Coverage Report

Created: 2025-06-10 07:19

/src/ghostpdl/base/gxshade6.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Rendering for Coons and tensor patch shadings */
18
/*
19
   A contiguous non-overlapping decomposition
20
   of a tensor shading into linear color triangles.
21
 */
22
#include "memory_.h"
23
#include "gx.h"
24
#include "gserrors.h"
25
#include "gsmatrix.h"           /* for gscoord.h */
26
#include "gscoord.h"
27
#include "gscicach.h"
28
#include "gxcspace.h"
29
#include "gxdcolor.h"
30
#include "gxgstate.h"
31
#include "gxshade.h"
32
#include "gxdevcli.h"
33
#include "gxshade4.h"
34
#include "gxarith.h"
35
#include "gzpath.h"
36
#include "stdint_.h"
37
#include "math_.h"
38
#include "gsicc_cache.h"
39
#include "gxdevsop.h"
40
41
/* The original version of the shading code 'decompose's shadings into
42
 * smaller and smaller regions until they are smaller than 1 pixel, and then
43
 * fills them. (Either with a constant colour, or with a linear filled trap).
44
 *
45
 * Previous versions of the code (from svn revision 7936 until June 2011
46
 * (shortly after the switch to git)) changed this limit to be 1 point or 1
47
 * pixel (whichever is larger) (on the grounds that as resolution increases,
48
 * we are unlikely to be able to notice increasingly small inaccuracies in
49
 * the shading). Given how people abuse the resolution at which things are
50
 * rendered (especially when rendering to images that can subsequently be
51
 * zoomed), this seems a poor trade off. See bug 691152.
52
 *
53
 * The code has now been changed back to operate with the proper 1 pixel
54
 * decomposition, which will cost us performance in some cases. Should
55
 * people want to restore the previous operation, they should build with
56
 * MAX_SHADING_RESOLUTION predefined to 72. In general, this symbol can be
57
 * set to the maximum dpi that shading should ever be performed at. Leaving
58
 * it undefined will leave the default (1 pixel limit) in place.
59
 *
60
 * A possible future optimisation here may be to use different max shading
61
 * resolutions for linear and non-linear shadings; linear shadings appear to
62
 * result in calls to "fill linear traps", and non linear ones appear to
63
 * result in calls to "fill constant color". As such linear shadings are much
64
 * more forgiving of a higher decomposition threshold.
65
 */
66
67
#if NOFILL_TEST
68
static bool dbg_nofill = false;
69
#endif
70
#if SKIP_TEST
71
static int dbg_patch_cnt = 0;
72
static int dbg_quad_cnt = 0;
73
static int dbg_triangle_cnt = 0;
74
static int dbg_wedge_triangle_cnt = 0;
75
#endif
76
77
enum {
78
    min_linear_grades = 255 /* The minimal number of device color grades,
79
            required to apply linear color device functions. */
80
};
81
82
/* ================ Utilities ================ */
83
84
static int
85
allocate_color_stack(patch_fill_state_t *pfs, gs_memory_t *memory)
86
4.03k
{
87
4.03k
    if (pfs->color_stack != NULL)
88
0
        return 0;
89
4.03k
    pfs->color_stack_step = offset_of(patch_color_t, cc.paint.values[pfs->num_components]);
90
4.03k
    pfs->color_stack_step = (pfs->color_stack_step + sizeof(void *) - 1) / sizeof(void *) * sizeof(void *); /* Alignment */
91
92
4.03k
    pfs->color_stack_size = pfs->color_stack_step * SHADING_COLOR_STACK_SIZE;
93
4.03k
    pfs->color_stack = gs_alloc_bytes(memory, pfs->color_stack_size, "allocate_color_stack");
94
4.03k
    if (pfs->color_stack == NULL)
95
0
        return_error(gs_error_VMerror);
96
4.03k
    pfs->color_stack_limit = pfs->color_stack + pfs->color_stack_size;
97
4.03k
    pfs->color_stack_ptr = pfs->color_stack;
98
4.03k
    pfs->memory = memory;
99
4.03k
    return 0;
100
4.03k
}
101
102
static inline byte *
103
reserve_colors_inline(patch_fill_state_t *pfs, patch_color_t *c[], int n)
104
30.5M
{
105
30.5M
    int i;
106
30.5M
    byte *ptr0 = pfs->color_stack_ptr, *ptr = ptr0;
107
108
94.4M
    for (i = 0; i < n; i++, ptr += pfs->color_stack_step)
109
63.8M
        c[i] = (patch_color_t *)ptr;
110
30.5M
    if (ptr > pfs->color_stack_limit) {
111
0
        c[0] = NULL; /* safety. */
112
0
        return NULL;
113
0
    }
114
30.5M
    pfs->color_stack_ptr = ptr;
115
30.5M
    return ptr0;
116
30.5M
}
117
118
byte *
119
reserve_colors(patch_fill_state_t *pfs, patch_color_t *c[], int n)
120
75
{
121
75
    return reserve_colors_inline(pfs, c, n);
122
75
}
123
124
static inline void
125
release_colors_inline(patch_fill_state_t *pfs, byte *ptr, int n)
126
30.5M
{
127
#if 0 /* Saving the invariant for records. */
128
    pfs->color_stack_ptr = pfs->color_stack_step * n;
129
    assert((byte *)pfs->color_stack_ptr == ptr);
130
#else
131
30.5M
    pfs->color_stack_ptr = ptr;
132
30.5M
#endif
133
30.5M
}
134
void
135
release_colors(patch_fill_state_t *pfs, byte *ptr, int n)
136
75
{
137
75
    release_colors_inline(pfs, ptr, n);
138
75
}
139
140
/* Get colors for patch vertices. */
141
static int
142
shade_next_colors(shade_coord_stream_t * cs, patch_curve_t * curves,
143
                  int num_vertices)
144
25.5k
{
145
25.5k
    int i, code = 0;
146
147
105k
    for (i = 0; i < num_vertices && code >= 0; ++i) {
148
80.1k
        curves[i].vertex.cc[1] = 0; /* safety. (patch_fill may assume 2 arguments) */
149
80.1k
        code = shade_next_color(cs, curves[i].vertex.cc);
150
80.1k
    }
151
25.5k
    return code;
152
25.5k
}
153
154
/* Get a Bezier or tensor patch element. */
155
static int
156
shade_next_curve(shade_coord_stream_t * cs, patch_curve_t * curve)
157
65.7k
{
158
65.7k
    int code = shade_next_coords(cs, &curve->vertex.p, 1);
159
160
65.7k
    if (code >= 0)
161
65.7k
        code = shade_next_coords(cs, curve->control,
162
65.7k
                                 countof(curve->control));
163
65.7k
    return code;
164
65.7k
}
165
166
/*
167
 * Parse the next patch out of the input stream.  Return 1 if done,
168
 * 0 if patch, <0 on error.
169
 */
170
static int
171
shade_next_patch(shade_coord_stream_t * cs, int BitsPerFlag,
172
        patch_curve_t curve[4], gs_fixed_point interior[4] /* 0 for Coons patch */)
173
25.6k
{
174
25.6k
    int flag = shade_next_flag(cs, BitsPerFlag);
175
25.6k
    int num_colors, code;
176
177
25.6k
    if (flag < 0) {
178
45
        if (!cs->is_eod(cs))
179
0
            return_error(gs_error_rangecheck);
180
45
        return 1;               /* no more data */
181
45
    }
182
25.6k
    if (cs->first_patch && (flag & 3) != 0) {
183
0
        return_error(gs_error_rangecheck);
184
0
    }
185
25.6k
    cs->first_patch = 0;
186
25.6k
    switch (flag & 3) {
187
0
        default:
188
0
            return_error(gs_error_rangecheck);  /* not possible */
189
14.5k
        case 0:
190
14.5k
            if ((code = shade_next_curve(cs, &curve[0])) < 0 ||
191
14.5k
                (code = shade_next_coords(cs, &curve[1].vertex.p, 1)) < 0
192
14.5k
                )
193
6
                return code;
194
14.5k
            num_colors = 4;
195
14.5k
            goto vx;
196
3.04k
        case 1:
197
3.04k
            curve[0] = curve[1], curve[1].vertex = curve[2].vertex;
198
3.04k
            goto v3;
199
3.29k
        case 2:
200
3.29k
            curve[0] = curve[2], curve[1].vertex = curve[3].vertex;
201
3.29k
            goto v3;
202
4.77k
        case 3:
203
4.77k
            curve[1].vertex = curve[0].vertex, curve[0] = curve[3];
204
11.1k
v3:         num_colors = 2;
205
25.6k
vx:         if ((code = shade_next_coords(cs, curve[1].control, 2)) < 0 ||
206
25.6k
                (code = shade_next_curve(cs, &curve[2])) < 0 ||
207
25.6k
                (code = shade_next_curve(cs, &curve[3])) < 0 ||
208
25.6k
                (interior != 0 &&
209
25.5k
                 (code = shade_next_coords(cs, interior, 4)) < 0) ||
210
25.6k
                (code = shade_next_colors(cs, &curve[4 - num_colors],
211
25.5k
                                          num_colors)) < 0
212
25.6k
                )
213
53
                return code;
214
25.5k
            cs->align(cs, 8); /* See shade_next_vertex. */
215
25.6k
    }
216
25.5k
    return 0;
217
25.6k
}
218
219
static inline bool
220
is_linear_color_applicable(const patch_fill_state_t *pfs)
221
2.19M
{
222
2.19M
    if (!USE_LINEAR_COLOR_PROCS)
223
0
        return false;
224
2.19M
    if (!colors_are_separable_and_linear(&pfs->dev->color_info))
225
2.16M
        return false;
226
23.4k
    if (gx_get_cmap_procs(pfs->pgs, pfs->dev)->is_halftoned(pfs->pgs, pfs->dev))
227
0
        return false;
228
23.4k
    return true;
229
23.4k
}
230
231
static int
232
alloc_patch_fill_memory(patch_fill_state_t *pfs, gs_memory_t *memory, const gs_color_space *pcs)
233
4.03k
{
234
4.03k
    int code;
235
236
4.03k
    pfs->memory = memory;
237
4.03k
#   if LAZY_WEDGES
238
4.03k
        code = wedge_vertex_list_elem_buffer_alloc(pfs);
239
4.03k
        if (code < 0)
240
0
            return code;
241
4.03k
#   endif
242
4.03k
    pfs->max_small_coord = 1 << ((sizeof(int64_t) * 8 - 1/*sign*/) / 3);
243
4.03k
    code = allocate_color_stack(pfs, memory);
244
4.03k
    if (code < 0)
245
0
        return code;
246
4.03k
    if (pfs->unlinear || pcs == NULL)
247
544
        pfs->pcic = NULL;
248
3.49k
    else {
249
3.49k
        pfs->pcic = gs_color_index_cache_create(memory, pcs, pfs->dev, pfs->pgs, true, pfs->trans_device);
250
3.49k
        if (pfs->pcic == NULL)
251
0
            return_error(gs_error_VMerror);
252
3.49k
    }
253
4.03k
    return 0;
254
4.03k
}
255
256
int
257
init_patch_fill_state(patch_fill_state_t *pfs)
258
4.03k
{
259
    /* Warning : pfs->Function must be set in advance. */
260
4.03k
    const gs_color_space *pcs = pfs->direct_space;
261
4.03k
    gs_client_color fcc0, fcc1;
262
4.03k
    int i;
263
264
14.7k
    for (i = 0; i < pfs->num_components; i++) {
265
10.7k
        fcc0.paint.values[i] = -1000000;
266
10.7k
        fcc1.paint.values[i] = 1000000;
267
10.7k
    }
268
4.03k
    pcs->type->restrict_color(&fcc0, pcs);
269
4.03k
    pcs->type->restrict_color(&fcc1, pcs);
270
14.7k
    for (i = 0; i < pfs->num_components; i++)
271
10.7k
        pfs->color_domain.paint.values[i] = max(fcc1.paint.values[i] - fcc0.paint.values[i], 1);
272
4.03k
    pfs->vectorization = false; /* A stub for a while. Will use with pclwrite. */
273
4.03k
    pfs->maybe_self_intersecting = true;
274
4.03k
    pfs->monotonic_color = (pfs->Function == NULL);
275
4.03k
    pfs->function_arg_shift = 0;
276
4.03k
    pfs->linear_color = false;
277
4.03k
    pfs->inside = false;
278
4.03k
    pfs->n_color_args = 1;
279
#ifdef MAX_SHADING_RESOLUTION
280
    pfs->decomposition_limit = float2fixed(min(pfs->dev->HWResolution[0],
281
                                               pfs->dev->HWResolution[1]) / MAX_SHADING_RESOLUTION);
282
    pfs->decomposition_limit = max(pfs->decomposition_limit, fixed_1);
283
#else
284
4.03k
    pfs->decomposition_limit = fixed_1;
285
4.03k
#endif
286
4.03k
    pfs->fixed_flat = float2fixed(pfs->pgs->flatness);
287
    /* Restrict the pfs->smoothness with 1/min_linear_grades, because cs_is_linear
288
       can't provide a better precision due to the color
289
       representation with integers.
290
     */
291
4.03k
    pfs->smoothness = max(pfs->pgs->smoothness, 1.0 / min_linear_grades);
292
4.03k
    pfs->color_stack_size = 0;
293
4.03k
    pfs->color_stack_step = 0;
294
4.03k
    pfs->color_stack_ptr = NULL;
295
4.03k
    pfs->color_stack = NULL;
296
4.03k
    pfs->color_stack_limit = NULL;
297
4.03k
    pfs->unlinear = !is_linear_color_applicable(pfs);
298
4.03k
    pfs->pcic = NULL;
299
4.03k
    return alloc_patch_fill_memory(pfs, pfs->pgs->memory, pcs);
300
4.03k
}
301
302
bool
303
term_patch_fill_state(patch_fill_state_t *pfs)
304
4.03k
{
305
4.03k
    bool b = (pfs->color_stack_ptr != pfs->color_stack);
306
4.03k
#   if LAZY_WEDGES
307
4.03k
        wedge_vertex_list_elem_buffer_free(pfs);
308
4.03k
#   endif
309
4.03k
    if (pfs->color_stack)
310
4.03k
        gs_free_object(pfs->memory, pfs->color_stack, "term_patch_fill_state");
311
4.03k
    if (pfs->pcic != NULL)
312
3.49k
        gs_color_index_cache_destroy(pfs->pcic);
313
4.03k
    return b;
314
4.03k
}
315
316
/* Resolve a patch color using the Function if necessary. */
317
static inline void
318
patch_resolve_color_inline(patch_color_t * ppcr, const patch_fill_state_t *pfs)
319
11.3M
{
320
11.3M
    if (pfs->Function) {
321
11.2M
        const gs_color_space *pcs = pfs->direct_space;
322
323
11.2M
        gs_function_evaluate(pfs->Function, ppcr->t, ppcr->cc.paint.values);
324
11.2M
        pcs->type->restrict_color(&ppcr->cc, pcs);
325
11.2M
    }
326
11.3M
}
327
328
void
329
patch_resolve_color(patch_color_t * ppcr, const patch_fill_state_t *pfs)
330
0
{
331
0
    patch_resolve_color_inline(ppcr, pfs);
332
0
}
333
334
/*
335
 * Calculate the interpolated color at a given point.
336
 * Note that we must do this twice for bilinear interpolation.
337
 * We use the name ppcr rather than ppc because an Apple compiler defines
338
 * ppc when compiling on PowerPC systems (!).
339
 */
340
static void
341
patch_interpolate_color(patch_color_t * ppcr, const patch_color_t * ppc0,
342
       const patch_color_t * ppc1, const patch_fill_state_t *pfs, double t)
343
39.0M
{
344
    /* The old code gives -IND on Intel. */
345
39.0M
    if (pfs->Function) {
346
10.5M
        ppcr->t[0] = ppc0->t[0] * (1 - t) + t * ppc1->t[0];
347
10.5M
        ppcr->t[1] = ppc0->t[1] * (1 - t) + t * ppc1->t[1];
348
10.5M
        patch_resolve_color_inline(ppcr, pfs);
349
28.4M
    } else {
350
28.4M
        int ci;
351
352
139M
        for (ci = pfs->num_components - 1; ci >= 0; --ci)
353
110M
            ppcr->cc.paint.values[ci] =
354
110M
                ppc0->cc.paint.values[ci] * (1 - t) + t * ppc1->cc.paint.values[ci];
355
28.4M
    }
356
39.0M
}
357
358
/* ================ Specific shadings ================ */
359
360
/*
361
 * The curves are stored in a clockwise or counter-clockwise order that maps
362
 * to the patch definition in a non-intuitive way.  The documentation
363
 * (pp. 277-281 of the PostScript Language Reference Manual, Third Edition)
364
 * says that the curves are in the order D1, C2, D2, C1.
365
 */
366
/* The starting points of the curves: */
367
0
#define D1START 0
368
0
#define C2START 1
369
0
#define D2START 3
370
0
#define C1START 0
371
/* The control points of the curves (x means reversed order): */
372
0
#define D1CTRL 0
373
0
#define C2CTRL 1
374
0
#define D2XCTRL 2
375
0
#define C1XCTRL 3
376
/* The end points of the curves: */
377
0
#define D1END 1
378
0
#define C2END 2
379
0
#define D2END 2
380
0
#define C1END 3
381
382
/* ---------------- Common code ---------------- */
383
384
/* Evaluate a curve at a given point. */
385
static void
386
curve_eval(gs_fixed_point * pt, const gs_fixed_point * p0,
387
           const gs_fixed_point * p1, const gs_fixed_point * p2,
388
           const gs_fixed_point * p3, double t)
389
0
{
390
0
    fixed a, b, c, d;
391
0
    fixed t01, t12;
392
393
0
    d = p0->x;
394
0
    curve_points_to_coefficients(d, p1->x, p2->x, p3->x,
395
0
                                 a, b, c, t01, t12);
396
0
    pt->x = (fixed) (((a * t + b) * t + c) * t + d);
397
0
    d = p0->y;
398
0
    curve_points_to_coefficients(d, p1->y, p2->y, p3->y,
399
0
                                 a, b, c, t01, t12);
400
0
    pt->y = (fixed) (((a * t + b) * t + c) * t + d);
401
0
    if_debug3('2', "[2]t=%g => (%g,%g)\n", t, fixed2float(pt->x),
402
0
              fixed2float(pt->y));
403
0
}
404
405
/* ---------------- Coons patch shading ---------------- */
406
407
/* Calculate the device-space coordinate corresponding to (u,v). */
408
static void
409
Cp_transform(gs_fixed_point * pt, const patch_curve_t curve[4],
410
             const gs_fixed_point ignore_interior[4], double u, double v)
411
0
{
412
0
    double co_u = 1.0 - u, co_v = 1.0 - v;
413
0
    gs_fixed_point c1u, d1v, c2u, d2v;
414
415
0
    curve_eval(&c1u, &curve[C1START].vertex.p,
416
0
               &curve[C1XCTRL].control[1], &curve[C1XCTRL].control[0],
417
0
               &curve[C1END].vertex.p, u);
418
0
    curve_eval(&d1v, &curve[D1START].vertex.p,
419
0
               &curve[D1CTRL].control[0], &curve[D1CTRL].control[1],
420
0
               &curve[D1END].vertex.p, v);
421
0
    curve_eval(&c2u, &curve[C2START].vertex.p,
422
0
               &curve[C2CTRL].control[0], &curve[C2CTRL].control[1],
423
0
               &curve[C2END].vertex.p, u);
424
0
    curve_eval(&d2v, &curve[D2START].vertex.p,
425
0
               &curve[D2XCTRL].control[1], &curve[D2XCTRL].control[0],
426
0
               &curve[D2END].vertex.p, v);
427
0
#define COMPUTE_COORD(xy)\
428
0
    pt->xy = (fixed)\
429
0
        ((co_v * c1u.xy + v * c2u.xy) + (co_u * d1v.xy + u * d2v.xy) -\
430
0
         (co_v * (co_u * curve[C1START].vertex.p.xy +\
431
0
                  u * curve[C1END].vertex.p.xy) +\
432
0
          v * (co_u * curve[C2START].vertex.p.xy +\
433
0
               u * curve[C2END].vertex.p.xy)))
434
0
    COMPUTE_COORD(x);
435
0
    COMPUTE_COORD(y);
436
0
#undef COMPUTE_COORD
437
0
    if_debug4('2', "[2](u=%g,v=%g) => (%g,%g)\n",
438
0
              u, v, fixed2float(pt->x), fixed2float(pt->y));
439
0
}
440
441
int
442
gs_shading_Cp_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
443
                             const gs_fixed_rect * rect_clip,
444
                             gx_device * dev, gs_gstate * pgs)
445
3
{
446
3
    const gs_shading_Cp_t * const psh = (const gs_shading_Cp_t *)psh0;
447
3
    patch_fill_state_t state;
448
3
    shade_coord_stream_t cs;
449
3
    patch_curve_t curve[4];
450
3
    int code;
451
452
3
    code = mesh_init_fill_state((mesh_fill_state_t *) &state,
453
3
                         (const gs_shading_mesh_t *)psh0, rect_clip, dev, pgs);
454
3
    if (code < 0) {
455
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
456
0
        return code;
457
0
    }
458
3
    state.Function = psh->params.Function;
459
3
    code = init_patch_fill_state(&state);
460
3
    if(code < 0) {
461
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
462
0
        return code;
463
0
    }
464
465
3
    curve[0].straight = curve[1].straight = curve[2].straight = curve[3].straight = false;
466
3
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params, pgs);
467
4
    while ((code = shade_next_patch(&cs, psh->params.BitsPerFlag,
468
4
                                    curve, NULL)) == 0 &&
469
4
           (code = patch_fill(&state, curve, NULL, Cp_transform)) >= 0
470
3
        ) {
471
1
        DO_NOTHING;
472
1
    }
473
3
    if (term_patch_fill_state(&state))
474
0
        return_error(gs_error_unregistered); /* Must not happen. */
475
3
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
476
3
    return min(code, 0);
477
3
}
478
479
/* ---------------- Tensor product patch shading ---------------- */
480
481
/* Calculate the device-space coordinate corresponding to (u,v). */
482
static void
483
Tpp_transform(gs_fixed_point * pt, const patch_curve_t curve[4],
484
              const gs_fixed_point interior[4], double u, double v)
485
0
{
486
0
    double Bu[4], Bv[4];
487
0
    gs_fixed_point pts[4][4];
488
0
    int i, j;
489
0
    double x = 0, y = 0;
490
491
    /* Compute the Bernstein polynomials of u and v. */
492
0
    {
493
0
        double u2 = u * u, co_u = 1.0 - u, co_u2 = co_u * co_u;
494
0
        double v2 = v * v, co_v = 1.0 - v, co_v2 = co_v * co_v;
495
496
0
        Bu[0] = co_u * co_u2, Bu[1] = 3 * u * co_u2,
497
0
            Bu[2] = 3 * u2 * co_u, Bu[3] = u * u2;
498
0
        Bv[0] = co_v * co_v2, Bv[1] = 3 * v * co_v2,
499
0
            Bv[2] = 3 * v2 * co_v, Bv[3] = v * v2;
500
0
    }
501
502
    /* Arrange the points into an indexable order. */
503
0
    pts[0][0] = curve[0].vertex.p;
504
0
    pts[0][1] = curve[0].control[0];
505
0
    pts[0][2] = curve[0].control[1];
506
0
    pts[0][3] = curve[1].vertex.p;
507
0
    pts[1][3] = curve[1].control[0];
508
0
    pts[2][3] = curve[1].control[1];
509
0
    pts[3][3] = curve[2].vertex.p;
510
0
    pts[3][2] = curve[2].control[0];
511
0
    pts[3][1] = curve[2].control[1];
512
0
    pts[3][0] = curve[3].vertex.p;
513
0
    pts[2][0] = curve[3].control[0];
514
0
    pts[1][0] = curve[3].control[1];
515
0
    pts[1][1] = interior[0];
516
0
    pts[2][1] = interior[1];
517
0
    pts[2][2] = interior[2];
518
0
    pts[1][2] = interior[3];
519
520
    /* Now compute the actual point. */
521
0
    for (i = 0; i < 4; ++i)
522
0
        for (j = 0; j < 4; ++j) {
523
0
            double coeff = Bu[i] * Bv[j];
524
525
0
            x += pts[i][j].x * coeff, y += pts[i][j].y * coeff;
526
0
        }
527
0
    pt->x = (fixed)x, pt->y = (fixed)y;
528
0
}
529
530
int
531
gs_shading_Tpp_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
532
                             const gs_fixed_rect * rect_clip,
533
                              gx_device * dev, gs_gstate * pgs)
534
101
{
535
101
    const gs_shading_Tpp_t * const psh = (const gs_shading_Tpp_t *)psh0;
536
101
    patch_fill_state_t state;
537
101
    shade_coord_stream_t cs;
538
101
    patch_curve_t curve[4];
539
101
    gs_fixed_point interior[4];
540
101
    int code;
541
542
101
    code = mesh_init_fill_state((mesh_fill_state_t *) & state,
543
101
                         (const gs_shading_mesh_t *)psh0, rect_clip, dev, pgs);
544
101
    if (code < 0) {
545
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
546
0
        return code;
547
0
    }
548
101
    state.Function = psh->params.Function;
549
101
    code = init_patch_fill_state(&state);
550
101
    if(code < 0)
551
0
        return code;
552
101
    curve[0].straight = curve[1].straight = curve[2].straight = curve[3].straight = false;
553
101
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params, pgs);
554
25.6k
    while ((code = shade_next_patch(&cs, psh->params.BitsPerFlag,
555
25.6k
                                    curve, interior)) == 0) {
556
        /*
557
         * The order of points appears to be consistent with that for Coons
558
         * patches, which is different from that documented in Red Book 3.
559
         */
560
25.5k
        gs_fixed_point swapped_interior[4];
561
562
25.5k
        swapped_interior[0] = interior[0];
563
25.5k
        swapped_interior[1] = interior[3];
564
25.5k
        swapped_interior[2] = interior[2];
565
25.5k
        swapped_interior[3] = interior[1];
566
25.5k
        code = patch_fill(&state, curve, swapped_interior, Tpp_transform);
567
25.5k
        if (code < 0)
568
0
            break;
569
25.5k
    }
570
101
    if (term_patch_fill_state(&state))
571
0
        return_error(gs_error_unregistered); /* Must not happen. */
572
101
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
573
101
    return min(code, 0);
574
101
}
575
576
/*
577
    This algorithm performs a decomposition of the shading area
578
    into a set of constant color trapezoids, some of which
579
    may use the transpozed coordinate system.
580
581
    The target device assumes semi-open intrvals by X to be painted
582
    (See PLRM3, 7.5. Scan conversion details), i.e.
583
    it doesn't paint pixels which falls exactly to the right side.
584
    Note that with raster devices the algorithm doesn't paint pixels,
585
    whigh are partially covered by the shading area,
586
    but which's centers are outside the area.
587
588
    Pixels inside a monotonic part of the shading area are painted
589
    at once, but some exceptions may happen :
590
591
        - While flattening boundaries of a subpatch,
592
        to keep the plane coverage contiguity we insert wedges
593
        between neighbor subpatches, which use a different
594
        flattening factor. With non-monotonic curves
595
        those wedges may overlap or be self-overlapping, and a pixel
596
        is painted so many times as many wedges cover it. Fortunately
597
        the area of most wedges is zero or extremily small.
598
599
        - Since quazi-horizontal wedges may have a non-constant color,
600
        they can't decompose into constant color trapezoids with
601
        keeping the coverage contiguity. To represent them we
602
        apply the XY plane transposition. But with the transposition
603
        a semiopen interval can met a non-transposed one,
604
        so that some lines are not covered. Therefore we emulate
605
        closed intervals with expanding the transposed trapesoids in
606
        fixed_epsilon, and pixels at that boundary may be painted twice.
607
608
        - A boundary of a monotonic area can't compute in XY
609
        preciselly due to high order polynomial equations.
610
        Therefore the subdivision near the monotonity boundary
611
        may paint some pixels twice within same monotonic part.
612
613
    Non-monotonic areas slow down due to a tinny subdivision required.
614
615
    The target device may be either raster or vector.
616
    Vector devices should preciselly pass trapezoids to the output.
617
    Note that ends of sides of a trapesoid are not necessary
618
    the trapezoid's vertices. Converting this thing into
619
    an exact quadrangle may cause an arithmetic error,
620
    and the rounding must be done so that the coverage
621
    contiguity is not lost.
622
623
    When a device passes a trapezoid to it's output,
624
    a regular rounding would keep the coverage contiguity,
625
    except for the transposed trapesoids.
626
    If a transposed trapezoid is being transposed back,
627
    it doesn't become a canonic trapezoid, and a further
628
    decomposition is neccessary. But rounding errors here
629
    would break the coverage contiguity at boundaries
630
    of the tansposed part of the area.
631
632
    Devices, which have no transposed trapezoids and represent
633
    trapezoids only with 8 coordinates of vertices of the quadrangle
634
    (pclwrite is an example) may apply the backward transposition,
635
    and a clipping instead the further decomposition.
636
    Note that many clip regions may appear for all wedges.
637
    Note that in some cases the adjustment of the right side to be
638
    withdrown before the backward transposition.
639
 */
640
 /* We believe that a multiplication of 32-bit integers with a
641
    64-bit result is performed by modern platforms performs
642
    in hardware level. Therefore we widely use it here,
643
    but we minimize the usage of a multiplication of longer integers.
644
645
    Unfortunately we do need a multiplication of long integers
646
    in intersection_of_small_bars, because solving the linear system
647
    requires tripple multiples of 'fixed'. Therefore we retain
648
    of it's usage in the algorithm of the main branch.
649
    Configuration macro QUADRANGLES prevents it.
650
  */
651
652
typedef struct {
653
    gs_fixed_point pole[4][4]; /* [v][u] */
654
    patch_color_t *c[2][2];     /* [v][u] */
655
} tensor_patch;
656
657
typedef enum {
658
    interpatch_padding = 1, /* A Padding between patches for poorly designed documents. */
659
    inpatch_wedge = 2  /* Wedges while a patch decomposition. */
660
} wedge_type_t;
661
662
int
663
wedge_vertex_list_elem_buffer_alloc(patch_fill_state_t *pfs)
664
4.03k
{
665
4.03k
    const int max_level = LAZY_WEDGES_MAX_LEVEL;
666
4.03k
    gs_memory_t *memory = pfs->memory;
667
668
    /* We have 'max_level' levels, each of which divides 1 or 3 sides.
669
       LAZY_WEDGES stores all 2^level divisions until
670
       the other area of same bnoundary is processed.
671
       Thus the upper estimation of the buffer size is :
672
       max_level * (1 << max_level) * 3.
673
       Likely this estimation to be decreased to
674
       max_level * (1 << max_level) * 2.
675
       because 1 side of a triangle is always outside the division path.
676
       For now we set the smaller estimation for obtaining an experimental data
677
       from the wild. */
678
4.03k
    pfs->wedge_vertex_list_elem_count_max = max_level * (1 << max_level) * 2;
679
4.03k
    pfs->wedge_vertex_list_elem_buffer = (wedge_vertex_list_elem_t *)gs_alloc_bytes(memory,
680
4.03k
            sizeof(wedge_vertex_list_elem_t) * pfs->wedge_vertex_list_elem_count_max,
681
4.03k
            "alloc_wedge_vertex_list_elem_buffer");
682
4.03k
    if (pfs->wedge_vertex_list_elem_buffer == NULL)
683
0
        return_error(gs_error_VMerror);
684
4.03k
    pfs->free_wedge_vertex = NULL;
685
4.03k
    pfs->wedge_vertex_list_elem_count = 0;
686
4.03k
    return 0;
687
4.03k
}
688
689
void
690
wedge_vertex_list_elem_buffer_free(patch_fill_state_t *pfs)
691
4.03k
{
692
4.03k
    gs_memory_t *memory = pfs->memory;
693
694
4.03k
    gs_free_object(memory, pfs->wedge_vertex_list_elem_buffer,
695
4.03k
                "wedge_vertex_list_elem_buffer_free");
696
4.03k
    pfs->wedge_vertex_list_elem_buffer = NULL;
697
4.03k
    pfs->free_wedge_vertex = NULL;
698
4.03k
}
699
700
static inline wedge_vertex_list_elem_t *
701
wedge_vertex_list_elem_reserve(patch_fill_state_t *pfs)
702
4.29M
{
703
4.29M
    wedge_vertex_list_elem_t *e = pfs->free_wedge_vertex;
704
705
4.29M
    if (e != NULL) {
706
4.23M
        pfs->free_wedge_vertex = e->next;
707
4.23M
        return e;
708
4.23M
    }
709
64.5k
    if (pfs->wedge_vertex_list_elem_count < pfs->wedge_vertex_list_elem_count_max)
710
64.5k
        return pfs->wedge_vertex_list_elem_buffer + pfs->wedge_vertex_list_elem_count++;
711
0
    return NULL;
712
64.5k
}
713
714
static inline void
715
wedge_vertex_list_elem_release(patch_fill_state_t *pfs, wedge_vertex_list_elem_t *e)
716
4.29M
{
717
4.29M
    e->next = pfs->free_wedge_vertex;
718
4.29M
    pfs->free_wedge_vertex = e;
719
4.29M
}
720
721
static inline void
722
release_wedge_vertex_list_interval(patch_fill_state_t *pfs,
723
    wedge_vertex_list_elem_t *beg, wedge_vertex_list_elem_t *end)
724
2.12M
{
725
2.12M
    wedge_vertex_list_elem_t *e = beg->next, *ee;
726
727
2.12M
    beg->next = end;
728
2.12M
    end->prev = beg;
729
4.14M
    for (; e != end; e = ee) {
730
2.02M
        ee = e->next;
731
2.02M
        wedge_vertex_list_elem_release(pfs, e);
732
2.02M
    }
733
2.12M
}
734
735
static inline int
736
release_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *ll, int n)
737
1.13M
{
738
1.13M
    int i;
739
740
2.27M
    for (i = 0; i < n; i++) {
741
1.13M
        wedge_vertex_list_t *l = ll + i;
742
743
1.13M
        if (l->beg != NULL) {
744
1.13M
            if (l->end == NULL)
745
0
                return_error(gs_error_unregistered); /* Must not happen. */
746
1.13M
            release_wedge_vertex_list_interval(pfs, l->beg, l->end);
747
1.13M
            wedge_vertex_list_elem_release(pfs, l->beg);
748
1.13M
            wedge_vertex_list_elem_release(pfs, l->end);
749
1.13M
            l->beg = l->end = NULL;
750
1.13M
        } else if (l->end != NULL)
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
1.13M
    }
753
1.13M
    return 0;
754
1.13M
}
755
756
static inline wedge_vertex_list_elem_t *
757
wedge_vertex_list_find(wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
758
            int level)
759
1.21M
{
760
1.21M
    wedge_vertex_list_elem_t *e = beg;
761
762
1.21M
    if (beg == NULL || end == NULL)
763
0
        return NULL; /* Must not happen. */
764
3.24M
    for (; e != end; e = e->next)
765
3.24M
        if (e->level == level)
766
1.21M
            return e;
767
0
    return NULL;
768
1.21M
}
769
770
static inline void
771
init_wedge_vertex_list(wedge_vertex_list_t *l, int n)
772
6.13M
{
773
6.13M
    memset(l, 0, sizeof(*l) * n);
774
6.13M
}
775
776
/* For a given set of poles in the tensor patch (for instance
777
 * [0][0], [0][1], [0][2], [0][3] or [0][2], [1][2], [2][2], [3][2])
778
 * return the number of subdivisions required to flatten the bezier
779
 * given by those poles to the required flatness.
780
 */
781
static inline int
782
curve_samples(patch_fill_state_t *pfs,
783
                const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
784
1.61M
{
785
1.61M
    curve_segment s;
786
1.61M
    int k;
787
788
1.61M
    s.p1.x = pole[pole_step].x;
789
1.61M
    s.p1.y = pole[pole_step].y;
790
1.61M
    s.p2.x = pole[pole_step * 2].x;
791
1.61M
    s.p2.y = pole[pole_step * 2].y;
792
1.61M
    s.pt.x = pole[pole_step * 3].x;
793
1.61M
    s.pt.y = pole[pole_step * 3].y;
794
1.61M
    k = gx_curve_log2_samples(pole[0].x, pole[0].y, &s, fixed_flat);
795
1.61M
    {
796
1.61M
#       if LAZY_WEDGES || QUADRANGLES
797
1.61M
            int k1;
798
1.61M
            fixed L = any_abs(pole[pole_step * 1].x - pole[pole_step * 0].x) + any_abs(pole[pole_step * 1].y - pole[pole_step * 0].y) +
799
1.61M
                      any_abs(pole[pole_step * 2].x - pole[pole_step * 1].x) + any_abs(pole[pole_step * 2].y - pole[pole_step * 1].y) +
800
1.61M
                      any_abs(pole[pole_step * 3].x - pole[pole_step * 2].x) + any_abs(pole[pole_step * 3].y - pole[pole_step * 2].y);
801
1.61M
#       endif
802
803
1.61M
#       if LAZY_WEDGES
804
            /* Restrict lengths for a reasonable memory consumption : */
805
1.61M
            k1 = ilog2(L / fixed_1 / (1 << (LAZY_WEDGES_MAX_LEVEL - 1)));
806
1.61M
            k = max(k, k1);
807
1.61M
#       endif
808
#       if QUADRANGLES
809
            /* Restrict lengths for intersection_of_small_bars : */
810
            k = max(k, ilog2(L) - ilog2(pfs->max_small_coord));
811
#       endif
812
1.61M
    }
813
1.61M
    return 1 << k;
814
1.61M
}
815
816
static inline bool
817
intersection_of_small_bars(const gs_fixed_point q[4], int i0, int i1, int i2, int i3, fixed *ry, fixed *ey)
818
0
{
819
    /* This function is only used with QUADRANGLES. */
820
0
    return gx_intersect_small_bars(q[i0].x, q[i0].y, q[i1].x, q[i1].y, q[i2].x, q[i2].y, q[i3].x, q[i3].y, ry, ey);
821
0
}
822
823
static inline void
824
adjust_swapped_boundary(fixed *b, bool swap_axes)
825
14.1M
{
826
14.1M
    if (swap_axes) {
827
        /*  Sinse the rasterizer algorithm assumes semi-open interval
828
            when computing pixel coverage, we should expand
829
            the right side of the area. Otherwise a dropout can happen :
830
            if the left neighbour is painted with !swap_axes,
831
            the left side of this area appears to be the left side
832
            of the neighbour area, and the side is not included
833
            into both areas.
834
         */
835
5.06M
        *b += fixed_epsilon;
836
5.06M
    }
837
14.1M
}
838
839
static inline void
840
make_trapezoid(const gs_fixed_point q[4],
841
        int vi0, int vi1, int vi2, int vi3, fixed ybot, fixed ytop,
842
        bool swap_axes, bool orient, gs_fixed_edge *le, gs_fixed_edge *re)
843
3.84M
{
844
3.84M
    if (!orient) {
845
1.81M
        le->start = q[vi0];
846
1.81M
        le->end = q[vi1];
847
1.81M
        re->start = q[vi2];
848
1.81M
        re->end = q[vi3];
849
2.03M
    } else {
850
2.03M
        le->start = q[vi2];
851
2.03M
        le->end = q[vi3];
852
2.03M
        re->start = q[vi0];
853
2.03M
        re->end = q[vi1];
854
2.03M
    }
855
3.84M
    adjust_swapped_boundary(&re->start.x, swap_axes);
856
3.84M
    adjust_swapped_boundary(&re->end.x, swap_axes);
857
3.84M
}
858
859
static inline int
860
gx_shade_trapezoid(patch_fill_state_t *pfs, const gs_fixed_point q[4],
861
        int vi0, int vi1, int vi2, int vi3, fixed ybot0, fixed ytop0,
862
        bool swap_axes, const gx_device_color *pdevc, bool orient)
863
57.3k
{
864
57.3k
    gs_fixed_edge le, re;
865
57.3k
    int code;
866
57.3k
    fixed ybot = max(ybot0, swap_axes ? pfs->rect.p.x : pfs->rect.p.y);
867
57.3k
    fixed ytop = min(ytop0, swap_axes ? pfs->rect.q.x : pfs->rect.q.y);
868
57.3k
    fixed xleft  = (swap_axes ? pfs->rect.p.y : pfs->rect.p.x);
869
57.3k
    fixed xright = (swap_axes ? pfs->rect.q.y : pfs->rect.q.x);
870
871
57.3k
    if (ybot >= ytop)
872
26.2k
        return 0;
873
#   if NOFILL_TEST
874
        if (dbg_nofill)
875
            return 0;
876
#   endif
877
31.1k
    make_trapezoid(q, vi0, vi1, vi2, vi3, ybot, ytop, swap_axes, orient, &le, &re);
878
31.1k
    if (!pfs->inside) {
879
17.8k
        bool clip = false;
880
881
        /* We are asked to clip a trapezoid to a rectangle. If the rectangle
882
         * is entirely contained within the rectangle, then no clipping is
883
         * actually required. If the left edge is entirely to the right of
884
         * the rectangle, or the right edge is entirely to the left, we
885
         * clip away to nothing. If the left edge is entirely to the left of
886
         * the rectangle, then we can simplify it to a vertical edge along
887
         * the edge of the rectangle. Likewise with the right edge if it's
888
         * entirely to the right of the rectangle.*/
889
17.8k
        if (le.start.x > xright) {
890
2.47k
            if (le.end.x > xright) {
891
7
                return 0;
892
7
            }
893
2.47k
            clip = true;
894
15.3k
        } else if (le.end.x > xright) {
895
1.36k
            clip = true;
896
1.36k
        }
897
17.8k
        if (le.start.x < xleft) {
898
4.19k
            if (le.end.x < xleft) {
899
2.71k
                le.start.x = xleft;
900
2.71k
                le.end.x   = xleft;
901
2.71k
                le.start.y = ybot;
902
2.71k
                le.end.y   = ytop;
903
2.71k
            } else {
904
1.47k
                clip = true;
905
1.47k
            }
906
13.6k
        } else if (le.end.x < xleft) {
907
2.31k
            clip = true;
908
2.31k
        }
909
17.8k
        if (re.start.x < xleft) {
910
1.78k
            if (re.end.x < xleft) {
911
0
                return 0;
912
0
            }
913
1.78k
            clip = true;
914
16.0k
        } else if (re.end.x < xleft) {
915
2.39k
            clip = true;
916
2.39k
        }
917
17.8k
        if (re.start.x > xright) {
918
4.58k
            if (re.end.x > xright) {
919
2.21k
                re.start.x = xright;
920
2.21k
                re.end.x   = xright;
921
2.21k
                re.start.y = ybot;
922
2.21k
                re.end.y   = ytop;
923
2.36k
            } else {
924
2.36k
                clip = true;
925
2.36k
            }
926
13.2k
        } else if (re.end.x > xright) {
927
1.29k
            clip = true;
928
1.29k
        }
929
17.8k
        if (clip)
930
9.29k
        {
931
            /* Some form of clipping seems to be required. A certain amount
932
             * of horridness goes on here to ensure that we round 'outwards'
933
             * in all cases. */
934
9.29k
            gs_fixed_edge lenew, renew;
935
9.29k
            fixed ybl, ybr, ytl, ytr, ymid;
936
937
            /* Reduce the clipping region horizontally if possible. */
938
9.29k
            if (re.start.x > re.end.x) {
939
3.89k
                if (re.start.x < xright)
940
1.53k
                    xright = re.start.x;
941
5.40k
            } else if (re.end.x < xright)
942
1.97k
                xright = re.end.x;
943
9.29k
            if (le.start.x > le.end.x) {
944
3.90k
                if (le.end.x > xleft)
945
1.58k
                    xleft = le.end.x;
946
5.39k
            } else if (le.start.x > xleft)
947
1.56k
                xleft = le.start.x;
948
949
9.29k
            ybot = max(ybot, min(le.start.y, re.start.y));
950
9.29k
            ytop = min(ytop, max(le.end.y, re.end.y));
951
#if 0
952
            /* RJW: I've disabled this code a) because it doesn't make any
953
             * difference in the cluster tests, and b) because I think it's wrong.
954
             * Taking the first case as an example; just because the le.start.x
955
             * is > xright, does not mean that we can simply truncate the edge at
956
             * xright, as this may throw away part of the trap between ybot and
957
             * the new le.start.y. */
958
            /* Reduce the edges to the left/right of the clipping region. */
959
            /* Only in the 4 cases which can bring ytop/ybot closer */
960
            if (le.start.x > xright) {
961
                le.start.y += (fixed)((int64_t)(le.end.y-le.start.y)*
962
                                      (int64_t)(le.start.x-xright)/
963
                                      (int64_t)(le.start.x-le.end.x));
964
                le.start.x = xright;
965
            }
966
            if (re.start.x < xleft) {
967
                re.start.y += (fixed)((int64_t)(re.end.y-re.start.y)*
968
                                      (int64_t)(xleft-re.start.x)/
969
                                      (int64_t)(re.end.x-re.start.x));
970
                re.start.x = xleft;
971
            }
972
            if (le.end.x > xright) {
973
                le.end.y -= (fixed)((int64_t)(le.end.y-le.start.y)*
974
                                    (int64_t)(le.end.x-xright)/
975
                                    (int64_t)(le.end.x-le.start.x));
976
                le.end.x = xright;
977
            }
978
            if (re.end.x < xleft) {
979
                re.end.y -= (fixed)((int64_t)(re.end.y-re.start.y)*
980
                                    (int64_t)(xleft-re.end.x)/
981
                                    (int64_t)(re.start.x-re.end.x));
982
                re.end.x = xleft;
983
            }
984
#endif
985
986
9.29k
            if (ybot >= ytop)
987
0
                return 0;
988
            /* Follow the edges in, so that le.start.y == ybot etc. */
989
9.29k
            if (le.start.y < ybot) {
990
3.65k
                int round = ((le.end.x < le.start.x) ?
991
2.07k
                             (le.end.y-le.start.y-1) : 0);
992
3.65k
                le.start.x += (fixed)(((int64_t)(ybot-le.start.y)*
993
3.65k
                                       (int64_t)(le.end.x-le.start.x)-round)/
994
3.65k
                                      (int64_t)(le.end.y-le.start.y));
995
3.65k
                le.start.y = ybot;
996
3.65k
            }
997
9.29k
            if (le.end.y > ytop) {
998
3.82k
                int round = ((le.end.x > le.start.x) ?
999
1.97k
                             (le.end.y-le.start.y-1) : 0);
1000
3.82k
                le.end.x += (fixed)(((int64_t)(le.end.y-ytop)*
1001
3.82k
                                     (int64_t)(le.start.x-le.end.x)-round)/
1002
3.82k
                                    (int64_t)(le.end.y-le.start.y));
1003
3.82k
                le.end.y = ytop;
1004
3.82k
            }
1005
9.29k
            if ((le.start.x < xleft) && (le.end.x < xleft)) {
1006
583
                le.start.x = xleft;
1007
583
                le.end.x   = xleft;
1008
583
                le.start.y = ybot;
1009
583
                le.end.y   = ytop;
1010
583
            }
1011
9.29k
            if (re.start.y < ybot) {
1012
3.78k
                int round = ((re.end.x > re.start.x) ?
1013
1.99k
                             (re.end.y-re.start.y-1) : 0);
1014
3.78k
                re.start.x += (fixed)(((int64_t)(ybot-re.start.y)*
1015
3.78k
                                       (int64_t)(re.end.x-re.start.x)+round)/
1016
3.78k
                                      (int64_t)(re.end.y-re.start.y));
1017
3.78k
                re.start.y = ybot;
1018
3.78k
            }
1019
9.29k
            if (re.end.y > ytop) {
1020
4.05k
                int round = ((re.end.x < re.start.x) ?
1021
2.07k
                             (re.end.y-re.start.y-1) : 0);
1022
4.05k
                re.end.x += (fixed)(((int64_t)(re.end.y-ytop)*
1023
4.05k
                                     (int64_t)(re.start.x-re.end.x)+round)/
1024
4.05k
                                    (int64_t)(re.end.y-re.start.y));
1025
4.05k
                re.end.y = ytop;
1026
4.05k
            }
1027
9.29k
            if ((re.start.x > xright) && (re.end.x > xright)) {
1028
245
                re.start.x = xright;
1029
245
                re.end.x   = xright;
1030
245
                re.start.y = ybot;
1031
245
                re.end.y   = ytop;
1032
245
            }
1033
            /* Now, check whether the left and right edges cross. Previously
1034
             * this comment said: "This can only happen (for well formed
1035
             * input) in the case where one of the edges was completely out
1036
             * of range and has now been pulled in to the edge of the clip
1037
             * region." I now do not believe this to be true. */
1038
9.29k
            if (le.start.x > re.start.x) {
1039
3.14k
                if (le.start.x == le.end.x) {
1040
1.54k
                    if (re.start.x == re.end.x)
1041
0
                        return 0;
1042
1.54k
                    ybot += (fixed)((int64_t)(re.end.y-re.start.y)*
1043
1.54k
                                    (int64_t)(le.start.x-re.start.x)/
1044
1.54k
                                    (int64_t)(re.end.x-re.start.x));
1045
1.54k
                    re.start.x = le.start.x;
1046
1.60k
                } else {
1047
1.60k
                    ybot += (fixed)((int64_t)(le.end.y-le.start.y)*
1048
1.60k
                                    (int64_t)(le.start.x-re.start.x)/
1049
1.60k
                                    (int64_t)(le.start.x-le.end.x));
1050
1.60k
                    le.start.x = re.start.x;
1051
1.60k
                }
1052
3.14k
                if (ybot >= ytop)
1053
975
                    return 0;
1054
2.17k
                le.start.y = ybot;
1055
2.17k
                re.start.y = ybot;
1056
2.17k
            }
1057
8.32k
            if (le.end.x > re.end.x) {
1058
2.06k
                if (le.start.x == le.end.x) {
1059
1.34k
                    if (re.start.x == re.end.x)
1060
0
                        return 0;
1061
1.34k
                    ytop -= (fixed)((int64_t)(re.end.y-re.start.y)*
1062
1.34k
                                    (int64_t)(le.end.x-re.end.x)/
1063
1.34k
                                    (int64_t)(re.start.x-re.end.x));
1064
1.34k
                    re.end.x = le.end.x;
1065
1.34k
                } else {
1066
721
                    ytop -= (fixed)((int64_t)(le.end.y-le.start.y)*
1067
721
                                    (int64_t)(le.end.x-re.end.x)/
1068
721
                                    (int64_t)(le.end.x-le.start.x));
1069
721
                    le.end.x = re.end.x;
1070
721
                }
1071
2.06k
                if (ybot >= ytop)
1072
825
                    return 0;
1073
1.24k
                le.end.y = ytop;
1074
1.24k
                re.end.y = ytop;
1075
1.24k
            }
1076
            /* At this point we are guaranteed that le and re are constrained
1077
             * as tightly as possible to the ybot/ytop range, and that the
1078
             * entire ybot/ytop range will be marked at least somewhere. All
1079
             * we need to do now is to actually fill the region.
1080
             */
1081
7.49k
            lenew.start.x = xleft;
1082
7.49k
            lenew.start.y = ybot;
1083
7.49k
            lenew.end.x   = xleft;
1084
7.49k
            lenew.end.y   = ytop;
1085
7.49k
            renew.start.x = xright;
1086
7.49k
            renew.start.y = ybot;
1087
7.49k
            renew.end.x   = xright;
1088
7.49k
            renew.end.y   = ytop;
1089
            /* Figure out where the left edge intersects with the left at
1090
             * the bottom */
1091
7.49k
            ybl = ybot;
1092
7.49k
            if (le.start.x > le.end.x) {
1093
2.97k
                ybl += (fixed)((int64_t)(le.start.x-xleft) *
1094
2.97k
                               (int64_t)(le.end.y-le.start.y) /
1095
2.97k
                               (int64_t)(le.start.x-le.end.x));
1096
2.97k
                if (ybl > ytop)
1097
1.18k
                    ybl = ytop;
1098
2.97k
            }
1099
            /* Figure out where the right edge intersects with the right at
1100
             * the bottom */
1101
7.49k
            ybr = ybot;
1102
7.49k
            if (re.start.x < re.end.x) {
1103
2.73k
                ybr += (fixed)((int64_t)(xright-re.start.x) *
1104
2.73k
                               (int64_t)(re.end.y-re.start.y) /
1105
2.73k
                               (int64_t)(re.end.x-re.start.x));
1106
2.73k
                if (ybr > ytop)
1107
1.46k
                    ybr = ytop;
1108
2.73k
            }
1109
            /* Figure out where the left edge intersects with the left at
1110
             * the top */
1111
7.49k
            ytl = ytop;
1112
7.49k
            if (le.end.x > le.start.x) {
1113
2.56k
                ytl -= (fixed)((int64_t)(le.end.x-xleft) *
1114
2.56k
                               (int64_t)(le.end.y-le.start.y) /
1115
2.56k
                               (int64_t)(le.end.x-le.start.x));
1116
2.56k
                if (ytl < ybot)
1117
1.22k
                    ytl = ybot;
1118
2.56k
            }
1119
            /* Figure out where the right edge intersects with the right at
1120
             * the bottom */
1121
7.49k
            ytr = ytop;
1122
7.49k
            if (re.end.x < re.start.x) {
1123
3.21k
                ytr -= (fixed)((int64_t)(xright-re.end.x) *
1124
3.21k
                               (int64_t)(re.end.y-re.start.y) /
1125
3.21k
                               (int64_t)(re.start.x-re.end.x));
1126
3.21k
                if (ytr < ybot)
1127
1.12k
                    ytr = ybot;
1128
3.21k
            }
1129
            /* Check for the 2 cases where top and bottom diagonal extents
1130
             * overlap, and deal with them explicitly. */
1131
7.49k
            if (ytl < ybr) {
1132
                /*     |     |
1133
                 *  ---+-----+---
1134
                 *     | /222|
1135
                 *     |/111/|
1136
                 *     |000/ |
1137
                 *  ---+-----+---
1138
                 *     |     |
1139
                 */
1140
1.08k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1141
1.08k
                                        &lenew, &re, ybot, ytl,
1142
1.08k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1143
1.08k
                if (code < 0)
1144
0
                    return code;
1145
1.08k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1146
1.08k
                                        &le, &re, ytl, ybr,
1147
1.08k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1148
1.08k
                if (code < 0)
1149
0
                    return code;
1150
1.08k
                ybot = ybr;
1151
1.08k
                return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1152
1.08k
                                        &le, &renew, ybr, ytop,
1153
1.08k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1154
6.40k
            } else if (ytr < ybl) {
1155
                /*     |     |
1156
                 *  ---+-----+----
1157
                 *     |555\ |
1158
                 *     |\444\|
1159
                 *     | \333|
1160
                 *  ---+-----+---
1161
                 *     |     |
1162
                 */
1163
1.31k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1164
1.31k
                                        &le, &renew, ybot, ytr,
1165
1.31k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1166
1.31k
                if (code < 0)
1167
0
                    return code;
1168
1.31k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1169
1.31k
                                        &le, &re, ytr, ybl,
1170
1.31k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1171
1.31k
                if (code < 0)
1172
0
                    return code;
1173
1.31k
                return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1174
1.31k
                                        &le, &re, ybl, ytop,
1175
1.31k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1176
1.31k
            }
1177
            /* Fill in any section where both left and right edges are
1178
             * diagonal at the bottom */
1179
5.09k
            ymid = ybl;
1180
5.09k
            if (ymid > ybr)
1181
1.13k
                ymid = ybr;
1182
5.09k
            if (ymid > ybot) {
1183
                /*     |\   |          |   /|
1184
                 *     | \6/|    or    |\6/ |
1185
                 *  ---+----+---    ---+----+---
1186
                 *     |    |          |    |
1187
                 */
1188
393
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1189
393
                                        &le, &re, ybot, ymid,
1190
393
                                        swap_axes, pdevc, pfs->pgs->log_op);
1191
393
                if (code < 0)
1192
0
                    return code;
1193
393
                ybot = ymid;
1194
393
            }
1195
            /* Fill in any section where both left and right edges are
1196
             * diagonal at the top */
1197
5.09k
            ymid = ytl;
1198
5.09k
            if (ymid < ytr)
1199
942
                ymid = ytr;
1200
5.09k
            if (ymid < ytop) {
1201
                /*     |    |          |    |
1202
                 *  ---+----+---    ---+----+---
1203
                 *     |/7\ |    or    | /7\|
1204
                 *     |   \|          |/   |
1205
                 */
1206
444
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1207
444
                                        &le, &re, ymid, ytop,
1208
444
                                        swap_axes, pdevc, pfs->pgs->log_op);
1209
444
                if (code < 0)
1210
0
                    return code;
1211
444
                ytop = ymid;
1212
444
            }
1213
            /* Now do the single diagonal cases at the bottom */
1214
5.09k
            if (ybl > ybot) {
1215
                /*     |    |
1216
                 *     |\666|
1217
                 *  ---+----+---
1218
                 *     |    |
1219
                 */
1220
1.13k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1221
1.13k
                                        &le, &renew, ybot, ybl,
1222
1.13k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1223
1.13k
                if (code < 0)
1224
0
                    return code;
1225
1.13k
                ybot = ybl;
1226
3.95k
            } else if (ybr > ybot) {
1227
                /*     |    |
1228
                 *     |777/|
1229
                 *  ---+----+---
1230
                 *     |    |
1231
                 */
1232
1.13k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1233
1.13k
                                        &lenew, &re, ybot, ybr,
1234
1.13k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1235
1.13k
                if (code < 0)
1236
0
                    return code;
1237
1.13k
                ybot = ybr;
1238
1.13k
            }
1239
            /* Now do the single diagonal cases at the top */
1240
5.09k
            if (ytl < ytop) {
1241
                /*     |    |
1242
                 *  ---+----+---
1243
                 *     |/888|
1244
                 *     |    |
1245
                 */
1246
942
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1247
942
                                        &le, &renew, ytl, ytop,
1248
942
                                        swap_axes, pdevc, pfs->pgs->log_op);
1249
942
                if (code < 0)
1250
0
                    return code;
1251
942
                ytop = ytl;
1252
4.14k
            } else if (ytr < ytop) {
1253
                /*     |    |
1254
                 *  ---+----+---
1255
                 *     |999\|
1256
                 *     |    |
1257
                 */
1258
1.32k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1259
1.32k
                                        &lenew, &re, ytr, ytop,
1260
1.32k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1261
1.32k
                if (code < 0)
1262
0
                    return code;
1263
1.32k
                ytop = ytr;
1264
1.32k
            }
1265
            /* And finally just whatever rectangular section is left over in
1266
             * the middle */
1267
5.09k
            if (ybot > ytop)
1268
0
                return 0;
1269
5.09k
            return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1270
5.09k
                                        &lenew, &renew, ybot, ytop,
1271
5.09k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1272
5.09k
        }
1273
17.8k
    }
1274
21.8k
    return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1275
21.8k
            &le, &re, ybot, ytop, swap_axes, pdevc, pfs->pgs->log_op);
1276
31.1k
}
1277
1278
static inline void
1279
dc2fc31(const patch_fill_state_t *pfs, gx_device_color *pdevc,
1280
            frac31 fc[GX_DEVICE_COLOR_MAX_COMPONENTS])
1281
0
{
1282
0
    int j;
1283
0
    const gx_device_color_info *cinfo = &pfs->trans_device->color_info;
1284
    /* Note trans device is actually either the transparency parent
1285
       device if transparency is present or the target device.  Basically
1286
       the device from which we want to get the color information from
1287
       for this */
1288
1289
0
    if (pdevc->type == &gx_dc_type_data_pure) {
1290
0
        for (j = 0; j < cinfo->num_components; j++) {
1291
0
                int shift = cinfo->comp_shift[j];
1292
0
                int bits = cinfo->comp_bits[j];
1293
1294
0
                fc[j] = ((pdevc->colors.pure >> shift) & ((1 << bits) - 1)) <<
1295
0
                        (sizeof(frac31) * 8 - 1 - bits);
1296
0
        }
1297
0
    } else {
1298
0
        for (j = 0; j < cinfo->num_components; j++) {
1299
0
                fc[j] = cv2frac31(pdevc->colors.devn.values[j]);
1300
0
        }
1301
0
    }
1302
0
}
1303
1304
58.1M
#define DEBUG_COLOR_INDEX_CACHE 0
1305
1306
static inline int
1307
patch_color_to_device_color_inline(const patch_fill_state_t *pfs,
1308
                                   const patch_color_t *c, gx_device_color *pdevc,
1309
                                   frac31 *frac_values)
1310
14.5M
{
1311
    /* Must return 2 if the color is not pure.
1312
       See try_device_linear_color.
1313
     */
1314
14.5M
    int code;
1315
14.5M
    gx_device_color devc;
1316
1317
14.5M
#ifdef PACIFY_VALGRIND
1318
    /* This is a hack to get us around some valgrind warnings seen
1319
     * when transparency is in use with the clist. We run through
1320
     * the shading code dealing with pfs->num_components components.
1321
     * I believe this is intended to match the source space of the
1322
     * shading, as we have to perform all shadings in the source
1323
     * space initially, and only convert after decomposition.
1324
     * When this reaches down to the clist writing phase, the
1325
     * clist writes pfs->dev->color_info.num_components color
1326
     * components to the clist. In the example I am using
1327
     *  pfs->num_components = 1
1328
     *  pfs->dev->color_info.num_components=3
1329
     * So valgrind complains that 2 of the 3 color components
1330
     * it is writing are uninitialised. Magically, it appears
1331
     * not to actually use them when read back though, so
1332
     * it suffices to blank them to kill the warnings now.
1333
     * If pfs->num_components > pfs->dev->color_info.num_components
1334
     * then we'll not be writing enough information to the clist
1335
     * and so hopefully we'll see bad rendering!
1336
     *
1337
     * An example that shows why this is required:
1338
     *  make gsdebugvg
1339
     *  valgrind --track-origins=yes debugbin/gs -sOutputFile=test.ps
1340
     *    -dMaxBitmap=1000 -sDEVICE=ps2write  -r300  -Z: -dNOPAUSE
1341
     *    -dBATCH -K2000000 -dClusterJob Bug693480.pdf
1342
     * (though ps2write is not implicated here).
1343
     */
1344
14.5M
     if (frac_values) {
1345
1.94M
        int i;
1346
1.94M
  int n = pfs->dev->color_info.num_components;
1347
2.71M
  for (i = pfs->num_components; i < n; i++) {
1348
773k
            frac_values[i] = 0;
1349
773k
  }
1350
1.94M
    }
1351
14.5M
#endif
1352
1353
14.5M
    if (DEBUG_COLOR_INDEX_CACHE && pdevc == NULL)
1354
0
        pdevc = &devc;
1355
14.5M
    if (pfs->pcic) {
1356
1.99M
        code = gs_cached_color_index(pfs->pcic, c->cc.paint.values, pdevc, frac_values);
1357
1.99M
        if (code < 0)
1358
0
            return code;
1359
1.99M
    }
1360
14.5M
    if (DEBUG_COLOR_INDEX_CACHE || pfs->pcic == NULL) {
1361
#       if DEBUG_COLOR_INDEX_CACHE
1362
        gx_color_index cindex = pdevc->colors.pure;
1363
#       endif
1364
12.5M
        gs_client_color fcc;
1365
12.5M
        const gs_color_space *pcs = pfs->direct_space;
1366
1367
12.5M
        if (pcs != NULL) {
1368
1369
12.5M
            if (pdevc == NULL)
1370
0
                pdevc = &devc;
1371
12.5M
            memcpy(fcc.paint.values, c->cc.paint.values,
1372
12.5M
                        sizeof(fcc.paint.values[0]) * pfs->num_components);
1373
12.5M
            code = pcs->type->remap_color(&fcc, pcs, pdevc, pfs->pgs,
1374
12.5M
                                      pfs->trans_device, gs_color_select_texture);
1375
12.5M
            if (code < 0)
1376
0
                return code;
1377
12.5M
            if (frac_values != NULL) {
1378
0
                if (!(pdevc->type == &gx_dc_type_data_devn ||
1379
0
                      pdevc->type == &gx_dc_type_data_pure))
1380
0
                    return 2;
1381
0
                dc2fc31(pfs, pdevc, frac_values);
1382
0
            }
1383
#           if DEBUG_COLOR_INDEX_CACHE
1384
            if (cindex != pdevc->colors.pure)
1385
                return_error(gs_error_unregistered);
1386
#           endif
1387
12.5M
        } else {
1388
            /* This is reserved for future extension,
1389
            when a linear color triangle with frac31 colors is being decomposed
1390
            during a clist rasterization. In this case frac31 colors are written into
1391
            the patch color, and pcs==NULL means an identity color mapping.
1392
            For a while we assume here pfs->pcic is also NULL. */
1393
0
            int j;
1394
0
            const gx_device_color_info *cinfo = &pfs->dev->color_info;
1395
1396
0
            for (j = 0; j < cinfo->num_components; j++)
1397
0
                frac_values[j] = (frac31)c->cc.paint.values[j];
1398
0
            pdevc->type = &gx_dc_type_data_pure;
1399
0
        }
1400
12.5M
    }
1401
14.5M
    return 0;
1402
14.5M
}
1403
1404
int
1405
patch_color_to_device_color(const patch_fill_state_t *pfs, const patch_color_t *c, gx_device_color *pdevc)
1406
0
{
1407
0
    return patch_color_to_device_color_inline(pfs, c, pdevc, NULL);
1408
0
}
1409
1410
static inline double
1411
color_span(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1412
35.4M
{
1413
35.4M
    int n = pfs->num_components, i;
1414
35.4M
    double m;
1415
1416
    /* Dont want to copy colors, which are big things. */
1417
35.4M
    m = any_abs(c1->cc.paint.values[0] - c0->cc.paint.values[0]) / pfs->color_domain.paint.values[0];
1418
132M
    for (i = 1; i < n; i++)
1419
97.4M
        m = max(m, any_abs(c1->cc.paint.values[i] - c0->cc.paint.values[i]) / pfs->color_domain.paint.values[i]);
1420
35.4M
    return m;
1421
35.4M
}
1422
1423
static inline void
1424
color_diff(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1, patch_color_t *d)
1425
3.93M
{
1426
3.93M
    int n = pfs->num_components, i;
1427
1428
19.3M
    for (i = 0; i < n; i++)
1429
15.4M
        d->cc.paint.values[i] = c1->cc.paint.values[i] - c0->cc.paint.values[i];
1430
3.93M
}
1431
1432
static inline double
1433
color_norm(const patch_fill_state_t *pfs, const patch_color_t *c)
1434
3.72M
{
1435
3.72M
    int n = pfs->num_components, i;
1436
3.72M
    double m;
1437
1438
3.72M
    m = any_abs(c->cc.paint.values[0]) / pfs->color_domain.paint.values[0];
1439
14.6M
    for (i = 1; i < n; i++)
1440
10.9M
        m = max(m, any_abs(c->cc.paint.values[i]) / pfs->color_domain.paint.values[i]);
1441
3.72M
    return m;
1442
3.72M
}
1443
1444
static inline int
1445
isnt_color_monotonic(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1446
1.82M
{   /* checks whether the color is monotonic in the n-dimensional interval,
1447
       where n is the number of parameters in c0->t, c1->t.
1448
       returns : 0 = monotonic,
1449
       bit 0 = not or don't know by t0,
1450
       bit 1 = not or don't know by t1,
1451
       <0 = error. */
1452
    /* When pfs->Function is not set, the color is monotonic.
1453
       In this case do not call this function because
1454
       it doesn't check whether pfs->Function is set.
1455
       Actually pfs->monotonic_color prevents that.
1456
     */
1457
    /* This assumes that the color space is always monotonic.
1458
       Non-monotonic color spaces are not recommended by PLRM,
1459
       and the result with them may be imprecise.
1460
     */
1461
1.82M
    uint mask;
1462
1.82M
    int code = gs_function_is_monotonic(pfs->Function, c0->t, c1->t, &mask);
1463
1464
1.82M
    if (code >= 0)
1465
1.82M
        return mask;
1466
2
    return code;
1467
1.82M
}
1468
1469
static inline bool
1470
covers_pixel_centers(fixed ybot, fixed ytop)
1471
4.60M
{
1472
4.60M
    return fixed_pixround(ybot) < fixed_pixround(ytop);
1473
4.60M
}
1474
1475
static inline int
1476
constant_color_trapezoid(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re,
1477
        fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c)
1478
4.21M
{
1479
4.21M
    gx_device_color dc;
1480
4.21M
    int code;
1481
1482
#   if NOFILL_TEST
1483
        /* if (dbg_nofill)
1484
                return 0; */
1485
#   endif
1486
1487
4.21M
    code = patch_color_to_device_color_inline(pfs, c, &dc, NULL);
1488
4.21M
    if (code < 0)
1489
0
        return code;
1490
1491
4.21M
    dc.tag = device_current_tag(pfs->dev);
1492
1493
4.21M
    return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1494
4.21M
        le, re, ybot, ytop, swap_axes, &dc, pfs->pgs->log_op);
1495
4.21M
}
1496
1497
static inline float
1498
function_linearity(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1499
2.36M
{
1500
2.36M
    float s = 0;
1501
1502
2.36M
    if (pfs->Function != NULL) {
1503
332k
        patch_color_t c;
1504
        /* Solaris 9 (Sun C 5.5) compiler cannot initialize a 'const' */
1505
        /* unless it is 'static const' */
1506
332k
        static const float q[2] = {(float)0.3, (float)0.7};
1507
332k
        int i, j;
1508
1509
956k
        for (j = 0; j < count_of(q); j++) {
1510
645k
            c.t[0] = c0->t[0] * (1 - q[j]) + c1->t[0] * q[j];
1511
645k
            c.t[1] = c0->t[1] * (1 - q[j]) + c1->t[1] * q[j];
1512
645k
            patch_resolve_color_inline(&c, pfs);
1513
2.04M
            for (i = 0; i < pfs->num_components; i++) {
1514
1.41M
                float v = c0->cc.paint.values[i] * (1 - q[j]) + c1->cc.paint.values[i] * q[j];
1515
1.41M
                float d = v - c.cc.paint.values[i];
1516
1.41M
                float s1 = any_abs(d) / pfs->color_domain.paint.values[i];
1517
1518
1.41M
                if (s1 > pfs->smoothness)
1519
21.2k
                    return s1;
1520
1.39M
                if (s < s1)
1521
249k
                    s = s1;
1522
1.39M
            }
1523
645k
        }
1524
332k
    }
1525
2.34M
    return s;
1526
2.36M
}
1527
1528
static inline int
1529
is_color_linear(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1530
2.93M
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
1531
2.93M
    if (pfs->unlinear)
1532
2.21M
        return 1; /* Disable this check. */
1533
715k
    else {
1534
715k
        const gs_color_space *cs = pfs->direct_space;
1535
715k
        int code;
1536
715k
        float s = function_linearity(pfs, c0, c1);
1537
1538
715k
        if (s > pfs->smoothness)
1539
6.09k
            return 0;
1540
708k
        if (pfs->cs_always_linear)
1541
0
            return 1;
1542
708k
        code = cs_is_linear(cs, pfs->pgs, pfs->trans_device,
1543
708k
                &c0->cc, &c1->cc, NULL, NULL, pfs->smoothness - s, pfs->icclink);
1544
708k
        if (code <= 0)
1545
7.83k
            return code;
1546
701k
        return 1;
1547
708k
    }
1548
2.93M
}
1549
1550
static int
1551
decompose_linear_color(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re,
1552
        fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c0,
1553
        const patch_color_t *c1)
1554
11.3M
{
1555
    /* Assuming a very narrow trapezoid - ignore the transversal color variation. */
1556
    /* Assuming the XY span is restricted with curve_samples.
1557
       It is important for intersection_of_small_bars to compute faster. */
1558
11.3M
    int code;
1559
11.3M
    patch_color_t *c;
1560
11.3M
    byte *color_stack_ptr;
1561
11.3M
    bool save_inside = pfs->inside;
1562
1563
11.3M
    if (!pfs->inside) {
1564
10.1M
        gs_fixed_rect r, r1;
1565
1566
10.1M
        if(swap_axes) {
1567
3.65M
            r.p.y = min(le->start.x, le->end.x);
1568
3.65M
            r.p.x = min(le->start.y, le->end.y);
1569
3.65M
            r.q.y = max(re->start.x, re->end.x);
1570
3.65M
            r.q.x = max(re->start.y, re->end.y);
1571
6.51M
        } else {
1572
6.51M
            r.p.x = min(le->start.x, le->end.x);
1573
6.51M
            r.p.y = min(le->start.y, le->end.y);
1574
6.51M
            r.q.x = max(re->start.x, re->end.x);
1575
6.51M
            r.q.y = max(re->start.y, re->end.y);
1576
6.51M
        }
1577
10.1M
        r1 = r;
1578
10.1M
        rect_intersect(r, pfs->rect);
1579
10.1M
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
1580
4.83M
            return 0;
1581
5.33M
        if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
1582
5.33M
            r1.q.x == r.q.x && r1.q.y == r.q.y)
1583
1.16M
            pfs->inside = true;
1584
5.33M
    }
1585
6.53M
    color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
1586
6.53M
    if (color_stack_ptr == NULL)
1587
0
        return_error(gs_error_unregistered); /* Must not happen. */
1588
    /* Use the recursive decomposition due to isnt_color_monotonic
1589
       based on fn_is_monotonic_proc_t is_monotonic,
1590
       which applies to intervals. */
1591
6.53M
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
1592
6.53M
    if (ytop - ybot < pfs->decomposition_limit) /* Prevent an infinite color decomposition. */
1593
334k
        code = constant_color_trapezoid(pfs, le, re, ybot, ytop, swap_axes, c);
1594
6.20M
    else {
1595
6.20M
        bool monotonic_color_save = pfs->monotonic_color;
1596
6.20M
        bool linear_color_save = pfs->linear_color;
1597
1598
6.20M
        if (!pfs->monotonic_color) {
1599
1.80M
            code = isnt_color_monotonic(pfs, c0, c1);
1600
1.80M
            if (code < 0)
1601
2
                goto out;
1602
1.80M
            if (!code)
1603
1.39M
                pfs->monotonic_color = true;
1604
1.80M
        }
1605
6.20M
        if (pfs->monotonic_color && !pfs->linear_color) {
1606
2.37M
            code = is_color_linear(pfs, c0, c1);
1607
2.37M
            if (code < 0)
1608
0
                goto out;
1609
2.37M
            if (code > 0)
1610
2.37M
                pfs->linear_color =  true;
1611
2.37M
        }
1612
6.20M
        if (!pfs->unlinear && pfs->linear_color) {
1613
157k
            gx_device *pdev = pfs->dev;
1614
157k
            frac31 fc[2][GX_DEVICE_COLOR_MAX_COMPONENTS];
1615
157k
            gs_fill_attributes fa;
1616
157k
            gs_fixed_rect clip;
1617
1618
157k
            memset(fc, 0x99, sizeof(fc));
1619
1620
157k
            clip = pfs->rect;
1621
157k
            if (swap_axes) {
1622
61.6k
                fixed v;
1623
1624
61.6k
                v = clip.p.x; clip.p.x = clip.p.y; clip.p.y = v;
1625
61.6k
                v = clip.q.x; clip.q.x = clip.q.y; clip.q.y = v;
1626
                /* Don't need adjust_swapped_boundary here. */
1627
61.6k
            }
1628
157k
            clip.p.y = max(clip.p.y, ybot);
1629
157k
            clip.q.y = min(clip.q.y, ytop);
1630
157k
            fa.clip = &clip;
1631
157k
            fa.ht = NULL;
1632
157k
            fa.swap_axes = swap_axes;
1633
157k
            fa.lop = 0;
1634
157k
            fa.ystart = ybot;
1635
157k
            fa.yend = ytop;
1636
157k
            code = patch_color_to_device_color_inline(pfs, c0, NULL, fc[0]);
1637
157k
            if (code < 0)
1638
0
                goto out;
1639
157k
            if (code == 2) {
1640
                /* Must not happen. */
1641
0
                code=gs_note_error(gs_error_unregistered);
1642
0
                goto out;
1643
0
            }
1644
157k
            code = patch_color_to_device_color_inline(pfs, c1, NULL, fc[1]);
1645
157k
            if (code < 0)
1646
0
                goto out;
1647
157k
            code = dev_proc(pdev, fill_linear_color_trapezoid)(pdev, &fa,
1648
157k
                            &le->start, &le->end, &re->start, &re->end,
1649
157k
                            fc[0], fc[1], NULL, NULL);
1650
157k
            if (code == 1) {
1651
157k
                pfs->monotonic_color = monotonic_color_save;
1652
157k
                pfs->linear_color = linear_color_save;
1653
157k
                code = 0; /* The area is filled. */
1654
157k
                goto out;
1655
157k
            }
1656
0
            if (code < 0)
1657
0
                goto out;
1658
0
            else {      /* code == 0, the device requested to decompose the area. */
1659
0
                code = gs_note_error(gs_error_unregistered); /* Must not happen. */
1660
0
                goto out;
1661
0
            }
1662
0
        }
1663
6.04M
        if (!pfs->unlinear || !pfs->linear_color ||
1664
6.04M
                color_span(pfs, c0, c1) > pfs->smoothness) {
1665
2.17M
            fixed y = (ybot + ytop) / 2;
1666
1667
2.17M
            code = decompose_linear_color(pfs, le, re, ybot, y, swap_axes, c0, c);
1668
2.17M
            if (code >= 0)
1669
2.17M
                code = decompose_linear_color(pfs, le, re, y, ytop, swap_axes, c, c1);
1670
2.17M
        } else
1671
3.87M
            code = constant_color_trapezoid(pfs, le, re, ybot, ytop, swap_axes, c);
1672
6.04M
        pfs->monotonic_color = monotonic_color_save;
1673
6.04M
        pfs->linear_color = linear_color_save;
1674
6.04M
    }
1675
6.53M
out:
1676
6.53M
    pfs->inside = save_inside;
1677
6.53M
    release_colors_inline(pfs, color_stack_ptr, 1);
1678
6.53M
    return code;
1679
6.53M
}
1680
1681
static inline int
1682
linear_color_trapezoid(patch_fill_state_t *pfs, gs_fixed_point q[4], int i0, int i1, int i2, int i3,
1683
                fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c0, const patch_color_t *c1,
1684
                bool orient)
1685
3.81M
{
1686
    /* Assuming a very narrow trapezoid - ignore the transversal color change. */
1687
3.81M
    gs_fixed_edge le, re;
1688
1689
3.81M
    make_trapezoid(q, i0, i1, i2, i3, ybot, ytop, swap_axes, orient, &le, &re);
1690
3.81M
    return decompose_linear_color(pfs, &le, &re, ybot, ytop, swap_axes, c0, c1);
1691
3.81M
}
1692
1693
static int
1694
wedge_trap_decompose(patch_fill_state_t *pfs, gs_fixed_point q[4],
1695
        fixed ybot, fixed ytop, const patch_color_t *c0, const patch_color_t *c1,
1696
        bool swap_axes, bool self_intersecting)
1697
4.60M
{
1698
    /* Assuming a very narrow trapezoid - ignore the transversal color change. */
1699
4.60M
    fixed dx1, dy1, dx2, dy2;
1700
4.60M
    bool orient;
1701
1702
4.60M
    if (!pfs->vectorization && !covers_pixel_centers(ybot, ytop))
1703
791k
        return 0;
1704
3.81M
    if (ybot == ytop)
1705
0
        return 0;
1706
3.81M
    dx1 = q[1].x - q[0].x, dy1 = q[1].y - q[0].y;
1707
3.81M
    dx2 = q[2].x - q[0].x, dy2 = q[2].y - q[0].y;
1708
3.81M
    if ((int64_t)dx1 * dy2 != (int64_t)dy1 * dx2) {
1709
1.90M
        orient = ((int64_t)dx1 * dy2 > (int64_t)dy1 * dx2);
1710
1.90M
        return linear_color_trapezoid(pfs, q, 0, 1, 2, 3, ybot, ytop, swap_axes, c0, c1, orient);
1711
1.91M
    } else {
1712
1.91M
        fixed dx3 = q[3].x - q[0].x, dy3 = q[3].y - q[0].y;
1713
1714
1.91M
        orient = ((int64_t)dx1 * dy3 > (int64_t)dy1 * dx3);
1715
1.91M
        return linear_color_trapezoid(pfs, q, 0, 1, 2, 3, ybot, ytop, swap_axes, c0, c1, orient);
1716
1.91M
    }
1717
3.81M
}
1718
1719
static inline int
1720
fill_wedge_trap(patch_fill_state_t *pfs, const gs_fixed_point *p0, const gs_fixed_point *p1,
1721
            const gs_fixed_point *q0, const gs_fixed_point *q1, const patch_color_t *c0, const patch_color_t *c1,
1722
            bool swap_axes, bool self_intersecting)
1723
4.60M
{
1724
    /* We assume that the width of the wedge is close to zero,
1725
       so we can ignore the slope when computing transversal distances. */
1726
4.60M
    gs_fixed_point p[4];
1727
4.60M
    const patch_color_t *cc0, *cc1;
1728
1729
4.60M
    if (p0->y < p1->y) {
1730
2.32M
        p[2] = *p0;
1731
2.32M
        p[3] = *p1;
1732
2.32M
        cc0 = c0;
1733
2.32M
        cc1 = c1;
1734
2.32M
    } else {
1735
2.28M
        p[2] = *p1;
1736
2.28M
        p[3] = *p0;
1737
2.28M
        cc0 = c1;
1738
2.28M
        cc1 = c0;
1739
2.28M
    }
1740
4.60M
    p[0] = *q0;
1741
4.60M
    p[1] = *q1;
1742
4.60M
    return wedge_trap_decompose(pfs, p, p[2].y, p[3].y, cc0, cc1, swap_axes, self_intersecting);
1743
4.60M
}
1744
1745
static void
1746
split_curve_s(const gs_fixed_point *pole, gs_fixed_point *q0, gs_fixed_point *q1, int pole_step)
1747
14.0M
{
1748
    /*  This copies a code fragment from split_curve_midpoint,
1749
        substituting another data type.
1750
     */
1751
    /*
1752
     * We have to define midpoint carefully to avoid overflow.
1753
     * (If it overflows, something really pathological is going
1754
     * on, but we could get infinite recursion that way....)
1755
     */
1756
14.0M
#define midpoint(a,b)\
1757
168M
  (arith_rshift_1(a) + arith_rshift_1(b) + (((a) | (b)) & 1))
1758
14.0M
    fixed x12 = midpoint(pole[1 * pole_step].x, pole[2 * pole_step].x);
1759
14.0M
    fixed y12 = midpoint(pole[1 * pole_step].y, pole[2 * pole_step].y);
1760
1761
    /* q[0] and q[1] must not be the same as pole. */
1762
14.0M
    q0[1 * pole_step].x = midpoint(pole[0 * pole_step].x, pole[1 * pole_step].x);
1763
14.0M
    q0[1 * pole_step].y = midpoint(pole[0 * pole_step].y, pole[1 * pole_step].y);
1764
14.0M
    q1[2 * pole_step].x = midpoint(pole[2 * pole_step].x, pole[3 * pole_step].x);
1765
14.0M
    q1[2 * pole_step].y = midpoint(pole[2 * pole_step].y, pole[3 * pole_step].y);
1766
14.0M
    q0[2 * pole_step].x = midpoint(q0[1 * pole_step].x, x12);
1767
14.0M
    q0[2 * pole_step].y = midpoint(q0[1 * pole_step].y, y12);
1768
14.0M
    q1[1 * pole_step].x = midpoint(x12, q1[2 * pole_step].x);
1769
14.0M
    q1[1 * pole_step].y = midpoint(y12, q1[2 * pole_step].y);
1770
14.0M
    q0[0 * pole_step].x = pole[0 * pole_step].x;
1771
14.0M
    q0[0 * pole_step].y = pole[0 * pole_step].y;
1772
14.0M
    q0[3 * pole_step].x = q1[0 * pole_step].x = midpoint(q0[2 * pole_step].x, q1[1 * pole_step].x);
1773
14.0M
    q0[3 * pole_step].y = q1[0 * pole_step].y = midpoint(q0[2 * pole_step].y, q1[1 * pole_step].y);
1774
14.0M
    q1[3 * pole_step].x = pole[3 * pole_step].x;
1775
14.0M
    q1[3 * pole_step].y = pole[3 * pole_step].y;
1776
14.0M
#undef midpoint
1777
14.0M
}
1778
1779
static void
1780
split_curve(const gs_fixed_point pole[4], gs_fixed_point q0[4], gs_fixed_point q1[4])
1781
207k
{
1782
207k
    split_curve_s(pole, q0, q1, 1);
1783
207k
}
1784
1785
#ifdef SHADING_SWAP_AXES_FOR_PRECISION
1786
static inline void
1787
do_swap_axes(gs_fixed_point *p, int k)
1788
{
1789
    int i;
1790
1791
    for (i = 0; i < k; i++) {
1792
        p[i].x ^= p[i].y; p[i].y ^= p[i].x; p[i].x ^= p[i].y;
1793
    }
1794
}
1795
1796
static inline fixed
1797
span_x(const gs_fixed_point *p, int k)
1798
{
1799
    int i;
1800
    fixed xmin = p[0].x, xmax = p[0].x;
1801
1802
    for (i = 1; i < k; i++) {
1803
        xmin = min(xmin, p[i].x);
1804
        xmax = max(xmax, p[i].x);
1805
    }
1806
    return xmax - xmin;
1807
}
1808
1809
static inline fixed
1810
span_y(const gs_fixed_point *p, int k)
1811
{
1812
    int i;
1813
    fixed ymin = p[0].y, ymax = p[0].y;
1814
1815
    for (i = 1; i < k; i++) {
1816
        ymin = min(ymin, p[i].y);
1817
        ymax = max(ymax, p[i].y);
1818
    }
1819
    return ymax - ymin;
1820
}
1821
#endif
1822
1823
static inline fixed
1824
manhattan_dist(const gs_fixed_point *p0, const gs_fixed_point *p1)
1825
5.86M
{
1826
5.86M
    fixed dx = any_abs(p1->x - p0->x), dy = any_abs(p1->y - p0->y);
1827
1828
5.86M
    return max(dx, dy);
1829
5.86M
}
1830
1831
static inline int
1832
create_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1833
        const gs_fixed_point *p0, const gs_fixed_point *p1)
1834
1.13M
{
1835
1.13M
    if (l->end != NULL)
1836
0
        return_error(gs_error_unregistered); /* Must not happen. */
1837
1.13M
    l->beg = wedge_vertex_list_elem_reserve(pfs);
1838
1.13M
    l->end = wedge_vertex_list_elem_reserve(pfs);
1839
1.13M
    if (l->beg == NULL)
1840
0
        return_error(gs_error_unregistered); /* Must not happen. */
1841
1.13M
    if (l->end == NULL)
1842
0
        return_error(gs_error_unregistered); /* Must not happen. */
1843
1.13M
    l->beg->prev = l->end->next = NULL;
1844
1.13M
    l->beg->next = l->end;
1845
1.13M
    l->end->prev = l->beg;
1846
1.13M
    l->beg->p = *p0;
1847
1.13M
    l->end->p = *p1;
1848
1.13M
    l->beg->level = l->end->level = 0;
1849
1.13M
    return 0;
1850
1.13M
}
1851
1852
static inline int
1853
insert_wedge_vertex_list_elem(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1854
                              const gs_fixed_point *p, wedge_vertex_list_elem_t **r)
1855
2.02M
{
1856
2.02M
    wedge_vertex_list_elem_t *e = wedge_vertex_list_elem_reserve(pfs);
1857
1858
    /* We have got enough free elements due to the preliminary decomposition
1859
       of curves to LAZY_WEDGES_MAX_LEVEL, see curve_samples. */
1860
2.02M
    if (e == NULL)
1861
0
        return_error(gs_error_unregistered); /* Must not happen. */
1862
2.02M
    if (l->beg->next != l->end)
1863
0
        return_error(gs_error_unregistered); /* Must not happen. */
1864
2.02M
    if (l->end->prev != l->beg)
1865
0
        return_error(gs_error_unregistered); /* Must not happen. */
1866
2.02M
    e->next = l->end;
1867
2.02M
    e->prev = l->beg;
1868
2.02M
    e->p = *p;
1869
2.02M
    e->level = max(l->beg->level, l->end->level) + 1;
1870
2.02M
    e->divide_count = 0;
1871
2.02M
    l->beg->next = l->end->prev = e;
1872
2.02M
    {   int sx = l->beg->p.x < l->end->p.x ? 1 : -1;
1873
2.02M
        int sy = l->beg->p.y < l->end->p.y ? 1 : -1;
1874
1875
2.02M
        if ((p->x - l->beg->p.x) * sx < 0)
1876
0
            return_error(gs_error_unregistered); /* Must not happen. */
1877
2.02M
        if ((p->y - l->beg->p.y) * sy < 0)
1878
0
            return_error(gs_error_unregistered); /* Must not happen. */
1879
2.02M
        if ((l->end->p.x - p->x) * sx < 0)
1880
0
            return_error(gs_error_unregistered); /* Must not happen. */
1881
2.02M
        if ((l->end->p.y - p->y) * sy < 0)
1882
0
            return_error(gs_error_unregistered); /* Must not happen. */
1883
2.02M
    }
1884
2.02M
    *r = e;
1885
2.02M
    return 0;
1886
2.02M
}
1887
1888
static inline int
1889
open_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1890
        const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *pm,
1891
        wedge_vertex_list_elem_t **r)
1892
2.93M
{
1893
2.93M
    wedge_vertex_list_elem_t *e;
1894
2.93M
    int code;
1895
1896
2.93M
    if (!l->last_side) {
1897
1.95M
        if (l->beg == NULL) {
1898
1.08M
            code = create_wedge_vertex_list(pfs, l, p0, p1);
1899
1.08M
            if (code < 0)
1900
0
                return code;
1901
1.08M
        }
1902
1.95M
        if (l->beg->p.x != p0->x)
1903
0
            return_error(gs_error_unregistered); /* Must not happen. */
1904
1.95M
        if (l->beg->p.y != p0->y)
1905
0
            return_error(gs_error_unregistered); /* Must not happen. */
1906
1.95M
        if (l->end->p.x != p1->x)
1907
0
            return_error(gs_error_unregistered); /* Must not happen. */
1908
1.95M
        if (l->end->p.y != p1->y)
1909
0
            return_error(gs_error_unregistered); /* Must not happen. */
1910
1.95M
        code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1911
1.95M
        if (code < 0)
1912
0
            return code;
1913
1.95M
        e->divide_count++;
1914
1.95M
    } else if (l->beg == NULL) {
1915
51.0k
        code = create_wedge_vertex_list(pfs, l, p1, p0);
1916
51.0k
        if (code < 0)
1917
0
            return code;
1918
51.0k
        code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1919
51.0k
        if (code < 0)
1920
0
            return code;
1921
51.0k
        e->divide_count++;
1922
931k
    } else {
1923
931k
        if (l->beg->p.x != p1->x)
1924
0
            return_error(gs_error_unregistered); /* Must not happen. */
1925
931k
        if (l->beg->p.y != p1->y)
1926
0
            return_error(gs_error_unregistered); /* Must not happen. */
1927
931k
        if (l->end->p.x != p0->x)
1928
0
            return_error(gs_error_unregistered); /* Must not happen. */
1929
931k
        if (l->end->p.y != p0->y)
1930
0
            return_error(gs_error_unregistered); /* Must not happen. */
1931
931k
        if (l->beg->next == l->end) {
1932
15.6k
            code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1933
15.6k
            if (code < 0)
1934
0
                return code;
1935
15.6k
            e->divide_count++;
1936
915k
        } else {
1937
915k
            e = wedge_vertex_list_find(l->beg, l->end,
1938
915k
                        max(l->beg->level, l->end->level) + 1);
1939
915k
            if (e == NULL)
1940
0
                return_error(gs_error_unregistered); /* Must not happen. */
1941
915k
            if (e->p.x != pm->x || e->p.y != pm->y)
1942
0
                return_error(gs_error_unregistered); /* Must not happen. */
1943
915k
            e->divide_count++;
1944
915k
        }
1945
931k
    }
1946
2.93M
    *r = e;
1947
2.93M
    return 0;
1948
2.93M
}
1949
1950
static inline int
1951
make_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1952
        wedge_vertex_list_t *l0, bool forth,
1953
        const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *pm)
1954
2.93M
{
1955
2.93M
    int code;
1956
1957
2.93M
    l->last_side = l0->last_side;
1958
2.93M
    if (!l->last_side ^ !forth) {
1959
1.68M
        code = open_wedge_median(pfs, l0, p0, p1, pm, &l->end);
1960
1.68M
        l->beg = l0->beg;
1961
1.68M
    } else {
1962
1.24M
        code = open_wedge_median(pfs, l0, p0, p1, pm, &l->beg);
1963
1.24M
        l->end = l0->end;
1964
1.24M
    }
1965
2.93M
    return code;
1966
2.93M
}
1967
1968
static int fill_wedge_from_list(patch_fill_state_t *pfs, const wedge_vertex_list_t *l,
1969
            const patch_color_t *c0, const patch_color_t *c1);
1970
1971
static inline int
1972
close_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1973
        const patch_color_t *c0, const patch_color_t *c1)
1974
2.93M
{
1975
2.93M
    int code;
1976
1977
2.93M
    if (!l->last_side)
1978
1.95M
        return 0;
1979
982k
    code = fill_wedge_from_list(pfs, l, c1, c0);
1980
982k
    if (code < 0)
1981
0
        return code;
1982
982k
    release_wedge_vertex_list_interval(pfs, l->beg, l->end);
1983
982k
    return 0;
1984
982k
}
1985
1986
static inline void
1987
move_wedge(wedge_vertex_list_t *l, const wedge_vertex_list_t *l0, bool forth)
1988
2.93M
{
1989
2.93M
    if (!l->last_side ^ !forth) {
1990
1.68M
        l->beg = l->end;
1991
1.68M
        l->end = l0->end;
1992
1.68M
    } else {
1993
1.24M
        l->end = l->beg;
1994
1.24M
        l->beg = l0->beg;
1995
1.24M
    }
1996
2.93M
}
1997
1998
static inline int
1999
fill_triangle_wedge_aux(patch_fill_state_t *pfs,
2000
            const shading_vertex_t *q0, const shading_vertex_t *q1, const shading_vertex_t *q2)
2001
2.30M
{   int code;
2002
2.30M
    const gs_fixed_point *p0, *p1, *p2;
2003
2.30M
    gs_fixed_point qq0, qq1, qq2;
2004
2.30M
    fixed dx = any_abs(q0->p.x - q1->p.x), dy = any_abs(q0->p.y - q1->p.y);
2005
2.30M
    bool swap_axes;
2006
2007
#   if SKIP_TEST
2008
        dbg_wedge_triangle_cnt++;
2009
#   endif
2010
2.30M
    if (dx > dy) {
2011
1.13M
        swap_axes = true;
2012
1.13M
        qq0.x = q0->p.y;
2013
1.13M
        qq0.y = q0->p.x;
2014
1.13M
        qq1.x = q1->p.y;
2015
1.13M
        qq1.y = q1->p.x;
2016
1.13M
        qq2.x = q2->p.y;
2017
1.13M
        qq2.y = q2->p.x;
2018
1.13M
        p0 = &qq0;
2019
1.13M
        p1 = &qq1;
2020
1.13M
        p2 = &qq2;
2021
1.16M
    } else {
2022
1.16M
        swap_axes = false;
2023
1.16M
        p0 = &q0->p;
2024
1.16M
        p1 = &q1->p;
2025
1.16M
        p2 = &q2->p;
2026
1.16M
    }
2027
    /* We decompose the thin triangle into 2 thin trapezoids.
2028
       An optimization with decomposing into 2 triangles
2029
       appears low useful, because the self_intersecting argument
2030
       with inline expansion does that job perfectly. */
2031
2.30M
    if (p0->y < p1->y) {
2032
1.16M
        code = fill_wedge_trap(pfs, p0, p2, p0, p1, q0->c, q2->c, swap_axes, false);
2033
1.16M
        if (code < 0)
2034
0
            return code;
2035
1.16M
        return fill_wedge_trap(pfs, p2, p1, p0, p1, q2->c, q1->c, swap_axes, false);
2036
1.16M
    } else {
2037
1.14M
        code = fill_wedge_trap(pfs, p0, p2, p1, p0, q0->c, q2->c, swap_axes, false);
2038
1.14M
        if (code < 0)
2039
0
            return code;
2040
1.14M
        return fill_wedge_trap(pfs, p2, p1, p1, p0, q2->c, q1->c, swap_axes, false);
2041
1.14M
    }
2042
2.30M
}
2043
2044
static inline int
2045
try_device_linear_color(patch_fill_state_t *pfs, bool wedge,
2046
        const shading_vertex_t *p0, const shading_vertex_t *p1,
2047
        const shading_vertex_t *p2)
2048
9.03M
{
2049
    /*  Returns :
2050
        <0 - error;
2051
        0 - success;
2052
        1 - decompose to linear color areas;
2053
        2 - decompose to constant color areas;
2054
     */
2055
9.03M
    int code;
2056
2057
9.03M
    if (pfs->unlinear)
2058
8.47M
        return 2;
2059
557k
    if (!wedge) {
2060
557k
        const gs_color_space *cs = pfs->direct_space;
2061
2062
557k
        if (cs != NULL) {
2063
557k
            float s0, s1, s2, s01, s012;
2064
2065
557k
            s0 = function_linearity(pfs, p0->c, p1->c);
2066
557k
            if (s0 > pfs->smoothness)
2067
8.51k
                return 1;
2068
549k
            s1 = function_linearity(pfs, p1->c, p2->c);
2069
549k
            if (s1 > pfs->smoothness)
2070
6.59k
                return 1;
2071
542k
            s2 = function_linearity(pfs, p2->c, p0->c);
2072
542k
            if (s2 > pfs->smoothness)
2073
0
                return 1;
2074
            /* fixme: check an inner color ? */
2075
542k
            s01 = max(s0, s1);
2076
542k
            s012 = max(s01, s2);
2077
542k
            if (pfs->cs_always_linear)
2078
0
                code = 1;
2079
542k
            else
2080
542k
                code = cs_is_linear(cs, pfs->pgs, pfs->trans_device,
2081
542k
                                  &p0->c->cc, &p1->c->cc, &p2->c->cc, NULL,
2082
542k
                                  pfs->smoothness - s012, pfs->icclink);
2083
542k
            if (code < 0)
2084
0
                return code;
2085
542k
            if (code == 0)
2086
207
                return 1;
2087
542k
        }
2088
557k
    }
2089
542k
    {   gx_device *pdev = pfs->dev;
2090
542k
        frac31 fc[3][GX_DEVICE_COLOR_MAX_COMPONENTS];
2091
542k
        gs_fill_attributes fa;
2092
542k
        gx_device_color dc[3];
2093
2094
542k
        fa.clip = &pfs->rect;
2095
542k
        fa.ht = NULL;
2096
542k
        fa.swap_axes = false;
2097
542k
        fa.lop = 0;
2098
542k
        code = patch_color_to_device_color_inline(pfs, p0->c, &dc[0], fc[0]);
2099
542k
        if (code != 0)
2100
0
            return code;
2101
542k
        if (!(dc[0].type == &gx_dc_type_data_pure ||
2102
542k
            dc[0].type == &gx_dc_type_data_devn))
2103
0
            return 2;
2104
542k
        if (!wedge) {
2105
542k
            code = patch_color_to_device_color_inline(pfs, p1->c, &dc[1], fc[1]);
2106
542k
            if (code != 0)
2107
0
                return code;
2108
542k
        }
2109
542k
        code = patch_color_to_device_color_inline(pfs, p2->c, &dc[2], fc[2]);
2110
542k
        if (code != 0)
2111
0
            return code;
2112
542k
        code = dev_proc(pdev, fill_linear_color_triangle)(pdev, &fa,
2113
542k
                        &p0->p, &p1->p, &p2->p,
2114
542k
                        fc[0], (wedge ? NULL : fc[1]), fc[2]);
2115
542k
        if (code == 1)
2116
542k
            return 0; /* The area is filled. */
2117
0
        if (code < 0)
2118
0
            return code;
2119
0
        else /* code == 0, the device requested to decompose the area. */
2120
0
            return 1;
2121
0
    }
2122
0
}
2123
2124
static inline int
2125
fill_triangle_wedge(patch_fill_state_t *pfs,
2126
            const shading_vertex_t *q0, const shading_vertex_t *q1, const shading_vertex_t *q2)
2127
3.71M
{
2128
3.71M
    if ((int64_t)(q1->p.x - q0->p.x) * (q2->p.y - q0->p.y) ==
2129
3.71M
        (int64_t)(q1->p.y - q0->p.y) * (q2->p.x - q0->p.x))
2130
1.40M
        return 0; /* Zero area. */
2131
    /*
2132
        Can't apply try_device_linear_color here
2133
        because didn't check is_color_linear.
2134
        Maybe need a decomposition.
2135
        Do same as for 'unlinear', and branch later.
2136
     */
2137
2.30M
    return fill_triangle_wedge_aux(pfs, q0, q1, q2);
2138
3.71M
}
2139
2140
static inline int
2141
fill_triangle_wedge_from_list(patch_fill_state_t *pfs,
2142
    const wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
2143
    const wedge_vertex_list_elem_t *mid,
2144
    const patch_color_t *c0, const patch_color_t *c1)
2145
1.10M
{
2146
1.10M
    shading_vertex_t p[3];
2147
1.10M
    patch_color_t *c;
2148
1.10M
    byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2149
1.10M
    int code;
2150
2151
1.10M
    if (color_stack_ptr == NULL)
2152
0
        return_error(gs_error_unregistered); /* Must not happen. */
2153
1.10M
    p[2].c = c;
2154
1.10M
    p[0].p = beg->p;
2155
1.10M
    p[0].c = c0;
2156
1.10M
    p[1].p = end->p;
2157
1.10M
    p[1].c = c1;
2158
1.10M
    p[2].p = mid->p;
2159
1.10M
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
2160
1.10M
    code = fill_triangle_wedge(pfs, &p[0], &p[1], &p[2]);
2161
1.10M
    release_colors_inline(pfs, color_stack_ptr, 1);
2162
1.10M
    return code;
2163
1.10M
}
2164
2165
static int
2166
fill_wedge_from_list_rec(patch_fill_state_t *pfs,
2167
            wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
2168
            int level, const patch_color_t *c0, const patch_color_t *c1)
2169
2.72M
{
2170
2.72M
    if (beg->next == end)
2171
705k
        return 0;
2172
2.02M
    else if (beg->next->next == end) {
2173
1.71M
        if (beg->next->divide_count != 1 && beg->next->divide_count != 2)
2174
0
            return_error(gs_error_unregistered); /* Must not happen. */
2175
1.71M
        if (beg->next->divide_count != 1)
2176
914k
            return 0;
2177
803k
        return fill_triangle_wedge_from_list(pfs, beg, end, beg->next, c0, c1);
2178
1.71M
    } else {
2179
303k
        gs_fixed_point p;
2180
303k
        wedge_vertex_list_elem_t *e;
2181
303k
        patch_color_t *c;
2182
303k
        int code;
2183
303k
        byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2184
2185
303k
        if (color_stack_ptr == NULL)
2186
0
            return_error(gs_error_unregistered); /* Must not happen. */
2187
303k
        p.x = (beg->p.x + end->p.x) / 2;
2188
303k
        p.y = (beg->p.y + end->p.y) / 2;
2189
303k
        e = wedge_vertex_list_find(beg, end, level + 1);
2190
303k
        if (e == NULL)
2191
0
            return_error(gs_error_unregistered); /* Must not happen. */
2192
303k
        if (e->p.x != p.x || e->p.y != p.y)
2193
0
            return_error(gs_error_unregistered); /* Must not happen. */
2194
303k
        patch_interpolate_color(c, c0, c1, pfs, 0.5);
2195
303k
        code = fill_wedge_from_list_rec(pfs, beg, e, level + 1, c0, c);
2196
303k
        if (code >= 0)
2197
303k
            code = fill_wedge_from_list_rec(pfs, e, end, level + 1, c, c1);
2198
303k
        if (code >= 0) {
2199
303k
            if (e->divide_count != 1 && e->divide_count != 2)
2200
0
                return_error(gs_error_unregistered); /* Must not happen. */
2201
303k
            if (e->divide_count == 1)
2202
301k
                code = fill_triangle_wedge_from_list(pfs, beg, end, e, c0, c1);
2203
303k
        }
2204
303k
        release_colors_inline(pfs, color_stack_ptr, 1);
2205
303k
        return code;
2206
303k
    }
2207
2.72M
}
2208
2209
static int
2210
fill_wedge_from_list(patch_fill_state_t *pfs, const wedge_vertex_list_t *l,
2211
            const patch_color_t *c0, const patch_color_t *c1)
2212
2.12M
{
2213
2.12M
    return fill_wedge_from_list_rec(pfs, l->beg, l->end,
2214
2.12M
                    max(l->beg->level, l->end->level), c0, c1);
2215
2.12M
}
2216
2217
static inline int
2218
terminate_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
2219
        const patch_color_t *c0, const patch_color_t *c1)
2220
20.5M
{
2221
20.5M
    if (l->beg != NULL) {
2222
1.13M
        int code = fill_wedge_from_list(pfs, l, c0, c1);
2223
2224
1.13M
        if (code < 0)
2225
0
            return code;
2226
1.13M
        return release_wedge_vertex_list(pfs, l, 1);
2227
1.13M
    }
2228
19.4M
    return 0;
2229
20.5M
}
2230
2231
static int
2232
wedge_by_triangles(patch_fill_state_t *pfs, int ka,
2233
        const gs_fixed_point pole[4], const patch_color_t *c0, const patch_color_t *c1)
2234
190k
{   /* Assuming ka >= 2, see fill_wedges. */
2235
190k
    gs_fixed_point q[2][4];
2236
190k
    patch_color_t *c;
2237
190k
    shading_vertex_t p[3];
2238
190k
    int code;
2239
190k
    byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2240
2241
190k
    if (color_stack_ptr == NULL)
2242
0
        return_error(gs_error_unregistered); /* Must not happen. */
2243
190k
    p[2].c = c;
2244
190k
    split_curve(pole, q[0], q[1]);
2245
190k
    p[0].p = pole[0];
2246
190k
    p[0].c = c0;
2247
190k
    p[1].p = pole[3];
2248
190k
    p[1].c = c1;
2249
190k
    p[2].p = q[0][3];
2250
190k
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
2251
190k
    code = fill_triangle_wedge(pfs, &p[0], &p[1], &p[2]);
2252
190k
    if (code >= 0) {
2253
190k
        if (ka == 2)
2254
98.2k
            goto out;
2255
91.9k
        code = wedge_by_triangles(pfs, ka / 2, q[0], c0, p[2].c);
2256
91.9k
    }
2257
91.9k
    if (code >= 0)
2258
91.9k
        code = wedge_by_triangles(pfs, ka / 2, q[1], p[2].c, c1);
2259
190k
out:
2260
190k
    release_colors_inline(pfs, color_stack_ptr, 1);
2261
190k
    return code;
2262
91.9k
}
2263
2264
int
2265
mesh_padding(patch_fill_state_t *pfs, const gs_fixed_point *p0, const gs_fixed_point *p1,
2266
            const patch_color_t *c0, const patch_color_t *c1)
2267
3.21M
{
2268
3.21M
    gs_fixed_point q0, q1;
2269
3.21M
    const patch_color_t *cc0, *cc1;
2270
3.21M
    fixed dx = p1->x - p0->x;
2271
3.21M
    fixed dy = p1->y - p0->y;
2272
3.21M
    bool swap_axes = (any_abs(dx) > any_abs(dy));
2273
3.21M
    gs_fixed_edge le, re;
2274
3.21M
    const fixed adjust = INTERPATCH_PADDING;
2275
2276
3.21M
    if (swap_axes) {
2277
669k
        if (p0->x < p1->x) {
2278
347k
            q0.x = p0->y;
2279
347k
            q0.y = p0->x;
2280
347k
            q1.x = p1->y;
2281
347k
            q1.y = p1->x;
2282
347k
            cc0 = c0;
2283
347k
            cc1 = c1;
2284
347k
        } else {
2285
321k
            q0.x = p1->y;
2286
321k
            q0.y = p1->x;
2287
321k
            q1.x = p0->y;
2288
321k
            q1.y = p0->x;
2289
321k
            cc0 = c1;
2290
321k
            cc1 = c0;
2291
321k
        }
2292
2.54M
    } else if (p0->y < p1->y) {
2293
303k
        q0 = *p0;
2294
303k
        q1 = *p1;
2295
303k
        cc0 = c0;
2296
303k
        cc1 = c1;
2297
2.23M
    } else {
2298
2.23M
        q0 = *p1;
2299
2.23M
        q1 = *p0;
2300
2.23M
        cc0 = c1;
2301
2.23M
        cc1 = c0;
2302
2.23M
    }
2303
3.21M
    le.start.x = q0.x - adjust;
2304
3.21M
    re.start.x = q0.x + adjust;
2305
3.21M
    le.start.y = re.start.y = q0.y - adjust;
2306
3.21M
    le.end.x = q1.x - adjust;
2307
3.21M
    re.end.x = q1.x + adjust;
2308
3.21M
    le.end.y = re.end.y = q1.y + adjust;
2309
3.21M
    adjust_swapped_boundary(&re.start.x, swap_axes);
2310
3.21M
    adjust_swapped_boundary(&re.end.x, swap_axes);
2311
3.21M
    return decompose_linear_color(pfs, &le, &re, le.start.y, le.end.y, swap_axes, cc0, cc1);
2312
    /* fixme : for a better performance and quality, we would like to
2313
       consider the bar as an oriented one and to know at what side of it the spot resides.
2314
       If we know that, we could expand only to outside the spot.
2315
       Note that if the boundary has a self-intersection,
2316
       we still need to expand to both directions.
2317
     */
2318
3.21M
}
2319
2320
static inline void
2321
bbox_of_points(gs_fixed_rect *r,
2322
        const gs_fixed_point *p0, const gs_fixed_point *p1,
2323
        const gs_fixed_point *p2, const gs_fixed_point *p3)
2324
4.87M
{
2325
4.87M
    r->p.x = r->q.x = p0->x;
2326
4.87M
    r->p.y = r->q.y = p0->y;
2327
2328
4.87M
    if (r->p.x > p1->x)
2329
1.89M
        r->p.x = p1->x;
2330
4.87M
    if (r->q.x < p1->x)
2331
1.96M
        r->q.x = p1->x;
2332
4.87M
    if (r->p.y > p1->y)
2333
1.95M
        r->p.y = p1->y;
2334
4.87M
    if (r->q.y < p1->y)
2335
1.88M
        r->q.y = p1->y;
2336
2337
4.87M
    if (r->p.x > p2->x)
2338
1.09M
        r->p.x = p2->x;
2339
4.87M
    if (r->q.x < p2->x)
2340
1.04M
        r->q.x = p2->x;
2341
4.87M
    if (r->p.y > p2->y)
2342
1.03M
        r->p.y = p2->y;
2343
4.87M
    if (r->q.y < p2->y)
2344
1.10M
        r->q.y = p2->y;
2345
2346
4.87M
    if (p3 == NULL)
2347
4.18M
        return;
2348
2349
680k
    if (r->p.x > p3->x)
2350
143k
        r->p.x = p3->x;
2351
680k
    if (r->q.x < p3->x)
2352
164k
        r->q.x = p3->x;
2353
680k
    if (r->p.y > p3->y)
2354
149k
        r->p.y = p3->y;
2355
680k
    if (r->q.y < p3->y)
2356
157k
        r->q.y = p3->y;
2357
680k
}
2358
2359
static int
2360
fill_wedges_aux(patch_fill_state_t *pfs, int k, int ka,
2361
        const gs_fixed_point pole[4], const patch_color_t *c0, const patch_color_t *c1,
2362
        int wedge_type)
2363
106k
{
2364
106k
    int code;
2365
2366
106k
    if (k > 1) {
2367
48.0k
        gs_fixed_point q[2][4];
2368
48.0k
        patch_color_t *c;
2369
48.0k
        bool save_inside = pfs->inside;
2370
48.0k
        byte *color_stack_ptr;
2371
2372
48.0k
        if (!pfs->inside) {
2373
43.7k
            gs_fixed_rect r, r1;
2374
2375
43.7k
            bbox_of_points(&r, &pole[0], &pole[1], &pole[2], &pole[3]);
2376
43.7k
            r.p.x -= INTERPATCH_PADDING;
2377
43.7k
            r.p.y -= INTERPATCH_PADDING;
2378
43.7k
            r.q.x += INTERPATCH_PADDING;
2379
43.7k
            r.q.y += INTERPATCH_PADDING;
2380
43.7k
            r1 = r;
2381
43.7k
            rect_intersect(r, pfs->rect);
2382
43.7k
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
2383
31.1k
                return 0;
2384
12.6k
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
2385
12.6k
                r1.q.x == r.q.x && r1.q.y == r.q.y)
2386
2.75k
                pfs->inside = true;
2387
12.6k
        }
2388
16.9k
        color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2389
16.9k
        if (color_stack_ptr == NULL)
2390
0
            return_error(gs_error_unregistered); /* Must not happen. */
2391
16.9k
        patch_interpolate_color(c, c0, c1, pfs, 0.5);
2392
16.9k
        split_curve(pole, q[0], q[1]);
2393
16.9k
        code = fill_wedges_aux(pfs, k / 2, ka, q[0], c0, c, wedge_type);
2394
16.9k
        if (code >= 0)
2395
16.9k
            code = fill_wedges_aux(pfs, k / 2, ka, q[1], c, c1, wedge_type);
2396
16.9k
        release_colors_inline(pfs, color_stack_ptr, 1);
2397
16.9k
        pfs->inside = save_inside;
2398
16.9k
        return code;
2399
58.6k
    } else {
2400
58.6k
        if ((INTERPATCH_PADDING != 0) && (wedge_type & interpatch_padding)) {
2401
55.7k
            code = mesh_padding(pfs, &pole[0], &pole[3], c0, c1);
2402
55.7k
            if (code < 0)
2403
0
                return code;
2404
55.7k
        }
2405
58.6k
        if (ka >= 2 && (wedge_type & inpatch_wedge))
2406
6.26k
            return wedge_by_triangles(pfs, ka, pole, c0, c1);
2407
52.4k
        return 0;
2408
58.6k
    }
2409
106k
}
2410
2411
static int
2412
fill_wedges(patch_fill_state_t *pfs, int k0, int k1,
2413
        const gs_fixed_point *pole, int pole_step,
2414
        const patch_color_t *c0, const patch_color_t *c1,
2415
        int wedge_type)
2416
1.40M
{
2417
    /* Generate wedges between 2 variants of a curve flattening. */
2418
    /* k0, k1 is a power of 2. */
2419
1.40M
    gs_fixed_point p[4];
2420
2421
1.40M
    if (!(wedge_type & interpatch_padding) && k0 == k1)
2422
1.32M
        return 0; /* Wedges are zero area. */
2423
72.8k
    if (k0 > k1) { /* Swap if required, so that k0 <= k1 */
2424
0
        k0 ^= k1; k1 ^= k0; k0 ^= k1;
2425
0
    }
2426
72.8k
    p[0] = pole[0];
2427
72.8k
    p[1] = pole[pole_step];
2428
72.8k
    p[2] = pole[pole_step * 2];
2429
72.8k
    p[3] = pole[pole_step * 3];
2430
72.8k
    return fill_wedges_aux(pfs, k0, k1 / k0, p, c0, c1, wedge_type);
2431
1.40M
}
2432
2433
static inline void
2434
make_vertices(gs_fixed_point q[4], const quadrangle_patch *p)
2435
19.1k
{
2436
19.1k
    q[0] = p->p[0][0]->p;
2437
19.1k
    q[1] = p->p[0][1]->p;
2438
19.1k
    q[2] = p->p[1][1]->p;
2439
19.1k
    q[3] = p->p[1][0]->p;
2440
19.1k
}
2441
2442
static inline void
2443
wrap_vertices_by_y(gs_fixed_point q[4], const gs_fixed_point s[4])
2444
19.1k
{
2445
19.1k
    fixed y = s[0].y;
2446
19.1k
    int i = 0;
2447
2448
19.1k
    if (y > s[1].y)
2449
5.27k
        i = 1, y = s[1].y;
2450
19.1k
    if (y > s[2].y)
2451
2.07k
        i = 2, y = s[2].y;
2452
19.1k
    if (y > s[3].y)
2453
1.27k
        i = 3, y = s[3].y;
2454
19.1k
    q[0] = s[(i + 0) % 4];
2455
19.1k
    q[1] = s[(i + 1) % 4];
2456
19.1k
    q[2] = s[(i + 2) % 4];
2457
19.1k
    q[3] = s[(i + 3) % 4];
2458
19.1k
}
2459
2460
static int
2461
ordered_triangle(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re, patch_color_t *c)
2462
8.36M
{
2463
8.36M
    gs_fixed_edge ue;
2464
8.36M
    int code;
2465
8.36M
    gx_device_color dc;
2466
2467
#   if NOFILL_TEST
2468
        if (dbg_nofill)
2469
            return 0;
2470
#   endif
2471
8.36M
    code = patch_color_to_device_color_inline(pfs, c, &dc, NULL);
2472
8.36M
    if (code < 0)
2473
0
        return code;
2474
8.36M
    if (le->end.y < re->end.y) {
2475
3.93M
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2476
3.93M
            le, re, le->start.y, le->end.y, false, &dc, pfs->pgs->log_op);
2477
3.93M
        if (code >= 0) {
2478
3.93M
            ue.start = le->end;
2479
3.93M
            ue.end = re->end;
2480
3.93M
            code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2481
3.93M
                &ue, re, le->end.y, re->end.y, false, &dc, pfs->pgs->log_op);
2482
3.93M
        }
2483
4.43M
    } else if (le->end.y > re->end.y) {
2484
3.68M
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2485
3.68M
            le, re, le->start.y, re->end.y, false, &dc, pfs->pgs->log_op);
2486
3.68M
        if (code >= 0) {
2487
3.68M
            ue.start = re->end;
2488
3.68M
            ue.end = le->end;
2489
3.68M
            code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2490
3.68M
                le, &ue, re->end.y, le->end.y, false, &dc, pfs->pgs->log_op);
2491
3.68M
        }
2492
3.68M
    } else
2493
756k
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2494
756k
            le, re, le->start.y, le->end.y, false, &dc, pfs->pgs->log_op);
2495
8.36M
    return code;
2496
8.36M
}
2497
2498
static int
2499
constant_color_triangle(patch_fill_state_t *pfs,
2500
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
2501
7.69M
{
2502
7.69M
    patch_color_t *c[2];
2503
7.69M
    gs_fixed_edge le, re;
2504
7.69M
    fixed dx0, dy0, dx1, dy1;
2505
7.69M
    const shading_vertex_t *pp;
2506
7.69M
    int i, code = 0;
2507
7.69M
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
2508
2509
7.69M
    if (color_stack_ptr == NULL)
2510
0
        return_error(gs_error_unregistered); /* Must not happen. */
2511
7.69M
    patch_interpolate_color(c[0], p0->c, p1->c, pfs, 0.5);
2512
7.69M
    patch_interpolate_color(c[1], p2->c, c[0], pfs, 0.5);
2513
30.7M
    for (i = 0; i < 3; i++) {
2514
        /* fixme : does optimizer compiler expand this cycle ? */
2515
23.0M
        if (p0->p.y <= p1->p.y && p0->p.y <= p2->p.y) {
2516
8.36M
            le.start = re.start = p0->p;
2517
8.36M
            le.end = p1->p;
2518
8.36M
            re.end = p2->p;
2519
2520
8.36M
            dx0 = le.end.x - le.start.x;
2521
8.36M
            dy0 = le.end.y - le.start.y;
2522
8.36M
            dx1 = re.end.x - re.start.x;
2523
8.36M
            dy1 = re.end.y - re.start.y;
2524
8.36M
            if ((int64_t)dx0 * dy1 < (int64_t)dy0 * dx1)
2525
3.90M
                code = ordered_triangle(pfs, &le, &re, c[1]);
2526
4.46M
            else
2527
4.46M
                code = ordered_triangle(pfs, &re, &le, c[1]);
2528
8.36M
            if (code < 0)
2529
0
                break;
2530
8.36M
        }
2531
23.0M
        pp = p0; p0 = p1; p1 = p2; p2 = pp;
2532
23.0M
    }
2533
7.69M
    release_colors_inline(pfs, color_stack_ptr, 2);
2534
7.69M
    return code;
2535
7.69M
}
2536
2537
static inline int
2538
constant_color_quadrangle_aux(patch_fill_state_t *pfs, const quadrangle_patch *p, bool self_intersecting,
2539
        patch_color_t *c[3])
2540
19.1k
{
2541
    /* Assuming the XY span is restricted with curve_samples.
2542
       It is important for intersection_of_small_bars to compute faster. */
2543
19.1k
    gs_fixed_point q[4];
2544
19.1k
    fixed ry, ey;
2545
19.1k
    int code;
2546
19.1k
    bool swap_axes = false;
2547
19.1k
    gx_device_color dc;
2548
19.1k
    bool orient;
2549
2550
19.1k
    dc.tag = device_current_tag(pfs->dev);
2551
2552
19.1k
    patch_interpolate_color(c[1], p->p[0][0]->c, p->p[0][1]->c, pfs, 0.5);
2553
19.1k
    patch_interpolate_color(c[2], p->p[1][0]->c, p->p[1][1]->c, pfs, 0.5);
2554
19.1k
    patch_interpolate_color(c[0], c[1], c[2], pfs, 0.5);
2555
19.1k
    code = patch_color_to_device_color_inline(pfs, c[0], &dc, NULL);
2556
19.1k
    if (code < 0)
2557
0
        return code;
2558
19.1k
    {   gs_fixed_point qq[4];
2559
2560
19.1k
        make_vertices(qq, p);
2561
#ifdef SHADING_SWAP_AXES_FOR_PRECISION
2562
             /* Swapping axes may improve the precision,
2563
                but slows down due to the area expansion needed
2564
                in gx_shade_trapezoid. */
2565
            dx = span_x(qq, 4);
2566
            dy = span_y(qq, 4);
2567
            if (dy < dx) {
2568
                do_swap_axes(qq, 4);
2569
                swap_axes = true;
2570
            }
2571
#endif
2572
19.1k
        wrap_vertices_by_y(q, qq);
2573
19.1k
    }
2574
19.1k
    {   fixed dx1 = q[1].x - q[0].x, dy1 = q[1].y - q[0].y;
2575
19.1k
        fixed dx3 = q[3].x - q[0].x, dy3 = q[3].y - q[0].y;
2576
19.1k
        int64_t g13 = (int64_t)dx1 * dy3, h13 = (int64_t)dy1 * dx3;
2577
2578
19.1k
        if (g13 == h13) {
2579
75
            fixed dx2 = q[2].x - q[0].x, dy2 = q[2].y - q[0].y;
2580
75
            int64_t g23 = (int64_t)dx2 * dy3, h23 = (int64_t)dy2 * dx3;
2581
2582
75
            if (dx1 == 0 && dy1 == 0 && g23 == h23)
2583
0
                return 0;
2584
75
            if (g23 != h23) {
2585
75
                orient = (g23 > h23);
2586
75
                if (q[2].y <= q[3].y) {
2587
75
                    if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[2].y, swap_axes, &dc, orient)) < 0)
2588
0
                        return code;
2589
75
                    return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2590
75
                } else {
2591
0
                    if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient)) < 0)
2592
0
                        return code;
2593
0
                    return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2594
0
                }
2595
75
            } else {
2596
0
                int64_t g12 = (int64_t)dx1 * dy2, h12 = (int64_t)dy1 * dx2;
2597
2598
0
                if (dx3 == 0 && dy3 == 0 && g12 == h12)
2599
0
                    return 0;
2600
0
                orient = (g12 > h12);
2601
0
                if (q[1].y <= q[2].y) {
2602
0
                    if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2603
0
                        return code;
2604
0
                    return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2605
0
                } else {
2606
0
                    if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[0].y, q[2].y, swap_axes, &dc, orient)) < 0)
2607
0
                        return code;
2608
0
                    return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2609
0
                }
2610
0
            }
2611
75
        }
2612
19.0k
        orient = ((int64_t)dx1 * dy3 > (int64_t)dy1 * dx3);
2613
19.0k
    }
2614
19.0k
    if (q[1].y <= q[2].y && q[2].y <= q[3].y) {
2615
8.41k
        if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2616
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2617
0
                return code;
2618
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 3, 1, 2, q[1].y, ry + ey, swap_axes, &dc, orient)) < 0)
2619
0
                return code;
2620
0
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, ry, q[2].y, swap_axes, &dc, orient)) < 0)
2621
0
                return code;
2622
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2623
8.41k
        } else {
2624
8.41k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2625
0
                return code;
2626
8.41k
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[2].y, swap_axes, &dc, orient)) < 0)
2627
0
                return code;
2628
8.41k
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2629
8.41k
        }
2630
10.6k
    } else if (q[1].y <= q[3].y && q[3].y <= q[2].y) {
2631
3.74k
        if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2632
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2633
0
                return code;
2634
0
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, ry + ey, swap_axes, &dc, orient)) < 0)
2635
0
                return code;
2636
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 3, 1, 2, ry, q[3].y, swap_axes, &dc, orient)) < 0)
2637
0
                return code;
2638
0
            return gx_shade_trapezoid(pfs, q, 3, 2, 1, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2639
3.74k
        } else {
2640
3.74k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2641
0
                return code;
2642
3.74k
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient)) < 0)
2643
0
                return code;
2644
3.74k
            return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2645
3.74k
        }
2646
6.89k
    } else if (q[2].y <= q[1].y && q[1].y <= q[3].y) {
2647
0
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2648
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2649
0
                return code;
2650
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2651
0
                return code;
2652
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2653
0
                return code;
2654
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, ry, q[3].y, swap_axes, &dc, orient);
2655
0
        } else if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2656
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2657
0
                return code;
2658
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2659
0
                return code;
2660
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2661
0
                return code;
2662
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, ry, q[3].y, swap_axes, &dc, orient);
2663
0
        } else {
2664
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2665
0
                return code;
2666
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 3, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient)) < 0)
2667
0
                return code;
2668
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient);
2669
0
        }
2670
6.89k
    } else if (q[2].y <= q[3].y && q[3].y <= q[1].y) {
2671
6
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2672
            /* Same code as someone above. */
2673
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2674
0
                return code;
2675
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2676
0
                return code;
2677
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2678
0
                return code;
2679
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, ry, q[3].y, swap_axes, &dc, orient);
2680
6
        } else if (self_intersecting && intersection_of_small_bars(q, 0, 3, 2, 1, &ry, &ey)) {
2681
            /* Same code as someone above. */
2682
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2683
0
                return code;
2684
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2685
0
                return code;
2686
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2687
0
                return code;
2688
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, ry, q[3].y, swap_axes, &dc, orient);
2689
6
        } else {
2690
6
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[2].y, swap_axes, &dc, orient)) < 0)
2691
0
                return code;
2692
6
            if ((code = gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient)) < 0)
2693
0
                return code;
2694
6
            return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2695
6
        }
2696
6.89k
    } else if (q[3].y <= q[1].y && q[1].y <= q[2].y) {
2697
6.67k
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 3, 2, &ry, &ey)) {
2698
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2699
0
                return code;
2700
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, ry + ey, swap_axes, &dc, orient)) < 0)
2701
0
                return code;
2702
0
            if ((code = gx_shade_trapezoid(pfs, q, 3, 2, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2703
0
                return code;
2704
0
            return gx_shade_trapezoid(pfs, q, 3, 2, 1, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2705
6.67k
        } else {
2706
6.67k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2707
0
                return code;
2708
6.67k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, q[1].y, swap_axes, &dc, orient)) < 0)
2709
0
                return code;
2710
6.67k
            return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2711
6.67k
        }
2712
6.67k
    } else if (q[3].y <= q[2].y && q[2].y <= q[1].y) {
2713
218
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2714
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2715
0
                return code;
2716
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, ry + ey, swap_axes, &dc, orient)) < 0)
2717
0
                return code;
2718
0
            if ((code = gx_shade_trapezoid(pfs, q, 3, 2, 0, 1, ry, q[2].y, swap_axes, &dc, orient)) < 0)
2719
0
                return code;
2720
0
            return gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2721
218
        } else {
2722
218
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2723
0
                return code;
2724
218
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient)) < 0)
2725
0
                return code;
2726
218
            return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2727
218
        }
2728
218
    } else {
2729
        /* Impossible. */
2730
0
        return_error(gs_error_unregistered);
2731
0
    }
2732
19.0k
}
2733
2734
int
2735
constant_color_quadrangle(patch_fill_state_t *pfs, const quadrangle_patch *p, bool self_intersecting)
2736
19.1k
{
2737
19.1k
    patch_color_t *c[3];
2738
19.1k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
2739
19.1k
    int code;
2740
2741
19.1k
    if (color_stack_ptr == NULL)
2742
0
        return_error(gs_error_unregistered); /* Must not happen. */
2743
19.1k
    code = constant_color_quadrangle_aux(pfs, p, self_intersecting, c);
2744
19.1k
    release_colors_inline(pfs, color_stack_ptr, 3);
2745
19.1k
    return code;
2746
19.1k
}
2747
2748
static inline void
2749
divide_quadrangle_by_v(patch_fill_state_t *pfs, quadrangle_patch *s0, quadrangle_patch *s1,
2750
            shading_vertex_t q[2], const quadrangle_patch *p, patch_color_t *c[2])
2751
23.8k
{
2752
23.8k
    q[0].c = c[0];
2753
23.8k
    q[1].c = c[1];
2754
23.8k
    q[0].p.x = (p->p[0][0]->p.x + p->p[1][0]->p.x) / 2;
2755
23.8k
    q[1].p.x = (p->p[0][1]->p.x + p->p[1][1]->p.x) / 2;
2756
23.8k
    q[0].p.y = (p->p[0][0]->p.y + p->p[1][0]->p.y) / 2;
2757
23.8k
    q[1].p.y = (p->p[0][1]->p.y + p->p[1][1]->p.y) / 2;
2758
23.8k
    patch_interpolate_color(c[0], p->p[0][0]->c, p->p[1][0]->c, pfs, 0.5);
2759
23.8k
    patch_interpolate_color(c[1], p->p[0][1]->c, p->p[1][1]->c, pfs, 0.5);
2760
23.8k
    s0->p[0][0] = p->p[0][0];
2761
23.8k
    s0->p[0][1] = p->p[0][1];
2762
23.8k
    s0->p[1][0] = s1->p[0][0] = &q[0];
2763
23.8k
    s0->p[1][1] = s1->p[0][1] = &q[1];
2764
23.8k
    s1->p[1][0] = p->p[1][0];
2765
23.8k
    s1->p[1][1] = p->p[1][1];
2766
23.8k
}
2767
2768
static inline void
2769
divide_quadrangle_by_u(patch_fill_state_t *pfs, quadrangle_patch *s0, quadrangle_patch *s1,
2770
            shading_vertex_t q[2], const quadrangle_patch *p, patch_color_t *c[2])
2771
241k
{
2772
241k
    q[0].c = c[0];
2773
241k
    q[1].c = c[1];
2774
241k
    q[0].p.x = (p->p[0][0]->p.x + p->p[0][1]->p.x) / 2;
2775
241k
    q[1].p.x = (p->p[1][0]->p.x + p->p[1][1]->p.x) / 2;
2776
241k
    q[0].p.y = (p->p[0][0]->p.y + p->p[0][1]->p.y) / 2;
2777
241k
    q[1].p.y = (p->p[1][0]->p.y + p->p[1][1]->p.y) / 2;
2778
241k
    patch_interpolate_color(c[0], p->p[0][0]->c, p->p[0][1]->c, pfs, 0.5);
2779
241k
    patch_interpolate_color(c[1], p->p[1][0]->c, p->p[1][1]->c, pfs, 0.5);
2780
241k
    s0->p[0][0] = p->p[0][0];
2781
241k
    s0->p[1][0] = p->p[1][0];
2782
241k
    s0->p[0][1] = s1->p[0][0] = &q[0];
2783
241k
    s0->p[1][1] = s1->p[1][0] = &q[1];
2784
241k
    s1->p[0][1] = p->p[0][1];
2785
241k
    s1->p[1][1] = p->p[1][1];
2786
241k
}
2787
2788
static inline int
2789
is_quadrangle_color_monotonic(const patch_fill_state_t *pfs, const quadrangle_patch *p,
2790
                              bool *not_monotonic_by_u, bool *not_monotonic_by_v)
2791
27.3k
{   /* returns : 1 = monotonic, 0 = don't know, <0 = error. */
2792
27.3k
    int code, r;
2793
2794
27.3k
    code = isnt_color_monotonic(pfs, p->p[0][0]->c, p->p[1][1]->c);
2795
27.3k
    if (code <= 0)
2796
17.1k
        return code;
2797
10.1k
    r = code << pfs->function_arg_shift;
2798
10.1k
    if (r & 1)
2799
0
        *not_monotonic_by_u = true;
2800
10.1k
    if (r & 2)
2801
10.1k
        *not_monotonic_by_v = true;
2802
10.1k
    return !code;
2803
27.3k
}
2804
2805
static inline void
2806
divide_bar(patch_fill_state_t *pfs,
2807
        const shading_vertex_t *p0, const shading_vertex_t *p1, int radix, shading_vertex_t *p,
2808
        patch_color_t *c)
2809
8.00M
{
2810
    /* Assuming p.c == c for providing a non-const access. */
2811
8.00M
    p->p.x = (fixed)((int64_t)p0->p.x * (radix - 1) + p1->p.x) / radix;
2812
8.00M
    p->p.y = (fixed)((int64_t)p0->p.y * (radix - 1) + p1->p.y) / radix;
2813
8.00M
    patch_interpolate_color(c, p0->c, p1->c, pfs, (double)(radix - 1) / radix);
2814
8.00M
}
2815
2816
static int
2817
triangle_by_4(patch_fill_state_t *pfs,
2818
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2,
2819
        wedge_vertex_list_t *l01, wedge_vertex_list_t *l12, wedge_vertex_list_t *l20,
2820
        double cd, fixed sd)
2821
11.2M
{
2822
11.2M
    shading_vertex_t p01, p12, p20;
2823
11.2M
    patch_color_t *c[3];
2824
11.2M
    wedge_vertex_list_t L01, L12, L20, L[3];
2825
11.2M
    bool inside_save = pfs->inside;
2826
11.2M
    gs_fixed_rect r = {{0,0},{0,0}}, r1 =  {{0,0},{0,0}};
2827
11.2M
    int code = 0;
2828
11.2M
    byte *color_stack_ptr;
2829
11.2M
    const bool inside = pfs->inside; /* 'const' should help compiler to analyze initializations. */
2830
2831
11.2M
    if (!inside) {
2832
4.18M
        bbox_of_points(&r, &p0->p, &p1->p, &p2->p, NULL);
2833
4.18M
        r1 = r;
2834
4.18M
        rect_intersect(r, pfs->rect);
2835
4.18M
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
2836
2.25M
            return 0;
2837
4.18M
    }
2838
9.03M
    color_stack_ptr = reserve_colors_inline(pfs, c, 3);
2839
9.03M
    if(color_stack_ptr == NULL)
2840
0
        return_error(gs_error_unregistered);
2841
9.03M
    p01.c = c[0];
2842
9.03M
    p12.c = c[1];
2843
9.03M
    p20.c = c[2];
2844
9.03M
    code = try_device_linear_color(pfs, false, p0, p1, p2);
2845
9.03M
    switch(code) {
2846
542k
        case 0: /* The area is filled. */
2847
542k
            goto out;
2848
8.47M
        case 2: /* decompose to constant color areas */
2849
            /* Halftoned devices may do with some bigger areas
2850
               due to imprecise representation of a contone color.
2851
               So we multiply the decomposition limit by 4 for a faster rendering. */
2852
8.47M
            if (sd < pfs->decomposition_limit * 4) {
2853
2.17M
                code = constant_color_triangle(pfs, p2, p0, p1);
2854
2.17M
                goto out;
2855
2.17M
            }
2856
6.30M
            if (pfs->Function != NULL) {
2857
1.18M
                double d01 = color_span(pfs, p1->c, p0->c);
2858
1.18M
                double d12 = color_span(pfs, p2->c, p1->c);
2859
1.18M
                double d20 = color_span(pfs, p0->c, p2->c);
2860
2861
1.18M
                if (d01 <= pfs->smoothness / COLOR_CONTIGUITY &&
2862
1.18M
                    d12 <= pfs->smoothness / COLOR_CONTIGUITY &&
2863
1.18M
                    d20 <= pfs->smoothness / COLOR_CONTIGUITY) {
2864
726k
                    code = constant_color_triangle(pfs, p2, p0, p1);
2865
726k
                    goto out;
2866
726k
                }
2867
5.11M
            } else if (cd <= pfs->smoothness / COLOR_CONTIGUITY) {
2868
4.78M
                code = constant_color_triangle(pfs, p2, p0, p1);
2869
4.78M
                goto out;
2870
4.78M
            }
2871
792k
            break;
2872
792k
        case 1: /* decompose to linear color areas */
2873
15.3k
            if (sd < pfs->decomposition_limit) {
2874
6.50k
                code = constant_color_triangle(pfs, p2, p0, p1);
2875
6.50k
                goto out;
2876
6.50k
            }
2877
8.81k
            break;
2878
8.81k
        default: /* Error. */
2879
0
            goto out;
2880
9.03M
    }
2881
801k
    if (!inside) {
2882
272k
        if (r.p.x == r1.p.x && r.p.y == r1.p.y &&
2883
272k
            r.q.x == r1.q.x && r.q.y == r1.q.y)
2884
19.3k
            pfs->inside = true;
2885
272k
    }
2886
801k
    divide_bar(pfs, p0, p1, 2, &p01, c[0]);
2887
801k
    divide_bar(pfs, p1, p2, 2, &p12, c[1]);
2888
801k
    divide_bar(pfs, p2, p0, 2, &p20, c[2]);
2889
801k
    if (LAZY_WEDGES) {
2890
801k
        init_wedge_vertex_list(L, count_of(L));
2891
801k
        code = make_wedge_median(pfs, &L01, l01, true,  &p0->p, &p1->p, &p01.p);
2892
801k
        if (code >= 0)
2893
801k
            code = make_wedge_median(pfs, &L12, l12, true,  &p1->p, &p2->p, &p12.p);
2894
801k
        if (code >= 0)
2895
801k
            code = make_wedge_median(pfs, &L20, l20, false, &p2->p, &p0->p, &p20.p);
2896
801k
    } else {
2897
0
        code = fill_triangle_wedge(pfs, p0, p1, &p01);
2898
0
        if (code >= 0)
2899
0
            code = fill_triangle_wedge(pfs, p1, p2, &p12);
2900
0
        if (code >= 0)
2901
0
            code = fill_triangle_wedge(pfs, p2, p0, &p20);
2902
0
    }
2903
801k
    if (code >= 0)
2904
801k
        code = triangle_by_4(pfs, p0, &p01, &p20, &L01, &L[0], &L20, cd / 2, sd / 2);
2905
801k
    if (code >= 0) {
2906
801k
        if (LAZY_WEDGES) {
2907
801k
            move_wedge(&L01, l01, true);
2908
801k
            move_wedge(&L20, l20, false);
2909
801k
        }
2910
801k
        code = triangle_by_4(pfs, p1, &p12, &p01, &L12, &L[1], &L01, cd / 2, sd / 2);
2911
801k
    }
2912
801k
    if (code >= 0) {
2913
801k
        if (LAZY_WEDGES)
2914
801k
            move_wedge(&L12, l12, true);
2915
801k
        code = triangle_by_4(pfs, p2, &p20, &p12, &L20, &L[2], &L12, cd / 2, sd / 2);
2916
801k
    }
2917
801k
    if (code >= 0) {
2918
801k
        L[0].last_side = L[1].last_side = L[2].last_side = true;
2919
801k
        code = triangle_by_4(pfs, &p01, &p12, &p20, &L[1], &L[2], &L[0], cd / 2, sd / 2);
2920
801k
    }
2921
801k
    if (LAZY_WEDGES) {
2922
801k
        if (code >= 0)
2923
801k
            code = close_wedge_median(pfs, l01, p0->c, p1->c);
2924
801k
        if (code >= 0)
2925
801k
            code = close_wedge_median(pfs, l12, p1->c, p2->c);
2926
801k
        if (code >= 0)
2927
801k
            code = close_wedge_median(pfs, l20, p2->c, p0->c);
2928
801k
        if (code >= 0)
2929
801k
            code = terminate_wedge_vertex_list(pfs, &L[0], p01.c, p20.c);
2930
801k
        if (code >= 0)
2931
801k
            code = terminate_wedge_vertex_list(pfs, &L[1], p12.c, p01.c);
2932
801k
        if (code >= 0)
2933
801k
            code = terminate_wedge_vertex_list(pfs, &L[2], p20.c, p12.c);
2934
801k
    }
2935
801k
    pfs->inside = inside_save;
2936
9.03M
out:
2937
9.03M
    release_colors_inline(pfs, color_stack_ptr, 3);
2938
9.03M
    return code;
2939
801k
}
2940
2941
static inline int
2942
fill_triangle(patch_fill_state_t *pfs,
2943
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2,
2944
        wedge_vertex_list_t *l01, wedge_vertex_list_t *l12, wedge_vertex_list_t *l20)
2945
8.08M
{
2946
8.08M
    fixed sd01 = max(any_abs(p1->p.x - p0->p.x), any_abs(p1->p.y - p0->p.y));
2947
8.08M
    fixed sd12 = max(any_abs(p2->p.x - p1->p.x), any_abs(p2->p.y - p1->p.y));
2948
8.08M
    fixed sd20 = max(any_abs(p0->p.x - p2->p.x), any_abs(p0->p.y - p2->p.y));
2949
8.08M
    fixed sd1 = max(sd01, sd12);
2950
8.08M
    fixed sd = max(sd1, sd20);
2951
8.08M
    double cd = 0;
2952
2953
#   if SKIP_TEST
2954
        dbg_triangle_cnt++;
2955
#   endif
2956
8.08M
    if (pfs->Function == NULL) {
2957
6.29M
        double d01 = color_span(pfs, p1->c, p0->c);
2958
6.29M
        double d12 = color_span(pfs, p2->c, p1->c);
2959
6.29M
        double d20 = color_span(pfs, p0->c, p2->c);
2960
6.29M
        double cd1 = max(d01, d12);
2961
2962
6.29M
        cd = max(cd1, d20);
2963
6.29M
    }
2964
8.08M
    return triangle_by_4(pfs, p0, p1, p2, l01, l12, l20, cd, sd);
2965
8.08M
}
2966
2967
static int
2968
small_mesh_triangle(patch_fill_state_t *pfs,
2969
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
2970
1.76M
{
2971
1.76M
    int code;
2972
1.76M
    wedge_vertex_list_t l[3];
2973
2974
1.76M
    init_wedge_vertex_list(l, count_of(l));
2975
1.76M
    code = fill_triangle(pfs, p0, p1, p2, &l[0], &l[1], &l[2]);
2976
1.76M
    if (code < 0)
2977
0
        return code;
2978
1.76M
    code = terminate_wedge_vertex_list(pfs, &l[0], p0->c, p1->c);
2979
1.76M
    if (code < 0)
2980
0
        return code;
2981
1.76M
    code = terminate_wedge_vertex_list(pfs, &l[1], p1->c, p2->c);
2982
1.76M
    if (code < 0)
2983
0
        return code;
2984
1.76M
    return terminate_wedge_vertex_list(pfs, &l[2], p2->c, p0->c);
2985
1.76M
}
2986
2987
int
2988
gx_init_patch_fill_state_for_clist(gx_device *dev, patch_fill_state_t *pfs, gs_memory_t *memory)
2989
0
{
2990
0
    int i;
2991
2992
0
    pfs->dev = dev;
2993
0
    pfs->pgs = NULL;
2994
0
    pfs->direct_space = NULL;
2995
0
    pfs->num_components = dev->color_info.num_components;
2996
    /* pfs->cc_max_error[GS_CLIENT_COLOR_MAX_COMPONENTS] unused */
2997
0
    pfs->pshm = NULL;
2998
0
    pfs->Function = NULL;
2999
0
    pfs->function_arg_shift = 0;
3000
0
    pfs->vectorization = false; /* A stub for a while. Will use with pclwrite. */
3001
0
    pfs->n_color_args = 1; /* unused. */
3002
0
    pfs->max_small_coord = 0; /* unused. */
3003
0
    pfs->wedge_vertex_list_elem_buffer = NULL; /* fixme */
3004
0
    pfs->free_wedge_vertex = NULL; /* fixme */
3005
0
    pfs->wedge_vertex_list_elem_count = 0; /* fixme */
3006
0
    pfs->wedge_vertex_list_elem_count_max = 0; /* fixme */
3007
0
    for (i = 0; i < pfs->num_components; i++)
3008
0
        pfs->color_domain.paint.values[i] = (float)0x7fffffff;
3009
    /* decomposition_limit must be same as one in init_patch_fill_state */
3010
#ifdef MAX_SHADING_RESOLUTION
3011
    pfs->decomposition_limit = float2fixed(min(pfs->dev->HWResolution[0],
3012
                                               pfs->dev->HWResolution[1]) / MAX_SHADING_RESOLUTION);
3013
    pfs->decomposition_limit = max(pfs->decomposition_limit, fixed_1);
3014
#else
3015
0
    pfs->decomposition_limit = fixed_1;
3016
0
#endif
3017
0
    pfs->fixed_flat = 0; /* unused */
3018
0
    pfs->smoothness = 0; /* unused */
3019
0
    pfs->maybe_self_intersecting = false; /* unused */
3020
0
    pfs->monotonic_color = true;
3021
0
    pfs->linear_color = true;
3022
0
    pfs->unlinear = false; /* Because it is used when fill_linear_color_triangle was called. */
3023
0
    pfs->inside = false;
3024
0
    pfs->color_stack_size = 0;
3025
0
    pfs->color_stack_step = dev->color_info.num_components;
3026
0
    pfs->color_stack_ptr = NULL; /* fixme */
3027
0
    pfs->color_stack = NULL; /* fixme */
3028
0
    pfs->color_stack_limit = NULL; /* fixme */
3029
0
    pfs->pcic = NULL; /* Will do someday. */
3030
0
    pfs->trans_device = NULL;
3031
0
    pfs->icclink = NULL;
3032
0
    return alloc_patch_fill_memory(pfs, memory, NULL);
3033
0
}
3034
3035
/* A method for filling a small triangle that the device can't handle.
3036
   Used by clist playback. */
3037
int
3038
gx_fill_triangle_small(gx_device *dev, const gs_fill_attributes *fa,
3039
        const gs_fixed_point *p0, const gs_fixed_point *p1,
3040
        const gs_fixed_point *p2,
3041
        const frac31 *c0, const frac31 *c1, const frac31 *c2)
3042
0
{
3043
0
    patch_fill_state_t *pfs = fa->pfs;
3044
0
    patch_color_t c[3];
3045
0
    shading_vertex_t p[3];
3046
0
    uchar i;
3047
3048
    /* pfs->rect = *fa->clip; unused ? */
3049
0
    p[0].p = *p0;
3050
0
    p[1].p = *p1;
3051
0
    p[2].p = *p2;
3052
0
    p[0].c = &c[0];
3053
0
    p[1].c = &c[1];
3054
0
    p[2].c = &c[2];
3055
0
    c[0].t[0] = c[0].t[1] = c[1].t[0] = c[1].t[1] = c[2].t[0] = c[2].t[1] = 0; /* Dummy - not used. */
3056
0
    for (i = 0; i < dev->color_info.num_components; i++) {
3057
0
        c[0].cc.paint.values[i] = (float)c0[i];
3058
0
        c[1].cc.paint.values[i] = (float)c1[i];
3059
0
        c[2].cc.paint.values[i] = (float)c2[i];
3060
0
    }
3061
    /* fixme: the cycle above converts frac31 values into floats.
3062
       We don't like this because (1) it misses lower bits,
3063
       and (2) fixed point values can be faster on some platforms.
3064
       We could fix it with coding a template for small_mesh_triangle
3065
       and its callees until patch_color_to_device_color_inline.
3066
    */
3067
    /* fixme : this function is called from gxclrast.c
3068
       after dev->procs.fill_linear_color_triangle returns 0 - "subdivide".
3069
       After few moments small_mesh_triangle indirectly calls
3070
       same function with same arguments as a part of
3071
       try_device_linear_color in triangle_by_4.
3072
       Obviusly it will return zero again.
3073
       Actually we don't need the second call,
3074
       so optimize with skipping the second call.
3075
     */
3076
0
    return small_mesh_triangle(pfs, &p[0], &p[1], &p[2]);
3077
0
}
3078
3079
static int
3080
mesh_triangle_rec(patch_fill_state_t *pfs,
3081
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
3082
2.15M
{
3083
2.15M
    pfs->unlinear = !is_linear_color_applicable(pfs);
3084
2.15M
    if (manhattan_dist(&p0->p, &p1->p) < pfs->max_small_coord &&
3085
2.15M
        manhattan_dist(&p1->p, &p2->p) < pfs->max_small_coord &&
3086
2.15M
        manhattan_dist(&p2->p, &p0->p) < pfs->max_small_coord)
3087
1.76M
        return small_mesh_triangle(pfs, p0, p1, p2);
3088
385k
    else {
3089
        /* Subdivide into 4 triangles with 3 triangle non-lazy wedges.
3090
           Doing so against the wedge_vertex_list_elem_buffer overflow.
3091
           We could apply a smarter method, dividing long sides
3092
           with no wedges and short sides with lazy wedges.
3093
           This needs to start wedges dynamically when
3094
           a side becomes short. We don't do so because the
3095
           number of checks per call significantly increases
3096
           and the logics is complicated, but the performance
3097
           advantage appears small due to big meshes are rare.
3098
         */
3099
385k
        shading_vertex_t p01, p12, p20;
3100
385k
        patch_color_t *c[3];
3101
385k
        int code;
3102
385k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
3103
3104
385k
        if (color_stack_ptr == NULL)
3105
0
            return_error(gs_error_unregistered); /* Must not happen. */
3106
385k
        p01.c = c[0];
3107
385k
        p12.c = c[1];
3108
385k
        p20.c = c[2];
3109
385k
        divide_bar(pfs, p0, p1, 2, &p01, c[0]);
3110
385k
        divide_bar(pfs, p1, p2, 2, &p12, c[1]);
3111
385k
        divide_bar(pfs, p2, p0, 2, &p20, c[2]);
3112
385k
        code = fill_triangle_wedge(pfs, p0, p1, &p01);
3113
385k
        if (code >= 0)
3114
385k
            code = fill_triangle_wedge(pfs, p1, p2, &p12);
3115
385k
        if (code >= 0)
3116
385k
            code = fill_triangle_wedge(pfs, p2, p0, &p20);
3117
385k
        if (code >= 0)
3118
385k
            code = mesh_triangle_rec(pfs, p0, &p01, &p20);
3119
385k
        if (code >= 0)
3120
385k
            code = mesh_triangle_rec(pfs, p1, &p12, &p01);
3121
385k
        if (code >= 0)
3122
385k
            code = mesh_triangle_rec(pfs, p2, &p20, &p12);
3123
385k
        if (code >= 0)
3124
385k
            code = mesh_triangle_rec(pfs, &p01, &p12, &p20);
3125
385k
        release_colors_inline(pfs, color_stack_ptr, 3);
3126
385k
        return code;
3127
385k
    }
3128
2.15M
}
3129
3130
int
3131
mesh_triangle(patch_fill_state_t *pfs,
3132
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
3133
608k
{
3134
608k
    if ((*dev_proc(pfs->dev, dev_spec_op))(pfs->dev,
3135
608k
            gxdso_pattern_shading_area, NULL, 0) > 0) {
3136
        /* Inform the device with the shading coverage area.
3137
           First compute the sign of the area, because
3138
           all areas to be clipped in same direction. */
3139
0
        gx_device *pdev = pfs->dev;
3140
0
        gx_path path;
3141
0
        int code;
3142
0
        fixed d01x = p1->p.x - p0->p.x, d01y = p1->p.y - p0->p.y;
3143
0
        fixed d12x = p2->p.x - p1->p.x, d12y = p2->p.y - p1->p.y;
3144
0
        int64_t s1 = (int64_t)d01x * d12y - (int64_t)d01y * d12x;
3145
3146
0
        gx_path_init_local(&path, pdev->memory);
3147
0
        code = gx_path_add_point(&path, p0->p.x, p0->p.y);
3148
0
        if (code >= 0 && s1 >= 0)
3149
0
            code = gx_path_add_line(&path, p1->p.x, p1->p.y);
3150
0
        if (code >= 0)
3151
0
            code = gx_path_add_line(&path, p2->p.x, p2->p.y);
3152
0
        if (code >= 0 && s1 < 0)
3153
0
            code = gx_path_add_line(&path, p1->p.x, p1->p.y);
3154
0
        if (code >= 0)
3155
0
            code = gx_path_close_subpath(&path);
3156
0
        if (code >= 0)
3157
0
            code = (*dev_proc(pfs->dev, fill_path))(pdev, NULL, &path, NULL, NULL, NULL);
3158
0
        gx_path_free(&path, "mesh_triangle");
3159
0
        if (code < 0)
3160
0
            return code;
3161
0
    }
3162
608k
    return mesh_triangle_rec(pfs, p0, p1, p2);
3163
608k
}
3164
3165
static inline int
3166
triangles4(patch_fill_state_t *pfs, const quadrangle_patch *p, bool dummy_argument)
3167
1.48M
{
3168
1.48M
    shading_vertex_t p0001, p1011, q;
3169
1.48M
    patch_color_t *c[3];
3170
1.48M
    wedge_vertex_list_t l[4];
3171
1.48M
    int code;
3172
1.48M
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
3173
3174
1.48M
    if(color_stack_ptr == NULL)
3175
0
        return_error(gs_error_unregistered); /* Must not happen. */
3176
1.48M
    p0001.c = c[0];
3177
1.48M
    p1011.c = c[1];
3178
1.48M
    q.c = c[2];
3179
1.48M
    init_wedge_vertex_list(l, count_of(l));
3180
1.48M
    divide_bar(pfs, p->p[0][0], p->p[0][1], 2, &p0001, c[0]);
3181
1.48M
    divide_bar(pfs, p->p[1][0], p->p[1][1], 2, &p1011, c[1]);
3182
1.48M
    divide_bar(pfs, &p0001, &p1011, 2, &q, c[2]);
3183
1.48M
    code = fill_triangle(pfs, p->p[0][0], p->p[0][1], &q, p->l0001, &l[0], &l[3]);
3184
1.48M
    if (code >= 0) {
3185
1.48M
        l[0].last_side = true;
3186
1.48M
        l[3].last_side = true;
3187
1.48M
        code = fill_triangle(pfs, p->p[0][1], p->p[1][1], &q, p->l0111, &l[1], &l[0]);
3188
1.48M
    }
3189
1.48M
    if (code >= 0) {
3190
1.48M
        l[1].last_side = true;
3191
1.48M
        code = fill_triangle(pfs, p->p[1][1], p->p[1][0], &q, p->l1110, &l[2], &l[1]);
3192
1.48M
    }
3193
1.48M
    if (code >= 0) {
3194
1.48M
        l[2].last_side = true;
3195
1.48M
        code = fill_triangle(pfs, p->p[1][0], p->p[0][0], &q, p->l1000, &l[3], &l[2]);
3196
1.48M
    }
3197
1.48M
    if (code >= 0)
3198
1.48M
        code = terminate_wedge_vertex_list(pfs, &l[0], p->p[0][1]->c, q.c);
3199
1.48M
    if (code >= 0)
3200
1.48M
        code = terminate_wedge_vertex_list(pfs, &l[1], p->p[1][1]->c, q.c);
3201
1.48M
    if (code >= 0)
3202
1.48M
        code = terminate_wedge_vertex_list(pfs, &l[2], p->p[1][0]->c, q.c);
3203
1.48M
    if (code >= 0)
3204
1.48M
        code = terminate_wedge_vertex_list(pfs, &l[3], q.c, p->p[0][0]->c);
3205
1.48M
    release_colors_inline(pfs, color_stack_ptr, 3);
3206
1.48M
    return code;
3207
1.48M
}
3208
3209
static inline int
3210
triangles2(patch_fill_state_t *pfs, const quadrangle_patch *p, bool dummy_argument)
3211
199k
{
3212
199k
    wedge_vertex_list_t l;
3213
199k
    int code;
3214
3215
199k
    init_wedge_vertex_list(&l, 1);
3216
199k
    code = fill_triangle(pfs, p->p[0][0], p->p[0][1], p->p[1][1], p->l0001, p->l0111, &l);
3217
199k
    if (code < 0)
3218
0
        return code;
3219
199k
    l.last_side = true;
3220
199k
    code = fill_triangle(pfs, p->p[1][1], p->p[1][0], p->p[0][0], p->l1110, p->l1000, &l);
3221
199k
    if (code < 0)
3222
0
        return code;
3223
199k
    code = terminate_wedge_vertex_list(pfs, &l, p->p[1][1]->c, p->p[0][0]->c);
3224
199k
    if (code < 0)
3225
0
        return code;
3226
199k
    return 0;
3227
199k
}
3228
3229
static inline void
3230
make_quadrangle(const tensor_patch *p, shading_vertex_t qq[2][2],
3231
        wedge_vertex_list_t l[4], quadrangle_patch *q)
3232
1.62M
{
3233
1.62M
    qq[0][0].p = p->pole[0][0];
3234
1.62M
    qq[0][1].p = p->pole[0][3];
3235
1.62M
    qq[1][0].p = p->pole[3][0];
3236
1.62M
    qq[1][1].p = p->pole[3][3];
3237
1.62M
    qq[0][0].c = p->c[0][0];
3238
1.62M
    qq[0][1].c = p->c[0][1];
3239
1.62M
    qq[1][0].c = p->c[1][0];
3240
1.62M
    qq[1][1].c = p->c[1][1];
3241
1.62M
    q->p[0][0] = &qq[0][0];
3242
1.62M
    q->p[0][1] = &qq[0][1];
3243
1.62M
    q->p[1][0] = &qq[1][0];
3244
1.62M
    q->p[1][1] = &qq[1][1];
3245
1.62M
    q->l0001 = &l[0];
3246
1.62M
    q->l0111 = &l[1];
3247
1.62M
    q->l1110 = &l[2];
3248
1.62M
    q->l1000 = &l[3];
3249
1.62M
}
3250
3251
static inline int
3252
is_quadrangle_color_linear_by_u(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3253
220k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3254
220k
    int code;
3255
3256
220k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[0][1]->c);
3257
220k
    if (code <= 0)
3258
0
        return code;
3259
220k
    return is_color_linear(pfs, p->p[1][0]->c, p->p[1][1]->c);
3260
220k
}
3261
3262
static inline int
3263
is_quadrangle_color_linear_by_v(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3264
33.8k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3265
33.8k
    int code;
3266
3267
33.8k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[1][0]->c);
3268
33.8k
    if (code <= 0)
3269
6.78k
        return code;
3270
27.0k
    return is_color_linear(pfs, p->p[0][1]->c, p->p[1][1]->c);
3271
33.8k
}
3272
3273
static inline int
3274
is_quadrangle_color_linear_by_diagonals(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3275
31.3k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3276
31.3k
    int code;
3277
3278
31.3k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[1][1]->c);
3279
31.3k
    if (code <= 0)
3280
6.33k
        return code;
3281
25.0k
    return is_color_linear(pfs, p->p[0][1]->c, p->p[1][0]->c);
3282
31.3k
}
3283
3284
typedef enum {
3285
    color_change_small,
3286
    color_change_gradient,
3287
    color_change_linear,
3288
    color_change_bilinear,
3289
    color_change_general
3290
} color_change_type_t;
3291
3292
static inline color_change_type_t
3293
quadrangle_color_change(const patch_fill_state_t *pfs, const quadrangle_patch *p,
3294
                        bool is_big_u, bool is_big_v, double size_u, double size_v,
3295
                        bool *divide_u, bool *divide_v)
3296
1.85M
{
3297
1.85M
    patch_color_t d0001, d1011, d;
3298
1.85M
    double D, D0001, D1011, D0010, D0111, D0011, D0110;
3299
1.85M
    double Du, Dv;
3300
3301
1.85M
    color_diff(pfs, p->p[0][0]->c, p->p[0][1]->c, &d0001);
3302
1.85M
    color_diff(pfs, p->p[1][0]->c, p->p[1][1]->c, &d1011);
3303
1.85M
    D0001 = color_norm(pfs, &d0001);
3304
1.85M
    D1011 = color_norm(pfs, &d1011);
3305
1.85M
    D0010 = color_span(pfs, p->p[0][0]->c, p->p[1][0]->c);
3306
1.85M
    D0111 = color_span(pfs, p->p[0][1]->c, p->p[1][1]->c);
3307
1.85M
    D0011 = color_span(pfs, p->p[0][0]->c, p->p[1][1]->c);
3308
1.85M
    D0110 = color_span(pfs, p->p[0][1]->c, p->p[1][0]->c);
3309
1.85M
    if (pfs->unlinear) {
3310
1.61M
        if (D0001 <= pfs->smoothness && D1011 <= pfs->smoothness &&
3311
1.61M
            D0010 <= pfs->smoothness && D0111 <= pfs->smoothness &&
3312
1.61M
            D0011 <= pfs->smoothness && D0110 <= pfs->smoothness)
3313
1.35M
            return color_change_small;
3314
259k
        if (D0001 <= pfs->smoothness && D1011 <= pfs->smoothness) {
3315
20.0k
            if (!is_big_v) {
3316
                /* The color function looks uncontiguous. */
3317
9.10k
                return color_change_small;
3318
9.10k
            }
3319
10.9k
            *divide_v = true;
3320
10.9k
            return color_change_gradient;
3321
20.0k
        }
3322
239k
        if (D0010 <= pfs->smoothness && D0111 <= pfs->smoothness) {
3323
235k
            if (!is_big_u) {
3324
                /* The color function looks uncontiguous. */
3325
116
                return color_change_small;
3326
116
            }
3327
235k
            *divide_u = true;
3328
235k
            return color_change_gradient;
3329
235k
        }
3330
239k
    }
3331
238k
    color_diff(pfs, &d0001, &d1011, &d);
3332
238k
    Du = max(D0001, D1011);
3333
238k
    Dv = max(D0010, D0111);
3334
238k
    if (Du <= pfs->smoothness / 8 && Dv <= pfs->smoothness / 8)
3335
12.4k
        return color_change_small;
3336
226k
    if (Du <= pfs->smoothness / 8)
3337
14.5k
        return color_change_linear;
3338
211k
    if (Dv <= pfs->smoothness / 8)
3339
184k
        return color_change_linear;
3340
26.8k
    D = color_norm(pfs, &d);
3341
26.8k
    if (D <= pfs->smoothness)
3342
21.9k
        return color_change_bilinear;
3343
4.86k
#if 1
3344
4.86k
    if (Du > Dv && is_big_u)
3345
2.55k
        *divide_u = true;
3346
2.30k
    else if (Du < Dv && is_big_v)
3347
1.65k
        *divide_v = true;
3348
652
    else if (is_big_u && size_u > size_v)
3349
274
        *divide_u = true;
3350
378
    else if (is_big_v && size_v > size_u)
3351
378
        *divide_v = true;
3352
0
    else if (is_big_u)
3353
0
        *divide_u = true;
3354
0
    else if (is_big_v)
3355
0
        *divide_v = true;
3356
0
    else {
3357
        /* The color function looks uncontiguous. */
3358
0
        return color_change_small;
3359
0
    }
3360
#else /* Disabled due to infinite recursion with -r200 09-57.PS
3361
         (Standard Test 6.4  - Range 6) (Test05). */
3362
    if (Du > Dv)
3363
        *divide_u = true;
3364
    else
3365
        *divide_v = true;
3366
#endif
3367
4.86k
    return color_change_general;
3368
4.86k
}
3369
3370
static int
3371
fill_quadrangle(patch_fill_state_t *pfs, const quadrangle_patch *p, bool big)
3372
2.15M
{
3373
    /* The quadrangle is flattened enough by V and U, so ignore inner poles. */
3374
    /* Assuming the XY span is restricted with curve_samples.
3375
       It is important for intersection_of_small_bars to compute faster. */
3376
2.15M
    quadrangle_patch s0, s1;
3377
2.15M
    wedge_vertex_list_t l0, l1, l2;
3378
2.15M
    int code;
3379
2.15M
    bool divide_u = false, divide_v = false, big1 = big;
3380
2.15M
    shading_vertex_t q[2];
3381
2.15M
    bool monotonic_color_save = pfs->monotonic_color;
3382
2.15M
    bool linear_color_save = pfs->linear_color;
3383
2.15M
    bool inside_save = pfs->inside;
3384
2.15M
    const bool inside = pfs->inside; /* 'const' should help compiler to analyze initializations. */
3385
2.15M
    gs_fixed_rect r = {{0,0},{0,0}}, r1 = {{0,0},{0,0}};
3386
    /* Warning : pfs->monotonic_color is not restored on error. */
3387
3388
2.15M
    if (!inside) {
3389
636k
        bbox_of_points(&r, &p->p[0][0]->p, &p->p[0][1]->p, &p->p[1][0]->p, &p->p[1][1]->p);
3390
636k
        r1 = r;
3391
636k
        rect_intersect(r, pfs->rect);
3392
636k
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3393
190k
            return 0; /* Outside. */
3394
636k
    }
3395
1.96M
    if (big) {
3396
        /* Likely 'big' is an unuseful rudiment due to curve_samples
3397
           restricts lengthes. We keep it for a while because its implementation
3398
           isn't obvious and its time consumption is invisibly small.
3399
         */
3400
1.44M
        fixed size_u = max(max(any_abs(p->p[0][0]->p.x - p->p[0][1]->p.x),
3401
1.44M
                               any_abs(p->p[1][0]->p.x - p->p[1][1]->p.x)),
3402
1.44M
                           max(any_abs(p->p[0][0]->p.y - p->p[0][1]->p.y),
3403
1.44M
                               any_abs(p->p[1][0]->p.y - p->p[1][1]->p.y)));
3404
1.44M
        fixed size_v = max(max(any_abs(p->p[0][0]->p.x - p->p[1][0]->p.x),
3405
1.44M
                               any_abs(p->p[0][1]->p.x - p->p[1][1]->p.x)),
3406
1.44M
                           max(any_abs(p->p[0][0]->p.y - p->p[1][0]->p.y),
3407
1.44M
                               any_abs(p->p[0][1]->p.y - p->p[1][1]->p.y)));
3408
3409
1.44M
        if (QUADRANGLES && pfs->maybe_self_intersecting) {
3410
0
            if (size_v > pfs->max_small_coord) {
3411
                /* constant_color_quadrangle can't handle big self-intersecting areas
3412
                   because we don't want int64_t in it. */
3413
0
                divide_v = true;
3414
0
            } else if (size_u > pfs->max_small_coord) {
3415
                /* constant_color_quadrangle can't handle big self-intersecting areas,
3416
                   because we don't want int64_t in it. */
3417
0
                divide_u = true;
3418
0
            } else
3419
0
                big1 = false;
3420
0
        } else
3421
1.44M
            big1 = false;
3422
1.44M
    }
3423
1.96M
    if (!big1) {
3424
1.96M
        bool is_big_u = false, is_big_v = false;
3425
1.96M
        double d0001x = any_abs(p->p[0][0]->p.x - p->p[0][1]->p.x);
3426
1.96M
        double d1011x = any_abs(p->p[1][0]->p.x - p->p[1][1]->p.x);
3427
1.96M
        double d0001y = any_abs(p->p[0][0]->p.y - p->p[0][1]->p.y);
3428
1.96M
        double d1011y = any_abs(p->p[1][0]->p.y - p->p[1][1]->p.y);
3429
1.96M
        double d0010x = any_abs(p->p[0][0]->p.x - p->p[1][0]->p.x);
3430
1.96M
        double d0111x = any_abs(p->p[0][1]->p.x - p->p[1][1]->p.x);
3431
1.96M
        double d0010y = any_abs(p->p[0][0]->p.y - p->p[1][0]->p.y);
3432
1.96M
        double d0111y = any_abs(p->p[0][1]->p.y - p->p[1][1]->p.y);
3433
1.96M
        double size_u = max(max(d0001x, d1011x), max(d0001y, d1011y));
3434
1.96M
        double size_v = max(max(d0010x, d0111x), max(d0010y, d0111y));
3435
3436
1.96M
        if (size_u > pfs->decomposition_limit)
3437
1.86M
            is_big_u = true;
3438
1.96M
        if (size_v > pfs->decomposition_limit)
3439
80.7k
            is_big_v = true;
3440
1.88M
        else if (!is_big_u)
3441
100k
            return (QUADRANGLES || !pfs->maybe_self_intersecting ?
3442
98.8k
                        constant_color_quadrangle : triangles4)(pfs, p,
3443
100k
                            pfs->maybe_self_intersecting);
3444
1.86M
        if (!pfs->monotonic_color) {
3445
27.3k
            bool not_monotonic_by_u = false, not_monotonic_by_v = false;
3446
3447
27.3k
            code = is_quadrangle_color_monotonic(pfs, p, &not_monotonic_by_u, &not_monotonic_by_v);
3448
27.3k
            if (code < 0)
3449
0
                return code;
3450
27.3k
            if (is_big_u)
3451
26.6k
                divide_u = not_monotonic_by_u;
3452
27.3k
            if (is_big_v)
3453
18.1k
                divide_v = not_monotonic_by_v;
3454
27.3k
            if (!divide_u && !divide_v)
3455
20.2k
                pfs->monotonic_color = true;
3456
27.3k
        }
3457
1.86M
        if (pfs->monotonic_color && !pfs->linear_color) {
3458
1.43M
            if (divide_v && divide_u) {
3459
0
                if (size_u > size_v)
3460
0
                    divide_v = false;
3461
0
                else
3462
0
                    divide_u = false;
3463
1.43M
            } else if (!divide_u && !divide_v && !pfs->unlinear) {
3464
235k
                if (d0001x + d1011x + d0001y + d1011y > d0010x + d0111x + d0010y + d0111y) { /* fixme: use size_u, size_v */
3465
220k
                    code = is_quadrangle_color_linear_by_u(pfs, p);
3466
220k
                    if (code < 0)
3467
0
                        return code;
3468
220k
                    divide_u = !code;
3469
220k
                }
3470
235k
                if (is_big_v) {
3471
33.8k
                    code = is_quadrangle_color_linear_by_v(pfs, p);
3472
33.8k
                    if (code < 0)
3473
0
                        return code;
3474
33.8k
                    divide_v = !code;
3475
33.8k
                }
3476
235k
                if (is_big_u && is_big_v) {
3477
31.3k
                    code = is_quadrangle_color_linear_by_diagonals(pfs, p);
3478
31.3k
                    if (code < 0)
3479
0
                        return code;
3480
31.3k
                    if (!code) {
3481
6.33k
                        if (d0001x + d1011x + d0001y + d1011y > d0010x + d0111x + d0010y + d0111y) { /* fixme: use size_u, size_v */
3482
3.06k
                            divide_u = true;
3483
3.06k
                            divide_v = false;
3484
3.26k
                        } else {
3485
3.26k
                            divide_v = true;
3486
3.26k
                            divide_u = false;
3487
3.26k
                        }
3488
6.33k
                    }
3489
31.3k
                }
3490
235k
            }
3491
1.43M
            if (!divide_u && !divide_v)
3492
1.42M
                pfs->linear_color = true;
3493
1.43M
        }
3494
1.86M
        if (!pfs->linear_color) {
3495
            /* go to divide. */
3496
1.85M
        } else switch(quadrangle_color_change(pfs, p, is_big_u, is_big_v, size_u, size_v, &divide_u, &divide_v)) {
3497
1.37M
            case color_change_small:
3498
1.37M
                code = (QUADRANGLES || !pfs->maybe_self_intersecting ?
3499
1.35M
                            constant_color_quadrangle : triangles4)(pfs, p,
3500
1.37M
                                pfs->maybe_self_intersecting);
3501
1.37M
                pfs->monotonic_color = monotonic_color_save;
3502
1.37M
                pfs->linear_color = linear_color_save;
3503
1.37M
                return code;
3504
21.9k
            case color_change_bilinear:
3505
21.9k
                if (!QUADRANGLES) {
3506
21.9k
                    code = triangles4(pfs, p, true);
3507
21.9k
                    pfs->monotonic_color = monotonic_color_save;
3508
21.9k
                    pfs->linear_color = linear_color_save;
3509
21.9k
                    return code;
3510
21.9k
                }
3511
199k
            case color_change_linear:
3512
199k
                if (!QUADRANGLES) {
3513
199k
                    code = triangles2(pfs, p, true);
3514
199k
                    pfs->monotonic_color = monotonic_color_save;
3515
199k
                    pfs->linear_color = linear_color_save;
3516
199k
                    return code;
3517
199k
                }
3518
246k
            case color_change_gradient:
3519
251k
            case color_change_general:
3520
251k
                ; /* goto divide. */
3521
1.85M
        }
3522
1.86M
    }
3523
265k
    if (!inside) {
3524
53.9k
        if (r.p.x == r1.p.x && r.p.y == r1.p.y &&
3525
53.9k
            r.q.x == r1.q.x && r.q.y == r1.q.y)
3526
15.3k
            pfs->inside = true;
3527
53.9k
    }
3528
265k
    if (LAZY_WEDGES)
3529
265k
        init_wedge_vertex_list(&l0, 1);
3530
265k
    if (divide_v) {
3531
23.8k
        patch_color_t *c[2];
3532
23.8k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3533
3534
23.8k
        if(color_stack_ptr == NULL)
3535
0
            return_error(gs_error_unregistered); /* Must not happen. */
3536
23.8k
        q[0].c = c[0];
3537
23.8k
        q[1].c = c[1];
3538
23.8k
        divide_quadrangle_by_v(pfs, &s0, &s1, q, p, c);
3539
23.8k
        if (LAZY_WEDGES) {
3540
23.8k
            code = make_wedge_median(pfs, &l1, p->l0111, true,  &p->p[0][1]->p, &p->p[1][1]->p, &s0.p[1][1]->p);
3541
23.8k
            if (code >= 0)
3542
23.8k
                code = make_wedge_median(pfs, &l2, p->l1000, false, &p->p[1][0]->p, &p->p[0][0]->p, &s0.p[1][0]->p);
3543
23.8k
            if (code >= 0) {
3544
23.8k
                s0.l1110 = s1.l0001 = &l0;
3545
23.8k
                s0.l0111 = s1.l0111 = &l1;
3546
23.8k
                s0.l1000 = s1.l1000 = &l2;
3547
23.8k
                s0.l0001 = p->l0001;
3548
23.8k
                s1.l1110 = p->l1110;
3549
23.8k
            }
3550
23.8k
        } else {
3551
0
            code = fill_triangle_wedge(pfs, s0.p[0][0], s1.p[1][0], s0.p[1][0]);
3552
0
            if (code >= 0)
3553
0
                code = fill_triangle_wedge(pfs, s0.p[0][1], s1.p[1][1], s0.p[1][1]);
3554
0
        }
3555
23.8k
        if (code >= 0)
3556
23.8k
            code = fill_quadrangle(pfs, &s0, big1);
3557
23.8k
        if (code >= 0) {
3558
23.8k
            if (LAZY_WEDGES) {
3559
23.8k
                l0.last_side = true;
3560
23.8k
                move_wedge(&l1, p->l0111, true);
3561
23.8k
                move_wedge(&l2, p->l1000, false);
3562
23.8k
            }
3563
23.8k
            code = fill_quadrangle(pfs, &s1, big1);
3564
23.8k
        }
3565
23.8k
        if (LAZY_WEDGES) {
3566
23.8k
            if (code >= 0)
3567
23.8k
                code = close_wedge_median(pfs, p->l0111, p->p[0][1]->c, p->p[1][1]->c);
3568
23.8k
            if (code >= 0)
3569
23.8k
                code = close_wedge_median(pfs, p->l1000, p->p[1][0]->c, p->p[0][0]->c);
3570
23.8k
            if (code >= 0)
3571
23.8k
                code = terminate_wedge_vertex_list(pfs, &l0, s0.p[1][0]->c, s0.p[1][1]->c);
3572
23.8k
            release_colors_inline(pfs, color_stack_ptr, 2);
3573
23.8k
        }
3574
241k
    } else if (divide_u) {
3575
241k
        patch_color_t *c[2];
3576
241k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3577
3578
241k
        if(color_stack_ptr == NULL)
3579
0
            return_error(gs_error_unregistered); /* Must not happen. */
3580
241k
        q[0].c = c[0];
3581
241k
        q[1].c = c[1];
3582
241k
        divide_quadrangle_by_u(pfs, &s0, &s1, q, p, c);
3583
241k
        if (LAZY_WEDGES) {
3584
241k
            code = make_wedge_median(pfs, &l1, p->l0001, true,  &p->p[0][0]->p, &p->p[0][1]->p, &s0.p[0][1]->p);
3585
241k
            if (code >= 0)
3586
241k
                code = make_wedge_median(pfs, &l2, p->l1110, false, &p->p[1][1]->p, &p->p[1][0]->p, &s0.p[1][1]->p);
3587
241k
            if (code >= 0) {
3588
241k
                s0.l0111 = s1.l1000 = &l0;
3589
241k
                s0.l0001 = s1.l0001 = &l1;
3590
241k
                s0.l1110 = s1.l1110 = &l2;
3591
241k
                s0.l1000 = p->l1000;
3592
241k
                s1.l0111 = p->l0111;
3593
241k
            }
3594
241k
        } else {
3595
0
            code = fill_triangle_wedge(pfs, s0.p[0][0], s1.p[0][1], s0.p[0][1]);
3596
0
            if (code >= 0)
3597
0
                code = fill_triangle_wedge(pfs, s0.p[1][0], s1.p[1][1], s0.p[1][1]);
3598
0
        }
3599
241k
        if (code >= 0)
3600
241k
            code = fill_quadrangle(pfs, &s0, big1);
3601
241k
        if (code >= 0) {
3602
241k
            if (LAZY_WEDGES) {
3603
241k
                l0.last_side = true;
3604
241k
                move_wedge(&l1, p->l0001, true);
3605
241k
                move_wedge(&l2, p->l1110, false);
3606
241k
            }
3607
241k
            code = fill_quadrangle(pfs, &s1, big1);
3608
241k
        }
3609
241k
        if (LAZY_WEDGES) {
3610
241k
            if (code >= 0)
3611
241k
                code = close_wedge_median(pfs, p->l0001, p->p[0][0]->c, p->p[0][1]->c);
3612
241k
            if (code >= 0)
3613
241k
                code = close_wedge_median(pfs, p->l1110, p->p[1][1]->c, p->p[1][0]->c);
3614
241k
            if (code >= 0)
3615
241k
                code = terminate_wedge_vertex_list(pfs, &l0, s0.p[0][1]->c, s0.p[1][1]->c);
3616
241k
            release_colors_inline(pfs, color_stack_ptr, 2);
3617
241k
        }
3618
241k
    } else
3619
0
        code = (QUADRANGLES || !pfs->maybe_self_intersecting ?
3620
0
                    constant_color_quadrangle : triangles4)(pfs, p,
3621
0
                        pfs->maybe_self_intersecting);
3622
265k
    pfs->monotonic_color = monotonic_color_save;
3623
265k
    pfs->linear_color = linear_color_save;
3624
265k
    pfs->inside = inside_save;
3625
265k
    return code;
3626
265k
}
3627
3628
/* This splits tensor patch p->pole[v][u] on u to give s0->pole[v][u] and s1->pole[v][u] */
3629
static inline void
3630
split_stripe(patch_fill_state_t *pfs, tensor_patch *s0, tensor_patch *s1, const tensor_patch *p, patch_color_t *c[2])
3631
2.80M
{
3632
2.80M
    s0->c[0][1] = c[0];
3633
2.80M
    s0->c[1][1] = c[1];
3634
2.80M
    split_curve_s(p->pole[0], s0->pole[0], s1->pole[0], 1);
3635
2.80M
    split_curve_s(p->pole[1], s0->pole[1], s1->pole[1], 1);
3636
2.80M
    split_curve_s(p->pole[2], s0->pole[2], s1->pole[2], 1);
3637
2.80M
    split_curve_s(p->pole[3], s0->pole[3], s1->pole[3], 1);
3638
2.80M
    s0->c[0][0] = p->c[0][0];
3639
2.80M
    s0->c[1][0] = p->c[1][0];
3640
2.80M
    s1->c[0][0] = s0->c[0][1];
3641
2.80M
    s1->c[1][0] = s0->c[1][1];
3642
2.80M
    patch_interpolate_color(s0->c[0][1], p->c[0][0], p->c[0][1], pfs, 0.5);
3643
2.80M
    patch_interpolate_color(s0->c[1][1], p->c[1][0], p->c[1][1], pfs, 0.5);
3644
2.80M
    s1->c[0][1] = p->c[0][1];
3645
2.80M
    s1->c[1][1] = p->c[1][1];
3646
2.80M
}
3647
3648
/* This splits tensor patch p->pole[v][u] on v to give s0->pole[v][u] and s1->pole[v][u] */
3649
static inline void
3650
split_patch(patch_fill_state_t *pfs, tensor_patch *s0, tensor_patch *s1, const tensor_patch *p, patch_color_t *c[2])
3651
655k
{
3652
655k
    s0->c[1][0] = c[0];
3653
655k
    s0->c[1][1] = c[1];
3654
655k
    split_curve_s(&p->pole[0][0], &s0->pole[0][0], &s1->pole[0][0], 4);
3655
655k
    split_curve_s(&p->pole[0][1], &s0->pole[0][1], &s1->pole[0][1], 4);
3656
655k
    split_curve_s(&p->pole[0][2], &s0->pole[0][2], &s1->pole[0][2], 4);
3657
655k
    split_curve_s(&p->pole[0][3], &s0->pole[0][3], &s1->pole[0][3], 4);
3658
655k
    s0->c[0][0] = p->c[0][0];
3659
655k
    s0->c[0][1] = p->c[0][1];
3660
655k
    s1->c[0][0] = s0->c[1][0];
3661
655k
    s1->c[0][1] = s0->c[1][1];
3662
655k
    patch_interpolate_color(s0->c[1][0], p->c[0][0], p->c[1][0], pfs, 0.5);
3663
655k
    patch_interpolate_color(s0->c[1][1], p->c[0][1], p->c[1][1], pfs, 0.5);
3664
655k
    s1->c[1][0] = p->c[1][0];
3665
655k
    s1->c[1][1] = p->c[1][1];
3666
655k
}
3667
3668
static inline void
3669
tensor_patch_bbox(gs_fixed_rect *r, const tensor_patch *p)
3670
4.68M
{
3671
4.68M
    int i, j;
3672
3673
4.68M
    r->p.x = r->q.x = p->pole[0][0].x;
3674
4.68M
    r->p.y = r->q.y = p->pole[0][0].y;
3675
23.4M
    for (i = 0; i < 4; i++) {
3676
93.6M
        for (j = 0; j < 4; j++) {
3677
74.9M
            const gs_fixed_point *q = &p->pole[i][j];
3678
3679
74.9M
            if (r->p.x > q->x)
3680
11.2M
                r->p.x = q->x;
3681
74.9M
            if (r->p.y > q->y)
3682
12.6M
                r->p.y = q->y;
3683
74.9M
            if (r->q.x < q->x)
3684
13.8M
                r->q.x = q->x;
3685
74.9M
            if (r->q.y < q->y)
3686
10.5M
                r->q.y = q->y;
3687
74.9M
        }
3688
18.7M
    }
3689
4.68M
}
3690
3691
static int
3692
decompose_stripe(patch_fill_state_t *pfs, const tensor_patch *p, int ku)
3693
6.26M
{
3694
6.26M
    if (ku > 1) {
3695
4.64M
        tensor_patch s0, s1;
3696
4.64M
        patch_color_t *c[2];
3697
4.64M
        int code;
3698
4.64M
        byte *color_stack_ptr;
3699
4.64M
        bool save_inside = pfs->inside;
3700
3701
4.64M
        if (!pfs->inside) {
3702
4.00M
            gs_fixed_rect r, r1;
3703
3704
4.00M
            tensor_patch_bbox(&r, p);
3705
4.00M
            r1 = r;
3706
4.00M
            rect_intersect(r, pfs->rect);
3707
4.00M
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3708
1.84M
                return 0;
3709
2.16M
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
3710
2.16M
                r1.q.x == r.q.x && r1.q.y == r.q.y)
3711
209k
                pfs->inside = true;
3712
2.16M
        }
3713
2.80M
        color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3714
2.80M
        if(color_stack_ptr == NULL)
3715
0
            return_error(gs_error_unregistered); /* Must not happen. */
3716
2.80M
        split_stripe(pfs, &s0, &s1, p, c);
3717
2.80M
        code = decompose_stripe(pfs, &s0, ku / 2);
3718
2.80M
        if (code >= 0)
3719
2.80M
            code = decompose_stripe(pfs, &s1, ku / 2);
3720
2.80M
        release_colors_inline(pfs, color_stack_ptr, 2);
3721
2.80M
        pfs->inside = save_inside;
3722
2.80M
        return code;
3723
2.80M
    } else {
3724
1.62M
        quadrangle_patch q;
3725
1.62M
        shading_vertex_t qq[2][2];
3726
1.62M
        wedge_vertex_list_t l[4];
3727
1.62M
        int code;
3728
3729
1.62M
        init_wedge_vertex_list(l, count_of(l));
3730
1.62M
        make_quadrangle(p, qq, l, &q);
3731
#       if SKIP_TEST
3732
            dbg_quad_cnt++;
3733
#       endif
3734
1.62M
        code = fill_quadrangle(pfs, &q, true);
3735
1.62M
        if (code < 0)
3736
0
            return code;
3737
1.62M
        if (LAZY_WEDGES) {
3738
1.62M
            code = terminate_wedge_vertex_list(pfs, &l[0], q.p[0][0]->c, q.p[0][1]->c);
3739
1.62M
            if (code < 0)
3740
0
                return code;
3741
1.62M
            code = terminate_wedge_vertex_list(pfs, &l[1], q.p[0][1]->c, q.p[1][1]->c);
3742
1.62M
            if (code < 0)
3743
0
                return code;
3744
1.62M
            code = terminate_wedge_vertex_list(pfs, &l[2], q.p[1][1]->c, q.p[1][0]->c);
3745
1.62M
            if (code < 0)
3746
0
                return code;
3747
1.62M
            code = terminate_wedge_vertex_list(pfs, &l[3], q.p[1][0]->c, q.p[0][1]->c);
3748
1.62M
            if (code < 0)
3749
0
                return code;
3750
1.62M
        }
3751
1.62M
        return code;
3752
1.62M
    }
3753
6.26M
}
3754
3755
static int
3756
fill_stripe(patch_fill_state_t *pfs, const tensor_patch *p)
3757
665k
{
3758
    /* The stripe is flattened enough by V, so ignore inner poles. */
3759
665k
    int ku[4], kum, code;
3760
3761
    /* We would like to apply iterations for enumerating the kum curve parts,
3762
       but the roundinmg errors would be too complicated due to
3763
       the dependence on the direction. Note that neigbour
3764
       patches may use the opposite direction for same bounding curve.
3765
       We apply the recursive dichotomy, in which
3766
       the rounding errors do not depend on the direction. */
3767
665k
    ku[0] = curve_samples(pfs, p->pole[0], 1, pfs->fixed_flat);
3768
665k
    ku[3] = curve_samples(pfs, p->pole[3], 1, pfs->fixed_flat);
3769
665k
    kum = max(ku[0], ku[3]);
3770
665k
    code = fill_wedges(pfs, ku[0], kum, p->pole[0], 1, p->c[0][0], p->c[0][1], inpatch_wedge);
3771
665k
    if (code < 0)
3772
0
        return code;
3773
665k
    if (INTERPATCH_PADDING) {
3774
665k
        code = mesh_padding(pfs, &p->pole[0][0], &p->pole[3][0], p->c[0][0], p->c[1][0]);
3775
665k
        if (code < 0)
3776
2
            return code;
3777
665k
        code = mesh_padding(pfs, &p->pole[0][3], &p->pole[3][3], p->c[0][1], p->c[1][1]);
3778
665k
        if (code < 0)
3779
0
            return code;
3780
665k
    }
3781
665k
    code = decompose_stripe(pfs, p, kum);
3782
665k
    if (code < 0)
3783
0
        return code;
3784
665k
    return fill_wedges(pfs, ku[3], kum, p->pole[3], 1, p->c[1][0], p->c[1][1], inpatch_wedge);
3785
665k
}
3786
3787
static inline bool neqs(int *a, int b)
3788
1.49M
{   /* Unequal signs. Assuming -1, 0, 1 only. */
3789
1.49M
    if (*a * b < 0)
3790
627k
        return true;
3791
862k
    if (!*a)
3792
39.4k
        *a = b;
3793
862k
    return false;
3794
1.49M
}
3795
3796
static inline int
3797
vector_pair_orientation(const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *p2)
3798
2.15M
{   fixed dx1 = p1->x - p0->x, dy1 = p1->y - p0->y;
3799
2.15M
    fixed dx2 = p2->x - p0->x, dy2 = p2->y - p0->y;
3800
2.15M
    int64_t vp = (int64_t)dx1 * dy2 - (int64_t)dy1 * dx2;
3801
3802
2.15M
    return (vp > 0 ? 1 : vp < 0 ? -1 : 0);
3803
2.15M
}
3804
3805
static inline bool
3806
is_x_bended(const tensor_patch *p)
3807
662k
{
3808
662k
    int sign = vector_pair_orientation(&p->pole[0][0], &p->pole[0][1], &p->pole[1][0]);
3809
3810
662k
    if (neqs(&sign, vector_pair_orientation(&p->pole[0][1], &p->pole[0][2], &p->pole[1][1])))
3811
370k
        return true;
3812
292k
    if (neqs(&sign, vector_pair_orientation(&p->pole[0][2], &p->pole[0][3], &p->pole[1][2])))
3813
183k
        return true;
3814
108k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[0][3], &p->pole[0][2], &p->pole[1][3])))
3815
71.8k
        return true;
3816
3817
36.4k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[1][2], &p->pole[2][1])))
3818
289
        return true;
3819
36.1k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[1][2], &p->pole[2][1])))
3820
0
        return true;
3821
36.1k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[1][3], &p->pole[2][2])))
3822
127
        return true;
3823
36.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[1][2], &p->pole[2][3])))
3824
278
        return true;
3825
3826
35.7k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[2][2], &p->pole[3][1])))
3827
203
        return true;
3828
35.5k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[2][2], &p->pole[3][1])))
3829
0
        return true;
3830
35.5k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][2], &p->pole[2][3], &p->pole[3][2])))
3831
206
        return true;
3832
35.3k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[2][3], &p->pole[2][2], &p->pole[3][3])))
3833
222
        return true;
3834
3835
35.1k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[3][2], &p->pole[2][1])))
3836
49
        return true;
3837
35.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[3][2], &p->pole[2][1])))
3838
0
        return true;
3839
35.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][2], &p->pole[3][3], &p->pole[2][2])))
3840
69
        return true;
3841
34.9k
    if (neqs(&sign, vector_pair_orientation(&p->pole[3][3], &p->pole[3][2], &p->pole[2][3])))
3842
44
        return true;
3843
34.9k
    return false;
3844
34.9k
}
3845
3846
static inline bool
3847
is_y_bended(const tensor_patch *p)
3848
0
{
3849
0
    int sign = vector_pair_orientation(&p->pole[0][0], &p->pole[1][0], &p->pole[0][1]);
3850
3851
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][0], &p->pole[2][0], &p->pole[1][1])))
3852
0
        return true;
3853
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][0], &p->pole[3][0], &p->pole[2][1])))
3854
0
        return true;
3855
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][0], &p->pole[2][0], &p->pole[3][1])))
3856
0
        return true;
3857
3858
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[2][1], &p->pole[1][2])))
3859
0
        return true;
3860
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[2][1], &p->pole[1][2])))
3861
0
        return true;
3862
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[3][1], &p->pole[2][2])))
3863
0
        return true;
3864
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[2][1], &p->pole[3][2])))
3865
0
        return true;
3866
3867
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[2][2], &p->pole[1][3])))
3868
0
        return true;
3869
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[2][2], &p->pole[1][3])))
3870
0
        return true;
3871
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][2], &p->pole[3][2], &p->pole[2][3])))
3872
0
        return true;
3873
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][2], &p->pole[2][2], &p->pole[3][3])))
3874
0
        return true;
3875
3876
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[2][3], &p->pole[1][2])))
3877
0
        return true;
3878
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[2][3], &p->pole[1][2])))
3879
0
        return true;
3880
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[2][3], &p->pole[3][3], &p->pole[2][2])))
3881
0
        return true;
3882
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[3][3], &p->pole[2][3], &p->pole[3][2])))
3883
0
        return true;
3884
0
    return false;
3885
0
}
3886
3887
static inline bool
3888
is_curve_x_small(const patch_fill_state_t *pfs, const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
3889
4.04M
{   /* Is curve within a single pixel, or smaller than half pixel ? */
3890
4.04M
    fixed xmin0 = min(pole[0 * pole_step].x, pole[1 * pole_step].x);
3891
4.04M
    fixed xmin1 = min(pole[2 * pole_step].x, pole[3 * pole_step].x);
3892
4.04M
    fixed xmin =  min(xmin0, xmin1);
3893
4.04M
    fixed xmax0 = max(pole[0 * pole_step].x, pole[1 * pole_step].x);
3894
4.04M
    fixed xmax1 = max(pole[2 * pole_step].x, pole[3 * pole_step].x);
3895
4.04M
    fixed xmax =  max(xmax0, xmax1);
3896
3897
4.04M
    if(xmax - xmin <= pfs->decomposition_limit)
3898
3.50M
        return true;
3899
544k
    return false;
3900
4.04M
}
3901
3902
static inline bool
3903
is_curve_y_small(const patch_fill_state_t *pfs, const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
3904
2.78M
{   /* Is curve within a single pixel, or smaller than half pixel ? */
3905
2.78M
    fixed ymin0 = min(pole[0 * pole_step].y, pole[1 * pole_step].y);
3906
2.78M
    fixed ymin1 = min(pole[2 * pole_step].y, pole[3 * pole_step].y);
3907
2.78M
    fixed ymin =  min(ymin0, ymin1);
3908
2.78M
    fixed ymax0 = max(pole[0 * pole_step].y, pole[1 * pole_step].y);
3909
2.78M
    fixed ymax1 = max(pole[2 * pole_step].y, pole[3 * pole_step].y);
3910
2.78M
    fixed ymax =  max(ymax0, ymax1);
3911
3912
2.78M
    if (ymax - ymin <= pfs->decomposition_limit)
3913
2.66M
        return true;
3914
118k
    return false;
3915
2.78M
}
3916
3917
static inline bool
3918
is_patch_narrow(const patch_fill_state_t *pfs, const tensor_patch *p)
3919
1.29M
{
3920
1.29M
    if (!is_curve_x_small(pfs, &p->pole[0][0], 4, pfs->fixed_flat))
3921
230k
        return false;
3922
1.06M
    if (!is_curve_x_small(pfs, &p->pole[0][1], 4, pfs->fixed_flat))
3923
156k
        return false;
3924
906k
    if (!is_curve_x_small(pfs, &p->pole[0][2], 4, pfs->fixed_flat))
3925
121k
        return false;
3926
784k
    if (!is_curve_x_small(pfs, &p->pole[0][3], 4, pfs->fixed_flat))
3927
35.6k
        return false;
3928
748k
    if (!is_curve_y_small(pfs, &p->pole[0][0], 4, pfs->fixed_flat))
3929
41.7k
        return false;
3930
707k
    if (!is_curve_y_small(pfs, &p->pole[0][1], 4, pfs->fixed_flat))
3931
29.8k
        return false;
3932
677k
    if (!is_curve_y_small(pfs, &p->pole[0][2], 4, pfs->fixed_flat))
3933
25.1k
        return false;
3934
651k
    if (!is_curve_y_small(pfs, &p->pole[0][3], 4, pfs->fixed_flat))
3935
21.3k
        return false;
3936
630k
    return true;
3937
651k
}
3938
3939
static int
3940
fill_patch(patch_fill_state_t *pfs, const tensor_patch *p, int kv, int kv0, int kv1)
3941
1.34M
{
3942
1.34M
    if (kv <= 1) {
3943
1.29M
        if (is_patch_narrow(pfs, p))
3944
630k
            return fill_stripe(pfs, p);
3945
662k
        if (!is_x_bended(p))
3946
34.9k
            return fill_stripe(pfs, p);
3947
662k
    }
3948
681k
    {   tensor_patch s0, s1;
3949
681k
        patch_color_t *c[2];
3950
681k
        shading_vertex_t q0, q1, q2;
3951
681k
        int code = 0;
3952
681k
        byte *color_stack_ptr;
3953
681k
        bool save_inside = pfs->inside;
3954
3955
681k
        if (!pfs->inside) {
3956
676k
            gs_fixed_rect r, r1;
3957
3958
676k
            tensor_patch_bbox(&r, p);
3959
676k
            r.p.x -= INTERPATCH_PADDING;
3960
676k
            r.p.y -= INTERPATCH_PADDING;
3961
676k
            r.q.x += INTERPATCH_PADDING;
3962
676k
            r.q.y += INTERPATCH_PADDING;
3963
676k
            r1 = r;
3964
676k
            rect_intersect(r, pfs->rect);
3965
676k
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3966
25.7k
                return 0;
3967
650k
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
3968
650k
                r1.q.x == r.q.x && r1.q.y == r.q.y)
3969
2.17k
                pfs->inside = true;
3970
650k
        }
3971
655k
        color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3972
655k
        if(color_stack_ptr == NULL)
3973
0
            return_error(gs_error_unregistered); /* Must not happen. */
3974
655k
        split_patch(pfs, &s0, &s1, p, c);
3975
655k
        if (kv0 <= 1) {
3976
631k
            q0.p = s0.pole[0][0];
3977
631k
            q0.c = s0.c[0][0];
3978
631k
            q1.p = s1.pole[3][0];
3979
631k
            q1.c = s1.c[1][0];
3980
631k
            q2.p = s0.pole[3][0];
3981
631k
            q2.c = s0.c[1][0];
3982
631k
            code = fill_triangle_wedge(pfs, &q0, &q1, &q2);
3983
631k
        }
3984
655k
        if (kv1 <= 1 && code >= 0) {
3985
630k
            q0.p = s0.pole[0][3];
3986
630k
            q0.c = s0.c[0][1];
3987
630k
            q1.p = s1.pole[3][3];
3988
630k
            q1.c = s1.c[1][1];
3989
630k
            q2.p = s0.pole[3][3];
3990
630k
            q2.c = s0.c[1][1];
3991
630k
            code = fill_triangle_wedge(pfs, &q0, &q1, &q2);
3992
630k
        }
3993
655k
        if (code >= 0)
3994
655k
            code = fill_patch(pfs, &s0, kv / 2, kv0 / 2, kv1 / 2);
3995
655k
        if (code >= 0)
3996
655k
            code = fill_patch(pfs, &s1, kv / 2, kv0 / 2, kv1 / 2);
3997
        /* fixme : To provide the precise filling order, we must
3998
           decompose left and right wedges into pieces by intersections
3999
           with stripes, and fill each piece with its stripe.
4000
           A lazy wedge list would be fine for storing
4001
           the necessary information.
4002
4003
           If the patch is created from a radial shading,
4004
           the wedge color appears a constant, so the filling order
4005
           isn't important. The order is important for other
4006
           self-overlapping patches, but the visible effect is
4007
           just a slight narrowing of the patch (as its lower layer appears
4008
           visible through the upper layer near the side).
4009
           This kind of dropout isn't harmful, because
4010
           contacting self-overlapping patches are painted
4011
           one after one by definition, so that a side coverage break
4012
           appears unavoidable by definition.
4013
4014
           Delaying this improvement because it is low importance.
4015
         */
4016
655k
        release_colors_inline(pfs, color_stack_ptr, 2);
4017
655k
        pfs->inside = save_inside;
4018
655k
        return code;
4019
655k
    }
4020
655k
}
4021
4022
static inline int64_t
4023
lcp1(int64_t p0, int64_t p3)
4024
203k
{   /* Computing the 1st pole of a 3d order besier, which appears a line. */
4025
203k
    return (p0 + p0 + p3);
4026
203k
}
4027
static inline int64_t
4028
lcp2(int64_t p0, int64_t p3)
4029
203k
{   /* Computing the 2nd pole of a 3d order besier, which appears a line. */
4030
203k
    return (p0 + p3 + p3);
4031
203k
}
4032
4033
static void
4034
patch_set_color(const patch_fill_state_t *pfs, patch_color_t *c, const float *cc)
4035
143k
{
4036
143k
    if (pfs->Function) {
4037
40.7k
        c->t[0] = cc[0];
4038
40.7k
        c->t[1] = cc[1];
4039
40.7k
    } else
4040
102k
        memcpy(c->cc.paint.values, cc, sizeof(c->cc.paint.values[0]) * pfs->num_components);
4041
143k
}
4042
4043
static void
4044
make_tensor_patch(const patch_fill_state_t *pfs, tensor_patch *p, const patch_curve_t curve[4],
4045
           const gs_fixed_point interior[4])
4046
35.7k
{
4047
35.7k
    const gs_color_space *pcs = pfs->direct_space;
4048
4049
35.7k
    p->pole[0][0] = curve[0].vertex.p;
4050
35.7k
    p->pole[1][0] = curve[0].control[0];
4051
35.7k
    p->pole[2][0] = curve[0].control[1];
4052
35.7k
    p->pole[3][0] = curve[1].vertex.p;
4053
35.7k
    p->pole[3][1] = curve[1].control[0];
4054
35.7k
    p->pole[3][2] = curve[1].control[1];
4055
35.7k
    p->pole[3][3] = curve[2].vertex.p;
4056
35.7k
    p->pole[2][3] = curve[2].control[0];
4057
35.7k
    p->pole[1][3] = curve[2].control[1];
4058
35.7k
    p->pole[0][3] = curve[3].vertex.p;
4059
35.7k
    p->pole[0][2] = curve[3].control[0];
4060
35.7k
    p->pole[0][1] = curve[3].control[1];
4061
35.7k
    if (interior != NULL) {
4062
25.5k
        p->pole[1][1] = interior[0];
4063
25.5k
        p->pole[1][2] = interior[1];
4064
25.5k
        p->pole[2][2] = interior[2];
4065
25.5k
        p->pole[2][1] = interior[3];
4066
25.5k
    } else {
4067
10.1k
        p->pole[1][1].x = (fixed)((3*(lcp1(p->pole[0][1].x, p->pole[3][1].x) +
4068
10.1k
                                      lcp1(p->pole[1][0].x, p->pole[1][3].x)) -
4069
10.1k
                                   lcp1(lcp1(p->pole[0][0].x, p->pole[0][3].x),
4070
10.1k
                                        lcp1(p->pole[3][0].x, p->pole[3][3].x)))/9);
4071
10.1k
        p->pole[1][2].x = (fixed)((3*(lcp1(p->pole[0][2].x, p->pole[3][2].x) +
4072
10.1k
                                      lcp2(p->pole[1][0].x, p->pole[1][3].x)) -
4073
10.1k
                                   lcp1(lcp2(p->pole[0][0].x, p->pole[0][3].x),
4074
10.1k
                                        lcp2(p->pole[3][0].x, p->pole[3][3].x)))/9);
4075
10.1k
        p->pole[2][1].x = (fixed)((3*(lcp2(p->pole[0][1].x, p->pole[3][1].x) +
4076
10.1k
                                      lcp1(p->pole[2][0].x, p->pole[2][3].x)) -
4077
10.1k
                                   lcp2(lcp1(p->pole[0][0].x, p->pole[0][3].x),
4078
10.1k
                                        lcp1(p->pole[3][0].x, p->pole[3][3].x)))/9);
4079
10.1k
        p->pole[2][2].x = (fixed)((3*(lcp2(p->pole[0][2].x, p->pole[3][2].x) +
4080
10.1k
                                      lcp2(p->pole[2][0].x, p->pole[2][3].x)) -
4081
10.1k
                                   lcp2(lcp2(p->pole[0][0].x, p->pole[0][3].x),
4082
10.1k
                                        lcp2(p->pole[3][0].x, p->pole[3][3].x)))/9);
4083
4084
10.1k
        p->pole[1][1].y = (fixed)((3*(lcp1(p->pole[0][1].y, p->pole[3][1].y) +
4085
10.1k
                                      lcp1(p->pole[1][0].y, p->pole[1][3].y)) -
4086
10.1k
                                   lcp1(lcp1(p->pole[0][0].y, p->pole[0][3].y),
4087
10.1k
                                        lcp1(p->pole[3][0].y, p->pole[3][3].y)))/9);
4088
10.1k
        p->pole[1][2].y = (fixed)((3*(lcp1(p->pole[0][2].y, p->pole[3][2].y) +
4089
10.1k
                                      lcp2(p->pole[1][0].y, p->pole[1][3].y)) -
4090
10.1k
                                   lcp1(lcp2(p->pole[0][0].y, p->pole[0][3].y),
4091
10.1k
                                        lcp2(p->pole[3][0].y, p->pole[3][3].y)))/9);
4092
10.1k
        p->pole[2][1].y = (fixed)((3*(lcp2(p->pole[0][1].y, p->pole[3][1].y) +
4093
10.1k
                                      lcp1(p->pole[2][0].y, p->pole[2][3].y)) -
4094
10.1k
                                   lcp2(lcp1(p->pole[0][0].y, p->pole[0][3].y),
4095
10.1k
                                        lcp1(p->pole[3][0].y, p->pole[3][3].y)))/9);
4096
10.1k
        p->pole[2][2].y = (fixed)((3*(lcp2(p->pole[0][2].y, p->pole[3][2].y) +
4097
10.1k
                                      lcp2(p->pole[2][0].y, p->pole[2][3].y)) -
4098
10.1k
                                   lcp2(lcp2(p->pole[0][0].y, p->pole[0][3].y),
4099
10.1k
                                        lcp2(p->pole[3][0].y, p->pole[3][3].y)))/9);
4100
10.1k
    }
4101
35.7k
    patch_set_color(pfs, p->c[0][0], curve[0].vertex.cc);
4102
35.7k
    patch_set_color(pfs, p->c[1][0], curve[1].vertex.cc);
4103
35.7k
    patch_set_color(pfs, p->c[1][1], curve[2].vertex.cc);
4104
35.7k
    patch_set_color(pfs, p->c[0][1], curve[3].vertex.cc);
4105
35.7k
    patch_resolve_color_inline(p->c[0][0], pfs);
4106
35.7k
    patch_resolve_color_inline(p->c[0][1], pfs);
4107
35.7k
    patch_resolve_color_inline(p->c[1][0], pfs);
4108
35.7k
    patch_resolve_color_inline(p->c[1][1], pfs);
4109
35.7k
    if (!pfs->Function) {
4110
25.5k
        pcs->type->restrict_color(&p->c[0][0]->cc, pcs);
4111
25.5k
        pcs->type->restrict_color(&p->c[0][1]->cc, pcs);
4112
25.5k
        pcs->type->restrict_color(&p->c[1][0]->cc, pcs);
4113
25.5k
        pcs->type->restrict_color(&p->c[1][1]->cc, pcs);
4114
25.5k
    }
4115
35.7k
}
4116
4117
int
4118
gx_shade_background(gx_device *pdev, const gs_fixed_rect *rect,
4119
        const gx_device_color *pdevc, gs_logical_operation_t log_op)
4120
3
{
4121
3
    gs_fixed_edge le, re;
4122
4123
3
    le.start.x = rect->p.x - INTERPATCH_PADDING;
4124
3
    le.start.y = rect->p.y - INTERPATCH_PADDING;
4125
3
    le.end.x = rect->p.x - INTERPATCH_PADDING;
4126
3
    le.end.y = rect->q.y + INTERPATCH_PADDING;
4127
3
    re.start.x = rect->q.x + INTERPATCH_PADDING;
4128
3
    re.start.y = rect->p.y - INTERPATCH_PADDING;
4129
3
    re.end.x = rect->q.x + INTERPATCH_PADDING;
4130
3
    re.end.y = rect->q.y + INTERPATCH_PADDING;
4131
3
    return dev_proc(pdev, fill_trapezoid)(pdev,
4132
3
            &le, &re, le.start.y, le.end.y, false, pdevc, log_op);
4133
3
}
4134
4135
int
4136
patch_fill(patch_fill_state_t *pfs, const patch_curve_t curve[4],
4137
           const gs_fixed_point interior[4],
4138
           void (*transform) (gs_fixed_point *, const patch_curve_t[4],
4139
                              const gs_fixed_point[4], double, double))
4140
35.7k
{
4141
35.7k
    tensor_patch p;
4142
35.7k
    patch_color_t *c[4];
4143
35.7k
    int kv[4], kvm, ku[4], kum;
4144
35.7k
    int code = 0;
4145
35.7k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 4); /* Can't fail */
4146
4147
35.7k
    p.c[0][0] = c[0];
4148
35.7k
    p.c[0][1] = c[1];
4149
35.7k
    p.c[1][0] = c[2];
4150
35.7k
    p.c[1][1] = c[3];
4151
#if SKIP_TEST
4152
    dbg_patch_cnt++;
4153
    /*if (dbg_patch_cnt != 67 && dbg_patch_cnt != 78)
4154
        return 0;*/
4155
#endif
4156
    /* We decompose the patch into tiny quadrangles,
4157
       possibly inserting wedges between them against a dropout. */
4158
35.7k
    make_tensor_patch(pfs, &p, curve, interior);
4159
35.7k
    pfs->unlinear = !is_linear_color_applicable(pfs);
4160
35.7k
    pfs->linear_color = false;
4161
35.7k
    if ((*dev_proc(pfs->dev, dev_spec_op))(pfs->dev,
4162
35.7k
            gxdso_pattern_shading_area, NULL, 0) > 0) {
4163
        /* Inform the device with the shading coverage area.
4164
           First compute the sign of the area, because
4165
           all areas to be clipped in same direction. */
4166
0
        gx_device *pdev = pfs->dev;
4167
0
        gx_path path;
4168
0
        fixed d01x = (curve[1].vertex.p.x - curve[0].vertex.p.x) >> 1;
4169
0
        fixed d01y = (curve[1].vertex.p.y - curve[0].vertex.p.y) >> 1;
4170
0
        fixed d12x = (curve[2].vertex.p.x - curve[1].vertex.p.x) >> 1;
4171
0
        fixed d12y = (curve[2].vertex.p.y - curve[1].vertex.p.y) >> 1;
4172
0
        fixed d23x = (curve[3].vertex.p.x - curve[2].vertex.p.x) >> 1;
4173
0
        fixed d23y = (curve[3].vertex.p.y - curve[2].vertex.p.y) >> 1;
4174
0
        fixed d30x = (curve[0].vertex.p.x - curve[3].vertex.p.x) >> 1;
4175
0
        fixed d30y = (curve[0].vertex.p.y - curve[3].vertex.p.y) >> 1;
4176
0
        int64_t s1 = (int64_t)d01x * d12y - (int64_t)d01y * d12x;
4177
0
        int64_t s2 = (int64_t)d23x * d30y - (int64_t)d23y * d30x;
4178
0
        int s = (s1 + s2 > 0 ? 1 : 3), i, j, k, jj, l = (s == 1 ? 0 : 1);
4179
4180
0
        gx_path_init_local(&path, pdev->memory);
4181
0
        if (is_x_bended(&p) || is_y_bended(&p)) {
4182
            /* The patch possibly is self-overlapping,
4183
               so the patch coverage may fall outside the patch outline.
4184
               In this case we pass an empty path,
4185
               and the device must use a bitmap mask instead clipping. */
4186
0
        } else {
4187
0
            code = gx_path_add_point(&path, curve[0].vertex.p.x, curve[0].vertex.p.y);
4188
0
            for (i = k = 0; k < 4 && code >= 0; i = j, k++) {
4189
0
                j = (i + s) % 4, jj = (s == 1 ? i : j);
4190
0
                if (curve[jj].straight)
4191
0
                    code = gx_path_add_line(&path, curve[j].vertex.p.x,
4192
0
                                                curve[j].vertex.p.y);
4193
0
                else
4194
0
                    code = gx_path_add_curve(&path, curve[jj].control[l].x, curve[jj].control[l].y,
4195
0
                                                    curve[jj].control[(l + 1) & 1].x, curve[jj].control[(l + 1) & 1].y,
4196
0
                                                    curve[j].vertex.p.x,
4197
0
                                                    curve[j].vertex.p.y);
4198
0
            }
4199
0
            if (code >= 0)
4200
0
                code = gx_path_close_subpath(&path);
4201
0
        }
4202
0
        if (code >= 0)
4203
0
            code = (*dev_proc(pfs->dev, fill_path))(pdev, NULL, &path, NULL, NULL, NULL);
4204
0
        gx_path_free(&path, "patch_fill");
4205
0
        if (code < 0)
4206
0
            goto out;
4207
0
    }
4208
    /* How many subdivisions of the patch in the u and v direction? */
4209
35.7k
    kv[0] = curve_samples(pfs, &p.pole[0][0], 4, pfs->fixed_flat);
4210
35.7k
    kv[1] = curve_samples(pfs, &p.pole[0][1], 4, pfs->fixed_flat);
4211
35.7k
    kv[2] = curve_samples(pfs, &p.pole[0][2], 4, pfs->fixed_flat);
4212
35.7k
    kv[3] = curve_samples(pfs, &p.pole[0][3], 4, pfs->fixed_flat);
4213
35.7k
    kvm = max(max(kv[0], kv[1]), max(kv[2], kv[3]));
4214
35.7k
    ku[0] = curve_samples(pfs, p.pole[0], 1, pfs->fixed_flat);
4215
35.7k
    ku[1] = curve_samples(pfs, p.pole[1], 1, pfs->fixed_flat);
4216
35.7k
    ku[2] = curve_samples(pfs, p.pole[2], 1, pfs->fixed_flat);
4217
35.7k
    ku[3] = curve_samples(pfs, p.pole[3], 1, pfs->fixed_flat);
4218
35.7k
    kum = max(max(ku[0], ku[1]), max(ku[2], ku[3]));
4219
#   if NOFILL_TEST
4220
    dbg_nofill = false;
4221
#   endif
4222
35.7k
    code = fill_wedges(pfs, ku[0], kum, p.pole[0], 1, p.c[0][0], p.c[0][1],
4223
35.7k
        interpatch_padding | inpatch_wedge);
4224
35.7k
    if (code >= 0) {
4225
        /* We would like to apply iterations for enumerating the kvm curve parts,
4226
           but the roundinmg errors would be too complicated due to
4227
           the dependence on the direction. Note that neigbour
4228
           patches may use the opposite direction for same bounding curve.
4229
           We apply the recursive dichotomy, in which
4230
           the rounding errors do not depend on the direction. */
4231
#       if NOFILL_TEST
4232
            dbg_nofill = false;
4233
            code = fill_patch(pfs, &p, kvm, kv[0], kv[3]);
4234
            dbg_nofill = true;
4235
#       endif
4236
35.7k
            code = fill_patch(pfs, &p, kvm, kv[0], kv[3]);
4237
35.7k
    }
4238
35.7k
    if (code >= 0)
4239
35.7k
        code = fill_wedges(pfs, ku[3], kum, p.pole[3], 1, p.c[1][0], p.c[1][1],
4240
35.7k
                interpatch_padding | inpatch_wedge);
4241
35.7k
out:
4242
35.7k
    release_colors_inline(pfs, color_stack_ptr, 4);
4243
35.7k
    return code;
4244
35.7k
}