Coverage Report

Created: 2025-06-10 07:24

/src/ghostpdl/base/gsimage.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Image setup procedures for Ghostscript library */
18
#include "memory_.h"
19
#include "math_.h"
20
#include "gx.h"
21
#include "gserrors.h"
22
#include "gsstruct.h"
23
#include "gscspace.h"
24
#include "gsmatrix.h"   /* for gsiparam.h */
25
#include "gsimage.h"
26
#include "gxarith.h"    /* for igcd */
27
#include "gxdevice.h"
28
#include "gxiparam.h"
29
#include "gxpath.h"   /* for gx_effective_clip_path */
30
#include "gximask.h"
31
#include "gzstate.h"
32
#include "gsutil.h"
33
#include "gxdevsop.h"
34
#include "gximage.h"
35
36
/*
37
  The main internal invariant for the gs_image machinery is
38
  straightforward.  The state consists primarily of N plane buffers
39
  (planes[]).
40
*/
41
typedef struct image_enum_plane_s {
42
/*
43
  The state of each plane consists of:
44
45
  - A row buffer, aligned and (logically) large enough to hold one scan line
46
    for that plane.  (It may have to be reallocated if the plane width or
47
    depth changes.)  A row buffer is "full" if it holds exactly a full scan
48
    line.
49
*/
50
    gs_string row;
51
/*
52
  - A position within the row buffer, indicating how many initial bytes are
53
    occupied.
54
*/
55
    uint pos;
56
/*
57
  - A (retained) source string, which may be empty (size = 0).
58
*/
59
    gs_const_string source;
60
    /* The gs_string 'orig' is only set if the 'txfer_control' flag was set when
61
     * the 'source' string data was initally passed in. In this case we now control the lifetime
62
     * of the string. So when we empty the source string, free it. We need to know the actual
63
     * address of the string, and that gets modified in the peunum->planes->source and size
64
     * members, so we use 'orig' as both a marker for the control and the original size and location.
65
     */
66
    gs_const_string orig;
67
} image_enum_plane_t;
68
/*
69
  The possible states for each plane do not depend on the state of any other
70
  plane.  Either:
71
72
  - pos = 0, source.size = 0.
73
74
  - If the underlying image processor says the plane is currently wanted,
75
    either:
76
77
    - pos = 0, source.size >= one full row of data for this plane.  This
78
      case allows us to avoid copying the data from the source string to the
79
      row buffer if the client is providing data in blocks of at least one
80
      scan line.
81
82
    - pos = full, source.size may have any value.
83
84
    - pos > 0, pos < full, source.size = 0;
85
86
  - If the underlying image processor says the plane is not currently
87
    wanted:
88
89
    - pos = 0, source.size may have any value.
90
91
  This invariant holds at the beginning and end of each call on
92
  gs_image_next_planes.  Note that for each plane, the "plane wanted" status
93
  and size of a full row may change after each call of plane_data.  As
94
  documented in gxiparam.h, we assume that a call of plane_data can only
95
  change a plane's status from "wanted" to "not wanted", or change the width
96
  or depth of a wanted plane, if data for that plane was actually supplied
97
  (and used).
98
*/
99
100
/* Define the enumeration state for this interface layer. */
101
/*typedef struct gs_image_enum_s gs_image_enum; *//* in gsimage.h */
102
struct gs_image_enum_s {
103
    /* The following are set at initialization time. */
104
    gs_memory_t *memory;
105
    gx_device *dev;   /* if 0, just skip over the data */
106
    gx_image_enum_common_t *info; /* driver bookkeeping structure */
107
    int num_planes;
108
    int height;
109
    bool wanted_varies;
110
    /* The following are updated dynamically. */
111
    int plane_index;    /* index of next plane of data, */
112
                                /* only needed for gs_image_next */
113
    int y;
114
    bool error;
115
    byte wanted[GS_IMAGE_MAX_COMPONENTS]; /* cache gx_image_planes_wanted */
116
    byte client_wanted[GS_IMAGE_MAX_COMPONENTS]; /* see gsimage.h */
117
    image_enum_plane_t planes[GS_IMAGE_MAX_COMPONENTS]; /* see above */
118
    /*
119
     * To reduce setup for transferring complete rows, we maintain a
120
     * partially initialized parameter array for gx_image_plane_data_rows.
121
     * The data member is always set just before calling
122
     * gx_image_plane_data_rows; the data_x and raster members are reset
123
     * when needed.
124
     */
125
    gx_image_plane_t image_planes[GS_IMAGE_MAX_COMPONENTS];
126
};
127
128
gs_private_st_composite(st_gs_image_enum, gs_image_enum, "gs_image_enum",
129
                        gs_image_enum_enum_ptrs, gs_image_enum_reloc_ptrs);
130
0
#define gs_image_enum_num_ptrs 2
131
132
/* GC procedures */
133
static
134
0
ENUM_PTRS_WITH(gs_image_enum_enum_ptrs, gs_image_enum *eptr)
135
0
{
136
    /* Enumerate the data planes. */
137
0
    index -= gs_image_enum_num_ptrs;
138
0
    if (index < eptr->num_planes)
139
0
        ENUM_RETURN_STRING_PTR(gs_image_enum, planes[index].source);
140
0
    index -= eptr->num_planes;
141
0
    if (index < eptr->num_planes)
142
0
        ENUM_RETURN_STRING_PTR(gs_image_enum, planes[index].row);
143
0
    return 0;
144
0
}
145
0
ENUM_PTR(0, gs_image_enum, dev);
146
0
ENUM_PTR(1, gs_image_enum, info);
147
0
ENUM_PTRS_END
148
0
static RELOC_PTRS_WITH(gs_image_enum_reloc_ptrs, gs_image_enum *eptr)
149
0
{
150
0
    int i;
151
152
0
    RELOC_PTR(gs_image_enum, dev);
153
0
    RELOC_PTR(gs_image_enum, info);
154
0
    for (i = 0; i < eptr->num_planes; i++)
155
0
        RELOC_CONST_STRING_PTR(gs_image_enum, planes[i].source);
156
0
    for (i = 0; i < eptr->num_planes; i++)
157
0
        RELOC_STRING_PTR(gs_image_enum, planes[i].row);
158
0
}
159
0
RELOC_PTRS_END
160
161
static int
162
is_image_visible(const gs_image_common_t * pic, gs_gstate * pgs, gx_clip_path *pcpath)
163
30.6k
{
164
30.6k
    gs_rect image_rect = {{0, 0}, {0, 0}};
165
30.6k
    gs_rect device_rect;
166
30.6k
    gs_int_rect device_int_rect;
167
30.6k
    gs_matrix mat;
168
30.6k
    int code;
169
170
30.6k
    image_rect.q.x = pic->Width;
171
30.6k
    image_rect.q.y = pic->Height;
172
30.6k
    if (pic->ImageMatrix.xx == ctm_only(pgs).xx &&
173
30.6k
        pic->ImageMatrix.xy == ctm_only(pgs).xy &&
174
30.6k
        pic->ImageMatrix.yx == ctm_only(pgs).yx &&
175
30.6k
        pic->ImageMatrix.yy == ctm_only(pgs).yy) {
176
        /* Handle common special case separately to accept singular matrix */
177
0
        mat.xx = mat.yy = 1.;
178
0
        mat.yx = mat.xy = 0.;
179
0
        mat.tx = ctm_only(pgs).tx - pic->ImageMatrix.tx;
180
0
        mat.ty = ctm_only(pgs).ty - pic->ImageMatrix.ty;
181
30.6k
    } else {
182
30.6k
        code = gs_matrix_invert(&pic->ImageMatrix, &mat);
183
30.6k
        if (code < 0)
184
0
            return code;
185
30.6k
        code = gs_matrix_multiply(&mat, &ctm_only(pgs), &mat);
186
30.6k
        if (code < 0)
187
0
            return code;
188
30.6k
    }
189
30.6k
    code = gs_bbox_transform(&image_rect, &mat, &device_rect);
190
30.6k
    if (code < 0)
191
0
        return code;
192
30.6k
    device_int_rect.p.x = (int)floor(device_rect.p.x);
193
30.6k
    device_int_rect.p.y = (int)floor(device_rect.p.y);
194
30.6k
    device_int_rect.q.x = (int)ceil(device_rect.q.x);
195
30.6k
    device_int_rect.q.y = (int)ceil(device_rect.q.y);
196
30.6k
    if (!gx_cpath_rect_visible(pcpath, &device_int_rect))
197
1.49k
        return 0;
198
29.1k
    return 1;
199
30.6k
}
200
201
/* Create an image enumerator given image parameters and a graphics state. */
202
int
203
gs_image_begin_typed(const gs_image_common_t * pic, gs_gstate * pgs,
204
                     bool uses_color, bool image_is_text, gx_image_enum_common_t ** ppie)
205
30.7k
{
206
30.7k
    gx_device *dev = gs_currentdevice(pgs);
207
30.7k
    gx_clip_path *pcpath;
208
30.7k
    int code = gx_effective_clip_path(pgs, &pcpath);
209
30.7k
    gx_device *dev2 = dev;
210
30.7k
    gx_device_color dc_temp, *pdevc = gs_currentdevicecolor_inline(pgs);
211
212
30.7k
    if (code < 0)
213
0
        return code;
214
    /* Processing an image object operation, but this may be for a text object */
215
30.7k
    ensure_tag_is_set(pgs, pgs->device, image_is_text ? GS_TEXT_TAG : GS_IMAGE_TAG);  /* NB: may unset_dev_color */
216
217
30.7k
    if (uses_color) {
218
20.8k
        code = gx_set_dev_color(pgs);
219
20.8k
        if (code != 0)
220
2
            return code;
221
20.8k
        code = gs_gstate_color_load(pgs);
222
20.8k
        if (code < 0)
223
0
            return code;
224
20.8k
    }
225
226
30.7k
    if (pgs->overprint || (!pgs->overprint && dev_proc(pgs->device, dev_spec_op)(pgs->device,
227
30.6k
        gxdso_overprint_active, NULL, 0))) {
228
36
        gs_overprint_params_t op_params = { 0 };
229
230
36
        if_debug0m(gs_debug_flag_overprint, pgs->memory,
231
36
            "[overprint] Image Overprint\n");
232
36
        code = gs_do_set_overprint(pgs);
233
36
        if (code < 0)
234
0
            return code;
235
236
36
        op_params.op_state = OP_STATE_FILL;
237
36
        gs_gstate_update_overprint(pgs, &op_params);
238
239
36
        dev = gs_currentdevice(pgs);
240
36
        dev2 = dev;
241
36
    }
242
243
    /* Imagemask with shading color needs a special optimization
244
       with converting the image into a clipping.
245
       Check for such case after gs_gstate_color_load is done,
246
       because it can cause interpreter callout.
247
     */
248
30.7k
    if (pic->type->begin_typed_image == &gx_begin_image1) {
249
30.6k
        gs_image_t *image = (gs_image_t *)pic;
250
251
30.6k
        if(image->ImageMask) {
252
20.8k
            bool transpose = false;
253
20.8k
            gs_matrix_double mat;
254
255
20.8k
            if((code = gx_image_compute_mat(pgs, NULL, &(image->ImageMatrix), &mat)) < 0)
256
2
                return code;
257
20.8k
            if ((any_abs(mat.xy) > any_abs(mat.xx)) && (any_abs(mat.yx) > any_abs(mat.yy)))
258
14.0k
                transpose = true;   /* pure landscape */
259
20.8k
            code = gx_image_fill_masked_start(dev, gs_currentdevicecolor_inline(pgs), transpose,
260
20.8k
                                              pcpath, pgs->memory, pgs->log_op, &dev2);
261
20.8k
            if (code < 0)
262
0
                return code;
263
20.8k
        }
264
30.6k
        if (dev->interpolate_control < 0) {   /* Force interpolation before begin_typed_image */
265
0
            ((gs_data_image_t *)pic)->Interpolate = true;
266
0
        }
267
30.6k
        else if (dev->interpolate_control == 0) {
268
30.6k
            ((gs_data_image_t *)pic)->Interpolate = false; /* Suppress interpolation */
269
30.6k
        }
270
30.6k
        if (dev2 != dev) {
271
0
            set_nonclient_dev_color(&dc_temp, 1);
272
0
            pdevc = &dc_temp;
273
0
        }
274
30.6k
    }
275
30.7k
    code = gx_device_begin_typed_image(dev2, (const gs_gstate *)pgs,
276
30.7k
                NULL, pic, NULL, pdevc, pcpath, pgs->memory, ppie);
277
30.7k
    if (code < 0)
278
18
        return code;
279
30.6k
    code = is_image_visible(pic, pgs, pcpath);
280
30.6k
    if (code < 0)
281
0
        return code;
282
30.6k
    if (!code)
283
1.49k
        (*ppie)->skipping = true;
284
30.6k
    return 0;
285
30.6k
}
286
287
/* Allocate an image enumerator. */
288
static void
289
image_enum_init(gs_image_enum * penum)
290
61.4k
{
291
    /* Clean pointers for GC. */
292
61.4k
    penum->info = 0;
293
61.4k
    penum->dev = 0;
294
61.4k
    penum->plane_index = 0;
295
61.4k
    penum->num_planes = 0;
296
61.4k
}
297
gs_image_enum *
298
gs_image_enum_alloc(gs_memory_t * mem, client_name_t cname)
299
30.7k
{
300
30.7k
    gs_image_enum *penum =
301
30.7k
        gs_alloc_struct(mem, gs_image_enum, &st_gs_image_enum, cname);
302
303
30.7k
    if (penum != 0) {
304
30.7k
        penum->memory = mem;
305
30.7k
        image_enum_init(penum);
306
30.7k
    }
307
30.7k
    return penum;
308
30.7k
}
309
310
/* Start processing an ImageType 1 image. */
311
int
312
gs_image_init(gs_image_enum * penum, const gs_image_t * pim, bool multi,
313
              bool image_is_text, gs_gstate * pgs)
314
0
{
315
0
    gs_image_t image;
316
0
    gx_image_enum_common_t *pie;
317
0
    int code;
318
319
0
    image = *pim;
320
0
    if (image.ImageMask) {
321
0
        image.ColorSpace = NULL;
322
0
        if (pgs->in_cachedevice <= 1)
323
0
            image.adjust = false;
324
0
    } else {
325
0
        if (pgs->in_cachedevice)
326
0
            return_error(gs_error_undefined);
327
0
        if (image.ColorSpace == NULL) {
328
            /*
329
             * Use of a non-current color space is potentially
330
             * incorrect, but it appears this case doesn't arise.
331
             */
332
0
            image.ColorSpace = gs_cspace_new_DeviceGray(pgs->memory);
333
0
            if (image.ColorSpace == NULL)
334
0
                return_error(gs_error_VMerror);
335
0
        }
336
0
    }
337
0
    code = gs_image_begin_typed((const gs_image_common_t *)&image, pgs,
338
0
                                image.ImageMask | image.CombineWithColor,
339
0
                                image_is_text, &pie);
340
0
    if (code < 0)
341
0
        return code;
342
0
    return gs_image_enum_init(penum, pie, (const gs_data_image_t *)&image,
343
0
                              pgs);
344
0
}
345
346
/*
347
 * Return the number of bytes of data per row for a given plane.
348
 */
349
inline uint
350
gs_image_bytes_per_plane_row(const gs_image_enum * penum, int plane)
351
48.9k
{
352
48.9k
    const gx_image_enum_common_t *pie = penum->info;
353
354
48.9k
    return (pie->plane_widths[plane] * pie->plane_depths[plane] + 7) >> 3;
355
48.9k
}
356
357
/* Cache information when initializing, or after transferring plane data. */
358
static void
359
cache_planes(gs_image_enum *penum)
360
681k
{
361
681k
    int i;
362
363
681k
    if (penum->wanted_varies) {
364
40.4k
        penum->wanted_varies =
365
40.4k
            !gx_image_planes_wanted(penum->info, penum->wanted);
366
90.6k
        for (i = 0; i < penum->num_planes; ++i)
367
50.1k
            if (penum->wanted[i])
368
48.9k
                penum->image_planes[i].raster =
369
48.9k
                    gs_image_bytes_per_plane_row(penum, i);
370
1.27k
            else
371
1.27k
                penum->image_planes[i].data = 0;
372
40.4k
    }
373
681k
}
374
/* Advance to the next wanted plane. */
375
static void
376
next_plane(gs_image_enum *penum)
377
30.6k
{
378
30.6k
    int px = penum->plane_index;
379
380
30.6k
    do {
381
30.6k
        if (++px == penum->num_planes)
382
0
            px = 0;
383
30.6k
    } while (!penum->wanted[px]);
384
30.6k
    penum->plane_index = px;
385
30.6k
}
386
/*
387
 * Initialize plane_index and (if appropriate) wanted and
388
 * wanted_varies at the beginning of a group of planes.
389
 */
390
static void
391
begin_planes(gs_image_enum *penum)
392
30.6k
{
393
30.6k
    cache_planes(penum);
394
30.6k
    penum->plane_index = -1;
395
30.6k
    next_plane(penum);
396
30.6k
}
397
398
int
399
gs_image_common_init(gs_image_enum * penum, gx_image_enum_common_t * pie,
400
            const gs_data_image_t * pim, gx_device * dev)
401
30.6k
{
402
    /*
403
     * HACK : For a compatibility with gs_image_cleanup_and_free_enum,
404
     * penum->memory must be initialized in advance
405
     * with the memory heap that owns *penum.
406
     */
407
30.6k
    int i;
408
409
30.6k
    if (pim->Width == 0 || pim->Height == 0) {
410
0
        gx_device *cdev = pie->dev;
411
412
0
        gx_image_end(pie, false);
413
0
        if (dev_proc(cdev, dev_spec_op)(cdev,
414
0
                    gxdso_pattern_is_cpath_accum, NULL, 0))
415
0
            gx_device_retain((gx_device *)cdev, false);
416
0
        return 1;
417
0
    }
418
30.6k
    image_enum_init(penum);
419
30.6k
    penum->dev = dev;
420
30.6k
    penum->info = pie;
421
30.6k
    penum->num_planes = pie->num_planes;
422
    /*
423
     * Note that for ImageType 3 InterleaveType 2, penum->height (the
424
     * expected number of data rows) differs from pim->Height (the height
425
     * of the source image in scan lines).  This doesn't normally cause
426
     * any problems, because penum->height is not used to determine when
427
     * all the data has been processed: that is up to the plane_data
428
     * procedure for the specific image type.
429
     */
430
30.6k
    penum->height = pim->Height;
431
61.4k
    for (i = 0; i < pie->num_planes; ++i) {
432
30.7k
        penum->planes[i].pos = 0;
433
30.7k
        penum->planes[i].source.size = 0; /* for gs_image_next_planes */
434
30.7k
        penum->planes[i].source.data = 0; /* for GC */
435
30.7k
        penum->planes[i].row.data = 0; /* for GC */
436
30.7k
        penum->planes[i].row.size = 0; /* ditto */
437
30.7k
        penum->image_planes[i].data_x = 0; /* just init once, never changes */
438
30.7k
    }
439
    /* Initialize the dynamic part of the state. */
440
30.6k
    penum->y = 0;
441
30.6k
    penum->error = false;
442
30.6k
    penum->wanted_varies = true;
443
30.6k
    begin_planes(penum);
444
30.6k
    return 0;
445
30.6k
}
446
447
/* Initialize an enumerator for a general image.
448
   penum->memory must be initialized in advance.
449
*/
450
int
451
gs_image_enum_init(gs_image_enum * penum, gx_image_enum_common_t * pie,
452
                   const gs_data_image_t * pim, gs_gstate *pgs)
453
30.6k
{
454
30.6k
    pgs->device->sgr.stroke_stored = false;
455
30.6k
    return gs_image_common_init(penum, pie, pim,
456
30.6k
                                (pgs->in_charpath ? NULL :
457
30.6k
                                 gs_currentdevice_inline(pgs)));
458
30.6k
}
459
460
/* Return the set of planes wanted. */
461
const byte *
462
gs_image_planes_wanted(gs_image_enum *penum)
463
3
{
464
3
    int i;
465
466
    /*
467
     * A plane is wanted at this interface if it is wanted by the
468
     * underlying machinery and has no buffered or retained data.
469
     */
470
6
    for (i = 0; i < penum->num_planes; ++i)
471
3
        penum->client_wanted[i] =
472
3
            (penum->wanted[i] &&
473
3
             penum->planes[i].pos + penum->planes[i].source.size <
474
3
               penum->image_planes[i].raster);
475
3
    return penum->client_wanted;
476
3
}
477
478
/*
479
 * Return the enumerator memory used for allocating the row buffers.
480
 * Because some PostScript files use save/restore within an image data
481
 * reading procedure, this must be a stable allocator.
482
 */
483
static gs_memory_t *
484
gs_image_row_memory(const gs_image_enum *penum)
485
1.15M
{
486
1.15M
    return gs_memory_stable(penum->memory);
487
1.15M
}
488
489
/* Free the row buffers when cleaning up. */
490
static void
491
free_row_buffers(gs_image_enum *penum, int num_planes, client_name_t cname)
492
30.7k
{
493
30.7k
    int i;
494
495
61.4k
    for (i = num_planes - 1; i >= 0; --i) {
496
30.7k
        if_debug3m('b', penum->memory, "[b]free plane %d row ("PRI_INTPTR",%u)\n",
497
30.7k
                   i, (intptr_t)penum->planes[i].row.data,
498
30.7k
                   penum->planes[i].row.size);
499
30.7k
        gs_free_string(gs_image_row_memory(penum), penum->planes[i].row.data,
500
30.7k
                       penum->planes[i].row.size, cname);
501
30.7k
        penum->planes[i].row.data = 0;
502
30.7k
        penum->planes[i].row.size = 0;
503
30.7k
    }
504
30.7k
}
505
506
/* Process the next piece of an image. */
507
int
508
gs_image_next(gs_image_enum * penum, const byte * dbytes, uint dsize,
509
              uint * pused)
510
0
{
511
0
    int px = penum->plane_index;
512
0
    int num_planes = penum->num_planes;
513
0
    int i, code;
514
0
    uint used[GS_IMAGE_MAX_COMPONENTS];
515
0
    gs_const_string plane_data[GS_IMAGE_MAX_COMPONENTS];
516
517
0
    if (penum->planes[px].source.size != 0)
518
0
        return_error(gs_error_rangecheck);
519
0
    for (i = 0; i < num_planes; i++)
520
0
        plane_data[i].size = 0;
521
0
    plane_data[px].data = dbytes;
522
0
    plane_data[px].size = dsize;
523
0
    penum->error = false;
524
0
    code = gs_image_next_planes(penum, plane_data, used, false);
525
0
    *pused = used[px];
526
0
    if (code >= 0)
527
0
        next_plane(penum);
528
0
    return code;
529
0
}
530
531
int
532
gs_image_next_planes(gs_image_enum * penum,
533
                     gs_const_string *plane_data /*[num_planes]*/,
534
                     uint *used /*[num_planes]*/, bool txfer_control)
535
802k
{
536
802k
    const int num_planes = penum->num_planes;
537
802k
    int i;
538
802k
    int code = 0;
539
540
#ifdef DEBUG
541
    if (gs_debug_c('b')) {
542
        int pi;
543
544
        for (pi = 0; pi < num_planes; ++pi)
545
            dmprintf6(penum->memory, "[b]plane %d source="PRI_INTPTR",%u pos=%u data="PRI_INTPTR",%u\n",
546
                     pi, (intptr_t)penum->planes[pi].source.data,
547
                     penum->planes[pi].source.size, penum->planes[pi].pos,
548
                     (intptr_t)plane_data[pi].data, plane_data[pi].size);
549
    }
550
#endif
551
1.60M
    for (i = 0; i < num_planes; ++i) {
552
806k
        used[i] = 0;
553
806k
        if (penum->wanted[i] && plane_data[i].size != 0) {
554
805k
            penum->planes[i].source.size = plane_data[i].size;
555
805k
            penum->planes[i].source.data = plane_data[i].data;
556
            /* The gs_string 'orig' in penum->planes is set here if the 'txfer_control' flag is set.
557
             * In this case we now control the lifetime of the string. We need to know the actual
558
             * address of the string, and that gets modified in the peunum->planes->source and size
559
             * members, so we use 'orig' as both a marker for the control and the originalsize and location.
560
             */
561
805k
            if (txfer_control) {
562
3
                penum->planes[i].orig.data = plane_data[i].data;
563
3
                penum->planes[i].orig.size = plane_data[i].size;
564
805k
            } else {
565
805k
                penum->planes[i].orig.data = NULL;
566
805k
                penum->planes[i].orig.size = 0;
567
805k
            }
568
805k
        }
569
806k
    }
570
1.42M
    for (;;) {
571
        /* If wanted can vary, only transfer 1 row at a time. */
572
1.42M
        int h = (penum->wanted_varies ? 1 : max_int);
573
574
        /* Move partial rows from source[] to row[]. */
575
2.86M
        for (i = 0; i < num_planes; ++i) {
576
1.43M
            int pos, size;
577
1.43M
            uint raster;
578
579
1.43M
            if (!penum->wanted[i])
580
1.27k
                continue;  /* skip unwanted planes */
581
1.43M
            pos = penum->planes[i].pos;
582
1.43M
            size = penum->planes[i].source.size;
583
1.43M
            raster = penum->image_planes[i].raster;
584
1.43M
            if (size > 0) {
585
1.33M
                if (pos < raster && (pos != 0 || size < raster)) {
586
                    /* Buffer a partial row. */
587
1.09M
                    int copy = min(size, raster - pos);
588
1.09M
                    uint old_size = penum->planes[i].row.size;
589
1.09M
                    gs_memory_t *mem = gs_image_row_memory(penum);
590
591
                    /* Make sure the row buffer is fully allocated. */
592
1.09M
                    if (raster > old_size) {
593
7.51k
                        byte *old_data = penum->planes[i].row.data;
594
7.51k
                        byte *row =
595
7.51k
                            (old_data == 0 ?
596
7.51k
                             gs_alloc_string(mem, raster,
597
7.51k
                                             "gs_image_next(row)") :
598
7.51k
                             gs_resize_string(mem, old_data, old_size, raster,
599
7.51k
                                              "gs_image_next(row)"));
600
601
7.51k
                        if_debug5m('b', mem, "[b]plane %d row ("PRI_INTPTR",%u) => ("PRI_INTPTR",%u)\n",
602
7.51k
                                   i, (intptr_t)old_data, old_size,
603
7.51k
                                   (intptr_t)row, raster);
604
7.51k
                        if (row == 0) {
605
0
                            code = gs_note_error(gs_error_VMerror);
606
0
                            free_row_buffers(penum, i, "gs_image_next(row)");
607
0
                            break;
608
0
                        }
609
7.51k
                        penum->planes[i].row.data = row;
610
7.51k
                        penum->planes[i].row.size = raster;
611
7.51k
                    }
612
1.09M
                    memcpy(penum->planes[i].row.data + pos,
613
1.09M
                           penum->planes[i].source.data, copy);
614
1.09M
                    penum->planes[i].source.data += copy;
615
1.09M
                    penum->planes[i].source.size = size -= copy;
616
                    /* The gs_string 'orig' is only set if the 'txfer_control' flag was set when
617
                     * the 'source' string data was initally passed in. In this case we now control the lifetime
618
                     * of the string. So when we empty the source string, free it. We need to know the actual
619
                     * address of the string, and that gets modified in the peunum->planes->source and size
620
                     * members, so we use 'orig' as both a marker for the control and the originalsize and location.
621
                     */
622
1.09M
                    if (penum->planes[i].source.size == 0 && penum->planes[i].orig.size != 0) {
623
0
                        gs_free_string(mem, (byte *)penum->planes[i].orig.data, penum->planes[i].orig.size, "gs_image_next_planes");
624
0
                        penum->planes[i].orig.size = 0;
625
0
                        penum->planes[i].orig.data = NULL;
626
0
                    }
627
1.09M
                    penum->planes[i].pos = pos += copy;
628
1.09M
                    used[i] += copy;
629
1.09M
                }
630
1.33M
            }
631
1.43M
            if (h == 0)
632
66
                continue;  /* can't transfer any data this cycle */
633
1.43M
            if (pos == raster) {
634
                /*
635
                 * This plane will be transferred from the row buffer,
636
                 * so we can only transfer one row.
637
                 */
638
427k
                h = min(h, 1);
639
427k
                penum->image_planes[i].data = penum->planes[i].row.data;
640
1.00M
            } else if (pos == 0 && size >= raster) {
641
                /* We can transfer 1 or more planes from the source. */
642
234k
                if (raster) {
643
234k
                    h = min(h, size / raster);
644
234k
                    penum->image_planes[i].data = penum->planes[i].source.data;
645
234k
                }
646
0
                else
647
0
                    h = 0;
648
234k
            } else
649
774k
                h = 0;   /* not enough data in this plane */
650
1.43M
        }
651
1.42M
        if (h == 0 || code != 0)
652
774k
            break;
653
        /* Pass rows to the device. */
654
650k
        if (penum->dev == 0) {
655
            /*
656
             * ****** NOTE: THE FOLLOWING IS NOT CORRECT FOR ImageType 3
657
             * ****** InterleaveType 2, SINCE MASK HEIGHT AND IMAGE HEIGHT
658
             * ****** MAY DIFFER (BY AN INTEGER FACTOR).  ALSO, plane_depths[0]
659
             * ****** AND plane_widths[0] ARE NOT UPDATED.
660
         */
661
0
            if (penum->y + h < penum->height)
662
0
                code = 0;
663
0
            else
664
0
                h = penum->height - penum->y, code = 1;
665
650k
        } else {
666
650k
            code = gx_image_plane_data_rows(penum->info, penum->image_planes,
667
650k
                                            h, &h);
668
650k
            if_debug2m('b', penum->memory, "[b]used %d, code=%d\n", h, code);
669
650k
            penum->error = code < 0;
670
650k
        }
671
650k
        penum->y += h;
672
        /* Update positions and sizes. */
673
650k
        if (h == 0)
674
0
            break;
675
1.31M
        for (i = 0; i < num_planes; ++i) {
676
660k
            int count;
677
678
660k
            if (!penum->wanted[i])
679
1.26k
                continue;
680
659k
            count = penum->image_planes[i].raster * h;
681
659k
            if (penum->planes[i].pos) {
682
                /* We transferred the row from the row buffer. */
683
427k
                penum->planes[i].pos = 0;
684
427k
            } else {
685
                /* We transferred the row(s) from the source. */
686
231k
                penum->planes[i].source.data += count;
687
231k
                penum->planes[i].source.size -= count;
688
                /* The gs_string 'orig' is only set if the 'txfer_control' flag was set when
689
                 * the 'source' string data was initally passed in. In this case we now control the lifetime
690
                 * of the string. So when we empty the source string, free it. We need to know the actual
691
                 * address of the string, and that gets modified in the peunum->planes->source and size
692
                 * members, so we use 'orig' as both a marker for the control and the originalsize and location.
693
                 */
694
231k
                if (penum->planes[i].source.size == 0 && penum->planes[i].orig.size != 0) {
695
3
                    gs_free_string(gs_image_row_memory(penum), (byte *)penum->planes[i].orig.data, penum->planes[i].orig.size, "gs_image_next_planes");
696
3
                    penum->planes[i].orig.size = 0;
697
3
                    penum->planes[i].orig.data = NULL;
698
3
                }
699
231k
                used[i] += count;
700
231k
            }
701
659k
        }
702
650k
        cache_planes(penum);
703
650k
        if (code != 0)
704
28.7k
            break;
705
650k
    }
706
    /* Return the retained data pointers. */
707
1.60M
    for (i = 0; i < num_planes; ++i)
708
806k
        plane_data[i] = penum->planes[i].source;
709
802k
    return code;
710
802k
}
711
712
/* Clean up after processing an image. */
713
/* Public for ghostpcl. */
714
int
715
gs_image_cleanup(gs_image_enum * penum, gs_gstate *pgs)
716
30.7k
{
717
30.7k
    int code = 0, code1;
718
719
30.7k
    free_row_buffers(penum, penum->num_planes, "gs_image_cleanup(row)");
720
30.7k
    if (penum->info != 0) {
721
30.6k
        if (dev_proc(penum->info->dev, dev_spec_op)(penum->info->dev,
722
30.6k
                    gxdso_pattern_is_cpath_accum, NULL, 0)) {
723
            /* Performing a conversion of imagemask into a clipping path. */
724
0
            gx_device *cdev = penum->info->dev;
725
726
0
            code = gx_image_end(penum->info, !penum->error); /* Releases penum->info . */
727
0
            code1 = gx_image_fill_masked_end(cdev, penum->dev, gs_currentdevicecolor_inline(pgs));
728
0
            if (code == 0)
729
0
                code = code1;
730
0
        } else
731
30.6k
            code = gx_image_end(penum->info, !penum->error);
732
30.6k
    }
733
    /* Don't free the local enumerator -- the client does that. */
734
735
30.7k
    return code;
736
30.7k
}
737
738
/* Clean up after processing an image and free the enumerator. */
739
int
740
gs_image_cleanup_and_free_enum(gs_image_enum * penum, gs_gstate *pgs)
741
30.7k
{
742
30.7k
    int code;
743
744
30.7k
    if (penum == NULL)
745
0
            return 0;
746
30.7k
    code = gs_image_cleanup(penum, pgs);
747
748
30.7k
    gs_free_object(penum->memory, penum, "gs_image_cleanup_and_free_enum");
749
30.7k
    return code;
750
30.7k
}