs_lin_test = pfs->icclink->is_identity;
434
435
4.03k
    if (cs_lin_test && !gx_has_transfer(pgs, dev->color_info.num_components)) {
436
0
        pfs->cs_always_linear = true;
437
0
    }
438
439
#ifdef IGNORE_SPEC_MATCH_ADOBE_SHADINGS
440
    /* Per the spec. If the source space is DeviceN or Separation and the
441
       colorants are not supported (i.e. if we are using the alternate tint
442
       transform) the interpolation should occur in the source space to
443
       accommodate non-linear tint transform functions.
444
       e.g. We had a case where the transform function
445
       was an increasing staircase. Including that function in the
446
       gradient smoothness calculation gave us severe quantization. AR on
447
       the other hand is doing the interpolation in device color space
448
       and has a smooth result for that case. So AR is not following the spec. The
449
       bit below solves the issues for Type 4 and Type 5 shadings as
450
       this will avoid interpolations in source space. Type 6 and Type 7 will still
451
       have interpolations in the source space even if pfs->cs_always_linear == true.
452
       So the approach below does not solve those issues. To do that
453
       without changing the shading code, we could make a linear
454
       approximation to the alternate tint transform, which would
455
       ensure smoothness like what AR provides.
456
    */
457
    if ((gs_color_space_get_index(pcs) == gs_color_space_index_DeviceN ||
458
        gs_color_space_get_index(pcs) == gs_color_space_index_Separation) &&
459
        using_alt_color_space((gs_gstate*)pgs) && (psh->head.type == 4 ||
460
        psh->head.type == 5)) {
461
        pfs->cs_always_linear = true;
462
    }
463
#endif
464
465
4.03k
    return 0;
466
4.04k
}
467
468
/* Fill one piece of a shading. */
469
int
470
shade_fill_path(const shading_fill_state_t * pfs, gx_path * ppath,
471
                gx_device_color * pdevc, const gs_fixed_point *fill_adjust)
472
0
{
473
0
    gx_fill_params params;
474
475
0
    params.rule = -1;   /* irrelevant */
476
0
    params.adjust = *fill_adjust;
477
0
    params.flatness = 0;  /* irrelevant */
478
0
    return (*dev_proc(pfs->dev, fill_path)) (pfs->dev, pfs->pgs, ppath,
479
0
                                             &params, pdevc, NULL);
480
0
}