Coverage Report

Created: 2025-06-10 07:24

/src/ghostpdl/base/gsht.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* setscreen operator for Ghostscript library */
18
#include "memory_.h"
19
#include "string_.h"
20
#include "assert_.h"
21
#include <stdlib.h>             /* for qsort */
22
#include "gx.h"
23
#include "gserrors.h"
24
#include "gsstruct.h"
25
#include "gsutil.h"             /* for gs_next_ids */
26
#include "gxarith.h"            /* for igcd */
27
#include "gzstate.h"
28
#include "gxdevice.h"           /* for gzht.h */
29
#include "gzht.h"
30
#include "gxfmap.h"             /* For effective transfer usage in threshold */
31
#include "gp.h"
32
33
#define DUMP_SCREENS 0
34
35
/* Forward declarations */
36
void gx_set_effective_transfer(gs_gstate *);
37
38
/* Structure types */
39
public_st_ht_order();
40
private_st_ht_order_component();
41
public_st_ht_order_comp_element();
42
public_st_halftone();
43
public_st_device_halftone();
44
45
/* GC procedures */
46
47
static
48
656k
ENUM_PTRS_WITH(ht_order_enum_ptrs, gx_ht_order *porder) return 0;
49
139k
case 0: ENUM_RETURN((porder->data_memory ? porder->levels : 0));
50
139k
case 1: ENUM_RETURN((porder->data_memory ? porder->bit_data : 0));
51
139k
case 2: ENUM_RETURN(porder->cache);
52
139k
case 3: ENUM_RETURN(porder->transfer);
53
656k
ENUM_PTRS_END
54
static
55
139k
RELOC_PTRS_WITH(ht_order_reloc_ptrs, gx_ht_order *porder)
56
139k
{
57
139k
    if (porder->data_memory) {
58
119k
        RELOC_VAR(porder->levels);
59
119k
        RELOC_VAR(porder->bit_data);
60
119k
    }
61
139k
    RELOC_VAR(porder->cache);
62
139k
    RELOC_VAR(porder->transfer);
63
139k
}
64
139k
RELOC_PTRS_END
65
66
static
67
19.9k
ENUM_PTRS_WITH(halftone_enum_ptrs, gs_halftone *hptr) return 0;
68
19.9k
case 0:
69
19.9k
switch (hptr->type)
70
19.9k
{
71
0
    case ht_type_spot:
72
0
        ENUM_RETURN((hptr->params.spot.transfer == 0 ?
73
0
                     hptr->params.spot.transfer_closure.data :
74
0
                     0));
75
0
    case ht_type_threshold:
76
0
        ENUM_RETURN_CONST_STRING_PTR(gs_halftone, params.threshold.thresholds);
77
0
    case ht_type_threshold2:
78
0
        return ENUM_CONST_BYTESTRING(&hptr->params.threshold2.thresholds);
79
0
    case ht_type_client_order:
80
0
        ENUM_RETURN(hptr->params.client_order.client_data);
81
0
    case ht_type_multiple:
82
0
    case ht_type_multiple_colorscreen:
83
0
        ENUM_RETURN(hptr->params.multiple.components);
84
0
    case ht_type_none:
85
19.9k
    case ht_type_screen:
86
19.9k
    case ht_type_colorscreen:
87
19.9k
        return 0;
88
19.9k
}
89
/* fall through */
90
0
case 1:
91
0
switch (hptr->type) {
92
0
    case ht_type_threshold:
93
0
        ENUM_RETURN((hptr->params.threshold.transfer == 0 ?
94
0
                     hptr->params.threshold.transfer_closure.data :
95
0
                     0));
96
0
    case ht_type_threshold2:
97
0
        ENUM_RETURN(hptr->params.threshold2.transfer_closure.data);
98
0
    case ht_type_client_order:
99
0
        ENUM_RETURN(hptr->params.client_order.transfer_closure.data);
100
0
    default:
101
0
        return 0;
102
0
}
103
19.9k
ENUM_PTRS_END
104
105
19.9k
static RELOC_PTRS_WITH(halftone_reloc_ptrs, gs_halftone *hptr)
106
19.9k
{
107
19.9k
    switch (hptr->type) {
108
0
        case ht_type_spot:
109
0
            if (hptr->params.spot.transfer == 0)
110
0
                RELOC_PTR(gs_halftone, params.spot.transfer_closure.data);
111
0
            break;
112
0
        case ht_type_threshold:
113
0
            RELOC_CONST_STRING_PTR(gs_halftone, params.threshold.thresholds);
114
0
            if (hptr->params.threshold.transfer == 0)
115
0
                RELOC_PTR(gs_halftone, params.threshold.transfer_closure.data);
116
0
            break;
117
0
        case ht_type_threshold2:
118
0
            RELOC_CONST_BYTESTRING_VAR(hptr->params.threshold2.thresholds);
119
0
            RELOC_OBJ_VAR(hptr->params.threshold2.transfer_closure.data);
120
0
            break;
121
0
        case ht_type_client_order:
122
0
            RELOC_PTR(gs_halftone, params.client_order.client_data);
123
0
            RELOC_PTR(gs_halftone, params.client_order.transfer_closure.data);
124
0
            break;
125
0
        case ht_type_multiple:
126
0
        case ht_type_multiple_colorscreen:
127
0
            RELOC_PTR(gs_halftone, params.multiple.components);
128
0
            break;
129
0
        case ht_type_none:
130
19.9k
        case ht_type_screen:
131
19.9k
        case ht_type_colorscreen:
132
19.9k
            break;
133
19.9k
    }
134
19.9k
}
135
19.9k
RELOC_PTRS_END
136
137
/* setscreen */
138
int
139
gs_setscreen(gs_gstate * pgs, gs_screen_halftone * phsp)
140
0
{
141
0
    gs_screen_enum senum;
142
0
    int code = gx_ht_process_screen(&senum, pgs, phsp,
143
0
                                    gs_currentaccuratescreens(pgs->memory));
144
145
0
    if (code < 0)
146
0
        return code;
147
0
    return gs_screen_install(&senum);
148
0
}
149
150
/* currentscreen */
151
int
152
gs_currentscreen(const gs_gstate * pgs, gs_screen_halftone * phsp)
153
0
{
154
0
    switch (pgs->halftone->type) {
155
0
        case ht_type_screen:
156
0
            *phsp = pgs->halftone->params.screen;
157
0
            return 0;
158
0
        case ht_type_colorscreen:
159
0
            *phsp = pgs->halftone->params.colorscreen.screens.colored.gray;
160
0
            return 0;
161
0
        default:
162
0
            return_error(gs_error_undefined);
163
0
    }
164
0
}
165
166
/* .currentscreenlevels */
167
int
168
gs_currentscreenlevels(const gs_gstate * pgs)
169
0
{
170
0
    int gi = 0;
171
172
0
    if (pgs->device != NULL)
173
0
        gi = pgs->device->color_info.gray_index;
174
0
    if (gi != GX_CINFO_COMP_NO_INDEX)
175
0
        return pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[gi].corder.num_levels;
176
0
    else
177
0
        return pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
178
0
}
179
180
/* .setscreenphase */
181
int
182
gx_gstate_setscreenphase(gs_gstate * pgs, int x, int y,
183
                         gs_color_select_t select)
184
4.46M
{
185
4.46M
    if (select == gs_color_select_all) {
186
1.48M
        int i;
187
188
4.46M
        for (i = 0; i < gs_color_select_count; ++i)
189
2.97M
            gx_gstate_setscreenphase(pgs, x, y, (gs_color_select_t) i);
190
1.48M
        return 0;
191
2.98M
    } else if ((int)select < 0 || (int)select >= gs_color_select_count)
192
0
        return_error(gs_error_rangecheck);
193
2.98M
    pgs->screen_phase[select].x = x;
194
2.98M
    pgs->screen_phase[select].y = y;
195
2.98M
    return 0;
196
4.46M
}
197
int
198
gs_setscreenphase(gs_gstate * pgs, int x, int y, gs_color_select_t select)
199
0
{
200
0
    int code = gx_gstate_setscreenphase(pgs, x, y,
201
0
                                        select);
202
203
    /*
204
     * If we're only setting the source phase, we don't need to do
205
     * unset_dev_color, because the source phase doesn't affect painting
206
     * with the current color.
207
     */
208
0
    if (code >= 0 && (select == gs_color_select_texture ||
209
0
                      select == gs_color_select_all)
210
0
        )
211
0
        gx_unset_dev_color(pgs);
212
0
    return code;
213
0
}
214
215
int
216
gs_currentscreenphase_pgs(const gs_gstate * pgs, gs_int_point * pphase,
217
                      gs_color_select_t select)
218
3.66M
{
219
3.66M
    if ((int)select < 0 || (int)select >= gs_color_select_count)
220
0
        return_error(gs_error_rangecheck);
221
3.66M
    *pphase = pgs->screen_phase[select];
222
3.66M
    return 0;
223
3.66M
}
224
225
/* .currentscreenphase */
226
int
227
gs_currentscreenphase(const gs_gstate * pgs, gs_int_point * pphase,
228
                      gs_color_select_t select)
229
3.66M
{
230
3.66M
    return gs_currentscreenphase_pgs((const gs_gstate *)pgs, pphase, select);
231
3.66M
}
232
233
/* currenthalftone */
234
int
235
gs_currenthalftone(gs_gstate * pgs, gs_halftone * pht)
236
9.81k
{
237
9.81k
    *pht = *pgs->halftone;
238
9.81k
    return 0;
239
9.81k
}
240
241
/* ------ Internal routines ------ */
242
243
/* Process one screen plane. */
244
int
245
gx_ht_process_screen_memory(gs_screen_enum * penum, gs_gstate * pgs,
246
                gs_screen_halftone * phsp, bool accurate, gs_memory_t * mem)
247
0
{
248
0
    gs_point pt;
249
0
    int code = gs_screen_init_memory(penum, pgs, phsp, accurate, mem);
250
251
0
    if (code < 0)
252
0
        return code;
253
0
    while ((code = gs_screen_currentpoint(penum, &pt)) == 0)
254
0
        if ((code = gs_screen_next(penum, (*phsp->spot_function) (pt.x, pt.y))) < 0)
255
0
            return code;
256
0
    return 0;
257
0
}
258
259
/*
260
 * Internal procedure to allocate and initialize either an internally
261
 * generated or a client-defined halftone order.  For spot halftones,
262
 * the client is responsible for calling gx_compute_cell_values.
263
 */
264
int
265
gx_ht_alloc_ht_order(gx_ht_order * porder, uint width, uint height,
266
                     uint num_levels, uint num_bits, uint strip_shift,
267
                     const gx_ht_order_procs_t *procs, gs_memory_t * mem)
268
49.8k
{
269
49.8k
    porder->threshold = NULL;
270
49.8k
    porder->width = width;
271
49.8k
    porder->height = height;
272
49.8k
    porder->raster = bitmap_raster(width);
273
49.8k
    porder->shift = strip_shift;
274
49.8k
    porder->orig_height = porder->height;
275
49.8k
    porder->orig_shift = porder->shift;
276
49.8k
    porder->full_height = ht_order_full_height(porder);
277
49.8k
    porder->num_levels = num_levels;
278
49.8k
    porder->num_bits = num_bits;
279
49.8k
    porder->procs = procs;
280
49.8k
    porder->data_memory = mem;
281
282
49.8k
    if (num_levels > 0) {
283
49.8k
        porder->levels =
284
49.8k
            (uint *)gs_alloc_byte_array(mem, porder->num_levels, sizeof(uint),
285
49.8k
                                        "alloc_ht_order_data(levels)");
286
49.8k
        if (porder->levels == 0)
287
0
            return_error(gs_error_VMerror);
288
49.8k
        memset(porder->levels, 0, sizeof(uint) * porder->num_levels);
289
49.8k
    } else
290
0
        porder->levels = 0;
291
292
49.8k
    if (num_bits > 0) {
293
49.8k
        porder->bit_data =
294
49.8k
            gs_alloc_byte_array(mem, porder->num_bits,
295
49.8k
                                porder->procs->bit_data_elt_size,
296
49.8k
                                "alloc_ht_order_data(bit_data)");
297
49.8k
        if (porder->bit_data == 0) {
298
0
            gs_free_object(mem, porder->levels, "alloc_ht_order_data(levels)");
299
0
            porder->levels = 0;
300
0
            return_error(gs_error_VMerror);
301
0
        }
302
49.8k
    } else
303
0
        porder->bit_data = 0;
304
305
49.8k
    porder->cache = 0;
306
49.8k
    porder->transfer = 0;
307
49.8k
    return 0;
308
49.8k
}
309
310
/*
311
 * Procedure to copy a halftone order.
312
 */
313
static int
314
gx_ht_copy_ht_order(gx_ht_order * pdest, gx_ht_order * psrc, gs_memory_t * mem)
315
35.5k
{
316
35.5k
    int code;
317
318
35.5k
    *pdest = *psrc;
319
320
35.5k
    code = gx_ht_alloc_ht_order(pdest, psrc->width, psrc->height,
321
35.5k
                     psrc->num_levels, psrc->num_bits, psrc->shift,
322
35.5k
                     psrc->procs, mem);
323
35.5k
    if (code < 0)
324
0
        return code;
325
35.5k
    if (pdest->levels != NULL)
326
35.5k
        memcpy(pdest->levels, psrc->levels, psrc->num_levels * sizeof(uint));
327
35.5k
    if (pdest->bit_data != NULL)
328
35.5k
        memcpy(pdest->bit_data, psrc->bit_data,
329
35.5k
               (size_t)psrc->num_bits * psrc->procs->bit_data_elt_size);
330
35.5k
    pdest->transfer = psrc->transfer;
331
35.5k
    rc_increment(pdest->transfer);
332
35.5k
    return 0;
333
35.5k
}
334
335
/*
336
 * Set the destination component to match the source component, and
337
 * "assume ownership" of all of the refrernced data structures.
338
 */
339
static void
340
gx_ht_move_ht_order(gx_ht_order * pdest, gx_ht_order * psrc)
341
0
{
342
0
    uint    width = psrc->width, height = psrc->height, shift = psrc->shift;
343
344
0
    pdest->params = psrc->params;
345
0
    pdest->width = width;
346
0
    pdest->height = height;
347
0
    pdest->raster = bitmap_raster(width);
348
0
    pdest->shift = shift;
349
0
    pdest->orig_height = height;
350
0
    pdest->orig_shift = shift;
351
0
    pdest->full_height = ht_order_full_height(pdest);
352
0
    pdest->num_levels = psrc->num_levels;
353
0
    pdest->num_bits = psrc->num_bits;
354
0
    pdest->procs = psrc->procs;
355
0
    pdest->data_memory = psrc->data_memory;
356
0
    pdest->levels = psrc->levels;
357
0
    pdest->bit_data = psrc->bit_data;
358
0
    pdest->cache = psrc->cache;    /* should be 0 */
359
0
    pdest->transfer = psrc->transfer;
360
0
}
361
362
/* Allocate and initialize the contents of a halftone order. */
363
/* The client must have set the defining values in porder->params. */
364
int
365
gx_ht_alloc_order(gx_ht_order * porder, uint width, uint height,
366
                  uint strip_shift, uint num_levels, gs_memory_t * mem)
367
14.2k
{
368
14.2k
    gx_ht_order order;
369
14.2k
    int code;
370
371
14.2k
    order = *porder;
372
14.2k
    gx_compute_cell_values(&order.params);
373
14.2k
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
374
14.2k
                                width * height, strip_shift,
375
14.2k
                                &ht_order_procs_default, mem);
376
14.2k
    if (code < 0)
377
0
        return code;
378
14.2k
    *porder = order;
379
14.2k
    return 0;
380
14.2k
}
381
382
/*
383
 * Allocate and initialize a threshold order, which may use the short
384
 * representation.
385
 */
386
int
387
gx_ht_alloc_threshold_order(gx_ht_order * porder, uint width, uint height,
388
                            uint num_levels, gs_memory_t * mem)
389
0
{
390
0
    gx_ht_order order;
391
392
0
    unsigned long num_bits = bitmap_raster(width) * (unsigned long)8 * height;
393
0
    const gx_ht_order_procs_t *procs;
394
0
    int code;
395
396
0
    if (num_bits <= 2000)
397
0
        procs = &ht_order_procs_default;
398
0
    else if (num_bits <= max_ushort + 1)  /* We can index 0 to 65535 so a size of 65536 (max_ushort + 1) is OK */
399
0
        procs = &ht_order_procs_short;
400
0
    else if (num_bits <= max_uint)
401
0
        procs = &ht_order_procs_uint;
402
0
    else
403
0
        return_error(gs_error_VMerror);  /* At this point in history, this is way too large of a screen */
404
405
0
    order = *porder;
406
0
    gx_compute_cell_values(&order.params);
407
0
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
408
0
                                width * height, 0, procs, mem);
409
0
    if (code < 0)
410
0
        return code;
411
0
    *porder = order;
412
0
    return 0;
413
0
}
414
415
/* Allocate and initialize the contents of a client-defined halftone order. */
416
int
417
gx_ht_alloc_client_order(gx_ht_order * porder, uint width, uint height,
418
                         uint num_levels, uint num_bits, gs_memory_t * mem)
419
0
{
420
0
    gx_ht_order order;
421
0
    int code;
422
423
0
    order = *porder;
424
0
    order.params.M = width, order.params.N = 0;
425
0
    order.params.R = 1;
426
0
    order.params.M1 = height, order.params.N1 = 0;
427
0
    order.params.R1 = 1;
428
0
    gx_compute_cell_values(&order.params);
429
0
    code = gx_ht_alloc_ht_order(&order, width, height, num_levels,
430
0
                                num_bits, 0, &ht_order_procs_default, mem);
431
0
    if (code < 0)
432
0
        return code;
433
0
    *porder = order;
434
0
    return 0;
435
0
}
436
437
/* Compare keys ("masks", actually sample values) for qsort. */
438
static int
439
compare_samples(const void *p1, const void *p2)
440
1.02M
{
441
1.02M
    ht_sample_t m1 = ((const gx_ht_bit *)p1)->mask;
442
1.02M
    ht_sample_t m2 = ((const gx_ht_bit *)p2)->mask;
443
444
    /* force qsort() to be determinstic even if two masks are the same */
445
1.02M
    if (m1==m2) {
446
76.3k
      m1=((const gx_ht_bit *)p1)->offset;
447
76.3k
      m2=((const gx_ht_bit *)p2)->offset;
448
76.3k
    }
449
450
1.02M
    return (m1 < m2 ? -1 : m1 > m2 ? 1 : 0);
451
1.02M
}
452
/* Sort the halftone order by sample value. */
453
void
454
gx_sort_ht_order(gx_ht_bit * recs, uint N)
455
21.7k
{
456
21.7k
    int i;
457
458
    /* Tag each sample with its index, for sorting. */
459
372k
    for (i = 0; i < N; i++)
460
351k
        recs[i].offset = i;
461
21.7k
    qsort((void *)recs, N, sizeof(*recs), compare_samples);
462
#ifdef DEBUG
463
    if (gs_debug_c('H')) {
464
        uint i;
465
466
        dlputs("[H]Sorted samples:\n");
467
        for (i = 0; i < N; i++)
468
            dlprintf3("%5u: %5u: %u\n",
469
                      i, recs[i].offset, recs[i].mask);
470
    }
471
#endif
472
21.7k
}
473
474
/*
475
 * Construct the halftone order from a sampled spot function.  Only width x
476
 * strip samples have been filled in; we must replicate the resulting sorted
477
 * order vertically, shifting it by shift each time.  See gxdht.h regarding
478
 * the invariants that must be restored.
479
 */
480
void
481
gx_ht_construct_spot_order(gx_ht_order * porder)
482
21.7k
{
483
21.7k
    uint width = porder->width;
484
21.7k
    uint num_levels = porder->num_levels;       /* = width x strip */
485
21.7k
    uint strip = num_levels / width;
486
21.7k
    gx_ht_bit *bits = (gx_ht_bit *)porder->bit_data;
487
21.7k
    uint *levels = porder->levels;
488
21.7k
    uint shift = porder->orig_shift;
489
21.7k
    uint full_height = porder->full_height;
490
21.7k
    uint num_bits = porder->num_bits;
491
21.7k
    uint copies = num_bits / (width * strip);
492
21.7k
    gx_ht_bit *bp = bits + num_bits - 1;
493
21.7k
    uint i;
494
495
21.7k
    gx_sort_ht_order(bits, num_levels);
496
21.7k
    if_debug5('h',
497
21.7k
              "[h]spot order: num_levels=%u w=%u h=%u strip=%u shift=%u\n",
498
21.7k
              num_levels, width, porder->orig_height, strip, shift);
499
    /* Fill in the levels array, replicating the bits vertically */
500
    /* if needed. */
501
372k
    for (i = num_levels; i > 0;) {
502
351k
        uint offset = bits[--i].offset;
503
351k
        uint x = offset % width;
504
351k
        uint hy = offset - x;
505
351k
        uint k;
506
507
351k
        levels[i] = i * copies;
508
1.05M
        for (k = 0; k < copies;
509
702k
             k++, bp--, hy += num_levels, x = (x + width - shift) % width
510
351k
            )
511
702k
            bp->offset = hy + x;
512
351k
    }
513
    /* If we have a complete halftone, restore the invariant. */
514
21.7k
    if (num_bits == width * full_height) {
515
21.7k
        porder->height = full_height;
516
21.7k
        porder->shift = 0;
517
21.7k
    }
518
21.7k
    gx_ht_construct_bits(porder);
519
21.7k
}
520
521
/* Construct a single offset/mask. */
522
void
523
gx_ht_construct_bit(gx_ht_bit * bit, int width, int bit_num)
524
702k
{
525
702k
    uint padding = bitmap_raster(width) * 8 - width;
526
702k
    int pix = bit_num;
527
702k
    ht_mask_t mask;
528
702k
    byte *pb;
529
530
702k
    pix += pix / width * padding;
531
702k
    bit->offset = (pix >> 3) & -size_of(mask);
532
702k
    mask = (ht_mask_t) 1 << (~pix & (ht_mask_bits - 1));
533
    /* Replicate the mask bits. */
534
702k
    pix = ht_mask_bits - width;
535
3.70M
    while ((pix -= width) >= 0)
536
3.00M
        mask |= mask >> width;
537
    /* Store the mask, reversing bytes if necessary. */
538
702k
    bit->mask = 0;
539
702k
    for (pb = (byte *) & bit->mask + (sizeof(mask) - 1);
540
3.51M
         mask != 0;
541
2.80M
         mask >>= 8, pb--
542
702k
        )
543
2.80M
        *pb = (byte) mask;
544
702k
}
545
546
/* Construct offset/masks from the whitening order. */
547
/* porder->bits[i].offset contains the index of the bit position */
548
/* that is i'th in the whitening order. */
549
void
550
gx_ht_construct_bits(gx_ht_order * porder)
551
21.7k
{
552
21.7k
    uint i;
553
21.7k
    gx_ht_bit *phb;
554
555
21.7k
    for (i = 0, phb = (gx_ht_bit *)porder->bit_data;
556
723k
         i < porder->num_bits;
557
702k
         i++, phb++)
558
702k
        gx_ht_construct_bit(phb, porder->width, phb->offset);
559
#ifdef DEBUG
560
    if (gs_debug_c('H')) {
561
        dmlprintf1(porder->data_memory, "[H]Halftone order bits "PRI_INTPTR":\n", (intptr_t)porder->bit_data);
562
        for (i = 0, phb = (gx_ht_bit *)porder->bit_data;
563
             i < porder->num_bits;
564
             i++, phb++)
565
            dmlprintf3(porder->data_memory, "%4d: %u:0x%lx\n", i, phb->offset,
566
                      (ulong) phb->mask);
567
    }
568
#endif
569
21.7k
}
570
571
/* Release a gx_device_halftone by freeing its components. */
572
/* (Don't free the gx_device_halftone itself.) */
573
void
574
gx_ht_order_release(gx_ht_order * porder, gs_memory_t * mem, bool free_cache)
575
61.6k
{
576
    /* "free cache" is a proxy for "differs from default" */
577
61.6k
    if (free_cache) {
578
35.5k
        if (porder->cache != NULL)
579
35.5k
            gx_ht_free_cache(mem, porder->cache);
580
35.5k
    }
581
61.6k
    porder->cache = 0;
582
61.6k
    rc_decrement(porder->transfer, "gx_ht_order_release(transfer)");
583
61.6k
    porder->transfer = 0;
584
61.6k
    if (porder->data_memory != NULL) {
585
49.8k
        gs_free_object(porder->data_memory, porder->bit_data,
586
49.8k
                       "gx_ht_order_release(bit_data)");
587
49.8k
        gs_free_object(porder->data_memory, porder->levels,
588
49.8k
                       "gx_ht_order_release(levels)");
589
49.8k
        if (porder->threshold != NULL) {
590
0
            gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
591
0
                       "gx_ht_order_release(threshold)");
592
0
        }
593
49.8k
    }
594
61.6k
    porder->threshold = 0;
595
61.6k
    porder->levels = 0;
596
61.6k
    porder->bit_data = 0;
597
61.6k
}
598
599
void
600
gx_device_halftone_release(gx_device_halftone * pdht, gs_memory_t * mem)
601
23.7k
{
602
23.7k
    if (pdht->components) {
603
11.8k
        int i;
604
605
        /* One of the components might be the same as the default */
606
        /* order, so check that we don't free it twice. */
607
47.3k
        for (i = 0; i < pdht->num_comp; ++i)
608
35.5k
            if (pdht->components[i].corder.bit_data !=
609
35.5k
                pdht->order.bit_data
610
35.5k
                ) {             /* Currently, all orders except the default one */
611
                /* own their caches. */
612
35.5k
                gx_ht_order_release(&pdht->components[i].corder, mem, true);
613
35.5k
            }
614
11.8k
        gs_free_object(mem, pdht->components,
615
11.8k
                       "gx_dev_ht_release(components)");
616
11.8k
        pdht->components = 0;
617
11.8k
        pdht->num_comp = 0;
618
11.8k
    }
619
23.7k
    gx_ht_order_release(&pdht->order, mem, false);
620
23.7k
}
621
622
/*
623
 * This routine will take a color name (defined by a ptr and size) and
624
 * check if this is a valid colorant name for the current device.  If
625
 * so then the device's colorant number is returned.
626
 *
627
 * Two other checks are also made.  If the name is "Default" then a value
628
 * of GX_DEVICE_COLOR_MAX_COMPONENTS is returned.  This is done to
629
 * simplify the handling of default halftones.  Note:  The device also
630
 * uses GX_DEVICE_COLOR_MAX_COMPONENTS to indicate colorants which are
631
 * known but not being used due to the SeparationOrder parameter.  In this
632
 * case we return -1 since the colorant is not currently being used by the
633
 * device.
634
 *
635
 * If the halftone type is colorscreen or multiple colorscreen, then we
636
 * also check for Red/Cyan, Green/Magenta, Blue/Yellow, and Gray/Black
637
 * component name pairs.  This is done since the setcolorscreen and
638
 * sethalftone types 2 and 4 imply the dual name sets.
639
 *
640
 * A negative value is returned if the color name is not found.
641
 */
642
int
643
gs_color_name_component_number(gx_device * dev, const char * pname,
644
                                int name_size, int halftonetype)
645
2.09k
{
646
2.09k
    int num_colorant;
647
648
2.09k
#define check_colorant_name(dev, name) \
649
2.09k
    ((*dev_proc(dev, get_color_comp_index)) (dev, name, strlen(name), NO_COMP_NAME_TYPE_HT))
650
651
2.09k
#define check_colorant_name_length(dev, name, length) \
652
2.09k
    ((*dev_proc(dev, get_color_comp_index)) (dev, name, length, NO_COMP_NAME_TYPE_HT))
653
654
2.09k
#define check_name(str, pname, length) \
655
2.09k
    ((strlen(str) == length) && (strncmp(pname, str, length) == 0))
656
657
    /*
658
     * Check if this is a device colorant.
659
     */
660
2.09k
    num_colorant = check_colorant_name_length(dev, pname, name_size);
661
2.09k
    if (num_colorant >= 0) {
662
        /*
663
         * The device will return GX_DEVICE_COLOR_MAX_COMPONENTS if the
664
         * colorant is logically present in the device but not being used
665
         * because a SeparationOrder parameter is specified.  Since we are
666
         * using this value to indicate 'Default', we use -1 to indicate
667
         * that the colorant is not really being used.
668
         */
669
18
        if (num_colorant == GX_DEVICE_COLOR_MAX_COMPONENTS)
670
0
            num_colorant = -1;
671
18
        return num_colorant;
672
18
    }
673
674
    /*
675
     * Check if this is the default component
676
     */
677
2.07k
    if (check_name("Default", pname, name_size))
678
2.06k
        return GX_DEVICE_COLOR_MAX_COMPONENTS;
679
680
    /* Halftones set by setcolorscreen, and (we think) */
681
    /* Type 2 and Type 4 halftones, are supposed to work */
682
    /* for both RGB and CMYK, so we need a special check here. */
683
6
    if (halftonetype == ht_type_colorscreen ||
684
6
        halftonetype == ht_type_multiple_colorscreen) {
685
6
        if (check_name("Red", pname, name_size))
686
0
            num_colorant = check_colorant_name(dev, "Cyan");
687
6
        else if (check_name("Green", pname, name_size))
688
0
            num_colorant = check_colorant_name(dev, "Magenta");
689
6
        else if (check_name("Blue", pname, name_size))
690
0
            num_colorant = check_colorant_name(dev, "Yellow");
691
6
        else if (check_name("Gray", pname, name_size))
692
6
            num_colorant = check_colorant_name(dev, "Black");
693
        /*
694
         * The device will return GX_DEVICE_COLOR_MAX_COMPONENTS if the
695
         * colorant is logically present in the device but not being used
696
         * because a SeparationOrder parameter is specified.  Since we are
697
         * using this value to indicate 'Default', we use -1 to indicate
698
         * that the colorant is not really being used.
699
         */
700
6
        if (num_colorant == GX_DEVICE_COLOR_MAX_COMPONENTS)
701
0
            num_colorant = -1;
702
703
6
#undef check_colorant_name
704
6
#undef check_colorant_name_length
705
6
#undef check_name
706
707
6
    }
708
6
    return num_colorant;
709
2.07k
}
710
711
/*
712
 * See gs_color_name_component_number for main description.
713
 *
714
 * This version converts a name index value into a string and size and
715
 * then call gs_color_name_component_number.
716
 */
717
int
718
gs_cname_to_colorant_number(gs_gstate * pgs, byte * pname, uint name_size,
719
                int halftonetype)
720
2.06k
{
721
2.06k
    gx_device * dev = pgs->device;
722
723
2.06k
    return gs_color_name_component_number(dev, (char *)pname, name_size,
724
2.06k
                    halftonetype);
725
2.06k
}
726
727
/*
728
 * Install a device halftone into the gs_gstate.
729
 *
730
 * To allow halftones to be shared between graphic states, the
731
 * gs_gstate contains a pointer to a device halftone structure. Thus, when
732
 * we say a halftone is "in" the gs_gstate, we are only claiming
733
 * that the halftone pointer in the gs_gstate points to that halftone.
734
 *
735
 * Though the operand halftone uses the same structure as the halftone
736
 * "in" the gs_gstate, not all of its fields are filled in, and the
737
 * organization of components differs. Specifically, the following fields
738
 * are not filled in:
739
 *
740
 *  rc          The operand device halftone has only a transient existence,
741
 *              its reference count information is not initialized. In many
742
 *              cases, the operand device halftone structure is allocated
743
 *              on the stack by clients.
744
 *
745
 *  id          A halftone is not considered to have an identity until it
746
 *              is installed in the gs_gstate. This is a design error
747
 *              which reflects the PostScript origins of this code. In
748
 *              PostScript, it is impossible to check if two halftone
749
 *              specifications (sets of operands to setscreen/setcolorscreen
750
 *              or halftone dictionaries) are the same. Hence, the only way
751
 *              a halftone could be identified was by the graphic state in
752
 *              which it was included. In PCL it is possible to directly
753
 *              identify a halftone specification, but currently there is
754
 *              no way to use this knowledge in the graphic library.
755
 *
756
 *              (An altogether more reasonable approach would be to apply
757
 *              id's to halftone orders.)
758
 *
759
 *  type        This is filled in by the type operand. It is used by
760
 *              PostScript's currentscreen/currentcolorscreen operators to
761
 *              determine if a sampling procedure or a halftone dictionary
762
 *              should be pushed onto the stack. More importantly, it is
763
 *              also used to determine if specific halftone components can
764
 *              be used for either the additive or subtractive version of
765
 *              that component in the process color model. For example, a
766
 *              RedThreshold in a HalftoneType 4 dictionary can be applied
767
 *              to either the component "Red" or the component "Cyan", but
768
 *              the value of the key "Red" in a HalftoneType 5 dictionary
769
 *              can only be used for a "Red" component (not a "Cyan"
770
 *              component).
771
 *
772
 *  num_comp    For the operand halftone, this is the number of halftone
773
 *              components included in the specification. For the device
774
 *              halftone in the gs_gstate, this is always the same as
775
 *              the number of color model components (see num_dev_comp).
776
 *
777
 *  num_dev_comp The number of components in the device process color model
778
 *              when the operand halftone was created.  With some compositor
779
 *              devices (for example PDF 1.4) we can have differences in the
780
 *              process color model of the compositor versus the output device.
781
 *              These compositor devices do not halftone.
782
 *
783
 *  components  For the operand halftone, this field is non-null only if
784
 *              multiple halftones are provided. In that case, the size
785
 *              of the array pointed is the same as the number of
786
 *              components provided. One of these components will usually
787
 *              be the same as that identified by the "order" field.
788
 *
789
 *              For the device halftone in the gs_gstate, this field is
790
 *              always non-null, and the size of the array pointed to will
791
 *              be the same as the number of components in the process
792
 *              color model.
793
 *
794
 *  lcm_width,  These fields provide the least common multiple of the
795
 *  lcm_height  halftone dimensions of the individual component orders.
796
 *              They represent the dimensions of the smallest tile that
797
 *              repeats for all color components (this is of interest
798
 *              because Ghostscript uses a "chunky" raster format for all
799
 *              drawing procedures). These fields cannot be set in the
800
 *              operand device halftone as we do not yet know which of
801
 *              the halftone components will actually be used.
802
 *
803
 * Conversely, the "order" field is significant only in the operand device
804
 * halftone. There it represents the default halftone component, which will
805
 * be used for all device color components for which a named halftone is
806
 * not available. It is ignored (filled with 0's) in the device halftone
807
 * in the gs_gstate.
808
 *
809
 * The ordering of entries and the set of fields initialized in the
810
 * components array also vary between the operand device halftone and
811
 * the device halftone in the gs_gstate.
812
 *
813
 * If the components array is present in the operand device halftone, the
814
 * cname field in each entry of the array will contain a name index
815
 * identifying the colorant name, and the comp_number field will provide the
816
 * index of the corresponding component in the process color model. The
817
 * order of entries in the components array is essentially arbitrary,
818
 * but in some common cases will reflect the order in which the halftone
819
 * specification is provided. By convention, if no explicit default order
820
 * is provided (i.e.: via a HalftoneType 5 dictionary), the first
821
 * entry of the array will be the same as the "order" (default) field.
822
 *
823
 * For the device halftone in the gs_gstate, the components array is
824
 * always present, but the cname and comp_number fields of individual
825
 * entries are ignored. The order of the entries in the array always
826
 * matches the order of components in the device color model.
827
 *
828
 * The distinction between the operand device halftone and the one in
829
 * the graphic state extends even to the individual fields of the
830
 * gx_ht_order structure incorporated in the order field of the halftone
831
 * and the corder field of the elements of the components array. The
832
 * fields of this structure that are handled differently in the operand
833
 * and gs_gstate device halftones are:
834
 *
835
 *  params          Provides a set of parameters that are required for
836
 *                  converting a halftone specification to a single
837
 *                  component order. This field is used only in the
838
 *                  operand device halftone; it is not set in the device
839
 *                  halftone in the gs_gstate.
840
 *
841
 *  orig_height,   The height and shift values of the halftone cell,
842
 *  orig_shift     prior to any replication. These fields are currently
843
 *                 unused, and will always be the same as the height
844
 *                 and width fields in the device halftone in the
845
 *                 gs_gstate.
846
 *
847
 *  full_height    The height of the smallest replicated tile whose shift
848
 *                 value is 0. This is calculated as part of the
849
 *                 installation process; it may be set in the operand
850
 *                 device halftone, but its value is ignored.
851
 *
852
 *
853
 *  data_memory    Points to the memory structure used to allocate the
854
 *                 levels and bit_data arrays. The handling of this field
855
 *                 is a bit complicated. For orders that are "taken over"
856
 *                 by the installation process, this field will have the
857
 *                 same value in the operand device halftone and the
858
 *                 device halftone in the gs_gstate. For halftones
859
 *                 that are copied by the installation process, this
860
 *                 field will have the same value as the memory field in
861
 *                 the gs_gstate (the two are usually the same).
862
 *
863
 *  cache          Pointer to a cache of tiles representing various
864
 *                 levels of the halftone. This may or may not be
865
 *                 provided in the operand device halftone (in principle
866
 *                 this should always be a null pointer in the operand
867
 *                 device halftone, but this is not the manner in which
868
 *                 the cache was handled historically).
869
 *
870
 *  screen_params  This structure contains transformation information
871
 *                 that is required when reading the sample data for a
872
 *                 screen. It is no longer required once the halftone
873
 *                 order has been constructed.
874
 *
875
 * In addition to what is noted above, this procedure is made somewhat
876
 * more complex than expected due to memory management considerations. To
877
 * clarify this, it is necessary to consider the properties of the pieces
878
 * that constitute a device halftone.
879
 *
880
 *  The gx_device_halftone structure itself is shareable and uses
881
 *  reference counts.
882
 *
883
 *  The gx_ht_order_component array (components array entry) is in
884
 *  principle shareable, though it does not provide any reference
885
 *  counting mechanism. Hence any sharing needs to be done with
886
 *  caution.
887
 *
888
 *  Individual component orders are not shareable, as they are part of
889
 *  the gx_ht_order_commponent structure (a major design error).
890
 *
891
 *  The levels, bit_data, and cache structures referenced by the
892
 *  gx_ht_order structure are in principle shareable, but they also do
893
 *  not provide any reference counting mechanism. Traditionally, one set
894
 *  of two component orders could share these structures, using the
895
 *  halftone's "order" field and various scattered bits of special case
896
 *  code. This practice has been ended because it did not extend to
897
 *  sharing amongst more than two components.
898
 *
899
 *  The gx_transfer_map structure referenced by the gx_ht_order structure
900
 *  is shareable, and uses reference counts. Traditionally this structure
901
 *  was not shared, but this is no longer the case.
902
 *
903
 * As noted, the rc field of the operand halftone is not initialized, so
904
 * this procedure cannot simply take ownership of the operand device
905
 * halftone structure (i.e.: an ostensibly shareable structure is not
906
 * shareable). Hence, this procedure will always create a new copy of the
907
 * gx_device_halftone structure, either by allocating a new structure or
908
 * re-using the structure already referenced by the gs_gstate. This
909
 * feature must be retained, as in several cases the calling code will
910
 * allocate the operand device halftone structure on the stack.
911
 *
912
 * Traditionally, this procedure took ownership of all of the structures
913
 * referenced by the operand device halftone structure. This implied
914
 * that all structures referenced by the gx_device_halftone structure
915
 * needed to be allocated on the heap, and should not be released once
916
 * the call to gx_gstate_dev_ht_install completes.
917
 *
918
 * There were two problems with this approach:
919
 *
920
 *  1. In the event of an error, the calling code most likely would have
921
 *     to release referenced components, as the gs_gstate had not yet
922
 *     take ownership of them. In many cases, the code did not do this.
923
 *
924
 *  2. When the structures referenced by a single order needed to be
925
 *     shared amongst more than one component, there was no easy way to
926
 *     discover this sharing when the gs_gstate's device halftone
927
 *     subsequently needed to be released. Hence, objects would be
928
 *     released multiple times.
929
 *
930
 * Subsequently, the code in this routine was changed to copy most of
931
 * the referenced structures (everything except the transfer functions).
932
 * Unfortunately, the calling code was not changed, which caused memory
933
 * leaks.
934
 *
935
 * The approach now taken uses a mixture of the two approaches.
936
 * Ownership to structures referenced by the operand device halftone is
937
 * assumed by the device halftone in the gs_gstate where this is
938
 * possible. In these cases, the corresponding references are removed in
939
 * the operand device halftone (hence, this operand is no longer
940
 * qualified as const). When a structure is required but ownership cannot
941
 * be assumed, a copy is made and the reference in the operand device
942
 * halftone is left undisturbed. The calling code has also been modified
943
 * to release any remaining referenced structures when this routine
944
 * returns, whether or not an error is indicated.
945
 */
946
int
947
gx_gstate_dev_ht_install(
948
    gs_gstate *       pgs,
949
    gx_device_halftone *    pdht,
950
    gs_halftone_type        type,
951
    const gx_device *       dev,
952
    gs_HT_objtype_t objtype )
953
11.8k
{
954
11.8k
    gx_device_halftone      dht;
955
11.8k
    int                     num_comps = pdht->num_dev_comp;
956
11.8k
    int                     i, code = 0;
957
11.8k
    bool                    used_default = false;
958
11.8k
    int                     lcm_width = 1, lcm_height = 1;
959
11.8k
    bool                    mem_diff = pdht->rc.memory != pgs->memory;
960
11.8k
    uint w, h;
961
11.8k
    int dw, dh;
962
963
11.8k
    assert(objtype < HT_OBJTYPE_COUNT);
964
965
    /* construct the new device halftone structure */
966
11.8k
    memset(&dht.order, 0, sizeof(dht.order));
967
    /* the rc field is filled in later */
968
11.8k
    dht.id = gs_next_ids(pgs->memory, 1);
969
11.8k
    dht.type = type;
970
11.8k
    dht.components =  gs_alloc_struct_array(
971
11.8k
                          pgs->memory,
972
11.8k
                          num_comps,
973
11.8k
                          gx_ht_order_component,
974
11.8k
                          &st_ht_order_component_element,
975
11.8k
                          "gx_gstate_dev_ht_install(components)" );
976
11.8k
    if (dht.components == NULL)
977
0
        return_error(gs_error_VMerror);
978
11.8k
    dht.num_comp = dht.num_dev_comp = num_comps;
979
    /* lcm_width, lcm_height are filled in later */
980
981
    /* initialize the components array */
982
11.8k
    memset(dht.components, 0, num_comps * sizeof(dht.components[0]));
983
47.3k
    for (i = 0; i < num_comps; i++)
984
35.5k
        dht.components[i].comp_number = -1;
985
986
    /*
987
     * Duplicate any of the non-default components, but do not create copies
988
     * of the levels or bit_data arrays. If all goes according to plan, the
989
     * gs_gstate's device halftone will assume ownership of these arrays
990
     * by clearing the corresponding pointers in the operand halftone's
991
     * orders.
992
     */
993
11.8k
    if (pdht->components != NULL) {
994
0
        int     input_ncomps = pdht->num_comp;
995
996
0
        for (i = 0; i < input_ncomps && code >= 0; i++) {
997
0
            gx_ht_order_component * p_s_comp = &pdht->components[i];
998
0
            gx_ht_order *           p_s_order = &p_s_comp->corder;
999
0
            int                     comp_num = p_s_comp->comp_number;
1000
1001
0
            if (comp_num >= 0 && comp_num < GX_DEVICE_COLOR_MAX_COMPONENTS &&
1002
0
                comp_num < dht.num_comp) {
1003
0
                gx_ht_order *   p_d_order = &dht.components[comp_num].corder;
1004
1005
                /* indicate that this order has been filled in */
1006
0
                dht.components[comp_num].comp_number = comp_num;
1007
1008
                /*
1009
                 * The component can be used only if it is from the
1010
                 * proper memory
1011
                 */
1012
0
                if (mem_diff)
1013
0
                    code = gx_ht_copy_ht_order( p_d_order,
1014
0
                                                p_s_order,
1015
0
                                                pgs->memory );
1016
0
                else {
1017
                    /* check if this is also the default component */
1018
0
                    used_default = used_default ||
1019
0
                                   p_s_order->bit_data == pdht->order.bit_data;
1020
1021
0
                    gx_ht_move_ht_order(p_d_order, p_s_order);
1022
0
                }
1023
0
            }
1024
0
        }
1025
0
    }
1026
1027
    /*
1028
     * Copy the default order to any remaining components.
1029
     */
1030
1031
47.3k
    for (i = 0; i < num_comps && code >= 0; i++) {
1032
35.5k
        gx_ht_order *porder = &dht.components[i].corder;
1033
1034
35.5k
        if (dht.components[i].comp_number != i) {
1035
            /* Previously this code would 'move' the default order from pdht to the
1036
             * dht component here, if we hadn't already done so, and would NULL out the default
1037
             * order in pdht to prevent it being freed when we released the halftone.
1038
             * However this didn't account for the possibility that one or more of the components
1039
             * of dht was already sharing the default order of the halftone. See gx_device_halftone_release
1040
             * which carefully checks to see if the default order is used by any component, in
1041
             * order to avoid double freeing it.
1042
             * We could do that check here, but the tiny benefit in not copying the data would
1043
             * probably be lost by the checks, so lets just always *copy* the default order if we need to.
1044
             */
1045
35.5k
            code = gx_ht_copy_ht_order(porder, &pdht->order, pgs->memory);
1046
35.5k
            dht.components[i].comp_number = i;
1047
35.5k
        }
1048
1049
35.5k
        w = porder->width;
1050
35.5k
        h = porder->full_height;
1051
35.5k
        dw = igcd(lcm_width, w);
1052
35.5k
        dh = igcd(lcm_height, h);
1053
1054
35.5k
        lcm_width /= dw;
1055
35.5k
        lcm_height /= dh;
1056
35.5k
        lcm_width = (w > max_int / lcm_width ? max_int : lcm_width * w);
1057
35.5k
        lcm_height = (h > max_int / lcm_height ? max_int : lcm_height * h);
1058
1059
35.5k
        if (porder->cache == 0) {
1060
35.5k
            uint            tile_bytes, num_tiles, slots_wanted, rep_raster, rep_count;
1061
35.5k
            gx_ht_cache *   pcache;
1062
1063
35.5k
            tile_bytes = porder->raster
1064
35.5k
                          * (porder->num_bits / porder->width);
1065
35.5k
            num_tiles = 1 + gx_ht_cache_default_bits_size() / tile_bytes;
1066
            /*
1067
             * Limit num_tiles to a reasonable number allowing for width repition.
1068
             * The most we need is one cache slot per bit.
1069
             * This prevents allocations of large cache bits that will never
1070
             * be used. See rep_count limit in gxht.c
1071
             */
1072
35.5k
            slots_wanted = 1 + ( porder->width * porder->height );
1073
35.5k
            rep_raster = ((num_tiles*tile_bytes) / porder->height /
1074
35.5k
                            slots_wanted) & ~(align_bitmap_mod - 1);
1075
35.5k
            rep_count = rep_raster * 8 / porder->width;
1076
35.5k
            if (rep_count > sizeof(ulong) * 8 && (num_tiles >
1077
35.5k
                    1 + ((num_tiles * 8 * sizeof(ulong)) / rep_count) ))
1078
35.5k
                num_tiles = 1 + ((num_tiles * 8 * sizeof(ulong)) / rep_count);
1079
35.5k
            pcache = gx_ht_alloc_cache( pgs->memory, num_tiles,
1080
35.5k
                                        tile_bytes * num_tiles );
1081
35.5k
            if (pcache == NULL)
1082
0
                code = gs_error_VMerror;
1083
35.5k
            else {
1084
35.5k
                porder->cache = pcache;
1085
35.5k
                gx_ht_init_cache(pgs->memory, pcache, porder);
1086
35.5k
            }
1087
35.5k
        }
1088
35.5k
    }
1089
11.8k
    dht.lcm_width = lcm_width;
1090
11.8k
    dht.lcm_height = lcm_height;
1091
1092
    /*
1093
     * If everything is OK so far, allocate a unique copy of the device
1094
     * halftone reference by the gs_gstate.
1095
     *
1096
     * This code requires a special check for the case in which the
1097
     * deivce halftone referenced by the gs_gstate is already unique.
1098
     * In this case, we must explicitly release just the components array
1099
     * (and any structures it refers to) of the existing halftone. This
1100
     * cannot be done automatically, as the rc_unshare_struct macro only
1101
     * ensures that a unique instance of the top-level structure is
1102
     * created, not that any substructure references are updated.
1103
     *
1104
     * Though this is scheduled to be changed, for the time being the
1105
     * command list renderer may invoke this code with pdht == psi->dev_ht
1106
     * (in which case we know pgs->dev_ht.rc.ref_count == 1). Special
1107
     * handling is required in that case, to avoid releasing structures
1108
     * we still need.
1109
     */
1110
11.8k
    if (code >= 0) {
1111
11.8k
        gx_device_halftone **ppgsdht;
1112
11.8k
        rc_header tmp_rc;
1113
1114
        /* The pgsdht corresponds to the one we will be installing according to 'objtype' */
1115
11.8k
        ppgsdht = &(pgs->dev_ht[objtype]);
1116
11.8k
        if (*ppgsdht != NULL && (*ppgsdht)->rc.ref_count == 1) {
1117
0
             if (pdht != *ppgsdht)
1118
0
                gx_device_halftone_release(*ppgsdht, (*ppgsdht)->rc.memory);
1119
11.8k
        } else {
1120
11.8k
            rc_unshare_struct( *ppgsdht,
1121
11.8k
                               gx_device_halftone,
1122
11.8k
                               &st_device_halftone,
1123
11.8k
                               pgs->memory,
1124
11.8k
                               BEGIN code = gs_error_VMerror; goto err; END,
1125
11.8k
                               "gx_gstate_dev_ht_install" );
1126
11.8k
        }
1127
1128
        /*
1129
         * Everything worked. "Assume ownership" of the appropriate
1130
         * portions of the source device halftone by clearing the
1131
         * associated references.  Since we might have
1132
         * pdht == pgs->dev_ht[], this must done before updating pgs->dev_ht[].
1133
         *
1134
         * If the default order has been used for a device component, and
1135
         * any of the source component orders share their levels or bit_data
1136
         * arrays with the default order, clear the pointers in those orders
1137
         * now. This is necessary because the default order's pointers will
1138
         * be cleared immediately below, so subsequently it will not be
1139
         * possible to tell if that this information is being shared.
1140
         */
1141
11.8k
        if (pdht->components != NULL && !mem_diff) {
1142
0
            int     input_ncomps = pdht->num_comp;
1143
1144
0
            for (i = 0; i < input_ncomps; i++) {
1145
0
                gx_ht_order_component * p_s_comp = &pdht->components[i];
1146
0
                gx_ht_order *           p_s_order = &p_s_comp->corder;
1147
0
                int                     comp_num = p_s_comp->comp_number;
1148
1149
0
                if ( comp_num >= 0                            &&
1150
0
                     comp_num < GX_DEVICE_COLOR_MAX_COMPONENTS  ) {
1151
0
                    memset(p_s_order, 0, sizeof(*p_s_order));
1152
0
                } else if ( comp_num == GX_DEVICE_COLOR_MAX_COMPONENTS &&
1153
0
                            used_default                                 )
1154
0
                    memset(p_s_order, 0, sizeof(*p_s_order));
1155
0
            }
1156
0
        }
1157
11.8k
        if (used_default && !mem_diff) {
1158
0
            memset(&pdht->order, 0, sizeof(pdht->order));
1159
0
        }
1160
1161
11.8k
        tmp_rc = (*ppgsdht)->rc;
1162
11.8k
        **ppgsdht = dht;
1163
11.8k
        (*ppgsdht)->rc = tmp_rc;
1164
1165
        /* update the effective transfer function array */
1166
11.8k
        gx_gstate_set_effective_xfer(pgs);
1167
1168
11.8k
        return 0;
1169
11.8k
    }
1170
1171
    /* something went amiss; release all copied components */
1172
0
  err:
1173
0
    for (i = 0; i < num_comps; i++) {
1174
0
        gx_ht_order_component * pcomp = &dht.components[i];
1175
0
        gx_ht_order *           porder = &pcomp->corder;
1176
1177
0
        if (pcomp->comp_number == -1) {
1178
0
            gx_ht_order_release(porder, pgs->memory, true);
1179
0
        }
1180
0
        else if (porder->cache != NULL) {
1181
0
            gx_ht_free_cache(pgs->memory, porder->cache);
1182
0
            porder->cache = NULL;
1183
0
        }
1184
0
    }
1185
0
    gs_free_object(pgs->memory, dht.components, "gx_gstate_dev_ht_install");
1186
1187
0
    return code;
1188
11.8k
}
1189
1190
/*
1191
 * Copy the dev_ht[HT_OBJTYPE_DEFAULT] to the dev_ht[] for the specified object type.
1192
 */
1193
int
1194
gx_gstate_dev_ht_copy_to_objtype(gs_gstate *pgs, gs_HT_objtype_t objtype)
1195
0
{
1196
0
    gx_device_halftone *pdht = pgs->dev_ht[HT_OBJTYPE_DEFAULT]; /* the current dev_ht */
1197
1198
0
    if (objtype >= HT_OBJTYPE_COUNT) {
1199
0
        return_error(gs_error_undefined);
1200
0
    }
1201
0
    rc_increment(pdht);
1202
0
    pgs->dev_ht[objtype] = pdht;
1203
0
    return 0;
1204
0
}
1205
1206
/*
1207
 * Install a new halftone in the graphics state.  Note that we copy the top
1208
 * level of the gs_halftone and the gx_device_halftone, and take ownership
1209
 * of any substructures.
1210
 */
1211
int
1212
gx_ht_install(gs_gstate * pgs, const gs_halftone * pht,
1213
              gx_device_halftone * pdht)
1214
9.78k
{
1215
9.78k
    gs_memory_t *mem = pht->rc.memory;
1216
9.78k
    gs_halftone *old_ht = pgs->halftone;
1217
9.78k
    gs_halftone *new_ht;
1218
9.78k
    int code;
1219
1220
9.78k
    pdht->num_dev_comp = pgs->device->color_info.num_components;
1221
9.78k
    if (old_ht != NULL && old_ht->rc.memory == mem &&
1222
9.78k
        old_ht->rc.ref_count == 1
1223
9.78k
        )
1224
0
        new_ht = old_ht;
1225
9.78k
    else
1226
9.78k
        rc_alloc_struct_1(new_ht, gs_halftone, &st_halftone,
1227
9.78k
                          mem, return_error(gs_error_VMerror),
1228
9.78k
                          "gx_ht_install(new halftone)");
1229
9.78k
    code = gx_gstate_dev_ht_install(pgs,
1230
9.78k
                             pdht, pht->type, gs_currentdevice_inline(pgs),
1231
9.78k
                             pht->objtype);
1232
9.78k
    if (code < 0) {
1233
0
        if (new_ht != old_ht)
1234
0
            gs_free_object(mem, new_ht, "gx_ht_install(new halftone)");
1235
0
        return code;
1236
0
    }
1237
1238
    /*
1239
     * Discard any unused components and the components array of the
1240
     * operand device halftone
1241
     */
1242
9.78k
    gx_device_halftone_release(pdht, pdht->rc.memory);
1243
1244
9.78k
    if (new_ht != old_ht)
1245
9.78k
        rc_decrement(old_ht, "gx_ht_install(old halftone)");
1246
9.78k
    {
1247
9.78k
        rc_header rc;
1248
1249
9.78k
        rc = new_ht->rc;
1250
9.78k
        *new_ht = *pht;
1251
9.78k
        new_ht->rc = rc;
1252
9.78k
    }
1253
9.78k
    pgs->halftone = new_ht;
1254
9.78k
    gx_unset_both_dev_colors(pgs);
1255
9.78k
    return 0;
1256
9.78k
}
1257
1258
/*
1259
 * This macro will determine the colorant number of a given color name.
1260
 * A value of -1 indicates that the name is not valid.
1261
 */
1262
#define check_colorant_name(name, dev) \
1263
   ((*dev_proc(dev, get_color_comp_index)) (dev, name, strlen(name), NO_NAME_TYPE))
1264
1265
/* Reestablish the effective transfer functions, taking into account */
1266
/* any overrides from halftone dictionaries. */
1267
void
1268
gx_gstate_set_effective_xfer(gs_gstate * pgs)
1269
781k
{
1270
781k
    gx_device_halftone *pdht = pgs->dev_ht[HT_OBJTYPE_DEFAULT];
1271
781k
    gx_transfer_map *pmap;
1272
781k
    gx_ht_order *porder;
1273
781k
    int i, component_num, non_id_count;
1274
1275
781k
    non_id_count = (pgs->set_transfer.gray->proc == &gs_identity_transfer) ? 0 : GX_DEVICE_COLOR_MAX_COMPONENTS;
1276
50.8M
    for (i = 0; i < GX_DEVICE_COLOR_MAX_COMPONENTS; i++)
1277
50.0M
        pgs->effective_transfer[i] = pgs->set_transfer.gray;    /* default */
1278
1279
    /* Check if we have a transfer functions from setcolortransfer */
1280
781k
    if (pgs->set_transfer.red) {
1281
6
        component_num = pgs->set_transfer.red_component_num;
1282
6
        if (component_num >= 0) {
1283
6
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1284
6
               non_id_count--;
1285
6
            pgs->effective_transfer[component_num] = pgs->set_transfer.red;
1286
6
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1287
6
               non_id_count++;
1288
6
        }
1289
6
    }
1290
781k
    if (pgs->set_transfer.green) {
1291
6
        component_num = pgs->set_transfer.green_component_num;
1292
6
        if (component_num >= 0) {
1293
6
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1294
6
               non_id_count--;
1295
6
            pgs->effective_transfer[component_num] = pgs->set_transfer.green;
1296
6
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1297
6
               non_id_count++;
1298
6
        }
1299
6
    }
1300
781k
    if (pgs->set_transfer.blue) {
1301
6
        component_num = pgs->set_transfer.blue_component_num;
1302
6
        if (component_num >= 0) {
1303
6
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1304
6
               non_id_count--;
1305
6
            pgs->effective_transfer[component_num] = pgs->set_transfer.blue;
1306
6
            if (pgs->effective_transfer[component_num]->proc != &gs_identity_transfer)
1307
6
               non_id_count++;
1308
6
        }
1309
6
    }
1310
1311
    /* HT may not be initialized yet.  Only do if the target is a halftone device.
1312
       Per the spec, the HT is a self-contained description of a halftoning process.
1313
       We don't use any xfer function from the HT if we are not halftoning */
1314
781k
    if (pdht && !device_is_contone(pgs->device)) {
1315
1316
        /* Since the transfer function is pickled into the threshold array (if any)*/
1317
        /*  we need to free it so it can be reconstructed with the current transfer */
1318
0
        porder = &(pdht->order);
1319
0
        if (porder->threshold != NULL) {
1320
0
            gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
1321
0
                           "set_effective_transfer(threshold)");
1322
0
            porder->threshold = 0;
1323
0
        }
1324
0
        for (i = 0; i < pdht->num_comp; i++) {
1325
0
            pmap = pdht->components[i].corder.transfer;
1326
0
            if (pmap != NULL) {
1327
0
                if (pgs->effective_transfer[i]->proc != &gs_identity_transfer)
1328
0
                    non_id_count--;
1329
0
                pgs->effective_transfer[i] = pmap;
1330
0
                if (pgs->effective_transfer[i]->proc != &gs_identity_transfer)
1331
0
                   non_id_count++;
1332
0
            }
1333
0
            porder = &(pdht->components[i].corder);
1334
0
            if (porder->threshold != NULL) {
1335
0
                gs_free_object(porder->data_memory->non_gc_memory, porder->threshold,
1336
0
                               "set_effective_transfer(threshold)");
1337
0
                porder->threshold = 0;
1338
0
            }
1339
0
        }
1340
0
    }
1341
1342
781k
    pgs->effective_transfer_non_identity_count = non_id_count;
1343
781k
}
1344
1345
void
1346
gx_set_effective_transfer(gs_gstate * pgs)
1347
37.8k
{
1348
37.8k
    gx_gstate_set_effective_xfer(pgs);
1349
37.8k
}
1350
1351
/* Check if the transfer function for a component is monotonic. */
1352
/* Used to determine if we can do fast halftoning   */
1353
bool
1354
gx_transfer_is_monotonic(const gs_gstate *pgs, int plane_index)
1355
0
{
1356
0
    if (pgs->effective_transfer[plane_index]->proc != gs_identity_transfer) {
1357
0
        bool threshold_inverted;
1358
0
        int t_level;
1359
0
        frac mapped, prev;
1360
1361
0
        prev = gx_map_color_frac(pgs, frac_0, effective_transfer[plane_index]);
1362
0
        threshold_inverted = prev >
1363
0
                             gx_map_color_frac(pgs, frac_1, effective_transfer[plane_index]);
1364
0
        for (t_level = 1; t_level < 255; t_level++) {
1365
0
            mapped = gx_map_color_frac(pgs, byte2frac(t_level), effective_transfer[plane_index]);
1366
0
            if ((threshold_inverted && mapped > prev) ||
1367
0
                (!threshold_inverted && mapped < prev))
1368
0
                return false;
1369
0
            prev = mapped;
1370
0
        }
1371
0
    }
1372
0
    return true;
1373
0
}
1374
1375
/* This creates a threshold array from the tiles.  Threshold is allocated in
1376
   non-gc memory and is not known to the GC. The algorithm cycles through the
1377
   threshold values, computing the shade the same way as gx_render_device_DeviceN
1378
   so that the threshold matches the non-threshold halftoning.
1379
*/
1380
int
1381
gx_ht_construct_threshold( gx_ht_order *d_order, gx_device *dev,
1382
                           const gs_gstate * pgs, int plane_index)
1383
0
{
1384
0
    int i, j;
1385
0
    unsigned char *thresh;
1386
0
    gs_memory_t *memory = d_order ? d_order->data_memory->non_gc_memory : NULL;
1387
0
    uint max_value;
1388
0
    unsigned long hsize, nshades;
1389
0
    int t_level;
1390
0
    int row, col;
1391
0
    int code;
1392
0
    int num_repeat, shift, num_levels = d_order ? d_order->num_levels : 0;
1393
0
    int row_kk, col_kk, kk;
1394
0
    frac t_level_frac_color;
1395
0
    int shade, base_shade = 0;
1396
0
    bool have_transfer = false, threshold_inverted = false;
1397
1398
0
    if (d_order == NULL) return -1;
1399
    /* We can have simple or complete orders.  Simple ones tile the threshold
1400
       with shifts.   To handle those we simply loop over the number of
1401
       repeats making sure to shift columns when we set our threshold values */
1402
0
    num_repeat = d_order->full_height / d_order->height;
1403
0
    shift = d_order->shift;
1404
1405
0
    if (d_order->threshold != NULL) return 0;
1406
0
    thresh = (byte *)gs_malloc(memory, (size_t)d_order->width * d_order->full_height, 1,
1407
0
                              "gx_ht_construct_threshold");
1408
0
    if (thresh == NULL) {
1409
0
        return -1 ;         /* error if allocation failed   */
1410
0
    }
1411
    /* Check if we need to apply a transfer function to the values */
1412
0
    if (pgs->effective_transfer[plane_index]->proc != gs_identity_transfer) {
1413
0
        have_transfer = true;
1414
0
        threshold_inverted = gx_map_color_frac(pgs, frac_0, effective_transfer[plane_index]) >
1415
0
                                gx_map_color_frac(pgs, frac_1, effective_transfer[plane_index]);
1416
0
    }
1417
    /* Adjustments to ensure that we properly map our 256 levels into
1418
      the number of shades that we have in our halftone screen.  For example
1419
      if we have a 16x16 screen, we have 257 shadings that we can represent
1420
      if we have a  2x2  screen, we have 5 shadings that we can represent.
1421
      Calculations are performed to match what happens in the tile filling
1422
      code */
1423
0
    max_value = (dev->color_info.gray_index == plane_index) ?
1424
0
         dev->color_info.dither_grays - 1 :
1425
0
         dev->color_info.dither_colors - 1;
1426
0
    hsize = num_levels;
1427
0
    nshades = hsize * max_value + 1;
1428
1429
    /* search upwards to find the correct value for the last threshold value */
1430
    /* Use this to initialize the threshold array (transition to all white) */
1431
0
    t_level = 0;
1432
0
    do {
1433
0
        t_level++;
1434
0
        t_level_frac_color = byte2frac(threshold_inverted ? 255 - t_level : t_level);
1435
0
        if (have_transfer)
1436
0
            t_level_frac_color = gx_map_color_frac(pgs, t_level_frac_color, effective_transfer[plane_index]);
1437
0
        shade = t_level_frac_color * nshades / (frac_1_long + 1);
1438
0
    } while (shade < num_levels && t_level < 255);
1439
    /* Initialize the thresholds to the lowest level that will be all white */
1440
0
    for( i = 0; i < d_order->width * d_order->full_height; i++ ) {
1441
0
        thresh[i] = t_level;
1442
0
    }
1443
0
    for (t_level = 1; t_level < 256; t_level++) {
1444
0
        t_level_frac_color = byte2frac(threshold_inverted ? 255 - t_level : t_level);
1445
0
        if (have_transfer)
1446
0
            t_level_frac_color = gx_map_color_frac(pgs, t_level_frac_color, effective_transfer[plane_index]);
1447
0
        shade = t_level_frac_color * nshades / (frac_1_long + 1);
1448
0
        if (shade < num_levels && shade > base_shade) {
1449
0
            if (d_order->levels[shade] > d_order->levels[base_shade]) {
1450
                /* Loop over the number of dots that we have to set in going
1451
                   to this new shade from the old shade */
1452
0
                for (j = d_order->levels[base_shade]; j < d_order->levels[shade]; j++) {
1453
0
                    gs_int_point ppt;
1454
0
                    code = d_order->procs->bit_index(d_order, j, &ppt);
1455
0
                    if (code < 0)
1456
0
                        return code;
1457
0
                    row = ppt.y;
1458
0
                    col = ppt.x;
1459
0
                    if( col < (int)d_order->width ) {
1460
0
                        for (kk = 0; kk < num_repeat; kk++) {
1461
0
                            row_kk = row + kk * d_order->height;
1462
0
                            col_kk = col + kk * shift;
1463
0
                            col_kk = col_kk % d_order->width;
1464
0
                            *(thresh + col_kk + (row_kk * d_order->width)) = t_level;
1465
0
                        }
1466
0
                    }
1467
0
                }
1468
0
            }
1469
0
            base_shade = shade;
1470
0
        }
1471
0
    }
1472
0
    d_order->threshold = thresh;
1473
0
    d_order->threshold_inverted = threshold_inverted;
1474
0
    if (dev->color_info.polarity == GX_CINFO_POLARITY_SUBTRACTIVE) {
1475
0
        for(i = 0; i < (int)d_order->height; i++ ) {
1476
0
            for( j=(int)d_order->width-1; j>=0; j-- )
1477
0
                *(thresh+j+(i*d_order->width)) = 255 - *(thresh+j+(i*d_order->width));
1478
0
        }
1479
0
    }
1480
#ifdef DEBUG
1481
    if ( gs_debug_c('h') ) {
1482
         dmprintf3(memory, "threshold array component %d [ %d x %d ]:\n",
1483
                  plane_index, (int)(d_order->full_height), (int)(d_order->width));
1484
         for( i=0; i<(int)d_order->full_height; i++ ) {
1485
            dmprintf1(memory, "row %3d= ", i);
1486
            for( j=0; j<(int)(d_order->width); j++ ) {
1487
                dmprintf1(memory, "%02x ", *(thresh+j+(i*d_order->width)) );
1488
                if ((j&31) == 31)
1489
                    dmprintf(memory, "\n         ");
1490
            }
1491
            if ((j&31) != 0)
1492
                dmprintf(memory, "\n");
1493
        }
1494
   }
1495
#endif
1496
/* Large screens are easier to see as images */
1497
#if DUMP_SCREENS
1498
    {
1499
        char file_name[50];
1500
        gp_file *fid;
1501
1502
        snprintf(file_name, 50, "Screen_From_Tiles_%dx%d.raw", d_order->width, d_order->full_height);
1503
        fid = gp_fopen(memory, file_name, "wb");
1504
        if (fid) {
1505
            gp_fwrite(thresh, sizeof(unsigned char), d_order->width * d_order->full_height, fid);
1506
            gp_fclose(fid);
1507
        }
1508
    }
1509
#endif
1510
1511
0
    return 0;
1512
0
}