Coverage Report

Created: 2025-06-10 07:19

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
21.1M
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
776k
{
110
776k
    const subpath *psub;
111
776k
    const segment *pseg;
112
776k
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
776k
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
776k
    double expand = pgs->line_params.half_width;
115
776k
    int result = 1;
116
117
776k
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
776k
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
776k
    if (pgs->line_params.start_cap == gs_cap_square ||
124
776k
        pgs->line_params.end_cap == gs_cap_square)
125
39.9k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
776k
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
776k
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
776k
        ) {
131
528k
        bool must_be_closed =
132
528k
            !(pgs->line_params.start_cap == gs_cap_square ||
133
528k
              pgs->line_params.start_cap == gs_cap_round  ||
134
528k
              pgs->line_params.end_cap   == gs_cap_square ||
135
528k
              pgs->line_params.end_cap   == gs_cap_round  ||
136
528k
              pgs->line_params.dash_cap  == gs_cap_square ||
137
528k
              pgs->line_params.dash_cap  == gs_cap_round);
138
528k
        gs_fixed_point prev;
139
140
528k
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
1.62M
        for (pseg = (const segment *)psub; pseg;
142
1.10M
             prev = pseg->pt, pseg = pseg->next
143
528k
             )
144
1.33M
            switch (pseg->type) {
145
514k
            case s_start:
146
514k
                if (((const subpath *)pseg)->curve_count ||
147
514k
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
514k
                    )
149
78.5k
                    goto not_exact;
150
435k
                break;
151
692k
            case s_line:
152
692k
            case s_dash:
153
819k
            case s_line_close:
154
819k
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
154k
                    goto not_exact;
156
665k
                break;
157
665k
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
1.33M
            }
161
295k
        result = 0;             /* exact result */
162
295k
    }
163
776k
not_exact:
164
776k
    if (result) {
165
481k
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
481k
            (psub == 0 || (pseg = psub->next) == 0 ||
167
416k
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
481k
            DO_NOTHING;
169
109k
        else {
170
109k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
109k
            if (pgs->line_params.curve_join >= 0)
173
0
                factor = max(factor, join_expansion_factor(pgs,
174
109k
                                (gs_line_join)pgs->line_params.curve_join));
175
109k
            expand *= factor;
176
109k
        }
177
481k
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
776k
    {
181
776k
        float exx = expand * cx;
182
776k
        float exy = expand * cy;
183
776k
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
776k
        if (code < 0)
186
173k
            return code;
187
602k
        code = set_float2fixed_vars(ppt->y, exy);
188
602k
        if (code < 0)
189
1.98k
            return code;
190
602k
    }
191
192
600k
    return result;
193
602k
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
109k
{
197
109k
    switch (join) {
198
94.4k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
0
    case gs_join_triangle: return 2.0;
200
14.5k
    default: return 1.0;
201
109k
    }
202
109k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
23.7M
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
23.7M
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
12.8M
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
17
{
342
17
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
17
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
17
    gx_device_cpath_accum adev;
345
17
    gx_device_color devc;
346
17
    gx_clip_path stroke_as_clip_path;
347
17
    int code;
348
17
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
17
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
17
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
17
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
17
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
17
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
17
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
17
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
17
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
17
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
17
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
17
    gs_set_logical_op_inline(pgs, save_lop);
368
17
    if (code >= 0)
369
17
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
17
        gs_fixed_rect clip_box, shading_box;
373
17
        gs_int_rect cb;
374
17
        gx_device_clip cdev;
375
376
17
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
17
        if (gx_dc_is_pattern2_color(pdevc) &&
382
17
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
17
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
17
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
17
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
17
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
17
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
17
        code = pdevc->type->fill_rectangle(pdevc,
392
17
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
17
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
17
        gx_destroy_clip_device_on_stack(&cdev);
395
17
    }
396
17
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
17
    return code;
399
17
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
576k
{
408
576k
    if (gx_dc_is_pattern2_color(pdevc) ||
409
576k
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
576k
        (gx_dc_is_pattern1_color(pdevc) &&
411
576k
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
4
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
4
                                                         pdevc, pcpath);
414
576k
    else
415
576k
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
576k
                                   pdevc, pcpath);
417
576k
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
13.4M
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
13.4M
     (final || lop_is_idempotent(pgs->log_op))) {\
425
10.4M
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
10.4M
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
10.4M
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
10.4M
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
10.4M
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
10.4M
    if ( code < 0 ) goto exit;\
434
10.4M
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
10.4M
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
576k
{
509
576k
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
576k
    bool traditional = CPSI_mode | params->traditional;
511
576k
    stroke_line_proc_t line_proc =
512
576k
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
576k
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
576k
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
576k
    gs_fixed_rect ibox, cbox;
516
576k
    gx_device_clip cdev;
517
576k
    gx_device *dev = pdev;
518
576k
    int code = 0;
519
576k
    gx_fill_params fill_params;
520
576k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
576k
    int dash_count = pgs_lp->dash.pattern_size;
522
576k
    gx_path fpath, dpath;
523
576k
    gx_path stroke_path_body;
524
576k
    gx_path stroke_path_reverse;
525
576k
    gx_path *to_path_reverse = NULL;
526
576k
    const gx_path *spath;
527
576k
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
576k
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
576k
    int uniform;
535
576k
    bool reflected;
536
576k
    orientation orient =
537
576k
        (
538
576k
#ifdef OPTIMIZE_ORIENTATION
539
576k
         is_fzero2(xy, yx) ?
540
336k
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
336k
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
336k
          orient_portrait) :
543
576k
         is_fzero2(xx, yy) ?
544
2.18k
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
2.18k
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
2.18k
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
240k
#endif
550
240k
         (uniform = 0,
551
238k
          reflected = xy * yx > xx * yy,
552
238k
          orient_other));
553
576k
    const segment_notes not_first = sn_not_first;
554
576k
    gs_line_join curve_join =
555
576k
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
576k
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
465k
            gs_join_bevel : pgs_lp->join);
558
576k
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
576k
    bool always_thin;
560
576k
    double line_width_and_scale;
561
576k
    double device_line_width_scale = 0; /* Quiet compiler. */
562
576k
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
576k
    const subpath *psub;
564
576k
    gs_matrix initial_matrix;
565
576k
    bool initial_matrix_reflected, flattened_path = false;
566
576k
    note_flags flags;
567
568
576k
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
576k
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
576k
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
576k
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
576k
    {
595
576k
        gs_fixed_point expansion;
596
597
576k
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
170k
            ibox.p.x = ibox.p.y = min_fixed;
600
170k
            ibox.q.x = ibox.q.y = max_fixed;
601
405k
        } else {
602
405k
            expansion.x += pgs->fill_adjust.x;
603
405k
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
405k
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
405k
                        ibox.p.x - expansion.x);
610
405k
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
405k
                        ibox.p.y - expansion.y);
612
405k
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
405k
                        ibox.q.x + expansion.x);
614
405k
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
405k
                        ibox.q.y + expansion.y);
616
405k
        }
617
576k
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
576k
    if (pcpath)
620
302k
        gx_cpath_inner_box(pcpath, &cbox);
621
273k
    else if (pdevc)
622
273k
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
14
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
14
        cbox = ibox;
626
14
    }
627
576k
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
463k
        gs_fixed_rect bbox;
631
632
463k
        if (pcpath) {
633
293k
            gx_cpath_outer_box(pcpath, &bbox);
634
293k
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
293k
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
293k
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
293k
            rect_intersect(ibox, bbox);
638
293k
        } else
639
463k
            rect_intersect(ibox, cbox);
640
463k
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
262k
            return 0;
643
262k
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
201k
        if (pcpath && line_proc == stroke_fill) {
664
43.1k
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
43.1k
            cdev.max_fill_band = pdev->max_fill_band;
666
43.1k
            dev = (gx_device *)&cdev;
667
43.1k
        }
668
201k
    }
669
314k
    fill_params.rule = gx_rule_winding_number;
670
314k
    fill_params.flatness = pgs->flatness;
671
314k
    if (line_width < 0)
672
0
        line_width = -line_width;
673
314k
    line_width_and_scale = line_width * (double)int2fixed(1);
674
314k
    if (is_fzero(line_width))
675
3.65k
        always_thin = true;
676
310k
    else {
677
310k
        float xa, ya;
678
679
310k
        switch (orient) {
680
272k
            case orient_portrait:
681
272k
                xa = xx, ya = yy;
682
272k
                goto sat;
683
619
            case orient_landscape:
684
619
                xa = xy, ya = yx;
685
273k
              sat:
686
273k
                if (xa < 0)
687
805
                    xa = -xa;
688
273k
                if (ya < 0)
689
230k
                    ya = -ya;
690
273k
                always_thin = (max(xa, ya) * line_width < 0.5);
691
273k
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
209k
                    device_line_width_scale = line_width_and_scale * xa;
693
209k
                }
694
273k
                break;
695
37.1k
            default:
696
37.1k
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
37.1k
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
37.1k
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
37.1k
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
37.1k
                                          )
712
37.1k
                                     )/2;
713
714
37.1k
                    always_thin = max_rr * line_width * line_width < 0.25;
715
37.1k
                }
716
310k
        }
717
310k
    }
718
314k
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
314k
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
314k
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
314k
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
292k
        if (!ppath->first_subpath) {
739
49.7k
            if (dev == (gx_device *)&cdev)
740
6.38k
                gx_destroy_clip_device_on_stack(&cdev);
741
49.7k
            return 0;
742
49.7k
        }
743
242k
        spath = ppath;
744
242k
    } else {
745
21.3k
        gx_path_init_local(&fpath, ppath->memory);
746
21.3k
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
21.3k
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
21.3k
        spath = &fpath;
753
21.3k
        flattened_path = true;
754
21.3k
    }
755
264k
    if (dash_count) {
756
1.89k
        float max_dash_len = 0;
757
1.89k
        float expand_squared;
758
1.89k
        int i;
759
1.89k
        float adjust = (float)pgs->fill_adjust.x;
760
1.89k
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
5.39k
        for (i = 0; i < dash_count; i++) {
763
3.50k
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
2.33k
                max_dash_len = pgs_lp->dash.pattern[i];
765
3.50k
        }
766
1.89k
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
1.89k
        if (expand_squared < 0)
768
1.02k
            expand_squared = -expand_squared;
769
1.89k
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
1.89k
        if (pgs->line_params.half_width > 1)
773
209
            adjust /= pgs->line_params.half_width;
774
1.89k
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
1.77k
            gx_path_init_local(&dpath, ppath->memory);
776
1.77k
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
1.77k
            if (code < 0)
778
0
                goto exf;
779
1.77k
            spath = &dpath;
780
1.77k
        } else {
781
121
            dash_count = 0;
782
121
        }
783
1.89k
    }
784
264k
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
264k
        to_path = &stroke_path_body;
787
264k
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
264k
    }
789
264k
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
832k
    for (psub = spath->first_subpath; psub != 0;) {
794
568k
        int index = 0;
795
568k
        const segment *pseg = (const segment *)psub;
796
568k
        fixed x = pseg->pt.x;
797
568k
        fixed y = pseg->pt.y;
798
568k
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
568k
        partial_line pl, pl_prev, pl_first;
800
568k
        bool zero_length = true;
801
568k
        int pseg_notes = pseg->notes;
802
803
568k
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
13.8M
        while ((pseg = pseg->next) != 0 &&
810
13.8M
               pseg->type != s_start
811
13.2M
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
13.2M
            fixed sx, udx, sy, udy;
815
13.2M
            bool is_dash_segment;
816
817
13.2M
            pseg_notes = pseg->notes;
818
819
13.2M
         d2:is_dash_segment = false;
820
13.2M
         d1:if (pseg->type == s_dash) {
821
14.9k
                dash_segment *pd = (dash_segment *)pseg;
822
823
14.9k
                sx = pd->pt.x;
824
14.9k
                sy = pd->pt.y;
825
14.9k
                udx = pd->tangent.x;
826
14.9k
                udy = pd->tangent.y;
827
14.9k
                is_dash_segment = true;
828
13.2M
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
13.2M
            } else {
835
13.2M
                sx = pseg->pt.x;
836
13.2M
                sy = pseg->pt.y;
837
13.2M
                udx = sx - x;
838
13.2M
                udy = sy - y;
839
13.2M
            }
840
13.2M
            zero_length &= ((udx | udy) == 0);
841
13.2M
            pl.o.p.x = x, pl.o.p.y = y;
842
13.2M
          d:flags = (((pseg_notes & sn_not_first) ?
843
12.0M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
13.2M
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
13.2M
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
13.2M
                     (flags & ~nf_all_from_arc));
847
13.2M
            pl.e.p.x = sx, pl.e.p.y = sy;
848
13.2M
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
66.4k
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
44.3k
                {
856
44.3k
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
12.7k
                        continue;
858
31.5k
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
31.5k
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
20.4k
                                  (pseg->notes & ~sn_not_first) :
866
31.5k
                                  pseg->notes);
867
31.5k
                    goto d2;
868
44.3k
                }
869
                /* Check for a degenerate subpath. */
870
23.3k
                while ((pseg = pseg->next) != 0 &&
871
23.3k
                       pseg->type != s_start
872
22.1k
                    ) {
873
3.19k
                    if (is_dash_segment)
874
783
                        break;
875
2.41k
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
2.41k
                    sx = pseg->pt.x, udx = sx - x;
878
2.41k
                    sy = pseg->pt.y, udy = sy - y;
879
2.41k
                    if (udx | udy) {
880
1.19k
                        zero_length = false;
881
1.19k
                        goto d;
882
1.19k
                    }
883
2.41k
                }
884
20.9k
                if (pgs_lp->dot_length == 0 &&
885
20.9k
                    pgs_lp->start_cap != gs_cap_round &&
886
20.9k
                    pgs_lp->end_cap != gs_cap_round &&
887
20.9k
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
134
                    break;
893
134
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
20.8k
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
20.8k
                    const segment *end = psub->last;
906
907
20.8k
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
14.9k
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
20.8k
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
20.8k
                if ((udx | udy) == 0) {
917
5.84k
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
5.84k
                        udx = fixed_1;
920
5.84k
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
5.84k
                }
925
20.8k
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
18.4k
                    double scale = device_dot_length /
927
18.4k
                                hypot((double)udx, (double)udy);
928
18.4k
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
18.4k
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
14.0k
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
14.0k
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
18.4k
                    udx1 = (fixed) (udx * scale);
944
18.4k
                    udy1 = (fixed) (udy * scale);
945
18.4k
                    sx = x + udx1;
946
18.4k
                    sy = y + udy1;
947
18.4k
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
20.8k
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
20.8k
                if (!is_dash_segment)
953
5.84k
                    goto d;
954
14.9k
                pl.e.p.x = sx;
955
14.9k
                pl.e.p.y = sy;
956
14.9k
            }
957
13.2M
            pl.vector.x = udx;
958
13.2M
            pl.vector.y = udy;
959
13.2M
            if (always_thin) {
960
2.54M
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
2.54M
                pl.width.x = pl.width.y = 0;
962
2.54M
                pl.thin = true;
963
10.6M
            } else {
964
10.6M
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
2.80M
                    double dpx = udx, dpy = udy;
968
2.80M
                    double wl = device_line_width_scale /
969
2.80M
                    hypot(dpx, dpy);
970
971
2.80M
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
2.80M
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
2.80M
                    if (initial_matrix_reflected)
976
2.80M
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
3.31k
                    else
978
3.31k
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
2.80M
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
7.87M
                } else {
983
7.87M
                    gs_point dpt;       /* unscaled */
984
7.87M
                    float wl;
985
986
7.87M
                    code = gs_gstate_idtransform(pgs,
987
7.87M
                                                 (float)udx, (float)udy,
988
7.87M
                                                 &dpt);
989
7.87M
                    if (code < 0) {
990
828
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
828
                        code = 0;
993
7.87M
                    } else {
994
7.87M
                        wl = line_width_and_scale /
995
7.87M
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
7.87M
                        dpt.x *= wl;
999
7.87M
                        dpt.y *= wl;
1000
7.87M
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
7.87M
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
7.87M
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
7.87M
                    if (orient != orient_portrait)
1016
7.30M
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
7.30M
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
7.87M
                    if (!reflected ^ initial_matrix_reflected)
1019
7.80M
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
7.87M
                    pl.width.x = (fixed) (dpt.y * xx),
1021
7.87M
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
7.87M
                    if (orient != orient_portrait)
1023
7.30M
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
7.30M
                            pl.width.y += (fixed) (dpt.y * xy);
1025
7.87M
                    pl.thin = width_is_thin(&pl);
1026
7.87M
                }
1027
10.6M
                if (!pl.thin) {
1028
10.5M
                    if (index)
1029
10.0M
                        dev->sgr.stroke_stored = false;
1030
10.5M
                    adjust_stroke(dev, &pl, pgs, false,
1031
10.5M
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
10.5M
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
10.5M
                            (zero_length || !is_closed),
1034
10.5M
                            COMBINE_FLAGS(flags));
1035
10.5M
                    compute_caps(&pl);
1036
10.5M
                }
1037
10.6M
            }
1038
13.2M
            if (index++) {
1039
12.6M
                gs_line_join join =
1040
12.6M
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
12.6M
                int first;
1042
12.6M
                pl_ptr lptr;
1043
12.6M
                bool ensure_closed;
1044
1045
12.6M
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
0
                    first = 0;
1049
0
                    lptr = 0;
1050
0
                    index = 1;
1051
12.6M
                } else {
1052
12.6M
                    first = (is_closed ? 1 : index - 2);
1053
12.6M
                    lptr = &pl;
1054
12.6M
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
12.6M
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
12.6M
                ensure_closed = ((to_path == &stroke_path_body &&
1068
12.6M
                                  lop_is_idempotent(pgs->log_op)) ||
1069
12.6M
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
12.6M
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
12.6M
                                     first, &pl_prev, lptr,
1074
12.6M
                                     pdevc, dev, pgs, params, &cbox,
1075
12.6M
                                     uniform, join, initial_matrix_reflected,
1076
12.6M
                                     COMBINE_FLAGS(flags));
1077
12.6M
                if (code < 0)
1078
0
                    goto exit;
1079
12.6M
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
12.6M
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
567k
                pl_first = pl;
1086
13.2M
            pl_prev = pl;
1087
13.2M
            x = sx, y = sy;
1088
13.2M
            flags = (flags<<4) | nf_all_from_arc;
1089
13.2M
        }
1090
568k
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
567k
            segment_notes notes = (pseg == 0 ?
1093
264k
                                   (const segment *)spath->first_subpath :
1094
567k
                                   pseg)->notes;
1095
567k
            gs_line_join join = (notes & not_first ? curve_join :
1096
567k
                                 pgs_lp->join);
1097
567k
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
567k
            pl_ptr lptr =
1101
567k
                (!is_closed || join == gs_join_none || zero_length ?
1102
458k
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
567k
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
567k
            flags = (((notes & sn_not_first) ?
1113
567k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
567k
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
567k
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
567k
                     (flags & ~nf_all_from_arc));
1117
567k
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
567k
                                 index - 1, &pl_prev, lptr, pdevc,
1119
567k
                                 dev, pgs, params, &cbox, uniform, join,
1120
567k
                                 initial_matrix_reflected,
1121
567k
                                 COMBINE_FLAGS(flags));
1122
567k
            if (code < 0)
1123
0
                goto exit;
1124
567k
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
567k
            cap = ((flags & nf_prev_dash_head) ?
1126
332k
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
567k
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
228
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
228
                if (code < 0)
1131
0
                    goto exit;
1132
228
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
228
            }
1134
567k
        }
1135
568k
        psub = (const subpath *)pseg;
1136
568k
    }
1137
264k
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
264k
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
264k
  exit:
1141
264k
    if (dev == (gx_device *)&cdev)
1142
36.7k
        cdev.target->sgr = cdev.sgr;
1143
264k
    if (to_path == &stroke_path_body)
1144
264k
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
264k
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
264k
  exf:
1148
264k
    if (dash_count)
1149
1.77k
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
264k
    if(flattened_path)
1152
21.3k
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
264k
    if (dev == (gx_device *)&cdev)
1154
36.7k
        gx_destroy_clip_device_on_stack(&cdev);
1155
264k
    return code;
1156
264k
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
576k
{
1163
576k
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
576k
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
7.87M
{
1177
7.87M
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
7.87M
    if ((dy = plp->vector.y) == 0)
1181
451k
        return any_abs(wy) < fixed_half;
1182
7.42M
    if ((dx = plp->vector.x) == 0)
1183
127k
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
7.29M
    return false;
1249
7.42M
#endif
1250
7.42M
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
101k
{
1256
101k
    fixed *pw;
1257
101k
    fixed *pov;
1258
101k
    fixed *pev;
1259
101k
    fixed w, w2;
1260
101k
    fixed adj2;
1261
1262
101k
    if (horiz) {
1263
        /* More horizontal stroke */
1264
36.0k
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
36.0k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
65.2k
    } else {
1267
        /* More vertical stroke */
1268
65.2k
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
65.2k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
65.2k
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
101k
    w = *pw;
1276
101k
    if (w > 0)
1277
39.0k
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
62.2k
    else
1279
62.2k
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
101k
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
101k
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
42.2k
        if (w >= 0)
1290
8.63k
            w2 += adj2;
1291
33.6k
        else
1292
33.6k
            w2 = adj2 - w2;
1293
42.2k
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
11.8k
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
30.4k
        else                    /* even width, move to pixel */
1296
30.4k
            *pov = *pev = fixed_rounded(*pov);
1297
1298
42.2k
    }
1299
101k
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
27.9k
{
1306
1307
27.9k
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
27.9k
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
27.9k
    if (*pow == *pew) {
1313
22.2k
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
22.2k
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
22.2k
        fixed length = any_abs(*pov - *pev);
1316
22.2k
        fixed length_r, length_r_2;
1317
22.2k
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
22.2k
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
22.2k
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
22.2k
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
11.8k
            return;
1329
10.3k
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
0
            length_r = fixed_rounded(length);
1331
0
            if (length_r < fixed_1)
1332
0
                length_r = fixed_1;
1333
0
            length_r_2 = length_r / 2;
1334
10.3k
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
10.3k
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
10.3k
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
10.3k
            length_r_2 = fixed_rounded(length) / 2;
1340
10.3k
        }
1341
10.3k
        if (length_r & fixed_1)
1342
0
            mv_r = fixed_floor(mv) + fixed_half;
1343
10.3k
        else
1344
10.3k
            mv_r = fixed_floor(mv);
1345
10.3k
        if (*pov < *pev) {
1346
0
            *pov = mv_r - length_r_2;
1347
0
            *pev = mv_r + length_r_2;
1348
10.3k
        } else {
1349
10.3k
            *pov = mv_r + length_r_2;
1350
10.3k
            *pev = mv_r - length_r_2;
1351
10.3k
        }
1352
10.3k
    }
1353
27.9k
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
10.5M
{
1362
10.5M
    bool horiz, adjust = true;
1363
10.5M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
13.6k
                             pgs->line_params.dash_cap :
1365
10.5M
                             pgs->line_params.start_cap);
1366
10.5M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
13.8k
                             pgs->line_params.dash_cap :
1368
10.5M
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
10.5M
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
10.4M
        dev->sgr.stroke_stored = false;
1374
10.4M
        return;                 /* don't adjust */
1375
10.4M
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
101k
    if (dev->sgr.stroke_stored &&
1380
101k
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
101k
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
500
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
500
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
500
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
488
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
488
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
488
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
488
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
488
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
488
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
488
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
488
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
488
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
488
            }
1443
488
        }
1444
500
    }
1445
101k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
12.4k
        dev->sgr.stroke_stored = true;
1447
12.4k
        dev->sgr.orig[0] = plp->o.p;
1448
12.4k
        dev->sgr.orig[1] = plp->e.p;
1449
12.4k
        dev->sgr.orig[2] = plp->width;
1450
12.4k
        dev->sgr.orig[3] = plp->vector;
1451
12.4k
    } else
1452
88.8k
        dev->sgr.stroke_stored = false;
1453
101k
    if (adjust) {
1454
101k
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
101k
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
101k
        if (adjust_longitude)
1457
27.9k
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
101k
    }
1459
101k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
12.4k
        dev->sgr.adjusted[0] = plp->o.p;
1461
12.4k
        dev->sgr.adjusted[1] = plp->e.p;
1462
12.4k
        dev->sgr.adjusted[2] = plp->width;
1463
12.4k
        dev->sgr.adjusted[3] = plp->vector;
1464
12.4k
    }
1465
101k
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
4.82M
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
4.82M
    double u1 = pd1->x, v1 = pd1->y;
1482
4.82M
    double u2 = pd2->x, v2 = pd2->y;
1483
4.82M
    double denom = u1 * v2 - u2 * v1;
1484
4.82M
    double xdiff = pp2->x - pp1->x;
1485
4.82M
    double ydiff = pp2->y - pp1->y;
1486
4.82M
    double f1;
1487
4.82M
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
4.82M
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
43.8k
        if_debug0('O', "\tdegenerate!\n");
1506
43.8k
        return -1;
1507
43.8k
    }
1508
4.77M
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
4.77M
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
4.77M
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
4.77M
    if_debug2('O', "\t%f,%f\n",
1512
4.77M
              fixed2float(pi->x), fixed2float(pi->y));
1513
4.77M
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
4.82M
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
8.65k
{
1521
8.65k
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
8.65k
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
8.65k
    if (any_abs(dx) > any_abs(dy)) {
1525
4.51k
        plp->width.x = plp->e.cdelta.y = 0;
1526
4.51k
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
4.51k
    } else {
1528
4.13k
        plp->width.y = plp->e.cdelta.x = 0;
1529
4.13k
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
4.13k
    }
1531
8.65k
#undef TRSIGN
1532
8.65k
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
13.2M
{
1545
13.2M
    const fixed lix = plp->o.p.x;
1546
13.2M
    const fixed liy = plp->o.p.y;
1547
13.2M
    const fixed litox = plp->e.p.x;
1548
13.2M
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
13.2M
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
2.71M
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
2.71M
                                                pdevc, pgs->log_op,
1555
2.71M
                                                pgs->fill_adjust.x,
1556
2.71M
                                                pgs->fill_adjust.y);
1557
2.71M
    }
1558
    /* Check for being able to fill directly. */
1559
10.4M
    {
1560
10.4M
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
10.4M
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
10.2M
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
10.4M
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
10.2M
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
10.4M
        if (first != 0)
1567
10.1M
            start_cap = gs_cap_butt;
1568
10.4M
        if (nplp != 0)
1569
10.1M
            end_cap = gs_cap_butt;
1570
10.4M
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
10.4M
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
10.4M
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
10.4M
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
10.3M
                join == gs_join_none)
1575
10.4M
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
10.4M
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
10.4M
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
10.4M
 general:
1641
10.4M
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
10.4M
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
10.4M
                      flags);
1644
10.4M
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
10.5M
{
1655
10.5M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
10.5M
    gs_fixed_point points[8];
1657
10.5M
    int npoints;
1658
10.5M
    int code;
1659
10.5M
    bool moveto_first = true;
1660
10.5M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
10.2M
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
10.5M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
10.2M
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
10.5M
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
8.65k
        set_thin_widths(plp);
1669
8.65k
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
8.65k
        compute_caps(plp);
1671
8.65k
    }
1672
    /* Create an initial cap if desired. */
1673
10.5M
    if (first == 0 && start_cap == gs_cap_round) {
1674
122k
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
122k
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
122k
        npoints = 0;
1678
122k
        moveto_first = false;
1679
10.3M
    } else {
1680
10.3M
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
10.3M
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
10.3M
    }
1684
10.5M
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
379k
        if (end_cap == gs_cap_round) {
1687
122k
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
122k
            ++npoints;
1689
122k
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
122k
            code = add_pie_cap(ppath, &plp->e);
1692
122k
            goto done;
1693
122k
        }
1694
256k
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
10.1M
    } else if (nplp->thin) /* no join */
1696
8.90k
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
10.1M
    else if (join == gs_join_round) {
1698
80.5k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
80.5k
        ++npoints;
1700
80.5k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
80.5k
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
80.5k
        goto done;
1704
10.0M
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
9.32M
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
9.32M
        ++npoints;
1710
9.32M
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
9.32M
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
9.32M
        goto done;
1714
9.32M
    } else                      /* non-round join */
1715
722k
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
722k
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
722k
                                join, reflected);
1718
988k
    if (code < 0)
1719
0
        return code;
1720
988k
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
10.5M
  done:
1722
10.5M
    if (code < 0)
1723
0
        return code;
1724
10.5M
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
10.5M
        (nplp != NULL) && (!nplp->thin))
1726
9.60M
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
10.5M
    return gx_path_close_subpath(ppath);
1728
10.5M
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
687k
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
687k
    float check;
1794
687k
    double u1, v1, u2, v2;
1795
687k
    double num, denom;
1796
687k
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
687k
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
687k
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
172k
        return 1;
1806
1807
515k
    check = pgs_lp->miter_check;
1808
515k
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
515k
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
515k
    if (pmat) {
1812
73.0k
        gs_point pt;
1813
1814
73.0k
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
73.0k
        if (code < 0)
1816
0
        return code;
1817
73.0k
        v1 = pt.x, u1 = pt.y;
1818
73.0k
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
73.0k
        if (code < 0)
1820
0
            return code;
1821
73.0k
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
73.0k
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
73.0k
    }
1846
515k
    num = u1 * v2 - u2 * v1;
1847
515k
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
515k
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
160k
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
515k
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
515k
    if (denom < 0)
1881
113k
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
515k
    if (check > 0 ?
1884
515k
        (num < 0 || num >= denom * check) :
1885
515k
        (num < 0 && num >= denom * check)
1886
515k
        ) {
1887
        /* OK to use a miter join. */
1888
456k
        gs_fixed_point dirn1, dirn2;
1889
1890
456k
        dirn1.x = plp->e.cdelta.x;
1891
456k
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
456k
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
456k
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
1
        {
1898
1
            float scale = 65536.0;
1899
1
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
0
                scale /= abs(plp->vector.x);
1901
1
            else
1902
1
                scale /= abs(plp->vector.y);
1903
1
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
1
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
1
        }
1906
456k
        dirn2.x = nplp->o.cdelta.x;
1907
456k
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
456k
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
456k
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
3
        {
1914
3
            float scale = 65536.0;
1915
3
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
0
                scale /= abs(nplp->vector.x);
1917
3
            else
1918
3
                scale /= abs(nplp->vector.y);
1919
3
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
3
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
3
        }
1922
456k
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
456k
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
441k
            return 0;
1926
456k
    }
1927
73.4k
    return 1;
1928
515k
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
228
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
228
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
228
    gs_fixed_point points[6];
2286
228
    int npoints;
2287
228
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
228
    int code;
2289
2290
228
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
0
        set_thin_widths(plp);
2294
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
0
        compute_caps(plp);
2296
0
    }
2297
    /* The segment itself : */
2298
228
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
228
    ASSIGN_POINT(&points[1], plp->e.co);
2300
228
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
228
    ASSIGN_POINT(&points[3], plp->o.co);
2302
228
    code = add_points(ppath, points, 4, moveto_first);
2303
228
    if (code < 0)
2304
0
        return code;
2305
228
    code = gx_path_close_subpath(ppath);
2306
228
    if (code < 0)
2307
0
        return code;
2308
228
    npoints = 0;
2309
228
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
228
        if (pgs_lp->start_cap == gs_cap_butt)
2312
0
            return 0;
2313
228
        if (pgs_lp->start_cap == gs_cap_round) {
2314
228
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
228
            ++npoints;
2316
228
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
228
            return add_round_cap(ppath, &plp->e);
2319
228
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
0
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
0
    } else if (nplp->thin) {    /* no join */
2335
0
        npoints = 0;
2336
0
    } else {                    /* non-round join */
2337
0
        bool ccw =
2338
0
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
0
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
0
        if (ccw ^ reflected) {
2342
0
            ASSIGN_POINT(&points[0], plp->e.co);
2343
0
            ++npoints;
2344
0
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
0
                                    join, reflected);
2347
0
            if (code < 0)
2348
0
                return code;
2349
0
            code--; /* Drop the last point of the non-compatible mode. */
2350
0
            npoints += code;
2351
0
        } else {
2352
0
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
0
                                    join, reflected);
2355
0
            if (code < 0)
2356
0
                return code;
2357
0
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
0
            npoints = code;
2359
0
        }
2360
0
    }
2361
0
    code = add_points(ppath, points, npoints, moveto_first);
2362
0
    if (code < 0)
2363
0
        return code;
2364
0
    code = gx_path_close_subpath(ppath);
2365
0
    return code;
2366
0
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
228
{
2379
228
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
228
    gs_fixed_point points[5];
2381
228
    int npoints = 0;
2382
228
    int code;
2383
2384
228
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
228
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
0
        set_thin_widths(plp);
2390
0
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
0
        compute_caps(plp);
2392
0
    }
2393
    /* Create an initial cap if desired. */
2394
228
    if (pgs_lp->start_cap == gs_cap_round) {
2395
228
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
228
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
228
            )
2398
0
            return code;
2399
228
        return 0;
2400
228
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
228
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
10.5M
{
2420
10.5M
    int code;
2421
2422
10.5M
    if (moveto_first) {
2423
10.3M
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
10.3M
        if (code < 0)
2425
0
            return code;
2426
10.3M
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
10.3M
    } else {
2428
122k
        return gx_path_add_lines(ppath, points, npoints);
2429
122k
    }
2430
10.5M
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
722k
{
2443
722k
#define jp1 join_points[0]
2444
722k
#define np1 join_points[1]
2445
722k
#define np2 join_points[2]
2446
722k
#define jp2 join_points[3]
2447
722k
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
722k
    bool ccw =
2476
722k
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
722k
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
722k
    bool ccw0 = ccw;
2479
722k
    p_ptr outp, np;
2480
722k
    int   code;
2481
722k
    gs_fixed_point mpt;
2482
2483
722k
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
722k
    ASSIGN_POINT(&jp1, plp->e.co);
2487
722k
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
722k
    if (!ccw) {
2495
412k
        outp = &jp2;
2496
412k
        ASSIGN_POINT(&np2, nplp->o.co);
2497
412k
        ASSIGN_POINT(&np1, nplp->o.p);
2498
412k
        np = &np2;
2499
412k
    } else {
2500
309k
        outp = &jp1;
2501
309k
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
309k
        ASSIGN_POINT(&np2, nplp->o.p);
2503
309k
        np = &np1;
2504
309k
    }
2505
722k
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
722k
    if (join == gs_join_triangle) {
2509
0
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
0
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
0
        ASSIGN_POINT(&jpx, jp2);
2513
0
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
0
            jp2.x = tpx, jp2.y = tpy;
2516
0
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
0
            ASSIGN_POINT(&jp2, np2);
2519
0
            ASSIGN_POINT(&np2, np1);
2520
0
            np1.x = tpx, np1.y = tpy;
2521
0
        }
2522
0
        return 5;
2523
0
    }
2524
722k
    if (join == gs_join_miter &&
2525
722k
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
441k
        if (code < 0)
2527
0
            return code;
2528
441k
        ASSIGN_POINT(outp, mpt);
2529
441k
    }
2530
722k
    return 4;
2531
722k
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
10.5M
{
2594
10.5M
    fixed wx2 = plp->width.x;
2595
10.5M
    fixed wy2 = plp->width.y;
2596
2597
10.5M
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
10.5M
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
10.5M
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
10.5M
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
10.5M
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
10.5M
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
10.5M
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
456
{
2630
456
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
456
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
456
                                        xo + cdx, yo + cdy,
2638
456
                                        quarter_arc_fraction)) < 0 ||
2639
456
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
456
                                        quarter_arc_fraction)) < 0 ||
2641
456
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
456
                                        xe - cdx, ye - cdy,
2643
456
                                        quarter_arc_fraction)) < 0 ||
2644
456
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
456
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
456
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
456
        )
2649
0
        return code;
2650
456
    return 0;
2651
456
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
245k
{
2658
245k
    int code;
2659
2660
245k
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
245k
                                        xo + cdx, yo + cdy,
2662
245k
                                        quarter_arc_fraction)) < 0 ||
2663
245k
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
245k
                                        quarter_arc_fraction)) < 0 ||
2665
245k
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
245k
    return 0;
2668
245k
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
2.15M
{
2676
2.15M
    int code;
2677
2.15M
    double rad_squared, dist_squared, F;
2678
2.15M
    gs_fixed_point current, tangent, tangmeet;
2679
2680
2.15M
    tangent.x = current_tangent->x;
2681
2.15M
    tangent.y = current_tangent->y;
2682
2.15M
    current.x = current_orig->x;
2683
2.15M
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
2.15M
    if ((double)tangent.x * (double)final_tangent->x +
2687
2.15M
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
40.1k
        code = gx_path_add_partial_arc(ppath,
2690
40.1k
                                       centre->x + tangent.x,
2691
40.1k
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
40.1k
                                       current.x + tangent.x,
2694
40.1k
                                       current.y + tangent.y,
2695
40.1k
                                       quarter_arc_fraction);
2696
40.1k
        if (code < 0)
2697
0
            return code;
2698
40.1k
        current.x = centre->x + tangent.x;
2699
40.1k
        current.y = centre->y + tangent.y;
2700
40.1k
        if (ccw) {
2701
1
            int tmp = tangent.x;
2702
1
            tangent.x = -tangent.y;
2703
1
            tangent.y = tmp;
2704
40.1k
        } else {
2705
40.1k
            int tmp = tangent.x;
2706
40.1k
            tangent.x = tangent.y;
2707
40.1k
            tangent.y = -tmp;
2708
40.1k
        }
2709
40.1k
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
2.15M
    if (line_intersect(&current, &tangent,
2714
2.15M
                       final, final_tangent, &tangmeet) != 0) {
2715
1.09M
        return gx_path_add_line(ppath, final->x, final->y);
2716
1.09M
    }
2717
1.05M
    current.x -= tangmeet.x;
2718
1.05M
    current.y -= tangmeet.y;
2719
1.05M
    dist_squared = ((double)current.x) * current.x +
2720
1.05M
                   ((double)current.y) * current.y;
2721
1.05M
    rad_squared  = ((double)width->x) * width->x +
2722
1.05M
                   ((double)width->y) * width->y;
2723
1.05M
    dist_squared /= rad_squared;
2724
1.05M
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
1.05M
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
2.15M
                                   tangmeet.x, tangmeet.y, F);
2727
2.15M
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
9.40M
{
2735
9.40M
    int code;
2736
9.40M
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
9.40M
    double l, r;
2738
9.40M
    bool ccw;
2739
2740
9.40M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
9.40M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
9.40M
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
7.32M
        if (cap &&
2746
7.32M
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
133
            return add_pie_cap(ppath, &plp->e);
2748
7.32M
        else
2749
7.32M
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
7.32M
    }
2751
2752
2.07M
    ccw = (l > r);
2753
2754
2.07M
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
2.07M
    if (ccw) {
2758
1.03M
        current       = & plp->e.co;
2759
1.03M
        final         = &nplp->o.ce;
2760
1.03M
        tangent       = & plp->e.cdelta;
2761
1.03M
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
1.03M
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
1.04M
    } else {
2767
1.04M
        current       = &nplp->o.co;
2768
1.04M
        final         = & plp->e.ce;
2769
1.04M
        tangent       = &nplp->o.cdelta;
2770
1.04M
        final_tangent = & plp->e.cdelta;
2771
1.04M
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
1.04M
        if (code < 0)
2773
0
            return code;
2774
1.04M
        code = gx_path_add_line(ppath, current->x, current->y);
2775
1.04M
        if (code < 0)
2776
0
            return code;
2777
1.04M
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
1.04M
    }
2780
2781
2.07M
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
2.07M
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
2.07M
    if (ccw &&
2785
2.07M
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
1.03M
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
2.07M
    return 0;
2790
2.07M
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
9.60M
{
2819
9.60M
    int code;
2820
9.60M
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
9.60M
    double l, r;
2822
9.60M
    bool ccw;
2823
2824
9.60M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
9.60M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
9.60M
    if (l == r)
2828
7.39M
        return 0;
2829
2830
2.21M
    ccw = (l > r);
2831
2832
2.21M
    ccw ^= reflected;
2833
2834
2.21M
    if (ccw) {
2835
1.10M
        dirn1.x = - plp->width.x;
2836
1.10M
        dirn1.y = - plp->width.y;
2837
1.10M
        dirn2.x = -nplp->width.x;
2838
1.10M
        dirn2.y = -nplp->width.y;
2839
1.10M
        if (line_intersect(& plp->o.co, &dirn1,
2840
1.10M
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
1.06M
            return 0;
2842
42.4k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
42.4k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
42.4k
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
42.4k
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
42.4k
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
42.4k
                                &plp->width)))
2848
0
            return code;
2849
1.10M
    } else {
2850
1.10M
        if (line_intersect(& plp->o.ce, & plp->width,
2851
1.10M
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
1.06M
            return 0;
2853
36.6k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
36.6k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
36.6k
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
36.6k
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
36.6k
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
36.6k
                                &plp->width)))
2859
0
            return code;
2860
36.6k
    }
2861
79.0k
    return 0;
2862
2.21M
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
10.6M
{
2869
10.6M
#define PUT_POINT(i, px, py)\
2870
21.3M
  pts[i].x = (px), pts[i].y = (py)
2871
10.6M
    switch (type) {
2872
10.6M
        case gs_cap_butt:
2873
10.6M
            PUT_POINT(0, xo, yo);
2874
10.6M
            PUT_POINT(1, xe, ye);
2875
10.6M
            return 2;
2876
21.9k
        case gs_cap_square:
2877
21.9k
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
21.9k
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
21.9k
            return 2;
2880
0
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
0
            PUT_POINT(0, xo, yo);
2882
0
            PUT_POINT(1, px + cdx, py + cdy);
2883
0
            PUT_POINT(2, xe, ye);
2884
0
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
10.6M
    }
2888
10.6M
#undef PUT_POINT
2889
10.6M
}