Coverage Report

Created: 2025-06-10 07:24

/src/ghostpdl/psi/isave.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Save/restore manager for Ghostscript interpreter */
18
#include "ghost.h"
19
#include "memory_.h"
20
#include "ierrors.h"
21
#include "gsexit.h"
22
#include "gsstruct.h"
23
#include "stream.h"   /* for linking for forgetsave */
24
#include "iastate.h"
25
#include "inamedef.h"
26
#include "iname.h"
27
#include "ipacked.h"
28
#include "isave.h"
29
#include "isstate.h"
30
#include "gsstate.h"
31
#include "store.h"    /* for ref_assign */
32
#include "ivmspace.h"
33
#include "igc.h"
34
#include "gsutil.h"   /* gs_next_ids prototype */
35
#include "icstate.h"
36
37
/* Structure descriptor */
38
private_st_alloc_save();
39
40
/* Define the maximum amount of data we are willing to scan repeatedly -- */
41
/* see below for details. */
42
static const long max_repeated_scan = 100000;
43
44
/* Define the minimum space for creating an inner clump. */
45
/* Must be at least sizeof(clump_head_t). */
46
static const long min_inner_clump_space = sizeof(clump_head_t) + 500;
47
48
/*
49
 * The logic for saving and restoring the state is complex.
50
 * Both the changes to individual objects, and the overall state
51
 * of the memory manager, must be saved and restored.
52
 */
53
54
/*
55
 * To save the state of the memory manager:
56
 *      Save the state of the current clump in which we are allocating.
57
 *      Shrink all clumps to their inner unallocated region.
58
 *      Save and reset the free block chains.
59
 * By doing this, we guarantee that no object older than the save
60
 * can be freed.
61
 *
62
 * To restore the state of the memory manager:
63
 *      Free all clumps newer than the save, and the descriptors for
64
 *        the inner clumps created by the save.
65
 *      Make current the clump that was current at the time of the save.
66
 *      Restore the state of the current clump.
67
 *
68
 * In addition to save ("start transaction") and restore ("abort transaction"),
69
 * we support forgetting a save ("commit transation").  To forget a save:
70
 *      Reassign to the next outer save all clumps newer than the save.
71
 *      Free the descriptors for the inners clump, updating their outer
72
 *        clumps to reflect additional allocations in the inner clumps.
73
 *      Concatenate the free block chains with those of the outer save.
74
 */
75
76
/*
77
 * For saving changes to individual objects, we add an "attribute" bit
78
 * (l_new) that logically belongs to the slot where the ref is stored,
79
 * not to the ref itself.  The bit means "the contents of this slot
80
 * have been changed, or the slot was allocated, since the last save."
81
 * To keep track of changes since the save, we associate a chain of
82
 * <slot, old_contents> pairs that remembers the old contents of slots.
83
 *
84
 * When creating an object, if the save level is non-zero:
85
 *      Set l_new in all slots.
86
 *
87
 * When storing into a slot, if the save level is non-zero:
88
 *      If l_new isn't set, save the address and contents of the slot
89
 *        on the current contents chain.
90
 *      Set l_new after storing the new value.
91
 *
92
 * To do a save:
93
 *      If the save level is non-zero:
94
 *              Reset l_new in all slots on the contents chain, and in all
95
 *                objects created since the previous save.
96
 *      Push the head of the contents chain, and reset the chain to empty.
97
 *
98
 * To do a restore:
99
 *      Check all the stacks to make sure they don't contain references
100
 *        to objects created since the save.
101
 *      Restore all the slots on the contents chain.
102
 *      Pop the contents chain head.
103
 *      If the save level is now non-zero:
104
 *              Scan the newly restored contents chain, and set l_new in all
105
 *                the slots it references.
106
 *              Scan all objects created since the previous save, and set
107
 *                l_new in all the slots of each object.
108
 *
109
 * To forget a save:
110
 *      If the save level is greater than 1:
111
 *              Set l_new as for a restore, per the next outer save.
112
 *              Concatenate the next outer contents chain to the end of
113
 *                the current one.
114
 *      If the save level is 1:
115
 *              Reset l_new as for a save.
116
 *              Free the contents chain.
117
 */
118
119
/*
120
 * A consequence of the foregoing algorithms is that the cost of a save is
121
 * proportional to the total amount of data allocated since the previous
122
 * save.  If a PostScript program reads in a large amount of setup code and
123
 * then uses save/restore heavily, each save/restore will be expensive.  To
124
 * mitigate this, we check to see how much data we have scanned at this save
125
 * level: if it is large, we do a second, invisible save.  This greatly
126
 * reduces the cost of inner saves, at the expense of possibly saving some
127
 * changes twice that otherwise would only have to be saved once.
128
 */
129
130
/*
131
 * The presence of global and local VM complicates the situation further.
132
 * There is a separate save chain and contents chain for each VM space.
133
 * When multiple contexts are fully implemented, save and restore will have
134
 * the following effects, according to the privacy status of the current
135
 * context's global and local VM:
136
 *      Private global, private local:
137
 *              The outermost save saves both global and local VM;
138
 *                otherwise, save only saves local VM.
139
 *      Shared global, private local:
140
 *              Save only saves local VM.
141
 *      Shared global, shared local:
142
 *              Save only saves local VM, and suspends all other contexts
143
 *                sharing the same local VM until the matching restore.
144
 * Since we do not currently implement multiple contexts, only the first
145
 * case is relevant.
146
 *
147
 * Note that when saving the contents of a slot, the choice of chain
148
 * is determined by the VM space in which the slot is allocated,
149
 * not by the current allocation mode.
150
 */
151
152
/* Tracing printout */
153
static void
154
print_save(const char *str, uint spacen, const alloc_save_t *sav)
155
56.9k
{
156
56.9k
  if_debug5('u', "[u]%s space %u "PRI_INTPTR": cdata = "PRI_INTPTR", id = %lu\n",\
157
56.9k
            str, spacen, (intptr_t)sav, (intptr_t)sav->client_data, (ulong)sav->id);
158
56.9k
}
159
160
/* A link to igcref.c . */
161
ptr_proc_reloc(igc_reloc_ref_ptr_nocheck, ref_packed);
162
163
static
164
CLEAR_MARKS_PROC(change_clear_marks)
165
2.79M
{
166
2.79M
    alloc_change_t *const ptr = (alloc_change_t *)vptr;
167
168
2.79M
    if (r_is_packed(&ptr->contents))
169
24.4k
        r_clear_pmark((ref_packed *) & ptr->contents);
170
2.76M
    else
171
2.76M
        r_clear_attrs(&ptr->contents, l_mark);
172
2.79M
}
173
static
174
10.8M
ENUM_PTRS_WITH(change_enum_ptrs, alloc_change_t *ptr) return 0;
175
2.72M
ENUM_PTR(0, alloc_change_t, next);
176
2.72M
case 1:
177
2.72M
    if (ptr->offset >= 0)
178
0
        ENUM_RETURN((byte *) ptr->where - ptr->offset);
179
2.72M
    else
180
2.72M
        if (ptr->offset != AC_OFFSET_ALLOCATED)
181
125k
            ENUM_RETURN_REF(ptr->where);
182
2.59M
        else {
183
            /* Don't enumerate ptr->where, because it
184
               needs a special processing with
185
               alloc_save__filter_changes. */
186
2.59M
            ENUM_RETURN(0);
187
2.59M
        }
188
2.72M
case 2:
189
2.72M
    ENUM_RETURN_REF(&ptr->contents);
190
10.8M
ENUM_PTRS_END
191
313k
static RELOC_PTRS_WITH(change_reloc_ptrs, alloc_change_t *ptr)
192
313k
{
193
313k
    RELOC_VAR(ptr->next);
194
313k
    switch (ptr->offset) {
195
0
        case AC_OFFSET_STATIC:
196
0
            break;
197
125k
        case AC_OFFSET_REF:
198
125k
            RELOC_REF_PTR_VAR(ptr->where);
199
125k
            break;
200
187k
        case AC_OFFSET_ALLOCATED:
201
            /* We know that ptr->where may point to an unmarked object
202
               because change_enum_ptrs skipped it,
203
               and we know it always points to same space
204
               because we took a special care when calling alloc_save_change_alloc.
205
               Therefore we must skip the check for the mark,
206
               which would happen if we call the regular relocation function
207
               igc_reloc_ref_ptr from RELOC_REF_PTR_VAR.
208
               Calling igc_reloc_ref_ptr_nocheck instead. */
209
187k
            { /* A sanity check. */
210
187k
                obj_header_t *pre = (obj_header_t *)ptr->where - 1;
211
212
187k
                if (pre->o_type != &st_refs)
213
0
                    gs_abort(gcst->heap);
214
187k
            }
215
187k
            if (ptr->where != 0 && !gcst->relocating_untraced)
216
119k
                ptr->where = igc_reloc_ref_ptr_nocheck(ptr->where, gcst);
217
187k
            break;
218
0
        default:
219
0
            {
220
0
                byte *obj = (byte *) ptr->where - ptr->offset;
221
222
0
                RELOC_VAR(obj);
223
0
                ptr->where = (ref_packed *) (obj + ptr->offset);
224
0
            }
225
0
            break;
226
313k
    }
227
313k
    if (r_is_packed(&ptr->contents))
228
24.4k
        r_clear_pmark((ref_packed *) & ptr->contents);
229
289k
    else {
230
289k
        RELOC_REF_VAR(ptr->contents);
231
289k
        r_clear_attrs(&ptr->contents, l_mark);
232
289k
    }
233
313k
}
234
313k
RELOC_PTRS_END
235
gs_private_st_complex_only(st_alloc_change, alloc_change_t, "alloc_change",
236
                change_clear_marks, change_enum_ptrs, change_reloc_ptrs, 0);
237
238
/* Debugging printout */
239
#ifdef DEBUG
240
static void
241
alloc_save_print(const gs_memory_t *mem, alloc_change_t * cp, bool print_current)
242
{
243
    dmprintf2(mem, " "PRI_INTPTR"x: "PRI_INTPTR": ", (intptr_t) cp, (intptr_t) cp->where);
244
    if (r_is_packed(&cp->contents)) {
245
        if (print_current)
246
            dmprintf2(mem, "saved=%x cur=%x\n", *(ref_packed *) & cp->contents,
247
                      *cp->where);
248
        else
249
            dmprintf1(mem, "%x\n", *(ref_packed *) & cp->contents);
250
    } else {
251
        if (print_current)
252
            dmprintf6(mem, "saved=%x %x %lx cur=%x %x %lx\n",
253
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
254
                      (ulong) cp->contents.value.intval,
255
                      r_type_attrs((ref *) cp->where),
256
                      r_size((ref *) cp->where),
257
                      (ulong) ((ref *) cp->where)->value.intval);
258
        else
259
            dmprintf3(mem, "%x %x %lx\n",
260
                      r_type_attrs(&cp->contents), r_size(&cp->contents),
261
                      (ulong) cp->contents.value.intval);
262
    }
263
}
264
#endif
265
266
/* Forward references */
267
static int  restore_resources(alloc_save_t *, gs_ref_memory_t *);
268
static void restore_free(gs_ref_memory_t *);
269
static int  save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned);
270
static int  save_set_new_changes(gs_ref_memory_t *, bool, bool);
271
static bool check_l_mark(void *obj);
272
273
/* Initialize the save/restore machinery. */
274
void
275
alloc_save_init(gs_dual_memory_t * dmem)
276
9.78k
{
277
9.78k
    alloc_set_not_in_save(dmem);
278
9.78k
}
279
280
/* Record that we are in a save. */
281
static void
282
alloc_set_masks(gs_dual_memory_t *dmem, uint new_mask, uint test_mask)
283
78.0k
{
284
78.0k
    int i;
285
78.0k
    gs_ref_memory_t *mem;
286
287
78.0k
    dmem->new_mask = new_mask;
288
78.0k
    dmem->test_mask = test_mask;
289
390k
    for (i = 0; i < countof(dmem->spaces.memories.indexed); ++i)
290
312k
        if ((mem = dmem->spaces.memories.indexed[i]) != 0) {
291
234k
            mem->new_mask = new_mask, mem->test_mask = test_mask;
292
234k
            if (mem->stable_memory != (gs_memory_t *)mem) {
293
156k
                mem = (gs_ref_memory_t *)mem->stable_memory;
294
156k
                mem->new_mask = new_mask, mem->test_mask = test_mask;
295
156k
            }
296
234k
        }
297
78.0k
}
298
void
299
alloc_set_in_save(gs_dual_memory_t *dmem)
300
28.7k
{
301
28.7k
    alloc_set_masks(dmem, l_new, l_new);
302
28.7k
}
303
304
/* Record that we are not in a save. */
305
void
306
alloc_set_not_in_save(gs_dual_memory_t *dmem)
307
49.2k
{
308
49.2k
    alloc_set_masks(dmem, 0, ~0);
309
49.2k
}
310
311
/* Save the state. */
312
static alloc_save_t *alloc_save_space(gs_ref_memory_t *mem,
313
                                       gs_dual_memory_t *dmem,
314
                                       ulong sid);
315
static void
316
alloc_free_save(gs_ref_memory_t *mem, alloc_save_t *save, const char *scn)
317
0
{
318
0
    gs_ref_memory_t save_mem;
319
0
    save_mem = mem->saved->state;
320
0
    gs_free_object((gs_memory_t *)mem, save, scn);
321
    /* Free any inner clump structures.  This is the easiest way to do it. */
322
0
    restore_free(mem);
323
    /* Restore the 'saved' state - this pulls our object off the linked
324
     * list of states. Without this we hit a SEGV in the gc later. */
325
0
    *mem = save_mem;
326
0
}
327
int
328
alloc_save_state(gs_dual_memory_t * dmem, void *cdata, ulong *psid)
329
18.6k
{
330
18.6k
    gs_ref_memory_t *lmem = dmem->space_local;
331
18.6k
    gs_ref_memory_t *gmem = dmem->space_global;
332
18.6k
    ulong sid = gs_next_ids((const gs_memory_t *)lmem->stable_memory, 2);
333
18.6k
    bool global =
334
18.6k
        lmem->save_level == 0 && gmem != lmem &&
335
18.6k
        gmem->num_contexts == 1;
336
18.6k
    alloc_save_t *gsave =
337
18.6k
        (global ? alloc_save_space(gmem, dmem, sid + 1) : (alloc_save_t *) 0);
338
18.6k
    alloc_save_t *lsave = alloc_save_space(lmem, dmem, sid);
339
340
18.6k
    if (lsave == 0 || (global && gsave == 0)) {
341
        /* Only 1 of lsave or gsave will have been allocated, but
342
         * nevertheless (in case things change in future), we free
343
         * lsave, then gsave, so they 'pop' correctly when restoring
344
         * the mem->saved states. */
345
0
        if (lsave != 0)
346
0
            alloc_free_save(lmem, lsave, "alloc_save_state(local save)");
347
0
        if (gsave != 0)
348
0
            alloc_free_save(gmem, gsave, "alloc_save_state(global save)");
349
0
        return_error(gs_error_VMerror);
350
0
    }
351
18.6k
    if (gsave != 0) {
352
9.78k
        gsave->client_data = 0;
353
9.78k
        print_save("save", gmem->space, gsave);
354
        /* Restore names when we do the local restore. */
355
9.78k
        lsave->restore_names = gsave->restore_names;
356
9.78k
        gsave->restore_names = false;
357
9.78k
    }
358
18.6k
    lsave->id = sid;
359
18.6k
    lsave->client_data = cdata;
360
18.6k
    print_save("save", lmem->space, lsave);
361
    /* Reset the l_new attribute in all slots.  The only slots that */
362
    /* can have the attribute set are the ones on the changes chain, */
363
    /* and ones in objects allocated since the last save. */
364
18.6k
    if (lmem->save_level > 1) {
365
8.89k
        ulong scanned;
366
8.89k
        int code = save_set_new(&lsave->state, false, true, &scanned);
367
368
8.89k
        if (code < 0)
369
0
            return code;
370
#if 0 /* Disable invisible save levels. */
371
        if ((lsave->state.total_scanned += scanned) > max_repeated_scan) {
372
            /* Do a second, invisible save. */
373
            alloc_save_t *rsave;
374
375
            rsave = alloc_save_space(lmem, dmem, 0L);
376
            if (rsave != 0) {
377
                rsave->client_data = cdata;
378
#if 0 /* Bug 688153 */
379
                rsave->id = lsave->id;
380
                print_save("save", lmem->space, rsave);
381
                lsave->id = 0;  /* mark as invisible */
382
                rsave->state.save_level--; /* ditto */
383
                lsave->client_data = 0;
384
#else
385
                rsave->id = 0;  /* mark as invisible */
386
                print_save("save", lmem->space, rsave);
387
                rsave->state.save_level--; /* ditto */
388
                rsave->client_data = 0;
389
#endif
390
                /* Inherit the allocated space count -- */
391
                /* we need this for triggering a GC. */
392
                print_save("save", lmem->space, lsave);
393
            }
394
        }
395
#endif
396
8.89k
    }
397
398
18.6k
    alloc_set_in_save(dmem);
399
18.6k
    *psid = sid;
400
18.6k
    return 0;
401
18.6k
}
402
/* Save the state of one space (global or local). */
403
static alloc_save_t *
404
alloc_save_space(gs_ref_memory_t * mem, gs_dual_memory_t * dmem, ulong sid)
405
28.4k
{
406
28.4k
    gs_ref_memory_t save_mem;
407
28.4k
    alloc_save_t *save;
408
28.4k
    clump_t *cp;
409
28.4k
    clump_t *new_cc = NULL;
410
28.4k
    clump_splay_walker sw;
411
412
28.4k
    save_mem = *mem;
413
28.4k
    alloc_close_clump(mem);
414
28.4k
    mem->cc = NULL;
415
28.4k
    gs_memory_status((gs_memory_t *) mem, &mem->previous_status);
416
28.4k
    ialloc_reset(mem);
417
418
    /* Create inner clumps wherever it's worthwhile. */
419
420
965k
    for (cp = clump_splay_walk_init(&sw, &save_mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
421
937k
        if (cp->ctop - cp->cbot > min_inner_clump_space) {
422
            /* Create an inner clump to cover only the unallocated part. */
423
404k
            clump_t *inner =
424
404k
                gs_raw_alloc_struct_immovable(mem->non_gc_memory, &st_clump,
425
404k
                                              "alloc_save_space(inner)");
426
427
404k
            if (inner == 0)
428
0
                break;   /* maybe should fail */
429
404k
            alloc_init_clump(inner, cp->cbot, cp->ctop, cp->sreloc != 0, cp);
430
404k
            alloc_link_clump(inner, mem);
431
404k
            if_debug2m('u', (gs_memory_t *)mem, "[u]inner clump: cbot="PRI_INTPTR" ctop="PRI_INTPTR"\n",
432
404k
                       (intptr_t) inner->cbot, (intptr_t) inner->ctop);
433
404k
            if (cp == save_mem.cc)
434
28.4k
                new_cc = inner;
435
404k
        }
436
937k
    }
437
28.4k
    mem->cc = new_cc;
438
28.4k
    alloc_open_clump(mem);
439
440
28.4k
    save = gs_alloc_struct((gs_memory_t *) mem, alloc_save_t,
441
28.4k
                           &st_alloc_save, "alloc_save_space(save)");
442
28.4k
    if_debug2m('u', (gs_memory_t *)mem, "[u]save space %u at "PRI_INTPTR"\n",
443
28.4k
               mem->space, (intptr_t) save);
444
28.4k
    if (save == 0) {
445
        /* Free the inner clump structures.  This is the easiest way. */
446
0
        restore_free(mem);
447
0
        *mem = save_mem;
448
0
        return 0;
449
0
    }
450
28.4k
    save->client_data = NULL;
451
28.4k
    save->state = save_mem;
452
28.4k
    save->spaces = dmem->spaces;
453
28.4k
    save->restore_names = (name_memory(mem) == (gs_memory_t *) mem);
454
28.4k
    save->is_current = (dmem->current == mem);
455
28.4k
    save->id = sid;
456
28.4k
    mem->saved = save;
457
28.4k
    if_debug2m('u', (gs_memory_t *)mem, "[u%u]file_save "PRI_INTPTR"\n",
458
28.4k
               mem->space, (intptr_t) mem->streams);
459
28.4k
    mem->streams = 0;
460
28.4k
    mem->total_scanned = 0;
461
28.4k
    mem->total_scanned_after_compacting = 0;
462
28.4k
    if (sid)
463
28.4k
        mem->save_level++;
464
28.4k
    return save;
465
28.4k
}
466
467
/* Record a state change that must be undone for restore, */
468
/* and mark it as having been saved. */
469
int
470
alloc_save_change_in(gs_ref_memory_t *mem, const ref * pcont,
471
                  ref_packed * where, client_name_t cname)
472
129M
{
473
129M
    register alloc_change_t *cp;
474
475
129M
    if (mem->new_mask == 0)
476
129M
        return 0;    /* no saving */
477
282k
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
478
282k
                         &st_alloc_change, "alloc_save_change");
479
282k
    if (cp == 0)
480
0
        return -1;
481
282k
    cp->next = mem->changes;
482
282k
    cp->where = where;
483
282k
    if (pcont == NULL)
484
0
        cp->offset = AC_OFFSET_STATIC;
485
282k
    else if (r_is_array(pcont) || r_has_type(pcont, t_dictionary))
486
282k
        cp->offset = AC_OFFSET_REF;
487
0
    else if (r_is_struct(pcont))
488
0
        cp->offset = (byte *) where - (byte *) pcont->value.pstruct;
489
0
    else {
490
0
        if_debug3('u', "Bad type %u for save!  pcont = "PRI_INTPTR", where = "PRI_INTPTR"\n",
491
0
                 r_type(pcont), (intptr_t) pcont, (intptr_t) where);
492
0
        gs_abort((const gs_memory_t *)mem);
493
0
    }
494
282k
    if (r_is_packed(where))
495
33.6k
        *(ref_packed *)&cp->contents = *where;
496
249k
    else {
497
249k
        ref_assign_inline(&cp->contents, (ref *) where);
498
249k
        r_set_attrs((ref *) where, l_new);
499
249k
    }
500
282k
    mem->changes = cp;
501
#ifdef DEBUG
502
    if (gs_debug_c('U')) {
503
        dmlprintf1((const gs_memory_t *)mem, "[U]save(%s)", client_name_string(cname));
504
        alloc_save_print((const gs_memory_t *)mem, cp, false);
505
    }
506
#endif
507
282k
    return 0;
508
282k
}
509
int
510
alloc_save_change(gs_dual_memory_t * dmem, const ref * pcont,
511
                  ref_packed * where, client_name_t cname)
512
129M
{
513
129M
    gs_ref_memory_t *mem =
514
129M
        (pcont == NULL ? dmem->space_local :
515
129M
         dmem->spaces_indexed[r_space(pcont) >> r_space_shift]);
516
517
129M
    return alloc_save_change_in(mem, pcont, where, cname);
518
129M
}
519
520
/* Allocate a structure for recording an allocation event. */
521
int
522
alloc_save_change_alloc(gs_ref_memory_t *mem, client_name_t cname, alloc_change_t **pcp)
523
15.4M
{
524
15.4M
    register alloc_change_t *cp;
525
526
15.4M
    if (mem->new_mask == 0)
527
11.7M
        return 0;    /* no saving */
528
3.63M
    cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t,
529
3.63M
                         &st_alloc_change, "alloc_save_change");
530
3.63M
    if (cp == 0)
531
0
        return_error(gs_error_VMerror);
532
3.63M
    cp->next = mem->changes;
533
3.63M
    cp->where = 0;
534
3.63M
    cp->offset = AC_OFFSET_ALLOCATED;
535
3.63M
    make_null(&cp->contents);
536
3.63M
    *pcp = cp;
537
3.63M
    return 1;
538
3.63M
}
539
540
/* Remove an AC_OFFSET_ALLOCATED element. */
541
void
542
alloc_save_remove(gs_ref_memory_t *mem, ref_packed *obj, client_name_t cname)
543
8.46k
{
544
8.46k
    alloc_change_t **cpp = &mem->changes;
545
546
1.33M
    for (; *cpp != NULL;) {
547
1.32M
        alloc_change_t *cp = *cpp;
548
549
1.32M
        if (cp->offset == AC_OFFSET_ALLOCATED && cp->where == obj) {
550
8.46k
            if (mem->scan_limit == cp)
551
0
                mem->scan_limit = cp->next;
552
8.46k
            *cpp = cp->next;
553
8.46k
            gs_free_object((gs_memory_t *)mem, cp, "alloc_save_remove");
554
8.46k
        } else
555
1.31M
            cpp = &(*cpp)->next;
556
1.32M
    }
557
8.46k
}
558
559
/* Filter save change lists. */
560
static inline void
561
alloc_save__filter_changes_in_space(gs_ref_memory_t *mem)
562
121k
{
563
    /* This is a special function, which is called
564
       from the garbager after setting marks and before collecting
565
       unused space. Therefore it just resets marks for
566
       elements being released instead releasing them really. */
567
121k
    alloc_change_t **cpp = &mem->changes;
568
569
2.77M
    for (; *cpp != NULL; ) {
570
2.65M
        alloc_change_t *cp = *cpp;
571
572
2.65M
        if (cp->offset == AC_OFFSET_ALLOCATED && !check_l_mark(cp->where)) {
573
2.41M
            obj_header_t *pre = (obj_header_t *)cp - 1;
574
575
2.41M
            *cpp = cp->next;
576
2.41M
            cp->where = 0;
577
2.41M
            if (mem->scan_limit == cp)
578
520
                mem->scan_limit = cp->next;
579
2.41M
            o_set_unmarked(pre);
580
2.41M
        } else
581
243k
            cpp = &(*cpp)->next;
582
2.65M
    }
583
121k
}
584
585
/* Filter save change lists. */
586
void
587
alloc_save__filter_changes(gs_ref_memory_t *memory)
588
98.5k
{
589
98.5k
    gs_ref_memory_t *mem = memory;
590
591
219k
    for  (; mem; mem = &mem->saved->state)
592
121k
        alloc_save__filter_changes_in_space(mem);
593
98.5k
}
594
595
/* Return (the id of) the innermost externally visible save object, */
596
/* i.e., the innermost save with a non-zero ID. */
597
ulong
598
alloc_save_current_id(const gs_dual_memory_t * dmem)
599
18.6k
{
600
18.6k
    const alloc_save_t *save = dmem->space_local->saved;
601
602
18.6k
    while (save != 0 && save->id == 0)
603
0
        save = save->state.saved;
604
18.6k
    if (save)
605
18.6k
        return save->id;
606
607
    /* This should never happen, if it does, return a totally
608
     * impossible value.
609
     */
610
0
    return (ulong)-1;
611
18.6k
}
612
alloc_save_t *
613
alloc_save_current(const gs_dual_memory_t * dmem)
614
18.6k
{
615
18.6k
    return alloc_find_save(dmem, alloc_save_current_id(dmem));
616
18.6k
}
617
618
/* Test whether a reference would be invalidated by a restore. */
619
bool
620
alloc_is_since_save(const void *vptr, const alloc_save_t * save)
621
240k
{
622
    /* A reference postdates a save iff it is in a clump allocated */
623
    /* since the save (including any carried-over inner clumps). */
624
625
240k
    const char *const ptr = (const char *)vptr;
626
240k
    register gs_ref_memory_t *mem = save->space_local;
627
628
240k
    if_debug2m('U', (gs_memory_t *)mem, "[U]is_since_save "PRI_INTPTR", "PRI_INTPTR":\n",
629
240k
               (intptr_t) ptr, (intptr_t) save);
630
240k
    if (mem->saved == 0) { /* This is a special case, the final 'restore' from */
631
        /* alloc_restore_all. */
632
9.78k
        return true;
633
9.78k
    }
634
    /* Check against clumps allocated since the save. */
635
    /* (There may have been intermediate saves as well.) */
636
230k
    for (;; mem = &mem->saved->state) {
637
230k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking mem="PRI_INTPTR"\n", (intptr_t) mem);
638
230k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
639
0
            if_debug0m('U', (gs_memory_t *)mem, "[U+]found\n");
640
0
            return true;
641
0
        }
642
230k
        if_debug1m('U', (gs_memory_t *)mem, "[U-]not in any chunks belonging to "PRI_INTPTR"\n", (intptr_t) mem);
643
230k
        if (mem->saved == save) { /* We've checked all the more recent saves, */
644
            /* must be OK. */
645
230k
            break;
646
230k
        }
647
230k
    }
648
649
    /*
650
     * If we're about to do a global restore (a restore to the level 0),
651
     * and there is only one context using this global VM
652
     * (the normal case, in which global VM is saved by the
653
     * outermost save), we also have to check the global save.
654
     * Global saves can't be nested, which makes things easy.
655
     */
656
230k
    if (save->state.save_level == 0 /* Restoring to save level 0 - see bug 688157, 688161 */ &&
657
230k
        (mem = save->space_global) != save->space_local &&
658
230k
        save->space_global->num_contexts == 1
659
230k
        ) {
660
10.0k
        if_debug1m('U', (gs_memory_t *)mem, "[U]checking global mem="PRI_INTPTR"\n", (intptr_t) mem);
661
10.0k
        if (ptr_is_within_mem_clumps(ptr, mem)) {
662
0
            if_debug0m('U', (gs_memory_t *)mem, "[U+]  found\n");
663
0
            return true;
664
0
        }
665
10.0k
    }
666
230k
    return false;
667
668
230k
#undef ptr
669
230k
}
670
671
/* Test whether a name would be invalidated by a restore. */
672
bool
673
alloc_name_is_since_save(const gs_memory_t *mem,
674
                         const ref * pnref, const alloc_save_t * save)
675
11.3k
{
676
11.3k
    const name_string_t *pnstr;
677
678
11.3k
    if (!save->restore_names)
679
11.3k
        return false;
680
0
    pnstr = names_string_inline(mem->gs_lib_ctx->gs_name_table, pnref);
681
0
    if (pnstr->foreign_string)
682
0
        return false;
683
0
    return alloc_is_since_save(pnstr->string_bytes, save);
684
0
}
685
bool
686
alloc_name_index_is_since_save(const gs_memory_t *mem,
687
                               uint nidx, const alloc_save_t *save)
688
0
{
689
0
    const name_string_t *pnstr;
690
691
0
    if (!save->restore_names)
692
0
        return false;
693
0
    pnstr = names_index_string_inline(mem->gs_lib_ctx->gs_name_table, nidx);
694
0
    if (pnstr->foreign_string)
695
0
        return false;
696
0
    return alloc_is_since_save(pnstr->string_bytes, save);
697
0
}
698
699
/* Check whether any names have been created since a given save */
700
/* that might be released by the restore. */
701
bool
702
alloc_any_names_since_save(const alloc_save_t * save)
703
28.4k
{
704
28.4k
    return save->restore_names;
705
28.4k
}
706
707
/* Get the saved state with a given ID. */
708
alloc_save_t *
709
alloc_find_save(const gs_dual_memory_t * dmem, ulong sid)
710
46.1k
{
711
46.1k
    alloc_save_t *sprev = dmem->space_local->saved;
712
713
46.1k
    if (sid == 0)
714
0
        return 0;   /* invalid id */
715
46.5k
    while (sprev != 0) {
716
46.5k
        if (sprev->id == sid)
717
46.1k
            return sprev;
718
332
        sprev = sprev->state.saved;
719
332
    }
720
0
    return 0;
721
46.1k
}
722
723
/* Get the client data from a saved state. */
724
void *
725
alloc_save_client_data(const alloc_save_t * save)
726
18.6k
{
727
18.6k
    return save->client_data;
728
18.6k
}
729
730
/*
731
 * Do one step of restoring the state.  The client is responsible for
732
 * calling alloc_find_save to get the save object, and for ensuring that
733
 * there are no surviving pointers for which alloc_is_since_save is true.
734
 * Return true if the argument was the innermost save, in which case
735
 * this is the last (or only) step.
736
 * Note that "one step" may involve multiple internal steps,
737
 * if this is the outermost restore (which requires restoring both local
738
 * and global VM) or if we created extra save levels to reduce scanning.
739
 */
740
static void restore_finalize(gs_ref_memory_t *);
741
static void restore_space(gs_ref_memory_t *, gs_dual_memory_t *);
742
743
int
744
alloc_restore_step_in(gs_dual_memory_t *dmem, alloc_save_t * save)
745
18.6k
{
746
    /* Get save->space_* now, because the save object will be freed. */
747
18.6k
    gs_ref_memory_t *lmem = save->space_local;
748
18.6k
    gs_ref_memory_t *gmem = save->space_global;
749
18.6k
    gs_ref_memory_t *mem = lmem;
750
18.6k
    alloc_save_t *sprev;
751
18.6k
    int code;
752
753
    /* Finalize all objects before releasing resources or undoing changes. */
754
18.6k
    do {
755
18.6k
        ulong sid;
756
757
18.6k
        sprev = mem->saved;
758
18.6k
        sid = sprev->id;
759
18.6k
        restore_finalize(mem);  /* finalize objects */
760
18.6k
        mem = &sprev->state;
761
18.6k
        if (sid != 0)
762
18.6k
            break;
763
18.6k
    }
764
18.6k
    while (sprev != save);
765
18.6k
    if (mem->save_level == 0) {
766
        /* This is the outermost save, which might also */
767
        /* need to restore global VM. */
768
9.78k
        mem = gmem;
769
9.78k
        if (mem != lmem && mem->saved != 0) {
770
9.78k
            restore_finalize(mem);
771
9.78k
        }
772
9.78k
    }
773
774
    /* Do one (externally visible) step of restoring the state. */
775
18.6k
    mem = lmem;
776
18.6k
    do {
777
18.6k
        ulong sid;
778
779
18.6k
        sprev = mem->saved;
780
18.6k
        sid = sprev->id;
781
18.6k
        code = restore_resources(sprev, mem); /* release other resources */
782
18.6k
        if (code < 0)
783
0
            return code;
784
18.6k
        restore_space(mem, dmem); /* release memory */
785
18.6k
        if (sid != 0)
786
18.6k
            break;
787
18.6k
    }
788
18.6k
    while (sprev != save);
789
790
18.6k
    if (mem->save_level == 0) {
791
        /* This is the outermost save, which might also */
792
        /* need to restore global VM. */
793
9.78k
        mem = gmem;
794
9.78k
        if (mem != lmem && mem->saved != 0) {
795
9.78k
            code = restore_resources(mem->saved, mem);
796
9.78k
            if (code < 0)
797
0
                return code;
798
9.78k
            restore_space(mem, dmem);
799
9.78k
        }
800
9.78k
        alloc_set_not_in_save(dmem);
801
9.78k
    } else {     /* Set the l_new attribute in all slots that are now new. */
802
8.89k
        ulong scanned;
803
804
8.89k
        code = save_set_new(mem, true, false, &scanned);
805
8.89k
        if (code < 0)
806
0
            return code;
807
8.89k
    }
808
809
18.6k
    return sprev == save;
810
18.6k
}
811
/* Restore the memory of one space, by undoing changes and freeing */
812
/* memory allocated since the save. */
813
static void
814
restore_space(gs_ref_memory_t * mem, gs_dual_memory_t *dmem)
815
28.4k
{
816
28.4k
    alloc_save_t *save = mem->saved;
817
28.4k
    alloc_save_t saved;
818
819
28.4k
    print_save("restore", mem->space, save);
820
821
    /* Undo changes since the save. */
822
28.4k
    {
823
28.4k
        register alloc_change_t *cp = mem->changes;
824
825
1.53M
        while (cp) {
826
#ifdef DEBUG
827
            if (gs_debug_c('U')) {
828
                dmlputs((const gs_memory_t *)mem, "[U]restore");
829
                alloc_save_print((const gs_memory_t *)mem, cp, true);
830
            }
831
#endif
832
1.50M
            if (cp->offset == AC_OFFSET_ALLOCATED)
833
1.50M
                DO_NOTHING;
834
282k
            else
835
282k
            if (r_is_packed(&cp->contents))
836
33.6k
                *cp->where = *(ref_packed *) & cp->contents;
837
249k
            else
838
249k
                ref_assign_inline((ref *) cp->where, &cp->contents);
839
1.50M
            cp = cp->next;
840
1.50M
        }
841
28.4k
    }
842
843
    /* Free memory allocated since the save. */
844
    /* Note that this frees all clumps except the inner ones */
845
    /* belonging to this level. */
846
28.4k
    saved = *save;
847
28.4k
    restore_free(mem);
848
849
    /* Restore the allocator state. */
850
28.4k
    {
851
28.4k
        int num_contexts = mem->num_contexts; /* don't restore */
852
853
28.4k
        *mem = saved.state;
854
28.4k
        mem->num_contexts = num_contexts;
855
28.4k
    }
856
28.4k
    alloc_open_clump(mem);
857
858
    /* Make the allocator current if it was current before the save. */
859
28.4k
    if (saved.is_current) {
860
18.6k
        dmem->current = mem;
861
18.6k
        dmem->current_space = mem->space;
862
18.6k
    }
863
28.4k
}
864
865
/* Restore to the initial state, releasing all resources. */
866
/* The allocator is no longer usable after calling this routine! */
867
int
868
alloc_restore_all(i_ctx_t *i_ctx_p)
869
9.78k
{
870
    /*
871
     * Save the memory pointers, since freeing space_local will also
872
     * free dmem itself.
873
     */
874
9.78k
    gs_ref_memory_t *lmem = idmemory->space_local;
875
9.78k
    gs_ref_memory_t *gmem = idmemory->space_global;
876
9.78k
    gs_ref_memory_t *smem = idmemory->space_system;
877
878
9.78k
    gs_ref_memory_t *mem;
879
9.78k
    int code;
880
881
    /* Restore to a state outside any saves. */
882
22.1k
    while (lmem->save_level != 0) {
883
12.4k
        vm_save_t *vmsave = alloc_save_client_data(alloc_save_current(idmemory));
884
12.4k
        if (vmsave->gsave) {
885
12.4k
            gs_grestoreall_for_restore(i_ctx_p->pgs, vmsave->gsave);
886
12.4k
        }
887
12.4k
        vmsave->gsave = 0;
888
12.4k
        code = alloc_restore_step_in(idmemory, lmem->saved);
889
890
12.4k
        if (code < 0)
891
0
            return code;
892
12.4k
    }
893
894
    /* Finalize memory. */
895
9.78k
    restore_finalize(lmem);
896
9.78k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
897
9.78k
        restore_finalize(mem);
898
9.78k
    if (gmem != lmem && gmem->num_contexts == 1) {
899
9.78k
        restore_finalize(gmem);
900
9.78k
        if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
901
9.78k
            restore_finalize(mem);
902
9.78k
    }
903
9.78k
    restore_finalize(smem);
904
905
    /* Release resources other than memory, using fake */
906
    /* save and memory objects. */
907
9.78k
    {
908
9.78k
        alloc_save_t empty_save;
909
910
9.78k
        empty_save.spaces = idmemory->spaces;
911
9.78k
        empty_save.restore_names = false; /* don't bother to release */
912
9.78k
        code = restore_resources(&empty_save, NULL);
913
9.78k
        if (code < 0)
914
0
            return code;
915
9.78k
    }
916
917
    /* Finally, release memory. */
918
9.78k
    restore_free(lmem);
919
9.78k
    if ((mem = (gs_ref_memory_t *)lmem->stable_memory) != lmem)
920
9.78k
        restore_free(mem);
921
9.78k
    if (gmem != lmem) {
922
9.78k
        if (!--(gmem->num_contexts)) {
923
9.78k
            restore_free(gmem);
924
9.78k
            if ((mem = (gs_ref_memory_t *)gmem->stable_memory) != gmem)
925
9.78k
                restore_free(mem);
926
9.78k
        }
927
9.78k
    }
928
9.78k
    restore_free(smem);
929
9.78k
    return 0;
930
9.78k
}
931
932
/*
933
 * Finalize objects that will be freed by a restore.
934
 * Note that we must temporarily disable the freeing operations
935
 * of the allocator while doing this.
936
 */
937
static void
938
restore_finalize(gs_ref_memory_t * mem)
939
77.3k
{
940
77.3k
    clump_t *cp;
941
77.3k
    clump_splay_walker sw;
942
943
77.3k
    alloc_close_clump(mem);
944
77.3k
    gs_enable_free((gs_memory_t *) mem, false);
945
2.02M
    for (cp = clump_splay_walk_bwd_init(&sw, mem); cp != 0; cp = clump_splay_walk_bwd(&sw)) {
946
16.2M
        SCAN_CLUMP_OBJECTS(cp)
947
16.2M
            DO_ALL
948
16.2M
            struct_proc_finalize((*finalize)) =
949
16.2M
            pre->o_type->finalize;
950
16.2M
        if (finalize != 0) {
951
579k
            if_debug2m('u', (gs_memory_t *)mem, "[u]restore finalizing %s "PRI_INTPTR"\n",
952
579k
                       struct_type_name_string(pre->o_type),
953
579k
                       (intptr_t) (pre + 1));
954
579k
            (*finalize) ((gs_memory_t *) mem, pre + 1);
955
579k
        }
956
16.2M
        END_OBJECTS_SCAN
957
1.95M
    }
958
77.3k
    gs_enable_free((gs_memory_t *) mem, true);
959
77.3k
}
960
961
/* Release resources for a restore */
962
static int
963
restore_resources(alloc_save_t * sprev, gs_ref_memory_t * mem)
964
38.2k
{
965
38.2k
    int code;
966
#ifdef DEBUG
967
    if (mem) {
968
        /* Note restoring of the file list. */
969
        if_debug4m('u', (gs_memory_t *)mem, "[u%u]file_restore "PRI_INTPTR" => "PRI_INTPTR" for "PRI_INTPTR"\n",
970
                   mem->space, (intptr_t)mem->streams,
971
                   (intptr_t)sprev->state.streams, (intptr_t)sprev);
972
    }
973
#endif
974
975
    /* Remove entries from font and character caches. */
976
38.2k
    code = font_restore(sprev);
977
38.2k
    if (code < 0)
978
0
        return code;
979
980
    /* Adjust the name table. */
981
38.2k
    if (sprev->restore_names)
982
0
        names_restore(mem->gs_lib_ctx->gs_name_table, sprev);
983
38.2k
    return 0;
984
38.2k
}
985
986
/* Release memory for a restore. */
987
static void
988
restore_free(gs_ref_memory_t * mem)
989
77.3k
{
990
    /* Free clumps allocated since the save. */
991
77.3k
    gs_free_all((gs_memory_t *) mem);
992
77.3k
}
993
994
/* Forget a save, by merging this level with the next outer one. */
995
static void file_forget_save(gs_ref_memory_t *);
996
static void combine_space(gs_ref_memory_t *);
997
static void forget_changes(gs_ref_memory_t *);
998
int
999
alloc_forget_save_in(gs_dual_memory_t *dmem, alloc_save_t * save)
1000
0
{
1001
0
    gs_ref_memory_t *mem = save->space_local;
1002
0
    alloc_save_t *sprev;
1003
0
    ulong scanned;
1004
0
    int code;
1005
1006
0
    print_save("forget_save", mem->space, save);
1007
1008
    /* Iteratively combine the current level with the previous one. */
1009
0
    do {
1010
0
        sprev = mem->saved;
1011
0
        if (sprev->id != 0)
1012
0
            mem->save_level--;
1013
0
        if (mem->save_level != 0) {
1014
0
            alloc_change_t *chp = mem->changes;
1015
1016
0
            code = save_set_new(&sprev->state, true, false, &scanned);
1017
0
            if (code < 0)
1018
0
                return code;
1019
            /* Concatenate the changes chains. */
1020
0
            if (chp == 0)
1021
0
                mem->changes = sprev->state.changes;
1022
0
            else {
1023
0
                while (chp->next != 0)
1024
0
                    chp = chp->next;
1025
0
                chp->next = sprev->state.changes;
1026
0
            }
1027
0
            file_forget_save(mem);
1028
0
            combine_space(mem); /* combine memory */
1029
0
        } else {
1030
0
            forget_changes(mem);
1031
0
            code = save_set_new(mem, false, false, &scanned);
1032
0
            if (code < 0)
1033
0
                return code;
1034
0
            file_forget_save(mem);
1035
0
            combine_space(mem); /* combine memory */
1036
            /* This is the outermost save, which might also */
1037
            /* need to combine global VM. */
1038
0
            mem = save->space_global;
1039
0
            if (mem != save->space_local && mem->saved != 0) {
1040
0
                forget_changes(mem);
1041
0
                code = save_set_new(mem, false, false, &scanned);
1042
0
                if (code < 0)
1043
0
                    return code;
1044
0
                file_forget_save(mem);
1045
0
                combine_space(mem);
1046
0
            }
1047
0
            alloc_set_not_in_save(dmem);
1048
0
            break;   /* must be outermost */
1049
0
        }
1050
0
    }
1051
0
    while (sprev != save);
1052
0
    return 0;
1053
0
}
1054
/* Combine the clumps of the next outer level with those of the current one, */
1055
/* and free the bookkeeping structures. */
1056
static void
1057
combine_space(gs_ref_memory_t * mem)
1058
0
{
1059
0
    alloc_save_t *saved = mem->saved;
1060
0
    gs_ref_memory_t *omem = &saved->state;
1061
0
    clump_t *cp;
1062
0
    clump_splay_walker sw;
1063
1064
0
    alloc_close_clump(mem);
1065
0
    for (cp = clump_splay_walk_init(&sw, mem); cp != 0; cp = clump_splay_walk_fwd(&sw)) {
1066
0
        if (cp->outer == 0)
1067
0
            alloc_link_clump(cp, omem);
1068
0
        else {
1069
0
            clump_t *outer = cp->outer;
1070
1071
0
            outer->inner_count--;
1072
0
            if (mem->cc == cp)
1073
0
                mem->cc = outer;
1074
0
            if (mem->cfreed.cp == cp)
1075
0
                mem->cfreed.cp = outer;
1076
            /* "Free" the header of the inner clump, */
1077
            /* and any immediately preceding gap left by */
1078
            /* the GC having compacted the outer clump. */
1079
0
            {
1080
0
                obj_header_t *hp = (obj_header_t *) outer->cbot;
1081
1082
0
                hp->o_pad = 0;
1083
0
                hp->o_alone = 0;
1084
0
                hp->o_size = (char *)(cp->chead + 1)
1085
0
                    - (char *)(hp + 1);
1086
0
                hp->o_type = &st_bytes;
1087
                /* The following call is probably not safe. */
1088
#if 0       /* **************** */
1089
                gs_free_object((gs_memory_t *) mem,
1090
                               hp + 1, "combine_space(header)");
1091
#endif /* **************** */
1092
0
            }
1093
            /* Update the outer clump's allocation pointers. */
1094
0
            outer->cbot = cp->cbot;
1095
0
            outer->rcur = cp->rcur;
1096
0
            outer->rtop = cp->rtop;
1097
0
            outer->ctop = cp->ctop;
1098
0
            outer->has_refs |= cp->has_refs;
1099
0
            gs_free_object(mem->non_gc_memory, cp,
1100
0
                           "combine_space(inner)");
1101
0
        }
1102
0
    }
1103
    /* Update relevant parts of allocator state. */
1104
0
    mem->root = omem->root;
1105
0
    mem->allocated += omem->allocated;
1106
0
    mem->gc_allocated += omem->allocated;
1107
0
    mem->lost.objects += omem->lost.objects;
1108
0
    mem->lost.refs += omem->lost.refs;
1109
0
    mem->lost.strings += omem->lost.strings;
1110
0
    mem->saved = omem->saved;
1111
0
    mem->previous_status = omem->previous_status;
1112
0
    {       /* Concatenate free lists. */
1113
0
        int i;
1114
1115
0
        for (i = 0; i < num_freelists; i++) {
1116
0
            obj_header_t *olist = omem->freelists[i];
1117
0
            obj_header_t *list = mem->freelists[i];
1118
1119
0
            if (olist == 0);
1120
0
            else if (list == 0)
1121
0
                mem->freelists[i] = olist;
1122
0
            else {
1123
0
                while (*(obj_header_t **) list != 0)
1124
0
                    list = *(obj_header_t **) list;
1125
0
                *(obj_header_t **) list = olist;
1126
0
            }
1127
0
        }
1128
0
        if (omem->largest_free_size > mem->largest_free_size)
1129
0
            mem->largest_free_size = omem->largest_free_size;
1130
0
    }
1131
0
    gs_free_object((gs_memory_t *) mem, saved, "combine_space(saved)");
1132
0
    alloc_open_clump(mem);
1133
0
}
1134
/* Free the changes chain for a level 0 .forgetsave, */
1135
/* resetting the l_new flag in the changed refs. */
1136
static void
1137
forget_changes(gs_ref_memory_t * mem)
1138
0
{
1139
0
    register alloc_change_t *chp = mem->changes;
1140
0
    alloc_change_t *next;
1141
1142
0
    for (; chp; chp = next) {
1143
0
        ref_packed *prp = chp->where;
1144
1145
0
        if_debug1m('U', (gs_memory_t *)mem, "[U]forgetting change "PRI_INTPTR"\n", (intptr_t) chp);
1146
0
        if (chp->offset == AC_OFFSET_ALLOCATED)
1147
0
            DO_NOTHING;
1148
0
        else
1149
0
        if (!r_is_packed(prp))
1150
0
            r_clear_attrs((ref *) prp, l_new);
1151
0
        next = chp->next;
1152
0
        gs_free_object((gs_memory_t *) mem, chp, "forget_changes");
1153
0
    }
1154
0
    mem->changes = 0;
1155
0
}
1156
/* Update the streams list when forgetting a save. */
1157
static void
1158
file_forget_save(gs_ref_memory_t * mem)
1159
0
{
1160
0
    const alloc_save_t *save = mem->saved;
1161
0
    stream *streams = mem->streams;
1162
0
    stream *saved_streams = save->state.streams;
1163
1164
0
    if_debug4m('u', (gs_memory_t *)mem, "[u%d]file_forget_save "PRI_INTPTR" + "PRI_INTPTR" for "PRI_INTPTR"\n",
1165
0
               mem->space, (intptr_t) streams, (intptr_t) saved_streams,
1166
0
               (intptr_t) save);
1167
0
    if (streams == 0)
1168
0
        mem->streams = saved_streams;
1169
0
    else if (saved_streams != 0) {
1170
0
        while (streams->next != 0)
1171
0
            streams = streams->next;
1172
0
        streams->next = saved_streams;
1173
0
        saved_streams->prev = streams;
1174
0
    }
1175
0
}
1176
1177
static inline int
1178
mark_allocated(void *obj, bool to_new, uint *psize)
1179
764k
{
1180
764k
    obj_header_t *pre = (obj_header_t *)obj - 1;
1181
764k
    uint size = pre_obj_contents_size(pre);
1182
764k
    ref_packed *prp = (ref_packed *) (pre + 1);
1183
764k
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1184
#ifdef ALIGNMENT_ALIASING_BUG
1185
                ref *rpref;
1186
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1187
#else
1188
71.1M
# define RP_REF(rp) ((ref *)rp)
1189
764k
#endif
1190
1191
764k
    if (pre->o_type != &st_refs) {
1192
        /* Must not happen. */
1193
0
        if_debug0('u', "Wrong object type when expected a ref.\n");
1194
0
        return_error(gs_error_Fatal);
1195
0
    }
1196
    /* We know that every block of refs ends with */
1197
    /* a full-size ref, so we only need the end check */
1198
    /* when we encounter one of those. */
1199
764k
    if (to_new)
1200
32.5M
        while (1) {
1201
32.5M
            if (r_is_packed(prp))
1202
2.09M
                prp++;
1203
30.4M
            else {
1204
30.4M
                RP_REF(prp)->tas.type_attrs |= l_new;
1205
30.4M
                prp += packed_per_ref;
1206
30.4M
                if (prp >= next)
1207
314k
                    break;
1208
30.4M
            }
1209
32.5M
    } else
1210
43.5M
        while (1) {
1211
43.5M
            if (r_is_packed(prp))
1212
2.90M
                prp++;
1213
40.6M
            else {
1214
40.6M
                RP_REF(prp)->tas.type_attrs &= ~l_new;
1215
40.6M
                prp += packed_per_ref;
1216
40.6M
                if (prp >= next)
1217
450k
                    break;
1218
40.6M
            }
1219
43.5M
        }
1220
764k
#undef RP_REF
1221
764k
    *psize = size;
1222
764k
    return 0;
1223
764k
}
1224
1225
/* Check if a block contains refs marked by garbager. */
1226
static bool
1227
check_l_mark(void *obj)
1228
2.52M
{
1229
2.52M
    obj_header_t *pre = (obj_header_t *)obj - 1;
1230
2.52M
    uint size = pre_obj_contents_size(pre);
1231
2.52M
    ref_packed *prp = (ref_packed *) (pre + 1);
1232
2.52M
    ref_packed *next = (ref_packed *) ((char *)prp + size);
1233
#ifdef ALIGNMENT_ALIASING_BUG
1234
                ref *rpref;
1235
# define RP_REF(rp) (rpref = (ref *)rp, rpref)
1236
#else
1237
2.52M
# define RP_REF(rp) ((ref *)rp)
1238
2.52M
#endif
1239
1240
    /* We know that every block of refs ends with */
1241
    /* a full-size ref, so we only need the end check */
1242
    /* when we encounter one of those. */
1243
1.12G
    while (1) {
1244
1.12G
        if (r_is_packed(prp)) {
1245
53.3M
            if (r_has_pmark(prp))
1246
684
                return true;
1247
53.3M
            prp++;
1248
1.07G
        } else {
1249
1.07G
            if (r_has_attr(RP_REF(prp), l_mark))
1250
118k
                return true;
1251
1.07G
            prp += packed_per_ref;
1252
1.07G
            if (prp >= next)
1253
2.41M
                return false;
1254
1.07G
        }
1255
1.12G
    }
1256
2.52M
#undef RP_REF
1257
2.52M
}
1258
1259
/* Set or reset the l_new attribute in every relevant slot. */
1260
/* This includes every slot on the current change chain, */
1261
/* and every (ref) slot allocated at this save level. */
1262
/* Return the number of bytes of data scanned. */
1263
static int
1264
save_set_new(gs_ref_memory_t * mem, bool to_new, bool set_limit, ulong *pscanned)
1265
17.7k
{
1266
17.7k
    ulong scanned = 0;
1267
17.7k
    int code;
1268
1269
    /* Handle the change chain. */
1270
17.7k
    code = save_set_new_changes(mem, to_new, set_limit);
1271
17.7k
    if (code < 0)
1272
0
        return code;
1273
1274
    /* Handle newly allocated ref objects. */
1275
111k
    SCAN_MEM_CLUMPS(mem, cp) {
1276
111k
        if (cp->has_refs) {
1277
86.4k
            bool has_refs = false;
1278
86.4k
            bool no_outer_clump = !(cp->outer != NULL && cp->ctop - cp->cbot > min_inner_clump_space);
1279
1.11M
            SCAN_CLUMP_OBJECTS(cp)
1280
1.11M
                DO_ALL
1281
1.11M
                if_debug3m('U', (gs_memory_t *)mem, "[U]set_new scan("PRI_INTPTR"(%u), %d)\n",
1282
1.11M
                           (intptr_t) pre, size, to_new);
1283
1.11M
            if (pre->o_type == &st_refs) {
1284
                /* These are refs, scan them. */
1285
382k
                ref_packed *prp = (ref_packed *) (pre + 1);
1286
382k
                uint size;
1287
                /* In order to avoid the garbager unnecessarily scanning for refs that may
1288
                   not exist, we reset the "has_refs" flag if we're doing a save (and leave
1289
                   it alone during a restore. This generally works because when we get here
1290
                   during a save, we've already created the inner clump, and during a restore,
1291
                   we've already restored to the outer clump.
1292
                   Where is goes wrong is when there isn't sufficient space left in the clump
1293
                   for any new allocations, so we won't have created the inner clump, and then
1294
                   the flag isn't retained. Spot that above, and only meddle with the flag here if
1295
                   an inner clump has been created.
1296
                 */
1297
382k
                has_refs = true && (to_new | no_outer_clump);
1298
382k
                code = mark_allocated(prp, to_new, &size);
1299
382k
                if (code < 0)
1300
0
                    return code;
1301
382k
                scanned += size;
1302
382k
            } else
1303
735k
                scanned += sizeof(obj_header_t);
1304
1.11M
            END_OBJECTS_SCAN
1305
86.4k
                cp->has_refs = has_refs;
1306
86.4k
        }
1307
111k
    }
1308
111k
    END_CLUMPS_SCAN
1309
17.7k
    if_debug2m('u', (gs_memory_t *)mem, "[u]set_new (%s) scanned %ld\n",
1310
17.7k
               (to_new ? "restore" : "save"), scanned);
1311
17.7k
    *pscanned = scanned;
1312
17.7k
    return 0;
1313
17.7k
}
1314
1315
/* Drop redundant elements from the changes list and set l_new. */
1316
static void
1317
drop_redundant_changes(gs_ref_memory_t * mem)
1318
0
{
1319
0
    register alloc_change_t *chp = mem->changes, *chp_back = NULL, *chp_forth;
1320
1321
    /* As we are trying to throw away redundant changes in an allocator instance
1322
       that has already been "saved", the active clump has already been "closed"
1323
       by alloc_save_space(). Using such an allocator (for example, by calling
1324
       gs_free_object() with it) can leave it in an unstable state, causing
1325
       problems for the garbage collector (specifically, the clump validator code).
1326
       So, before we might use it, open the current clump, and then close it again
1327
       when we're done.
1328
     */
1329
0
    alloc_open_clump(mem);
1330
1331
    /* First reverse the list and set all. */
1332
0
    for (; chp; chp = chp_forth) {
1333
0
        chp_forth = chp->next;
1334
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1335
0
            ref_packed *prp = chp->where;
1336
1337
0
            if (!r_is_packed(prp)) {
1338
0
                ref *const rp = (ref *)prp;
1339
1340
0
                rp->tas.type_attrs |= l_new;
1341
0
            }
1342
0
        }
1343
0
        chp->next = chp_back;
1344
0
        chp_back = chp;
1345
0
    }
1346
0
    mem->changes = chp_back;
1347
0
    chp_back = NULL;
1348
    /* Then filter, reset and reverse again. */
1349
0
    for (chp = mem->changes; chp; chp = chp_forth) {
1350
0
        chp_forth = chp->next;
1351
0
        if (chp->offset != AC_OFFSET_ALLOCATED) {
1352
0
            ref_packed *prp = chp->where;
1353
1354
0
            if (!r_is_packed(prp)) {
1355
0
                ref *const rp = (ref *)prp;
1356
1357
0
                if ((rp->tas.type_attrs & l_new) == 0) {
1358
0
                    if (mem->scan_limit == chp)
1359
0
                        mem->scan_limit = chp_back;
1360
0
                    if (mem->changes == chp)
1361
0
                        mem->changes = chp_back;
1362
0
                    gs_free_object((gs_memory_t *)mem, chp, "alloc_save_remove");
1363
0
                    continue;
1364
0
                } else
1365
0
                    rp->tas.type_attrs &= ~l_new;
1366
0
            }
1367
0
        }
1368
0
        chp->next = chp_back;
1369
0
        chp_back = chp;
1370
0
    }
1371
0
    mem->changes = chp_back;
1372
1373
0
    alloc_close_clump(mem);
1374
0
}
1375
1376
/* Set or reset the l_new attribute on the changes chain. */
1377
static int
1378
save_set_new_changes(gs_ref_memory_t * mem, bool to_new, bool set_limit)
1379
17.7k
{
1380
17.7k
    register alloc_change_t *chp;
1381
17.7k
    register uint new = (to_new ? l_new : 0);
1382
17.7k
    ulong scanned = 0;
1383
1384
17.7k
    if (!to_new && mem->total_scanned_after_compacting > max_repeated_scan * 16) {
1385
0
        mem->total_scanned_after_compacting = 0;
1386
0
        drop_redundant_changes(mem);
1387
0
    }
1388
444k
    for (chp = mem->changes; chp; chp = chp->next) {
1389
426k
        if (chp->offset == AC_OFFSET_ALLOCATED) {
1390
381k
            if (chp->where != 0) {
1391
381k
                uint size;
1392
381k
                int code = mark_allocated((void *)chp->where, to_new, &size);
1393
1394
381k
                if (code < 0)
1395
0
                    return code;
1396
381k
                scanned += size;
1397
381k
            }
1398
381k
        } else {
1399
45.2k
            ref_packed *prp = chp->where;
1400
1401
45.2k
            if_debug3m('U', (gs_memory_t *)mem, "[U]set_new "PRI_INTPTR": ("PRI_INTPTR", %d)\n",
1402
45.2k
                       (intptr_t)chp, (intptr_t)prp, new);
1403
45.2k
            if (!r_is_packed(prp)) {
1404
45.1k
                ref *const rp = (ref *) prp;
1405
1406
45.1k
                rp->tas.type_attrs =
1407
45.1k
                    (rp->tas.type_attrs & ~l_new) + new;
1408
45.1k
            }
1409
45.2k
        }
1410
426k
        if (mem->scan_limit == chp)
1411
86
            break;
1412
426k
    }
1413
17.7k
    if (set_limit) {
1414
8.89k
        mem->total_scanned_after_compacting += scanned;
1415
8.89k
        if (scanned  + mem->total_scanned >= max_repeated_scan) {
1416
86
            mem->scan_limit = mem->changes;
1417
86
            mem->total_scanned = 0;
1418
86
        } else
1419
8.81k
            mem->total_scanned += scanned;
1420
8.89k
    }
1421
17.7k
    return 0;
1422
17.7k
}
1423
1424
gs_memory_t *
1425
gs_save_any_memory(const alloc_save_t *save)
1426
38.2k
{
1427
38.2k
    return((gs_memory_t *)save->space_local);
1428
38.2k
}