Coverage Report

Created: 2025-06-10 06:56

/src/ghostpdl/base/gdevdflt.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
/* Default device implementation */
17
#include "math_.h"
18
#include "memory_.h"
19
#include "gx.h"
20
#include "gsstruct.h"
21
#include "gxobj.h"
22
#include "gserrors.h"
23
#include "gsropt.h"
24
#include "gxcomp.h"
25
#include "gxdevice.h"
26
#include "gxdevsop.h"
27
#include "gdevp14.h"        /* Needed to patch up the procs after compositor creation */
28
#include "gstrans.h"        /* For gs_pdf14trans_t */
29
#include "gxgstate.h"       /* for gs_image_state_s */
30
31
32
/* defined in gsdpram.c */
33
int gx_default_get_param(gx_device *dev, char *Param, void *list);
34
35
/* ---------------- Default device procedures ---------------- */
36
37
/*
38
 * Set a color model polarity to be additive or subtractive. In either
39
 * case, indicate an error (and don't modify the polarity) if the current
40
 * setting differs from the desired and is not GX_CINFO_POLARITY_UNKNOWN.
41
 */
42
static void
43
set_cinfo_polarity(gx_device * dev, gx_color_polarity_t new_polarity)
44
1.50M
{
45
#ifdef DEBUG
46
    /* sanity check */
47
    if (new_polarity == GX_CINFO_POLARITY_UNKNOWN) {
48
        dmprintf(dev->memory, "set_cinfo_polarity: illegal operand\n");
49
        return;
50
    }
51
#endif
52
    /*
53
     * The meory devices assume that single color devices are gray.
54
     * This may not be true if SeparationOrder is specified.  Thus only
55
     * change the value if the current value is unknown.
56
     */
57
1.50M
    if (dev->color_info.polarity == GX_CINFO_POLARITY_UNKNOWN)
58
0
        dev->color_info.polarity = new_polarity;
59
1.50M
}
60
61
static gx_color_index
62
(*get_encode_color(gx_device *dev))(gx_device *, const gx_color_value *)
63
17.9M
{
64
17.9M
    dev_proc_encode_color(*encode_proc);
65
66
    /* use encode_color if it has been provided */
67
17.9M
    if ((encode_proc = dev_proc(dev, encode_color)) == 0) {
68
1.50M
        if (dev->color_info.num_components == 1                          &&
69
1.50M
            dev_proc(dev, map_rgb_color) != 0) {
70
1.09M
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
71
1.09M
            encode_proc = gx_backwards_compatible_gray_encode;
72
1.09M
        } else  if ( (dev->color_info.num_components == 3    )           &&
73
405k
             (encode_proc = dev_proc(dev, map_rgb_color)) != 0  )
74
0
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
75
405k
        else if ( dev->color_info.num_components == 4                    &&
76
405k
                 (encode_proc = dev_proc(dev, map_cmyk_color)) != 0   )
77
0
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_SUBTRACTIVE);
78
1.50M
    }
79
80
    /*
81
     * If no encode_color procedure at this point, the color model had
82
     * better be monochrome (though not necessarily bi-level). In this
83
     * case, it is assumed to be additive, as that is consistent with
84
     * the pre-DeviceN code.
85
     *
86
     * If this is not the case, then the color model had better be known
87
     * to be separable and linear, for there is no other way to derive
88
     * an encoding. This is the case even for weakly linear and separable
89
     * color models with a known polarity.
90
     */
91
17.9M
    if (encode_proc == 0) {
92
405k
        if (dev->color_info.num_components == 1 && dev->color_info.depth != 0) {
93
405k
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
94
405k
            if (dev->color_info.max_gray == (1 << dev->color_info.depth) - 1)
95
405k
                encode_proc = gx_default_gray_fast_encode;
96
0
            else
97
0
                encode_proc = gx_default_gray_encode;
98
405k
            dev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
99
405k
        } else if (colors_are_separable_and_linear(&dev->color_info)) {
100
0
            gx_color_value  max_gray = dev->color_info.max_gray;
101
0
            gx_color_value  max_color = dev->color_info.max_color;
102
103
0
            if ( (max_gray & (max_gray + 1)) == 0  &&
104
0
                 (max_color & (max_color + 1)) == 0  )
105
                /* NB should be gx_default_fast_encode_color */
106
0
                encode_proc = gx_default_encode_color;
107
0
            else
108
0
                encode_proc = gx_default_encode_color;
109
0
        }
110
405k
    }
111
112
17.9M
    return encode_proc;
113
17.9M
}
114
115
/*
116
 * Determine if a color model has the properties of a DeviceRGB
117
 * color model. This procedure is, in all likelihood, high-grade
118
 * overkill, but since this is not a performance sensitive area
119
 * no harm is done.
120
 *
121
 * Since there is little benefit to checking the values 0, 1, or
122
 * 1/2, we use the values 1/4, 1/3, and 3/4 in their place. We
123
 * compare the results to see if the intensities match to within
124
 * a tolerance of .01, which is arbitrarily selected.
125
 */
126
127
static bool
128
is_like_DeviceRGB(gx_device * dev)
129
1.50M
{
130
1.50M
    frac                            cm_comp_fracs[3];
131
1.50M
    int                             i;
132
1.50M
    const gx_device                *cmdev;
133
1.50M
    const gx_cm_color_map_procs    *cmprocs;
134
135
1.50M
    if ( dev->color_info.num_components != 3                   ||
136
1.50M
         dev->color_info.polarity != GX_CINFO_POLARITY_ADDITIVE  )
137
1.50M
        return false;
138
139
0
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
140
141
    /* check the values 1/4, 1/3, and 3/4 */
142
0
    cmprocs->map_rgb(cmdev, 0, frac_1 / 4, frac_1 / 3, 3 * frac_1 / 4, cm_comp_fracs);
143
144
    /* verify results to .01 */
145
0
    cm_comp_fracs[0] -= frac_1 / 4;
146
0
    cm_comp_fracs[1] -= frac_1 / 3;
147
0
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
148
0
    for ( i = 0;
149
0
           i < 3                            &&
150
0
           -frac_1 / 100 < cm_comp_fracs[i] &&
151
0
           cm_comp_fracs[i] < frac_1 / 100;
152
0
          i++ )
153
0
        ;
154
0
    return i == 3;
155
1.50M
}
156
157
/*
158
 * Similar to is_like_DeviceRGB, but for DeviceCMYK.
159
 */
160
static bool
161
is_like_DeviceCMYK(gx_device * dev)
162
0
{
163
0
    frac                            cm_comp_fracs[4];
164
0
    int                             i;
165
0
    const gx_device                *cmdev;
166
0
    const gx_cm_color_map_procs    *cmprocs;
167
168
0
    if ( dev->color_info.num_components != 4                      ||
169
0
         dev->color_info.polarity != GX_CINFO_POLARITY_SUBTRACTIVE  )
170
0
        return false;
171
172
0
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
173
    /* check the values 1/4, 1/3, 3/4, and 1/8 */
174
175
0
    cmprocs->map_cmyk(cmdev,
176
0
                      frac_1 / 4,
177
0
                      frac_1 / 3,
178
0
                      3 * frac_1 / 4,
179
0
                      frac_1 / 8,
180
0
                      cm_comp_fracs);
181
182
    /* verify results to .01 */
183
0
    cm_comp_fracs[0] -= frac_1 / 4;
184
0
    cm_comp_fracs[1] -= frac_1 / 3;
185
0
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
186
0
    cm_comp_fracs[3] -= frac_1 / 8;
187
0
    for ( i = 0;
188
0
           i < 4                            &&
189
0
           -frac_1 / 100 < cm_comp_fracs[i] &&
190
0
           cm_comp_fracs[i] < frac_1 / 100;
191
0
          i++ )
192
0
        ;
193
0
    return i == 4;
194
0
}
195
196
/*
197
 * Two default decode_color procedures to use for monochrome devices.
198
 * These will make use of the map_color_rgb routine, and use the first
199
 * component of the returned value or its inverse.
200
 */
201
static int
202
gx_default_1_add_decode_color(
203
    gx_device *     dev,
204
    gx_color_index  color,
205
    gx_color_value  cv[1] )
206
0
{
207
0
    gx_color_value  rgb[3];
208
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
209
210
0
    cv[0] = rgb[0];
211
0
    return code;
212
0
}
213
214
static int
215
gx_default_1_sub_decode_color(
216
    gx_device *     dev,
217
    gx_color_index  color,
218
    gx_color_value  cv[1] )
219
0
{
220
0
    gx_color_value  rgb[3];
221
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
222
223
0
    cv[0] = gx_max_color_value - rgb[0];
224
0
    return code;
225
0
}
226
227
/*
228
 * A default decode_color procedure for DeviceCMYK color models.
229
 *
230
 * There is no generally accurate way of decode a DeviceCMYK color using
231
 * the map_color_rgb method. Unfortunately, there are many older devices
232
 * employ the DeviceCMYK color model but don't provide a decode_color
233
 * method. The code below works on the assumption of full undercolor
234
 * removal and black generation. This may not be accurate, but is the
235
 * best that can be done in the general case without other information.
236
 */
237
static int
238
gx_default_cmyk_decode_color(
239
    gx_device *     dev,
240
    gx_color_index  color,
241
    gx_color_value  cv[4] )
242
0
{
243
    /* The device may have been determined to be 'separable'. */
244
0
    if (colors_are_separable_and_linear(&dev->color_info))
245
0
        return gx_default_decode_color(dev, color, cv);
246
0
    else {
247
0
        int i, code = dev_proc(dev, map_color_rgb)(dev, color, cv);
248
0
        gx_color_value min_val = gx_max_color_value;
249
250
0
        for (i = 0; i < 3; i++) {
251
0
            if ((cv[i] = gx_max_color_value - cv[i]) < min_val)
252
0
                min_val = cv[i];
253
0
        }
254
0
        for (i = 0; i < 3; i++)
255
0
            cv[i] -= min_val;
256
0
        cv[3] = min_val;
257
258
0
        return code;
259
0
    }
260
0
}
261
262
/*
263
 * Special case default color decode routine for a canonical 1-bit per
264
 * component DeviceCMYK color model.
265
 */
266
static int
267
gx_1bit_cmyk_decode_color(
268
    gx_device *     dev,
269
    gx_color_index  color,
270
    gx_color_value  cv[4] )
271
0
{
272
0
    cv[0] = ((color & 0x8) != 0 ? gx_max_color_value : 0);
273
0
    cv[1] = ((color & 0x4) != 0 ? gx_max_color_value : 0);
274
0
    cv[2] = ((color & 0x2) != 0 ? gx_max_color_value : 0);
275
0
    cv[3] = ((color & 0x1) != 0 ? gx_max_color_value : 0);
276
0
    return 0;
277
0
}
278
279
static int
280
(*get_decode_color(gx_device * dev))(gx_device *, gx_color_index, gx_color_value *)
281
17.9M
{
282
    /* if a method has already been provided, use it */
283
17.9M
    if (dev_proc(dev, decode_color) != 0)
284
16.4M
        return dev_proc(dev, decode_color);
285
286
    /*
287
     * If a map_color_rgb method has been provided, we may be able to use it.
288
     * Currently this will always be the case, as a default value will be
289
     * provided this method. While this default may not be correct, we are not
290
     * introducing any new errors by using it.
291
     */
292
1.50M
    if (dev_proc(dev, map_color_rgb) != 0) {
293
294
        /* if the device has a DeviceRGB color model, use map_color_rgb */
295
1.50M
        if (is_like_DeviceRGB(dev))
296
0
            return dev_proc(dev, map_color_rgb);
297
298
        /* If separable ande linear then use default */
299
1.50M
        if (colors_are_separable_and_linear(&dev->color_info))
300
405k
            return &gx_default_decode_color;
301
302
        /* gray devices can be handled based on their polarity */
303
1.09M
        if ( dev->color_info.num_components == 1 &&
304
1.09M
             dev->color_info.gray_index == 0       )
305
1.09M
            return dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE
306
1.09M
                       ? &gx_default_1_add_decode_color
307
1.09M
                       : &gx_default_1_sub_decode_color;
308
309
        /*
310
         * There is no accurate way to decode colors for cmyk devices
311
         * using the map_color_rgb procedure. Unfortunately, this cases
312
         * arises with some frequency, so it is useful not to generate an
313
         * error in this case. The mechanism below assumes full undercolor
314
         * removal and black generation, which may not be accurate but are
315
         * the  best that can be done in the general case in the absence of
316
         * other information.
317
         *
318
         * As a hack to handle certain common devices, if the map_rgb_color
319
         * routine is cmyk_1bit_map_color_rgb, we provide a direct one-bit
320
         * decoder.
321
         */
322
0
        if (is_like_DeviceCMYK(dev)) {
323
0
            if (dev_proc(dev, map_color_rgb) == cmyk_1bit_map_color_rgb)
324
0
                return &gx_1bit_cmyk_decode_color;
325
0
            else
326
0
                return &gx_default_cmyk_decode_color;
327
0
        }
328
0
    }
329
330
    /*
331
     * The separable and linear case will already have been handled by
332
     * code in gx_device_fill_in_procs, so at this point we can only hope
333
     * the device doesn't use the decode_color method.
334
     */
335
0
    if (colors_are_separable_and_linear(&dev->color_info))
336
0
        return &gx_default_decode_color;
337
0
    else
338
0
        return &gx_error_decode_color;
339
0
}
340
341
/*
342
 * If a device has a linear and separable encode color function then
343
 * set up the comp_bits, comp_mask, and comp_shift fields.  Note:  This
344
 * routine assumes that the colorant shift factor decreases with the
345
 * component number.  See check_device_separable() for a general routine.
346
 */
347
void
348
set_linear_color_bits_mask_shift(gx_device * dev)
349
0
{
350
0
    int i;
351
0
    byte gray_index = dev->color_info.gray_index;
352
0
    gx_color_value max_gray = dev->color_info.max_gray;
353
0
    gx_color_value max_color = dev->color_info.max_color;
354
0
    int num_components = dev->color_info.num_components;
355
356
0
#define comp_bits (dev->color_info.comp_bits)
357
0
#define comp_mask (dev->color_info.comp_mask)
358
0
#define comp_shift (dev->color_info.comp_shift)
359
0
    comp_shift[num_components - 1] = 0;
360
0
    for ( i = num_components - 1 - 1; i >= 0; i-- ) {
361
0
        comp_shift[i] = comp_shift[i + 1] +
362
0
            ( i == gray_index ? ilog2(max_gray + 1) : ilog2(max_color + 1) );
363
0
    }
364
0
    for ( i = 0; i < num_components; i++ ) {
365
0
        comp_bits[i] = ( i == gray_index ?
366
0
                         ilog2(max_gray + 1) :
367
0
                         ilog2(max_color + 1) );
368
0
        comp_mask[i] = (((gx_color_index)1 << comp_bits[i]) - 1)
369
0
                                               << comp_shift[i];
370
0
    }
371
0
#undef comp_bits
372
0
#undef comp_mask
373
0
#undef comp_shift
374
0
}
375
376
/* Determine if a number is a power of two.  Works only for integers. */
377
92.0M
#define is_power_of_two(x) ((((x) - 1) & (x)) == 0)
378
379
/* A brutish way to check if we are a HT device */
380
bool
381
device_is_contone(gx_device* pdev)
382
558k
{
383
558k
    if ((float)pdev->color_info.depth / (float)pdev->color_info.num_components >= 8)
384
2.70k
        return true;
385
556k
    return false;
386
558k
}
387
388
/*
389
 * This routine attempts to determine if a device's encode_color procedure
390
 * produces gx_color_index values which are 'separable'.  A 'separable' value
391
 * means two things.  Each colorant has a group of bits in the gx_color_index
392
 * value which is associated with the colorant.  These bits are separate.
393
 * I.e. no bit is associated with more than one colorant.  If a colorant has
394
 * a value of zero then the bits associated with that colorant are zero.
395
 * These criteria allows the graphics library to build gx_color_index values
396
 * from the colorant values and not using the encode_color routine. This is
397
 * useful and necessary for overprinting, halftoning more
398
 * than four colorants, and the fast shading logic.  However this information
399
 * is not setup by the default device macros.  Thus we attempt to derive this
400
 * information.
401
 *
402
 * This routine can be fooled.  However it usually errors on the side of
403
 * assuing that a device is not separable.  In this case it does not create
404
 * any new problems.  In theory it can be fooled into believing that a device
405
 * is separable when it is not.  However we do not know of any real cases that
406
 * will fool it.
407
 */
408
void
409
check_device_separable(gx_device * dev)
410
31.8M
{
411
31.8M
    int i, j;
412
31.8M
    gx_device_color_info * pinfo = &(dev->color_info);
413
31.8M
    int num_components = pinfo->num_components;
414
31.8M
    byte comp_shift[GX_DEVICE_COLOR_MAX_COMPONENTS];
415
31.8M
    byte comp_bits[GX_DEVICE_COLOR_MAX_COMPONENTS];
416
31.8M
    gx_color_index comp_mask[GX_DEVICE_COLOR_MAX_COMPONENTS];
417
31.8M
    gx_color_index color_index;
418
31.8M
    gx_color_index current_bits = 0;
419
31.8M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
420
421
    /* If this is already known then we do not need to do anything. */
422
31.8M
    if (pinfo->separable_and_linear != GX_CINFO_UNKNOWN_SEP_LIN)
423
41.6k
        return;
424
    /* If there is not an encode_color_routine then we cannot proceed. */
425
31.7M
    if (dev_proc(dev, encode_color) == NULL)
426
1.09M
        return;
427
    /*
428
     * If these values do not check then we should have an error.  However
429
     * we do not know what to do so we are simply exitting and hoping that
430
     * the device will clean up its values.
431
     */
432
30.6M
    if (pinfo->gray_index < num_components &&
433
30.6M
        (!pinfo->dither_grays || pinfo->dither_grays != (pinfo->max_gray + 1)))
434
0
            return;
435
30.6M
    if ((num_components > 1 || pinfo->gray_index != 0) &&
436
30.6M
        (!pinfo->dither_colors || pinfo->dither_colors != (pinfo->max_color + 1)))
437
0
        return;
438
    /*
439
     * If dither_grays or dither_colors is not a power of two then we assume
440
     * that the device is not separable.  In theory this not a requirement
441
     * but it has been true for all of the devices that we have seen so far.
442
     * This assumption also makes the logic in the next section easier.
443
     */
444
30.6M
    if (!is_power_of_two(pinfo->dither_grays)
445
30.6M
                    || !is_power_of_two(pinfo->dither_colors))
446
0
        return;
447
    /*
448
     * Use the encode_color routine to try to verify that the device is
449
     * separable and to determine the shift count, etc. for each colorant.
450
     */
451
30.6M
    color_index = dev_proc(dev, encode_color)(dev, colorants);
452
30.6M
    if (color_index != 0)
453
30.6M
        return;    /* Exit if zero colorants produce a non zero index */
454
64.5k
    for (i = 0; i < num_components; i++) {
455
        /* Check this colorant = max with all others = 0 */
456
66.3k
        for (j = 0; j < num_components; j++)
457
33.8k
            colorants[j] = 0;
458
32.4k
        colorants[i] = gx_max_color_value;
459
32.4k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
460
32.4k
        if (color_index == 0)  /* If no bits then we have a problem */
461
0
            return;
462
32.4k
        if (color_index & current_bits)  /* Check for overlapping bits */
463
0
            return;
464
32.4k
        current_bits |= color_index;
465
32.4k
        comp_mask[i] = color_index;
466
        /* Determine the shift count for the colorant */
467
37.9k
        for (j = 0; (color_index & 1) == 0 && color_index != 0; j++)
468
5.49k
            color_index >>= 1;
469
32.4k
        comp_shift[i] = j;
470
        /* Determine the bit count for the colorant */
471
71.7k
        for (j = 0; color_index != 0; j++) {
472
39.3k
            if ((color_index & 1) == 0) /* check for non-consecutive bits */
473
0
                return;
474
39.3k
            color_index >>= 1;
475
39.3k
        }
476
32.4k
        comp_bits[i] = j;
477
        /*
478
         * We could verify that the bit count matches the dither_grays or
479
         * dither_colors values, but this is not really required unless we
480
         * are halftoning.  Thus we are allowing for non equal colorant sizes.
481
         */
482
        /* Check for overlap with other colorant if they are all maxed */
483
66.3k
        for (j = 0; j < num_components; j++)
484
33.8k
            colorants[j] = gx_max_color_value;
485
32.4k
        colorants[i] = 0;
486
32.4k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
487
32.4k
        if (color_index & comp_mask[i])  /* Check for overlapping bits */
488
0
            return;
489
32.4k
    }
490
    /* If we get to here then the device is very likely to be separable. */
491
32.0k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN;
492
64.5k
    for (i = 0; i < num_components; i++) {
493
32.4k
        pinfo->comp_shift[i] = comp_shift[i];
494
32.4k
        pinfo->comp_bits[i] = comp_bits[i];
495
32.4k
        pinfo->comp_mask[i] = comp_mask[i];
496
32.4k
    }
497
    /*
498
     * The 'gray_index' value allows one colorant to have a different number
499
     * of shades from the remainder.  Since the default macros only guess at
500
     * an appropriate value, we are setting its value based upon the data that
501
     * we just determined.  Note:  In some cases the macros set max_gray to 0
502
     * and dither_grays to 1.  This is not valid so ignore this case.
503
     */
504
32.0k
    for (i = 0; i < num_components; i++) {
505
32.0k
        int dither = 1 << comp_bits[i];
506
507
32.0k
        if (pinfo->dither_grays != 1 && dither == pinfo->dither_grays) {
508
32.0k
            pinfo->gray_index = i;
509
32.0k
            break;
510
32.0k
        }
511
32.0k
    }
512
32.0k
}
513
#undef is_power_of_two
514
515
/*
516
 * This routine attempts to determine if a device's encode_color procedure
517
 * produces values that are in keeping with "the standard encoding".
518
 * i.e. that given by pdf14_encode_color.
519
 *
520
 * It works by first checking to see if we are separable_and_linear. If not
521
 * we cannot hope to be the standard encoding.
522
 *
523
 * Then, we check to see if we are a dev device - if so, we must be
524
 * compatible.
525
 *
526
 * Failing that it checks to see if the encoding uses the appropriate
527
 * bit ranges for each individual color.
528
 *
529
 * If those (quick) tests pass, then we try the slower test of checking
530
 * the encodings. We can do this far faster than an exhaustive check, by
531
 * relying on the separability and linearity - we only need to check 256
532
 * possible values.
533
 *
534
 * The one tricky section there is to avoid the special case for
535
 * gx_no_color_index_value (which can occur when we have a 32bit
536
 * gx_color_index type, and a 4 component device, such as cmyk).
537
 * We allow the encoding to be off in the lower bits for that case.
538
 */
539
void check_device_compatible_encoding(gx_device *dev)
540
15.3M
{
541
15.3M
    gx_device_color_info * pinfo = &(dev->color_info);
542
15.3M
    int num_components = pinfo->num_components;
543
15.3M
    gx_color_index mul, color_index;
544
15.3M
    int i, j;
545
15.3M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS];
546
15.3M
    bool deep = device_is_deep(dev);
547
548
15.3M
    if (pinfo->separable_and_linear == GX_CINFO_UNKNOWN_SEP_LIN)
549
15.3M
        check_device_separable(dev);
550
15.3M
    if (pinfo->separable_and_linear != GX_CINFO_SEP_LIN)
551
15.3M
        return;
552
553
0
    if (dev_proc(dev, ret_devn_params)(dev) != NULL) {
554
        /* We know all devn devices are compatible. */
555
0
        pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
556
0
        return;
557
0
    }
558
559
    /* Do the superficial quick checks */
560
0
    for (i = 0; i < num_components; i++) {
561
0
        int shift = (num_components-1-i)*(8<<deep);
562
0
        if (pinfo->comp_shift[i] != shift)
563
0
            goto bad;
564
0
        if (pinfo->comp_bits[i] != 8<<deep)
565
0
            goto bad;
566
0
        if (pinfo->comp_mask[i] != ((gx_color_index)(deep ? 65535 : 255))<<shift)
567
0
            goto bad;
568
0
    }
569
570
    /* OK, now we are going to be slower. */
571
0
    mul = 0;
572
0
    for (i = 0; i < num_components; i++) {
573
0
        mul = (mul<<(8<<deep)) | 1;
574
0
    }
575
    /* In the deep case, we don't exhaustively test */
576
0
    for (i = 0; i < 255; i++) {
577
0
        for (j = 0; j < num_components; j++)
578
0
            colorants[j] = i*257;
579
0
        color_index = dev_proc(dev, encode_color)(dev, colorants);
580
0
        if (color_index != i*mul*(deep ? 257 : 1) && (i*mul*(deep ? 257 : 1) != gx_no_color_index_value))
581
0
            goto bad;
582
0
    }
583
    /* If we reach here, then every value matched, except possibly the last one.
584
     * We'll allow that to differ just in the lowest bits. */
585
0
    if ((color_index | mul) != 255*mul*(deep ? 257 : 1))
586
0
        goto bad;
587
588
0
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
589
0
    return;
590
0
bad:
591
0
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_NON_STANDARD;
592
0
}
593
594
int gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth);
595
596
/* Fill in NULL procedures in a device procedure record. */
597
void
598
gx_device_fill_in_procs(register gx_device * dev)
599
17.9M
{
600
17.9M
    fill_dev_proc(dev, open_device, gx_default_open_device);
601
17.9M
    fill_dev_proc(dev, get_initial_matrix, gx_default_get_initial_matrix);
602
17.9M
    fill_dev_proc(dev, sync_output, gx_default_sync_output);
603
17.9M
    fill_dev_proc(dev, output_page, gx_default_output_page);
604
17.9M
    fill_dev_proc(dev, close_device, gx_default_close_device);
605
    /* see below for map_rgb_color */
606
17.9M
    fill_dev_proc(dev, map_color_rgb, gx_default_map_color_rgb);
607
    /* NOT fill_rectangle */
608
17.9M
    fill_dev_proc(dev, copy_mono, gx_default_copy_mono);
609
17.9M
    fill_dev_proc(dev, copy_color, gx_default_copy_color);
610
17.9M
    fill_dev_proc(dev, get_params, gx_default_get_params);
611
17.9M
    fill_dev_proc(dev, put_params, gx_default_put_params);
612
    /* see below for map_cmyk_color */
613
17.9M
    fill_dev_proc(dev, get_page_device, gx_default_get_page_device);
614
17.9M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
615
17.9M
    fill_dev_proc(dev, copy_alpha, gx_default_copy_alpha);
616
17.9M
    fill_dev_proc(dev, fill_path, gx_default_fill_path);
617
17.9M
    fill_dev_proc(dev, stroke_path, gx_default_stroke_path);
618
17.9M
    fill_dev_proc(dev, fill_mask, gx_default_fill_mask);
619
17.9M
    fill_dev_proc(dev, fill_trapezoid, gx_default_fill_trapezoid);
620
17.9M
    fill_dev_proc(dev, fill_parallelogram, gx_default_fill_parallelogram);
621
17.9M
    fill_dev_proc(dev, fill_triangle, gx_default_fill_triangle);
622
17.9M
    fill_dev_proc(dev, draw_thin_line, gx_default_draw_thin_line);
623
17.9M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
624
17.9M
    fill_dev_proc(dev, strip_tile_rectangle, gx_default_strip_tile_rectangle);
625
17.9M
    fill_dev_proc(dev, strip_copy_rop2, gx_default_strip_copy_rop2);
626
17.9M
    fill_dev_proc(dev, strip_tile_rect_devn, gx_default_strip_tile_rect_devn);
627
17.9M
    fill_dev_proc(dev, get_clipping_box, gx_default_get_clipping_box);
628
17.9M
    fill_dev_proc(dev, begin_typed_image, gx_default_begin_typed_image);
629
17.9M
    fill_dev_proc(dev, get_bits_rectangle, gx_default_get_bits_rectangle);
630
17.9M
    fill_dev_proc(dev, composite, gx_default_composite);
631
17.9M
    fill_dev_proc(dev, get_hardware_params, gx_default_get_hardware_params);
632
17.9M
    fill_dev_proc(dev, text_begin, gx_default_text_begin);
633
634
17.9M
    set_dev_proc(dev, encode_color, get_encode_color(dev));
635
17.9M
    if (dev->color_info.num_components == 3)
636
16.5k
        set_dev_proc(dev, map_rgb_color, dev_proc(dev, encode_color));
637
17.9M
    if (dev->color_info.num_components == 4)
638
0
        set_dev_proc(dev, map_cmyk_color, dev_proc(dev, encode_color));
639
640
17.9M
    if (colors_are_separable_and_linear(&dev->color_info)) {
641
580k
        fill_dev_proc(dev, encode_color, gx_default_encode_color);
642
580k
        fill_dev_proc(dev, map_cmyk_color, gx_default_encode_color);
643
580k
        fill_dev_proc(dev, map_rgb_color, gx_default_encode_color);
644
17.3M
    } else {
645
        /* if it isn't set now punt */
646
17.3M
        fill_dev_proc(dev, encode_color, gx_error_encode_color);
647
17.3M
        fill_dev_proc(dev, map_cmyk_color, gx_error_encode_color);
648
17.3M
        fill_dev_proc(dev, map_rgb_color, gx_error_encode_color);
649
17.3M
    }
650
651
    /*
652
     * Fill in the color mapping procedures and the component index
653
     * assignment procedure if they have not been provided by the client.
654
     *
655
     * Because it is difficult to provide default encoding procedures
656
     * that handle level inversion, this code needs to check both
657
     * the number of components and the polarity of color model.
658
     */
659
17.9M
    switch (dev->color_info.num_components) {
660
17.8M
    case 1:     /* DeviceGray or DeviceInvertGray */
661
        /*
662
         * If not gray then the device must provide the color
663
         * mapping procs.
664
         */
665
17.8M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
666
17.8M
            fill_dev_proc( dev,
667
17.8M
                       get_color_mapping_procs,
668
17.8M
                       gx_default_DevGray_get_color_mapping_procs );
669
17.8M
        } else
670
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
671
17.8M
        fill_dev_proc( dev,
672
17.8M
                       get_color_comp_index,
673
17.8M
                       gx_default_DevGray_get_color_comp_index );
674
17.8M
        break;
675
676
16.5k
    case 3:
677
16.5k
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
678
16.5k
            fill_dev_proc( dev,
679
16.5k
                       get_color_mapping_procs,
680
16.5k
                       gx_default_DevRGB_get_color_mapping_procs );
681
16.5k
            fill_dev_proc( dev,
682
16.5k
                       get_color_comp_index,
683
16.5k
                       gx_default_DevRGB_get_color_comp_index );
684
16.5k
        } else {
685
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
686
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
687
0
        }
688
16.5k
        break;
689
690
0
    case 4:
691
0
        fill_dev_proc(dev, get_color_mapping_procs, gx_default_DevCMYK_get_color_mapping_procs);
692
0
        fill_dev_proc(dev, get_color_comp_index, gx_default_DevCMYK_get_color_comp_index);
693
0
        break;
694
0
    default:    /* Unknown color model - set error handlers */
695
0
        if (dev_proc(dev, get_color_mapping_procs) == NULL) {
696
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
697
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
698
0
        }
699
17.9M
    }
700
701
17.9M
    set_dev_proc(dev, decode_color, get_decode_color(dev));
702
17.9M
    fill_dev_proc(dev, get_profile, gx_default_get_profile);
703
17.9M
    fill_dev_proc(dev, set_graphics_type_tag, gx_default_set_graphics_type_tag);
704
705
17.9M
    fill_dev_proc(dev, fill_rectangle_hl_color, gx_default_fill_rectangle_hl_color);
706
17.9M
    fill_dev_proc(dev, include_color_space, gx_default_include_color_space);
707
17.9M
    fill_dev_proc(dev, fill_linear_color_scanline, gx_default_fill_linear_color_scanline);
708
17.9M
    fill_dev_proc(dev, fill_linear_color_trapezoid, gx_default_fill_linear_color_trapezoid);
709
17.9M
    fill_dev_proc(dev, fill_linear_color_triangle, gx_default_fill_linear_color_triangle);
710
17.9M
    fill_dev_proc(dev, update_spot_equivalent_colors, gx_default_update_spot_equivalent_colors);
711
17.9M
    fill_dev_proc(dev, ret_devn_params, gx_default_ret_devn_params);
712
17.9M
    fill_dev_proc(dev, fillpage, gx_default_fillpage);
713
17.9M
    fill_dev_proc(dev, copy_alpha_hl_color, gx_default_no_copy_alpha_hl_color);
714
715
17.9M
    fill_dev_proc(dev, begin_transparency_group, gx_default_begin_transparency_group);
716
17.9M
    fill_dev_proc(dev, end_transparency_group, gx_default_end_transparency_group);
717
718
17.9M
    fill_dev_proc(dev, begin_transparency_mask, gx_default_begin_transparency_mask);
719
17.9M
    fill_dev_proc(dev, end_transparency_mask, gx_default_end_transparency_mask);
720
17.9M
    fill_dev_proc(dev, discard_transparency_layer, gx_default_discard_transparency_layer);
721
722
17.9M
    fill_dev_proc(dev, push_transparency_state, gx_default_push_transparency_state);
723
17.9M
    fill_dev_proc(dev, pop_transparency_state, gx_default_pop_transparency_state);
724
725
17.9M
    fill_dev_proc(dev, put_image, gx_default_put_image);
726
727
17.9M
    fill_dev_proc(dev, dev_spec_op, gx_default_dev_spec_op);
728
17.9M
    fill_dev_proc(dev, copy_planes, gx_default_copy_planes);
729
17.9M
    fill_dev_proc(dev, process_page, gx_default_process_page);
730
17.9M
    fill_dev_proc(dev, transform_pixel_region, gx_default_transform_pixel_region);
731
17.9M
    fill_dev_proc(dev, fill_stroke_path, gx_default_fill_stroke_path);
732
17.9M
    fill_dev_proc(dev, lock_pattern, gx_default_lock_pattern);
733
17.9M
}
734
735
736
int
737
gx_default_open_device(gx_device * dev)
738
32.2k
{
739
    /* Initialize the separable status if not known. */
740
32.2k
    check_device_separable(dev);
741
32.2k
    return 0;
742
32.2k
}
743
744
/* Get the initial matrix for a device with inverted Y. */
745
/* This includes essentially all printers and displays. */
746
/* Supports LeadingEdge, but no margins or viewports */
747
void
748
gx_default_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
749
16.3M
{
750
    /* NB this device has no paper margins */
751
16.3M
    double fs_res = dev->HWResolution[0] / 72.0;
752
16.3M
    double ss_res = dev->HWResolution[1] / 72.0;
753
754
16.3M
    switch(dev->LeadingEdge & LEADINGEDGE_MASK) {
755
0
    case 1: /* 90 degrees */
756
0
        pmat->xx = 0;
757
0
        pmat->xy = -ss_res;
758
0
        pmat->yx = -fs_res;
759
0
        pmat->yy = 0;
760
0
        pmat->tx = (float)dev->width;
761
0
        pmat->ty = (float)dev->height;
762
0
        break;
763
0
    case 2: /* 180 degrees */
764
0
        pmat->xx = -fs_res;
765
0
        pmat->xy = 0;
766
0
        pmat->yx = 0;
767
0
        pmat->yy = ss_res;
768
0
        pmat->tx = (float)dev->width;
769
0
        pmat->ty = 0;
770
0
        break;
771
0
    case 3: /* 270 degrees */
772
0
        pmat->xx = 0;
773
0
        pmat->xy = ss_res;
774
0
        pmat->yx = fs_res;
775
0
        pmat->yy = 0;
776
0
        pmat->tx = 0;
777
0
        pmat->ty = 0;
778
0
        break;
779
0
    default:
780
16.3M
    case 0:
781
16.3M
        pmat->xx = fs_res;
782
16.3M
        pmat->xy = 0;
783
16.3M
        pmat->yx = 0;
784
16.3M
        pmat->yy = -ss_res;
785
16.3M
        pmat->tx = 0;
786
16.3M
        pmat->ty = (float)dev->height;
787
        /****** tx/y is WRONG for devices with ******/
788
        /****** arbitrary initial matrix ******/
789
16.3M
        break;
790
16.3M
    }
791
16.3M
}
792
/* Get the initial matrix for a device with upright Y. */
793
/* This includes just a few printers and window systems. */
794
void
795
gx_upright_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
796
95.8k
{
797
95.8k
    pmat->xx = dev->HWResolution[0] / 72.0; /* x_pixels_per_inch */
798
95.8k
    pmat->xy = 0;
799
95.8k
    pmat->yx = 0;
800
95.8k
    pmat->yy = dev->HWResolution[1] / 72.0; /* y_pixels_per_inch */
801
    /****** tx/y is WRONG for devices with ******/
802
    /****** arbitrary initial matrix ******/
803
95.8k
    pmat->tx = 0;
804
95.8k
    pmat->ty = 0;
805
95.8k
}
806
807
int
808
gx_default_sync_output(gx_device * dev) /* lgtm [cpp/useless-expression] */
809
79.6k
{
810
79.6k
    return 0;
811
79.6k
}
812
813
int
814
gx_default_output_page(gx_device * dev, int num_copies, int flush)
815
0
{
816
0
    int code = dev_proc(dev, sync_output)(dev);
817
818
0
    if (code >= 0)
819
0
        code = gx_finish_output_page(dev, num_copies, flush);
820
0
    return code;
821
0
}
822
823
int
824
gx_default_close_device(gx_device * dev)
825
57.8k
{
826
57.8k
    return 0;
827
57.8k
}
828
829
gx_device *
830
gx_default_get_page_device(gx_device * dev)
831
35.7k
{
832
35.7k
    return NULL;
833
35.7k
}
834
gx_device *
835
gx_page_device_get_page_device(gx_device * dev)
836
1.20M
{
837
1.20M
    return dev;
838
1.20M
}
839
840
int
841
gx_default_get_alpha_bits(gx_device * dev, graphics_object_type type)
842
6.23M
{
843
6.23M
    return (type == go_text ? dev->color_info.anti_alias.text_bits :
844
6.23M
            dev->color_info.anti_alias.graphics_bits);
845
6.23M
}
846
847
void
848
gx_default_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
849
2.44M
{
850
2.44M
    pbox->p.x = 0;
851
2.44M
    pbox->p.y = 0;
852
2.44M
    pbox->q.x = int2fixed(dev->width);
853
2.44M
    pbox->q.y = int2fixed(dev->height);
854
2.44M
}
855
void
856
gx_get_largest_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
857
0
{
858
0
    pbox->p.x = min_fixed;
859
0
    pbox->p.y = min_fixed;
860
0
    pbox->q.x = max_fixed;
861
0
    pbox->q.y = max_fixed;
862
0
}
863
864
int
865
gx_no_composite(gx_device * dev, gx_device ** pcdev,
866
                        const gs_composite_t * pcte,
867
                        gs_gstate * pgs, gs_memory_t * memory,
868
                        gx_device *cdev)
869
0
{
870
0
    return_error(gs_error_unknownerror);  /* not implemented */
871
0
}
872
int
873
gx_default_composite(gx_device * dev, gx_device ** pcdev,
874
                             const gs_composite_t * pcte,
875
                             gs_gstate * pgs, gs_memory_t * memory,
876
                             gx_device *cdev)
877
128k
{
878
128k
    return pcte->type->procs.create_default_compositor
879
128k
        (pcte, pcdev, dev, pgs, memory);
880
128k
}
881
int
882
gx_null_composite(gx_device * dev, gx_device ** pcdev,
883
                          const gs_composite_t * pcte,
884
                          gs_gstate * pgs, gs_memory_t * memory,
885
                          gx_device *cdev)
886
0
{
887
0
    *pcdev = dev;
888
0
    return 0;
889
0
}
890
891
/*
892
 * Default handler for creating a compositor device when writing the clist. */
893
int
894
gx_default_composite_clist_write_update(const gs_composite_t *pcte, gx_device * dev,
895
                gx_device ** pcdev, gs_gstate * pgs, gs_memory_t * mem)
896
29.0k
{
897
29.0k
    *pcdev = dev;   /* Do nothing -> return the same device */
898
29.0k
    return 0;
899
29.0k
}
900
901
/* Default handler for adjusting a compositor's CTM. */
902
int
903
gx_default_composite_adjust_ctm(gs_composite_t *pcte, int x0, int y0, gs_gstate *pgs)
904
8.15M
{
905
8.15M
    return 0;
906
8.15M
}
907
908
/*
909
 * Default check for closing compositor.
910
 */
911
gs_compositor_closing_state
912
gx_default_composite_is_closing(const gs_composite_t *this, gs_composite_t **pcte, gx_device *dev)
913
0
{
914
0
    return COMP_ENQUEUE;
915
0
}
916
917
/*
918
 * Default check whether a next operation is friendly to the compositor.
919
 */
920
bool
921
gx_default_composite_is_friendly(const gs_composite_t *this, byte cmd0, byte cmd1)
922
260k
{
923
260k
    return false;
924
260k
}
925
926
/*
927
 * Default handler for updating the clist device when reading a compositing
928
 * device.
929
 */
930
int
931
gx_default_composite_clist_read_update(gs_composite_t *pxcte, gx_device * cdev,
932
                gx_device * tdev, gs_gstate * pgs, gs_memory_t * mem)
933
8.15M
{
934
8.15M
    return 0;     /* Do nothing */
935
8.15M
}
936
937
/*
938
 * Default handler for get_cropping returns no cropping.
939
 */
940
int
941
gx_default_composite_get_cropping(const gs_composite_t *pxcte, int *ry, int *rheight,
942
                                  int cropping_min, int cropping_max)
943
29.0k
{
944
29.0k
    return 0;     /* No cropping. */
945
29.0k
}
946
947
int
948
gx_default_initialize_device(gx_device *dev)
949
0
{
950
0
    return 0;
951
0
}
952
953
int
954
gx_default_dev_spec_op(gx_device *pdev, int dev_spec_op, void *data, int size)
955
17.4M
{
956
17.4M
    switch(dev_spec_op) {
957
0
        case gxdso_form_begin:
958
0
        case gxdso_form_end:
959
1.16k
        case gxdso_pattern_can_accum:
960
1.16k
        case gxdso_pattern_start_accum:
961
1.16k
        case gxdso_pattern_finish_accum:
962
8.32k
        case gxdso_pattern_load:
963
150k
        case gxdso_pattern_shading_area:
964
175k
        case gxdso_pattern_is_cpath_accum:
965
175k
        case gxdso_pattern_handles_clip_path:
966
175k
        case gxdso_is_pdf14_device:
967
175k
        case gxdso_supports_devn:
968
176k
        case gxdso_supports_hlcolor:
969
176k
        case gxdso_supports_saved_pages:
970
176k
        case gxdso_needs_invariant_palette:
971
191k
        case gxdso_supports_iccpostrender:
972
262k
        case gxdso_supports_alpha:
973
263k
        case gxdso_pdf14_sep_device:
974
367k
        case gxdso_supports_pattern_transparency:
975
367k
        case gxdso_overprintsim_state:
976
376k
        case gxdso_skip_icc_component_validation:
977
376k
            return 0;
978
0
        case gxdso_pattern_shfill_doesnt_need_path:
979
0
            return (dev_proc(pdev, fill_path) == gx_default_fill_path);
980
0
        case gxdso_is_std_cmyk_1bit:
981
0
            return (dev_proc(pdev, map_cmyk_color) == cmyk_1bit_map_cmyk_color);
982
0
        case gxdso_interpolate_antidropout:
983
0
            return pdev->color_info.use_antidropout_downscaler;
984
123k
        case gxdso_interpolate_threshold:
985
123k
            if ((pdev->color_info.num_components == 1 &&
986
123k
                 pdev->color_info.max_gray < 15) ||
987
123k
                (pdev->color_info.num_components > 1 &&
988
123k
                 pdev->color_info.max_color < 15)) {
989
                /* If we are a limited color device (i.e. we are halftoning)
990
                 * then only interpolate if we are upscaling by at least 4 */
991
123k
                return 4;
992
123k
            }
993
0
            return 0; /* Otherwise no change */
994
397k
        case gxdso_get_dev_param:
995
397k
            {
996
397k
                dev_param_req_t *request = (dev_param_req_t *)data;
997
397k
                return gx_default_get_param(pdev, request->Param, request->list);
998
123k
            }
999
157k
        case gxdso_current_output_device:
1000
157k
            {
1001
157k
                *(gx_device **)data = pdev;
1002
157k
                return 0;
1003
123k
            }
1004
0
        case gxdso_copy_color_is_fast:
1005
0
            return (dev_proc(pdev, copy_color) != gx_default_copy_color);
1006
0
        case gxdso_is_encoding_direct:
1007
0
            if (pdev->color_info.depth != 8 * pdev->color_info.num_components)
1008
0
                return 0;
1009
0
            return (dev_proc(pdev, encode_color) == gx_default_encode_color ||
1010
0
                    dev_proc(pdev, encode_color) == gx_default_rgb_map_rgb_color);
1011
        /* Just ignore information about events */
1012
0
        case gxdso_event_info:
1013
0
            return 0;
1014
1.18k
        case gxdso_overprint_active:
1015
1.18k
            return 0;
1016
17.4M
    }
1017
17.4M
    return_error(gs_error_undefined);
1018
17.4M
}
1019
1020
int
1021
gx_default_fill_rectangle_hl_color(gx_device *pdev,
1022
    const gs_fixed_rect *rect,
1023
    const gs_gstate *pgs, const gx_drawing_color *pdcolor,
1024
    const gx_clip_path *pcpath)
1025
2
{
1026
2
    return_error(gs_error_rangecheck);
1027
2
}
1028
1029
int
1030
gx_default_include_color_space(gx_device *pdev, gs_color_space *cspace,
1031
        const byte *res_name, int name_length)
1032
0
{
1033
0
    return 0;
1034
0
}
1035
1036
/*
1037
 * If a device wants to determine an equivalent color for its spot colors then
1038
 * it needs to implement this method.  See comments at the start of
1039
 * src/gsequivc.c.
1040
 */
1041
int
1042
gx_default_update_spot_equivalent_colors(gx_device *pdev, const gs_gstate * pgs, const gs_color_space *pcs)
1043
1.17k
{
1044
1.17k
    return 0;
1045
1.17k
}
1046
1047
/*
1048
 * If a device wants to determine implement support for spot colors then
1049
 * it needs to implement this method.
1050
 */
1051
gs_devn_params *
1052
gx_default_ret_devn_params(gx_device *pdev)
1053
15.4M
{
1054
15.4M
    return NULL;
1055
15.4M
}
1056
1057
int
1058
gx_default_process_page(gx_device *dev, gx_process_page_options_t *options)
1059
0
{
1060
0
    gs_int_rect rect;
1061
0
    int code = 0;
1062
0
    void *buffer = NULL;
1063
1064
    /* Possible future improvements in here could be given by us dividing the
1065
     * page up into n chunks, and spawning a thread per chunk to do the
1066
     * process_fn call on. n could be given by NumRenderingThreads. This
1067
     * would give us multi-core advantages even without clist. */
1068
0
    if (options->init_buffer_fn) {
1069
0
        code = options->init_buffer_fn(options->arg, dev, dev->memory, dev->width, dev->height, &buffer);
1070
0
        if (code < 0)
1071
0
            return code;
1072
0
    }
1073
1074
0
    rect.p.x = 0;
1075
0
    rect.p.y = 0;
1076
0
    rect.q.x = dev->width;
1077
0
    rect.q.y = dev->height;
1078
0
    if (options->process_fn)
1079
0
        code = options->process_fn(options->arg, dev, dev, &rect, buffer);
1080
0
    if (code >= 0 && options->output_fn)
1081
0
        code = options->output_fn(options->arg, dev, buffer);
1082
1083
0
    if (options->free_buffer_fn)
1084
0
        options->free_buffer_fn(options->arg, dev, dev->memory, buffer);
1085
1086
0
    return code;
1087
0
}
1088
1089
int
1090
gx_default_begin_transparency_group(gx_device *dev, const gs_transparency_group_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1091
0
{
1092
0
    return 0;
1093
0
}
1094
1095
int
1096
gx_default_end_transparency_group(gx_device *dev, gs_gstate *pgs)
1097
0
{
1098
0
    return 0;
1099
0
}
1100
1101
int
1102
gx_default_begin_transparency_mask(gx_device *dev, const gx_transparency_mask_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1103
0
{
1104
0
    return 0;
1105
0
}
1106
1107
int
1108
gx_default_end_transparency_mask(gx_device *dev, gs_gstate *pgs)
1109
0
{
1110
0
    return 0;
1111
0
}
1112
1113
int
1114
gx_default_discard_transparency_layer(gx_device *dev, gs_gstate *pgs)
1115
0
{
1116
0
    return 0;
1117
0
}
1118
1119
int
1120
gx_default_push_transparency_state(gx_device *dev, gs_gstate *pgs)
1121
0
{
1122
0
    return 0;
1123
0
}
1124
1125
int
1126
gx_default_pop_transparency_state(gx_device *dev, gs_gstate *pgs)
1127
0
{
1128
0
    return 0;
1129
0
}
1130
1131
int
1132
gx_default_put_image(gx_device *dev, gx_device *mdev, const byte **buffers, int num_chan, int x, int y, int width, int height, int row_stride, int alpha_plane_index, int tag_plane_index)
1133
0
{
1134
0
    return_error(gs_error_undefined);
1135
0
}
1136
1137
int
1138
gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth)
1139
0
{
1140
0
    return_error(gs_error_undefined);
1141
0
}
1142
1143
int
1144
gx_default_copy_planes(gx_device *dev, const byte *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, int plane_height)
1145
0
{
1146
0
    return_error(gs_error_undefined);
1147
0
}
1148
1149
/* ---------------- Default per-instance procedures ---------------- */
1150
1151
int
1152
gx_default_install(gx_device * dev, gs_gstate * pgs)
1153
46.0k
{
1154
46.0k
    return 0;
1155
46.0k
}
1156
1157
int
1158
gx_default_begin_page(gx_device * dev, gs_gstate * pgs)
1159
60.2k
{
1160
60.2k
    return 0;
1161
60.2k
}
1162
1163
int
1164
gx_default_end_page(gx_device * dev, int reason, gs_gstate * pgs)
1165
69.8k
{
1166
69.8k
    return (reason != 2 ? 1 : 0);
1167
69.8k
}
1168
1169
void
1170
gx_default_set_graphics_type_tag(gx_device *dev, gs_graphics_type_tag_t graphics_type_tag)
1171
225k
{
1172
    /* set the tag but carefully preserve GS_DEVICE_ENCODES_TAGS */
1173
225k
    dev->graphics_type_tag = (dev->graphics_type_tag & GS_DEVICE_ENCODES_TAGS) | graphics_type_tag;
1174
225k
}
1175
1176
/* ---------------- Device subclassing procedures ---------------- */
1177
1178
/* Non-obvious code. The 'dest_procs' is the 'procs' memory occupied by the original device that we decided to subclass,
1179
 * 'src_procs' is the newly allocated piece of memory, to which we have already copied the content of the
1180
 * original device (including the procs), prototype is the device structure prototype for the subclassing device.
1181
 * Here we copy the methods from the prototype to the original device procs memory *but* if the original (src_procs)
1182
 * device had a NULL method, we make the new device procs have a NULL method too.
1183
 * The reason for ths is ugly, there are some places in the graphics library which explicitly check for
1184
 * a device having a NULL method and take different code paths depending on the result.
1185
 * Now in general we expect subclassing devices to implement *every* method, so if we didn't copy
1186
 * over NULL methods present in the original source device then the code path could be inappropriate for
1187
 * that underlying (now subclassed) device.
1188
 */
1189
/* November 10th 2017 Restored the original behaviour of the device methods, they should now never be NULL.
1190
 * Howwever, there are still places in the code which take different code paths if the device method is (now)
1191
 * the default device method, rather than a device-specific method.
1192
 * So instead of checking for NULL, we now need to check against the default implementation, and *NOT* copy the
1193
 * prototype (subclass device) method if the original device had the default implementation.
1194
 * I suspect a combination of forwarding and subclassing devices will not work properly for this reason.
1195
 */
1196
int gx_copy_device_procs(gx_device *dest, const gx_device *src, const gx_device *pprototype)
1197
0
{
1198
0
    gx_device prototype = *pprototype;
1199
1200
    /* In the new (as of 2021) world, the prototype does not contain
1201
     * device procs. We need to call the 'initialize_device_procs'
1202
     * function to properly populate the procs array. We can't write to
1203
     * the const prototype pointer we are passed in, so copy it to a
1204
     * local block, and initialize that instead, */
1205
0
    prototype.initialize_device_procs(&prototype);
1206
    /* Fill in missing entries with the global defaults */
1207
0
    gx_device_fill_in_procs(&prototype);
1208
1209
0
    if (dest->initialize_device_procs == NULL)
1210
0
       dest->initialize_device_procs = prototype.initialize_device_procs;
1211
1212
0
    set_dev_proc(dest, initialize_device, dev_proc(&prototype, initialize_device));
1213
0
    set_dev_proc(dest, open_device, dev_proc(&prototype, open_device));
1214
0
    set_dev_proc(dest, get_initial_matrix, dev_proc(&prototype, get_initial_matrix));
1215
0
    set_dev_proc(dest, sync_output, dev_proc(&prototype, sync_output));
1216
0
    set_dev_proc(dest, output_page, dev_proc(&prototype, output_page));
1217
0
    set_dev_proc(dest, close_device, dev_proc(&prototype, close_device));
1218
0
    set_dev_proc(dest, map_rgb_color, dev_proc(&prototype, map_rgb_color));
1219
0
    set_dev_proc(dest, map_color_rgb, dev_proc(&prototype, map_color_rgb));
1220
0
    set_dev_proc(dest, fill_rectangle, dev_proc(&prototype, fill_rectangle));
1221
0
    set_dev_proc(dest, copy_mono, dev_proc(&prototype, copy_mono));
1222
0
    set_dev_proc(dest, copy_color, dev_proc(&prototype, copy_color));
1223
0
    set_dev_proc(dest, get_params, dev_proc(&prototype, get_params));
1224
0
    set_dev_proc(dest, put_params, dev_proc(&prototype, put_params));
1225
0
    set_dev_proc(dest, map_cmyk_color, dev_proc(&prototype, map_cmyk_color));
1226
0
    set_dev_proc(dest, get_page_device, dev_proc(&prototype, get_page_device));
1227
0
    set_dev_proc(dest, get_alpha_bits, dev_proc(&prototype, get_alpha_bits));
1228
0
    set_dev_proc(dest, copy_alpha, dev_proc(&prototype, copy_alpha));
1229
0
    set_dev_proc(dest, fill_path, dev_proc(&prototype, fill_path));
1230
0
    set_dev_proc(dest, stroke_path, dev_proc(&prototype, stroke_path));
1231
0
    set_dev_proc(dest, fill_trapezoid, dev_proc(&prototype, fill_trapezoid));
1232
0
    set_dev_proc(dest, fill_parallelogram, dev_proc(&prototype, fill_parallelogram));
1233
0
    set_dev_proc(dest, fill_triangle, dev_proc(&prototype, fill_triangle));
1234
0
    set_dev_proc(dest, draw_thin_line, dev_proc(&prototype, draw_thin_line));
1235
0
    set_dev_proc(dest, strip_tile_rectangle, dev_proc(&prototype, strip_tile_rectangle));
1236
0
    set_dev_proc(dest, get_clipping_box, dev_proc(&prototype, get_clipping_box));
1237
0
    set_dev_proc(dest, begin_typed_image, dev_proc(&prototype, begin_typed_image));
1238
0
    set_dev_proc(dest, get_bits_rectangle, dev_proc(&prototype, get_bits_rectangle));
1239
0
    set_dev_proc(dest, composite, dev_proc(&prototype, composite));
1240
0
    set_dev_proc(dest, get_hardware_params, dev_proc(&prototype, get_hardware_params));
1241
0
    set_dev_proc(dest, text_begin, dev_proc(&prototype, text_begin));
1242
0
    set_dev_proc(dest, discard_transparency_layer, dev_proc(&prototype, discard_transparency_layer));
1243
0
    set_dev_proc(dest, get_color_mapping_procs, dev_proc(&prototype, get_color_mapping_procs));
1244
0
    set_dev_proc(dest, get_color_comp_index, dev_proc(&prototype, get_color_comp_index));
1245
0
    set_dev_proc(dest, encode_color, dev_proc(&prototype, encode_color));
1246
0
    set_dev_proc(dest, decode_color, dev_proc(&prototype, decode_color));
1247
0
    set_dev_proc(dest, fill_rectangle_hl_color, dev_proc(&prototype, fill_rectangle_hl_color));
1248
0
    set_dev_proc(dest, include_color_space, dev_proc(&prototype, include_color_space));
1249
0
    set_dev_proc(dest, fill_linear_color_scanline, dev_proc(&prototype, fill_linear_color_scanline));
1250
0
    set_dev_proc(dest, fill_linear_color_trapezoid, dev_proc(&prototype, fill_linear_color_trapezoid));
1251
0
    set_dev_proc(dest, fill_linear_color_triangle, dev_proc(&prototype, fill_linear_color_triangle));
1252
0
    set_dev_proc(dest, update_spot_equivalent_colors, dev_proc(&prototype, update_spot_equivalent_colors));
1253
0
    set_dev_proc(dest, ret_devn_params, dev_proc(&prototype, ret_devn_params));
1254
0
    set_dev_proc(dest, fillpage, dev_proc(&prototype, fillpage));
1255
0
    set_dev_proc(dest, push_transparency_state, dev_proc(&prototype, push_transparency_state));
1256
0
    set_dev_proc(dest, pop_transparency_state, dev_proc(&prototype, pop_transparency_state));
1257
0
    set_dev_proc(dest, dev_spec_op, dev_proc(&prototype, dev_spec_op));
1258
0
    set_dev_proc(dest, get_profile, dev_proc(&prototype, get_profile));
1259
0
    set_dev_proc(dest, strip_copy_rop2, dev_proc(&prototype, strip_copy_rop2));
1260
0
    set_dev_proc(dest, strip_tile_rect_devn, dev_proc(&prototype, strip_tile_rect_devn));
1261
0
    set_dev_proc(dest, process_page, dev_proc(&prototype, process_page));
1262
0
    set_dev_proc(dest, transform_pixel_region, dev_proc(&prototype, transform_pixel_region));
1263
0
    set_dev_proc(dest, fill_stroke_path, dev_proc(&prototype, fill_stroke_path));
1264
0
    set_dev_proc(dest, lock_pattern, dev_proc(&prototype, lock_pattern));
1265
1266
    /*
1267
     * We absolutely must set the 'set_graphics_type_tag' to the default subclass one
1268
     * even if the subclassed device is using the default. This is because the
1269
     * default implementation sets a flag in the device structure, and if we
1270
     * copy the default method, we'll end up setting the flag in the subclassing device
1271
     * instead of the subclassed device!
1272
     */
1273
0
    set_dev_proc(dest, set_graphics_type_tag, dev_proc(&prototype, set_graphics_type_tag));
1274
1275
    /* These are the routines whose existence is checked against the default at
1276
     * some point in the code. The code path differs when the device implements a
1277
     * method other than the default, so the subclassing device needs to ensure that
1278
     * if the subclassed device has one of these methods set to the default, we
1279
     * do not overwrite the default method.
1280
     */
1281
0
    if (dev_proc(src, fill_mask) != gx_default_fill_mask)
1282
0
        set_dev_proc(dest, fill_mask, dev_proc(&prototype, fill_mask));
1283
0
    if (dev_proc(src, begin_transparency_group) != gx_default_begin_transparency_group)
1284
0
        set_dev_proc(dest, begin_transparency_group, dev_proc(&prototype, begin_transparency_group));
1285
0
    if (dev_proc(src, end_transparency_group) != gx_default_end_transparency_group)
1286
0
        set_dev_proc(dest, end_transparency_group, dev_proc(&prototype, end_transparency_group));
1287
0
    if (dev_proc(src, put_image) != gx_default_put_image)
1288
0
        set_dev_proc(dest, put_image, dev_proc(&prototype, put_image));
1289
0
    if (dev_proc(src, copy_planes) != gx_default_copy_planes)
1290
0
        set_dev_proc(dest, copy_planes, dev_proc(&prototype, copy_planes));
1291
0
    if (dev_proc(src, copy_alpha_hl_color) != gx_default_no_copy_alpha_hl_color)
1292
0
        set_dev_proc(dest, copy_alpha_hl_color, dev_proc(&prototype, copy_alpha_hl_color));
1293
1294
0
    return 0;
1295
0
}
1296
1297
int gx_device_subclass(gx_device *dev_to_subclass, gx_device *new_prototype, unsigned int private_data_size)
1298
2
{
1299
2
    gx_device *child_dev;
1300
2
    void *psubclass_data;
1301
2
    gs_memory_struct_type_t *a_std = NULL, *b_std = NULL;
1302
2
    int dynamic = dev_to_subclass->stype_is_dynamic;
1303
2
    char *ptr, *ptr1;
1304
1305
    /* If this happens we are stuffed, as there is no way to get hold
1306
     * of the original device's stype structure, which means we cannot
1307
     * allocate a replacement structure. Abort if so.
1308
     * Also abort if the new_prototype device struct is too large.
1309
     */
1310
2
    if (!dev_to_subclass->stype ||
1311
2
        dev_to_subclass->stype->ssize < new_prototype->params_size)
1312
2
        return_error(gs_error_VMerror);
1313
1314
    /* We make a 'stype' structure for our new device, and copy the old stype into it
1315
     * This means our new device will always have the 'stype_is_dynamic' flag set
1316
     */
1317
0
    a_std = (gs_memory_struct_type_t *)
1318
0
        gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*a_std),
1319
0
                                 "gs_device_subclass(stype)");
1320
0
    if (!a_std)
1321
0
        return_error(gs_error_VMerror);
1322
0
    *a_std = *dev_to_subclass->stype;
1323
0
    a_std->ssize = dev_to_subclass->params_size;
1324
1325
0
    if (!dynamic) {
1326
0
        b_std = (gs_memory_struct_type_t *)
1327
0
            gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*b_std),
1328
0
                                     "gs_device_subclass(stype)");
1329
0
        if (!b_std) {
1330
0
            gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1331
0
            return_error(gs_error_VMerror);
1332
0
        }
1333
0
    }
1334
1335
    /* Allocate a device structure for the new child device */
1336
0
    child_dev = gs_alloc_struct_immovable(dev_to_subclass->memory->stable_memory, gx_device, a_std,
1337
0
                                        "gs_device_subclass(device)");
1338
0
    if (child_dev == 0) {
1339
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1340
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1341
0
        return_error(gs_error_VMerror);
1342
0
    }
1343
1344
    /* Make sure all methods are filled in, note this won't work for a forwarding device
1345
     * so forwarding devices will have to be filled in before being subclassed. This doesn't fill
1346
     * in the fill_rectangle proc, that gets done in the ultimate device's open proc.
1347
     */
1348
0
    gx_device_fill_in_procs(dev_to_subclass);
1349
0
    memcpy(child_dev, dev_to_subclass, dev_to_subclass->stype->ssize);
1350
0
    child_dev->stype = a_std;
1351
0
    child_dev->stype_is_dynamic = 1;
1352
1353
    /* At this point, the only counted reference to the child is from its parent, and we need it to use the right allocator */
1354
0
    rc_init(child_dev, dev_to_subclass->memory->stable_memory, 1);
1355
1356
0
    psubclass_data = (void *)gs_alloc_bytes(dev_to_subclass->memory->non_gc_memory, private_data_size, "subclass memory for subclassing device");
1357
0
    if (psubclass_data == 0){
1358
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1359
        /* We *don't* want to run the finalize routine. This would free the stype and
1360
         * properly handle the icc_struct and PageList, but for devices with a custom
1361
         * finalize (eg psdcmyk) it might also free memory it had allocated, and we're
1362
         * still pointing at that memory in the parent.
1363
         */
1364
0
        a_std->finalize = NULL;
1365
0
        gs_set_object_type(dev_to_subclass->memory->stable_memory, child_dev, a_std);
1366
0
        gs_free_object(dev_to_subclass->memory->stable_memory, child_dev, "free subclass memory for subclassing device");
1367
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1368
0
        return_error(gs_error_VMerror);
1369
0
    }
1370
0
    memset(psubclass_data, 0x00, private_data_size);
1371
1372
0
    gx_copy_device_procs(dev_to_subclass, child_dev, new_prototype);
1373
0
    dev_to_subclass->finalize = new_prototype->finalize;
1374
0
    dev_to_subclass->dname = new_prototype->dname;
1375
0
    if (dev_to_subclass->icc_struct)
1376
0
        rc_increment(dev_to_subclass->icc_struct);
1377
0
    if (dev_to_subclass->PageList)
1378
0
        rc_increment(dev_to_subclass->PageList);
1379
0
    if (dev_to_subclass->NupControl)
1380
0
        rc_increment(dev_to_subclass->NupControl);
1381
1382
0
    dev_to_subclass->page_procs = new_prototype->page_procs;
1383
0
    gx_subclass_fill_in_page_procs(dev_to_subclass);
1384
1385
    /* In case the new device we're creating has already been initialised, copy
1386
     * its additional data.
1387
     */
1388
0
    ptr = ((char *)dev_to_subclass) + sizeof(gx_device);
1389
0
    ptr1 = ((char *)new_prototype) + sizeof(gx_device);
1390
0
    memcpy(ptr, ptr1, new_prototype->params_size - sizeof(gx_device));
1391
1392
    /* If the original device's stype structure was dynamically allocated, we need
1393
     * to 'fixup' the contents, it's procs need to point to the new device's procs
1394
     * for instance.
1395
     */
1396
0
    if (dynamic) {
1397
0
        if (new_prototype->stype) {
1398
0
            b_std = (gs_memory_struct_type_t *)dev_to_subclass->stype;
1399
0
            *b_std = *new_prototype->stype;
1400
0
            b_std->ssize = a_std->ssize;
1401
0
            dev_to_subclass->stype_is_dynamic = 1;
1402
0
        } else {
1403
0
            gs_free_const_object(child_dev->memory->non_gc_memory, dev_to_subclass->stype,
1404
0
                             "unsubclass");
1405
0
            dev_to_subclass->stype = NULL;
1406
0
            b_std = (gs_memory_struct_type_t *)new_prototype->stype;
1407
0
            dev_to_subclass->stype_is_dynamic = 0;
1408
0
        }
1409
0
    }
1410
0
    else {
1411
0
        *b_std = *new_prototype->stype;
1412
0
        b_std->ssize = a_std->ssize;
1413
0
        dev_to_subclass->stype_is_dynamic = 1;
1414
0
    }
1415
0
    dev_to_subclass->stype = b_std;
1416
    /* We have to patch up the "type" parameters that the memory manage/garbage
1417
     * collector will use, as well.
1418
     */
1419
0
    gs_set_object_type(child_dev->memory, dev_to_subclass, b_std);
1420
1421
0
    dev_to_subclass->subclass_data = psubclass_data;
1422
0
    dev_to_subclass->child = child_dev;
1423
0
    if (child_dev->parent) {
1424
0
        dev_to_subclass->parent = child_dev->parent;
1425
0
        child_dev->parent->child = dev_to_subclass;
1426
0
    }
1427
0
    if (child_dev->child) {
1428
0
        child_dev->child->parent = child_dev;
1429
0
    }
1430
0
    child_dev->parent = dev_to_subclass;
1431
1432
0
    return 0;
1433
0
}
1434
1435
void gx_device_unsubclass(gx_device *dev)
1436
0
{
1437
0
    generic_subclass_data *psubclass_data;
1438
0
    gx_device *parent, *child;
1439
0
    gs_memory_struct_type_t *a_std = 0, *b_std = 0;
1440
0
    int dynamic, ref_count;
1441
0
    gs_memory_t *rcmem;
1442
1443
    /* This should not happen... */
1444
0
    if (!dev)
1445
0
        return;
1446
1447
0
    ref_count = dev->rc.ref_count;
1448
0
    rcmem = dev->rc.memory;
1449
1450
0
    child = dev->child;
1451
0
    psubclass_data = (generic_subclass_data *)dev->subclass_data;
1452
0
    parent = dev->parent;
1453
0
    dynamic = dev->stype_is_dynamic;
1454
1455
    /* We need to account for the fact that we are removing ourselves from
1456
     * the device chain after a clist device has been pushed, due to a
1457
     * compositor action. Since we patched the clist 'composite'
1458
     * method (and target device) when it was pushed.
1459
     * A point to note; we *don't* want to change the forwarding device's
1460
     * 'target', because when we copy the child up to replace 'this' device
1461
     * we do still want the forwarding device to point here. NB its the *child*
1462
     * device that goes away.
1463
     */
1464
0
    if (psubclass_data != NULL && psubclass_data->forwarding_dev != NULL && psubclass_data->saved_compositor_method)
1465
0
        psubclass_data->forwarding_dev->procs.composite = psubclass_data->saved_compositor_method;
1466
1467
    /* If ths device's stype is dynamically allocated, keep a copy of it
1468
     * in case we might need it.
1469
     */
1470
0
    if (dynamic) {
1471
0
        a_std = (gs_memory_struct_type_t *)dev->stype;
1472
0
        if (child)
1473
0
            *a_std = *child->stype;
1474
0
    }
1475
1476
    /* If ths device has any private storage, free it now */
1477
0
    if (psubclass_data)
1478
0
        gs_free_object(dev->memory->non_gc_memory, psubclass_data, "gx_device_unsubclass");
1479
1480
    /* Copy the child device into ths device's memory */
1481
0
    if (child) {
1482
0
        b_std = (gs_memory_struct_type_t *)dev->stype;
1483
0
        rc_decrement(dev->icc_struct, "unsubclass device");
1484
0
        rc_increment(child->icc_struct);
1485
0
        memcpy(dev, child, child->stype->ssize);
1486
        /* Patch back the 'stype' in the memory manager */
1487
0
        gs_set_object_type(child->memory, dev, b_std);
1488
1489
0
        dev->stype = b_std;
1490
        /* The reference count of the subclassing device may have been
1491
         * changed (eg graphics states pointing to it) after we subclassed
1492
         * the device. We need to ensure that we do not overwrite this
1493
         * when we copy back the subclassed device.
1494
         */
1495
0
        dev->rc.ref_count = ref_count;
1496
0
        dev->rc.memory = rcmem;
1497
1498
        /* If we have a chain of devices, make sure the chain beyond the
1499
         * device we're unsubclassing doesn't get broken, we need to
1500
         * detach the lower chain and reattach it at the new highest level.
1501
         */
1502
0
        if (child->child)
1503
0
            child->child->parent = dev;
1504
0
        child->parent->child = child->child;
1505
0
    }
1506
1507
    /* How can we have a subclass device with no child ? Simples; when we
1508
     * hit the end of job restore, the devices are not freed in device
1509
     * chain order. To make sure we don't end up following stale pointers,
1510
     * when a device is freed we remove it from the chain and update
1511
     * any dangling pointers to NULL. When we later free the remaining
1512
     * devices it's possible that their child pointer can then be NULL.
1513
     */
1514
0
    if (child) {
1515
        /* We cannot afford to free the child device if its stype is not
1516
         * dynamic because we can't 'null' the finalise routine, and we
1517
         * cannot permit the device to be finalised because we have copied
1518
         * it up one level, not discarded it. (This shouldn't happen! Child
1519
         * devices are always created with a dynamic stype.) If this ever
1520
         * happens garbage collecton will eventually clean up the memory.
1521
         */
1522
0
        if (child->stype_is_dynamic) {
1523
            /* Make sure that nothing will try to follow the device chain,
1524
             * just security here. */
1525
0
            child->parent = NULL;
1526
0
            child->child = NULL;
1527
1528
            /* We *don't* want to run the finalize routine. This would free
1529
             * the stype and properly handle the icc_struct and PageList,
1530
             * but for devices with a custom finalize (eg psdcmyk) it might
1531
             * also free memory it had allocated, and we're still pointing
1532
             * at that memory in the parent. The indirection through a
1533
             * variable is just to get rid of const warnings.
1534
             */
1535
0
            b_std = (gs_memory_struct_type_t *)child->stype;
1536
0
            gs_free_const_object(dev->memory->non_gc_memory, b_std, "gs_device_unsubclass(stype)");
1537
            /* Make this into a generic device */
1538
0
            child->stype = &st_device;
1539
0
            child->stype_is_dynamic = false;
1540
1541
            /* We can't simply discard the child device, because there may be references to it elsewhere,
1542
               but equally, we really don't want it doing anything, so set the procs so actions are just discarded.
1543
             */
1544
0
            gx_copy_device_procs(child, (gx_device *)&gs_null_device, (gx_device *)&gs_null_device);
1545
1546
            /* Having changed the stype, we need to make sure the memory
1547
             * manager uses it. It keeps a copy in its own data structure,
1548
             * and would use that copy, which would mean it would call the
1549
             * finalize routine that we just patched out.
1550
             */
1551
0
            gs_set_object_type(dev->memory->stable_memory, child, child->stype);
1552
0
            child->finalize = NULL;
1553
            /* Now (finally) free the child memory */
1554
0
            rc_decrement(child, "gx_device_unsubclass(device)");
1555
0
        }
1556
0
    }
1557
0
    dev->parent = parent;
1558
1559
    /* If this device has a dynamic stype, we wnt to keep using it, but we copied
1560
     * the stype pointer from the child when we copied the rest of the device. So
1561
     * we update the stype pointer with the saved pointer to this device's stype.
1562
     */
1563
0
    if (dynamic) {
1564
0
        dev->stype = a_std;
1565
0
        dev->stype_is_dynamic = 1;
1566
0
    } else {
1567
0
        dev->stype_is_dynamic = 0;
1568
0
    }
1569
0
}
1570
1571
int gx_update_from_subclass(gx_device *dev)
1572
0
{
1573
0
    if (!dev->child)
1574
0
        return 0;
1575
1576
0
    memcpy(&dev->color_info, &dev->child->color_info, sizeof(gx_device_color_info));
1577
0
    memcpy(&dev->cached_colors, &dev->child->cached_colors, sizeof(gx_device_cached_colors_t));
1578
0
    dev->max_fill_band = dev->child->max_fill_band;
1579
0
    dev->width = dev->child->width;
1580
0
    dev->height = dev->child->height;
1581
0
    dev->pad = dev->child->pad;
1582
0
    dev->log2_align_mod = dev->child->log2_align_mod;
1583
0
    dev->max_fill_band = dev->child->max_fill_band;
1584
0
    dev->num_planar_planes = dev->child->num_planar_planes;
1585
0
    dev->LeadingEdge = dev->child->LeadingEdge;
1586
0
    memcpy(&dev->ImagingBBox, &dev->child->ImagingBBox, sizeof(dev->child->ImagingBBox));
1587
0
    dev->ImagingBBox_set = dev->child->ImagingBBox_set;
1588
0
    memcpy(&dev->MediaSize, &dev->child->MediaSize, sizeof(dev->child->MediaSize));
1589
0
    memcpy(&dev->HWResolution, &dev->child->HWResolution, sizeof(dev->child->HWResolution));
1590
0
    memcpy(&dev->Margins, &dev->child->Margins, sizeof(dev->child->Margins));
1591
0
    memcpy(&dev->HWMargins, &dev->child->HWMargins, sizeof(dev->child->HWMargins));
1592
0
    dev->FirstPage = dev->child->FirstPage;
1593
0
    dev->LastPage = dev->child->LastPage;
1594
0
    dev->PageCount = dev->child->PageCount;
1595
0
    dev->ShowpageCount = dev->child->ShowpageCount;
1596
0
    dev->NumCopies = dev->child->NumCopies;
1597
0
    dev->NumCopies_set = dev->child->NumCopies_set;
1598
0
    dev->IgnoreNumCopies = dev->child->IgnoreNumCopies;
1599
0
    dev->UseCIEColor = dev->child->UseCIEColor;
1600
0
    dev->LockSafetyParams= dev->child->LockSafetyParams;
1601
0
    dev->band_offset_x = dev->child->band_offset_y;
1602
0
    dev->sgr = dev->child->sgr;
1603
0
    dev->MaxPatternBitmap = dev->child->MaxPatternBitmap;
1604
0
    dev->page_uses_transparency = dev->child->page_uses_transparency;
1605
0
    memcpy(&dev->space_params, &dev->child->space_params, sizeof(gdev_space_params));
1606
0
    dev->graphics_type_tag = dev->child->graphics_type_tag;
1607
1608
0
    return 0;
1609
0
}
1610
1611
int gx_subclass_composite(gx_device *dev, gx_device **pcdev, const gs_composite_t *pcte,
1612
    gs_gstate *pgs, gs_memory_t *memory, gx_device *cdev)
1613
0
{
1614
0
    pdf14_clist_device *p14dev;
1615
0
    generic_subclass_data *psubclass_data;
1616
0
    int code = 0;
1617
1618
0
    p14dev = (pdf14_clist_device *)dev;
1619
0
    psubclass_data = (generic_subclass_data *)p14dev->target->subclass_data;
1620
1621
0
    set_dev_proc(dev, composite, psubclass_data->saved_compositor_method);
1622
1623
0
    if (gs_is_pdf14trans_compositor(pcte) != 0 && strncmp(dev->dname, "pdf14clist", 10) == 0) {
1624
0
        const gs_pdf14trans_t * pdf14pct = (const gs_pdf14trans_t *) pcte;
1625
1626
0
        switch (pdf14pct->params.pdf14_op) {
1627
0
            case PDF14_POP_DEVICE:
1628
0
                {
1629
0
                    pdf14_clist_device *p14dev = (pdf14_clist_device *)dev;
1630
0
                    gx_device *subclass_device;
1631
1632
0
                    p14dev->target->color_info = p14dev->saved_target_color_info;
1633
0
                    if (p14dev->target->child) {
1634
0
                        p14dev->target->child->color_info = p14dev->saved_target_color_info;
1635
1636
0
                        set_dev_proc(p14dev->target->child, encode_color, p14dev->saved_target_encode_color);
1637
0
                        set_dev_proc(p14dev->target->child, decode_color, p14dev->saved_target_decode_color);
1638
0
                        set_dev_proc(p14dev->target->child, get_color_mapping_procs, p14dev->saved_target_get_color_mapping_procs);
1639
0
                        set_dev_proc(p14dev->target->child, get_color_comp_index, p14dev->saved_target_get_color_comp_index);
1640
0
                    }
1641
1642
0
                    pgs->get_cmap_procs = p14dev->save_get_cmap_procs;
1643
0
                    gx_set_cmap_procs(pgs, p14dev->target);
1644
1645
0
                    subclass_device = p14dev->target;
1646
0
                    p14dev->target = p14dev->target->child;
1647
1648
0
                    code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1649
1650
0
                    p14dev->target = subclass_device;
1651
1652
                    /* We return 0, rather than 1, as we have not created
1653
                     * a new compositor that wraps dev. */
1654
0
                    if (code == 1)
1655
0
                        code = 0;
1656
0
                    return code;
1657
0
                }
1658
0
                break;
1659
0
            default:
1660
0
                code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1661
0
                break;
1662
0
        }
1663
0
    } else {
1664
0
        code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1665
0
    }
1666
0
    set_dev_proc(dev, composite, gx_subclass_composite);
1667
0
    return code;
1668
0
}
1669
1670
typedef enum
1671
{
1672
    transform_pixel_region_portrait,
1673
    transform_pixel_region_landscape,
1674
    transform_pixel_region_skew
1675
} transform_pixel_region_posture;
1676
1677
typedef struct gx_default_transform_pixel_region_state_s gx_default_transform_pixel_region_state_t;
1678
1679
typedef int (gx_default_transform_pixel_region_render_fn)(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs);
1680
1681
struct gx_default_transform_pixel_region_state_s
1682
{
1683
    gs_memory_t *mem;
1684
    gx_dda_fixed_point pixels;
1685
    gx_dda_fixed_point rows;
1686
    gs_int_rect clip;
1687
    int w;
1688
    int h;
1689
    int spp;
1690
    transform_pixel_region_posture posture;
1691
    gs_logical_operation_t lop;
1692
    byte *line;
1693
    gx_default_transform_pixel_region_render_fn *render;
1694
};
1695
1696
static void
1697
get_portrait_y_extent(gx_default_transform_pixel_region_state_t *state, int *iy, int *ih)
1698
503k
{
1699
503k
    fixed y0, y1;
1700
503k
    gx_dda_fixed row = state->rows.y;
1701
1702
503k
    y0 = dda_current(row);
1703
503k
    dda_next(row);
1704
503k
    y1 = dda_current(row);
1705
1706
503k
    if (y1 < y0) {
1707
3.41k
        fixed t = y1; y1 = y0; y0 = t;
1708
3.41k
    }
1709
1710
503k
    *iy = fixed2int_pixround_perfect(y0);
1711
503k
    *ih = fixed2int_pixround_perfect(y1) - *iy;
1712
503k
}
1713
1714
static void
1715
get_landscape_x_extent(gx_default_transform_pixel_region_state_t *state, int *ix, int *iw)
1716
0
{
1717
0
    fixed x0, x1;
1718
0
    gx_dda_fixed row = state->rows.x;
1719
1720
0
    x0 = dda_current(row);
1721
0
    dda_next(row);
1722
0
    x1 = dda_current(row);
1723
1724
0
    if (x1 < x0) {
1725
0
        fixed t = x1; x1 = x0; x0 = t;
1726
0
    }
1727
1728
0
    *ix = fixed2int_pixround_perfect(x0);
1729
0
    *iw = fixed2int_pixround_perfect(x1) - *ix;
1730
0
}
1731
1732
static void
1733
get_skew_extents(gx_default_transform_pixel_region_state_t *state, fixed *w, fixed *h)
1734
1.00k
{
1735
1.00k
    fixed x0, x1, y0, y1;
1736
1.00k
    gx_dda_fixed_point row = state->rows;
1737
1738
1.00k
    x0 = dda_current(row.x);
1739
1.00k
    y0 = dda_current(row.y);
1740
1.00k
    dda_next(row.x);
1741
1.00k
    dda_next(row.y);
1742
1.00k
    x1 = dda_current(row.x);
1743
1.00k
    y1 = dda_current(row.y);
1744
1745
1.00k
    *w = x1-x0;
1746
1.00k
    *h = y1-y0;
1747
1.00k
}
1748
1749
static int
1750
transform_pixel_region_render_portrait(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1751
245k
{
1752
245k
    gs_logical_operation_t lop = state->lop;
1753
245k
    gx_dda_fixed_point pnext;
1754
245k
    int vci, vdi;
1755
245k
    int irun;     /* int x/rrun */
1756
245k
    int w = state->w;
1757
245k
    int h = state->h;
1758
245k
    int spp = state->spp;
1759
245k
    const byte *data = buffer[0] + data_x * spp;
1760
245k
    const byte *bufend = NULL;
1761
245k
    int code = 0;
1762
245k
    const byte *run = NULL;
1763
245k
    int k;
1764
245k
    gx_color_value *conc = &cmapper->conc[0];
1765
245k
    int to_rects;
1766
245k
    gx_cmapper_fn *mapper = cmapper->set_color;
1767
245k
    int minx, maxx;
1768
1769
245k
    if (h == 0)
1770
0
        return 0;
1771
1772
    /* Clip on Y */
1773
245k
    get_portrait_y_extent(state, &vci, &vdi);
1774
245k
    if (vci < state->clip.p.y)
1775
11.8k
        vdi += vci - state->clip.p.y, vci = state->clip.p.y;
1776
245k
    if (vci+vdi > state->clip.q.y)
1777
5.57k
        vdi = state->clip.q.y - vci;
1778
245k
    if (vdi <= 0)
1779
93.9k
        return 0;
1780
1781
151k
    pnext = state->pixels;
1782
151k
    dda_translate(pnext.x,  (-fixed_epsilon));
1783
151k
    irun = fixed2int_var_rounded(dda_current(pnext.x));
1784
151k
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1785
151k
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1786
151k
    to_rects = (dev->color_info.depth != spp*8);
1787
151k
    if (to_rects == 0) {
1788
148k
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1789
148k
            to_rects = 1;
1790
148k
    }
1791
1792
151k
    minx = state->clip.p.x;
1793
151k
    maxx = state->clip.q.x;
1794
151k
    bufend = data + w * spp;
1795
151k
    if (to_rects) {
1796
16.4M
        while (data < bufend) {
1797
            /* Find the length of the next run. It will either end when we hit
1798
             * the end of the source data, or when the pixel data differs. */
1799
16.2M
            run = data + spp;
1800
63.6M
            while (1) {
1801
63.6M
                dda_next(pnext.x);
1802
63.6M
                if (run >= bufend)
1803
151k
                    break;
1804
63.4M
                if (memcmp(run, data, spp))
1805
16.1M
                    break;
1806
47.3M
                run += spp;
1807
47.3M
            }
1808
            /* So we have a run of pixels from data to run that are all the same. */
1809
            /* This needs to be sped up */
1810
62.5M
            for (k = 0; k < spp; k++) {
1811
46.2M
                conc[k] = gx_color_value_from_byte(data[k]);
1812
46.2M
            }
1813
16.2M
            mapper(cmapper);
1814
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1815
16.2M
            {
1816
16.2M
                int xi = irun;
1817
16.2M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1818
1819
16.2M
                if (wi < 0)
1820
973
                    xi += wi, wi = -wi;
1821
16.2M
                if (xi < minx)
1822
5.44k
                    wi += xi - minx, xi = minx;
1823
16.2M
                if (xi + wi > maxx)
1824
12.3k
                    wi = maxx - xi;
1825
16.2M
                if (wi > 0)
1826
15.7M
                    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1827
16.2M
                                                        &cmapper->devc, dev, lop);
1828
16.2M
            }
1829
16.2M
            if (code < 0)
1830
0
                goto err;
1831
16.2M
            data = run;
1832
16.2M
        }
1833
151k
    } else {
1834
0
        int pending_left = irun;
1835
0
        int pending_right;
1836
0
        byte *out;
1837
0
        int depth = spp;
1838
0
        if (state->line == NULL) {
1839
0
            state->line = gs_alloc_bytes(state->mem,
1840
0
                                         (size_t)dev->width * depth,
1841
0
                                         "image line");
1842
0
            if (state->line == NULL)
1843
0
                return gs_error_VMerror;
1844
0
        }
1845
0
        out = state->line;
1846
1847
0
        if (minx < 0)
1848
0
            minx = 0;
1849
0
        if (maxx > dev->width)
1850
0
            maxx = dev->width;
1851
1852
0
        if (pending_left < minx)
1853
0
            pending_left = minx;
1854
0
        else if (pending_left > maxx)
1855
0
            pending_left = maxx;
1856
0
        pending_right = pending_left;
1857
1858
0
        while (data < bufend) {
1859
            /* Find the length of the next run. It will either end when we hit
1860
             * the end of the source data, or when the pixel data differs. */
1861
0
            run = data + spp;
1862
0
            while (1) {
1863
0
                dda_next(pnext.x);
1864
0
                if (run >= bufend)
1865
0
                    break;
1866
0
                if (memcmp(run, data, spp))
1867
0
                    break;
1868
0
                run += spp;
1869
0
            }
1870
            /* So we have a run of pixels from data to run that are all the same. */
1871
            /* This needs to be sped up */
1872
0
            for (k = 0; k < spp; k++) {
1873
0
                conc[k] = gx_color_value_from_byte(data[k]);
1874
0
            }
1875
0
            mapper(cmapper);
1876
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1877
0
            {
1878
0
                int xi = irun;
1879
0
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1880
1881
0
                if (wi < 0)
1882
0
                    xi += wi, wi = -wi;
1883
1884
0
                if (xi < minx)
1885
0
                    wi += xi - minx, xi = minx;
1886
0
                if (xi + wi > maxx)
1887
0
                    wi = maxx - xi;
1888
1889
0
                if (wi > 0) {
1890
0
                    if (color_is_pure(&cmapper->devc)) {
1891
0
                        gx_color_index color = cmapper->devc.colors.pure;
1892
0
                        int xii = xi * spp;
1893
1894
0
                        if (pending_left > xi)
1895
0
                            pending_left = xi;
1896
0
                        else
1897
0
                            pending_right = xi + wi;
1898
0
                        do {
1899
                            /* Excuse the double shifts below, that's to stop the
1900
                             * C compiler complaining if the color index type is
1901
                             * 32 bits. */
1902
0
                            switch(depth)
1903
0
                            {
1904
0
                            case 8: out[xii++] = ((color>>28)>>28) & 0xff;
1905
0
                            case 7: out[xii++] = ((color>>24)>>24) & 0xff;
1906
0
                            case 6: out[xii++] = ((color>>24)>>16) & 0xff;
1907
0
                            case 5: out[xii++] = ((color>>24)>>8) & 0xff;
1908
0
                            case 4: out[xii++] = (color>>24) & 0xff;
1909
0
                            case 3: out[xii++] = (color>>16) & 0xff;
1910
0
                            case 2: out[xii++] = (color>>8) & 0xff;
1911
0
                            case 1: out[xii++] = color & 0xff;
1912
0
                            }
1913
0
                        } while (--wi != 0);
1914
0
                    } else {
1915
0
                        if (pending_left != pending_right) {
1916
0
                            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1917
0
                            if (code < 0)
1918
0
                                goto err;
1919
0
                        }
1920
0
                        pending_left = pending_right = xi + (pending_left > xi ? 0 : wi);
1921
0
                        code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1922
0
                                                            &cmapper->devc, dev, lop);
1923
0
                    }
1924
0
                }
1925
0
                if (code < 0)
1926
0
                    goto err;
1927
0
            }
1928
0
            data = run;
1929
0
        }
1930
0
        if (pending_left != pending_right) {
1931
0
            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1932
0
            if (code < 0)
1933
0
                goto err;
1934
0
        }
1935
0
    }
1936
151k
    return 1;
1937
    /* Save position if error, in case we resume. */
1938
0
err:
1939
0
    buffer[0] = run;
1940
0
    return code;
1941
151k
}
1942
1943
static int
1944
transform_pixel_region_render_landscape(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1945
0
{
1946
0
    gs_logical_operation_t lop = state->lop;
1947
0
    gx_dda_fixed_point pnext;
1948
0
    int vci, vdi;
1949
0
    int irun;     /* int x/rrun */
1950
0
    int w = state->w;
1951
0
    int h = state->h;
1952
0
    int spp = state->spp;
1953
0
    const byte *data = buffer[0] + data_x * spp;
1954
0
    const byte *bufend = NULL;
1955
0
    int code = 0;
1956
0
    const byte *run;
1957
0
    int k;
1958
0
    gx_color_value *conc = &cmapper->conc[0];
1959
0
    int to_rects;
1960
0
    gx_cmapper_fn *mapper = cmapper->set_color;
1961
0
    int miny, maxy;
1962
1963
0
    if (h == 0)
1964
0
        return 0;
1965
1966
    /* Clip on X */
1967
0
    get_landscape_x_extent(state, &vci, &vdi);
1968
0
    if (vci < state->clip.p.x)
1969
0
        vdi += vci - state->clip.p.x, vci = state->clip.p.x;
1970
0
    if (vci+vdi > state->clip.q.x)
1971
0
        vdi = state->clip.q.x - vci;
1972
0
    if (vdi <= 0)
1973
0
        return 0;
1974
1975
0
    pnext = state->pixels;
1976
0
    dda_translate(pnext.x,  (-fixed_epsilon));
1977
0
    irun = fixed2int_var_rounded(dda_current(pnext.y));
1978
0
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1979
0
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1980
0
    to_rects = (dev->color_info.depth != spp*8);
1981
0
    if (to_rects == 0) {
1982
0
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1983
0
            to_rects = 1;
1984
0
    }
1985
1986
0
    miny = state->clip.p.y;
1987
0
    maxy = state->clip.q.y;
1988
0
    bufend = data + w * spp;
1989
0
    while (data < bufend) {
1990
        /* Find the length of the next run. It will either end when we hit
1991
         * the end of the source data, or when the pixel data differs. */
1992
0
        run = data + spp;
1993
0
        while (1) {
1994
0
            dda_next(pnext.y);
1995
0
            if (run >= bufend)
1996
0
                break;
1997
0
            if (memcmp(run, data, spp))
1998
0
                break;
1999
0
            run += spp;
2000
0
        }
2001
        /* So we have a run of pixels from data to run that are all the same. */
2002
        /* This needs to be sped up */
2003
0
        for (k = 0; k < spp; k++) {
2004
0
            conc[k] = gx_color_value_from_byte(data[k]);
2005
0
        }
2006
0
        mapper(cmapper);
2007
        /* Fill the region between irun and fixed2int_var_rounded(pnext.y) */
2008
0
        {              /* 90 degree rotated rectangle */
2009
0
            int yi = irun;
2010
0
            int hi = (irun = fixed2int_var_rounded(dda_current(pnext.y))) - yi;
2011
2012
0
            if (hi < 0)
2013
0
                yi += hi, hi = -hi;
2014
0
            if (yi < miny)
2015
0
                hi += yi - miny, yi = miny;
2016
0
            if (yi + hi > maxy)
2017
0
                hi = maxy - yi;
2018
0
            if (hi > 0)
2019
0
                code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
2020
0
                                                    &cmapper->devc, dev, lop);
2021
0
        }
2022
0
        if (code < 0)
2023
0
            goto err;
2024
0
        data = run;
2025
0
    }
2026
0
    return 1;
2027
    /* Save position if error, in case we resume. */
2028
0
err:
2029
0
    buffer[0] = run;
2030
0
    return code;
2031
0
}
2032
2033
static int
2034
transform_pixel_region_render_skew(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2035
1.00k
{
2036
1.00k
    gs_logical_operation_t lop = state->lop;
2037
1.00k
    gx_dda_fixed_point pnext;
2038
1.00k
    fixed xprev, yprev;
2039
1.00k
    fixed pdyx, pdyy;   /* edge of parallelogram */
2040
1.00k
    int w = state->w;
2041
1.00k
    int h = state->h;
2042
1.00k
    int spp = state->spp;
2043
1.00k
    const byte *data = buffer[0] + data_x * spp;
2044
1.00k
    fixed xpos;     /* x ditto */
2045
1.00k
    fixed ypos;     /* y ditto */
2046
1.00k
    const byte *bufend = data + w * spp;
2047
1.00k
    int code = 0;
2048
1.00k
    int k;
2049
1.00k
    byte initial_run[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
2050
1.00k
    const byte *prev = &initial_run[0];
2051
1.00k
    gx_cmapper_fn *mapper = cmapper->set_color;
2052
1.00k
    gx_color_value *conc = &cmapper->conc[0];
2053
2054
1.00k
    if (h == 0)
2055
0
        return 0;
2056
1.00k
    pnext = state->pixels;
2057
1.00k
    get_skew_extents(state, &pdyx, &pdyy);
2058
1.00k
    dda_translate(pnext.x,  (-fixed_epsilon));
2059
1.00k
    xprev = dda_current(pnext.x);
2060
1.00k
    yprev = dda_current(pnext.y);
2061
1.00k
    if_debug4m('b', dev->memory, "[b]y=? data_x=%d w=%d xt=%f yt=%f\n",
2062
1.00k
               data_x, w, fixed2float(xprev), fixed2float(yprev));
2063
1.00k
    initial_run[0] = ~data[0];  /* Force intial setting */
2064
313k
    while (data < bufend) {
2065
312k
        dda_next(pnext.x);
2066
312k
        dda_next(pnext.y);
2067
312k
        xpos = dda_current(pnext.x);
2068
312k
        ypos = dda_current(pnext.y);
2069
2070
312k
        if (memcmp(prev, data, spp) != 0)
2071
106k
        {
2072
            /* This needs to be sped up */
2073
213k
            for (k = 0; k < spp; k++) {
2074
106k
                conc[k] = gx_color_value_from_byte(data[k]);
2075
106k
            }
2076
106k
            mapper(cmapper);
2077
106k
        }
2078
        /* Fill the region between */
2079
        /* xprev/yprev and xpos/ypos */
2080
        /* Parallelogram */
2081
312k
        code = (*dev_proc(dev, fill_parallelogram))
2082
312k
                    (dev, xprev, yprev, xpos - xprev, ypos - yprev, pdyx, pdyy,
2083
312k
                     &cmapper->devc, lop);
2084
312k
        xprev = xpos;
2085
312k
        yprev = ypos;
2086
312k
        if (code < 0)
2087
0
            goto err;
2088
312k
        prev = data;
2089
312k
        data += spp;
2090
312k
    }
2091
1.00k
    return 1;
2092
    /* Save position if error, in case we resume. */
2093
0
err:
2094
    /* Only set buffer[0] if we've managed to set prev to something valid. */
2095
0
    if (prev != &initial_run[0]) buffer[0] = prev;
2096
0
    return code;
2097
1.00k
}
2098
2099
static int
2100
gx_default_transform_pixel_region_begin(gx_device *dev, int w, int h, int spp,
2101
                             const gx_dda_fixed_point *pixels, const gx_dda_fixed_point *rows,
2102
                             const gs_int_rect *clip, gs_logical_operation_t lop,
2103
                             gx_default_transform_pixel_region_state_t **statep)
2104
14.8k
{
2105
14.8k
    gx_default_transform_pixel_region_state_t *state;
2106
14.8k
    gs_memory_t *mem = dev->memory->non_gc_memory;
2107
2108
14.8k
    *statep = state = (gx_default_transform_pixel_region_state_t *)gs_alloc_bytes(mem, sizeof(gx_default_transform_pixel_region_state_t), "gx_default_transform_pixel_region_state_t");
2109
14.8k
    if (state == NULL)
2110
0
        return gs_error_VMerror;
2111
14.8k
    state->mem = mem;
2112
14.8k
    state->rows = *rows;
2113
14.8k
    state->pixels = *pixels;
2114
14.8k
    state->clip = *clip;
2115
14.8k
    state->w = w;
2116
14.8k
    state->h = h;
2117
14.8k
    state->spp = spp;
2118
14.8k
    state->lop = lop;
2119
14.8k
    state->line = NULL;
2120
2121
    /* FIXME: Consider sheers here too. Probably happens rarely enough not to be worth it. */
2122
14.8k
    if (rows->x.step.dQ == 0 && rows->x.step.dR == 0 && pixels->y.step.dQ == 0 && pixels->y.step.dR == 0)
2123
14.8k
        state->posture = transform_pixel_region_portrait;
2124
29
    else if (rows->y.step.dQ == 0 && rows->y.step.dR == 0 && pixels->x.step.dQ == 0 && pixels->x.step.dR == 0)
2125
0
        state->posture = transform_pixel_region_landscape;
2126
29
    else
2127
29
        state->posture = transform_pixel_region_skew;
2128
2129
14.8k
    if (state->posture == transform_pixel_region_portrait)
2130
14.8k
        state->render = transform_pixel_region_render_portrait;
2131
29
    else if (state->posture == transform_pixel_region_landscape)
2132
0
        state->render = transform_pixel_region_render_landscape;
2133
29
    else
2134
29
        state->render = transform_pixel_region_render_skew;
2135
2136
14.8k
    return 0;
2137
14.8k
}
2138
2139
static void
2140
step_to_next_line(gx_default_transform_pixel_region_state_t *state)
2141
259k
{
2142
259k
    fixed x = dda_current(state->rows.x);
2143
259k
    fixed y = dda_current(state->rows.y);
2144
2145
259k
    dda_next(state->rows.x);
2146
259k
    dda_next(state->rows.y);
2147
259k
    x = dda_current(state->rows.x) - x;
2148
259k
    y = dda_current(state->rows.y) - y;
2149
259k
    dda_translate(state->pixels.x, x);
2150
259k
    dda_translate(state->pixels.y, y);
2151
259k
}
2152
2153
static int
2154
gx_default_transform_pixel_region_data_needed(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2155
259k
{
2156
259k
    if (state->posture == transform_pixel_region_portrait) {
2157
258k
        int iy, ih;
2158
2159
258k
        get_portrait_y_extent(state, &iy, &ih);
2160
2161
258k
        if (iy + ih < state->clip.p.y || iy >= state->clip.q.y) {
2162
            /* Skip this line. */
2163
12.7k
            step_to_next_line(state);
2164
12.7k
            return 0;
2165
12.7k
        }
2166
258k
    } else if (state->posture == transform_pixel_region_landscape) {
2167
0
        int ix, iw;
2168
2169
0
        get_landscape_x_extent(state, &ix, &iw);
2170
2171
0
        if (ix + iw < state->clip.p.x || ix >= state->clip.q.x) {
2172
            /* Skip this line. */
2173
0
            step_to_next_line(state);
2174
0
            return 0;
2175
0
        }
2176
0
    }
2177
2178
246k
    return 1;
2179
259k
}
2180
2181
static int
2182
gx_default_transform_pixel_region_process_data(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2183
246k
{
2184
246k
    int ret = state->render(dev, state, buffer, data_x, cmapper, pgs);
2185
2186
246k
    step_to_next_line(state);
2187
246k
    return ret;
2188
246k
}
2189
2190
static int
2191
gx_default_transform_pixel_region_end(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2192
14.8k
{
2193
14.8k
    if (state) {
2194
14.8k
        gs_free_object(state->mem, state->line, "image line");
2195
14.8k
        gs_free_object(state->mem, state, "gx_default_transform_pixel_region_state_t");
2196
14.8k
    }
2197
14.8k
    return 0;
2198
14.8k
}
2199
2200
int
2201
gx_default_transform_pixel_region(gx_device *dev,
2202
                       transform_pixel_region_reason reason,
2203
                       transform_pixel_region_data *data)
2204
535k
{
2205
535k
    gx_default_transform_pixel_region_state_t *state = (gx_default_transform_pixel_region_state_t *)data->state;
2206
2207
535k
    switch (reason)
2208
535k
    {
2209
14.8k
    case transform_pixel_region_begin:
2210
14.8k
        return gx_default_transform_pixel_region_begin(dev, data->u.init.w, data->u.init.h, data->u.init.spp, data->u.init.pixels, data->u.init.rows, data->u.init.clip, data->u.init.lop, (gx_default_transform_pixel_region_state_t **)&data->state);
2211
259k
    case transform_pixel_region_data_needed:
2212
259k
        return gx_default_transform_pixel_region_data_needed(dev, state);
2213
246k
    case transform_pixel_region_process_data:
2214
246k
        return gx_default_transform_pixel_region_process_data(dev, state, data->u.process_data.buffer, data->u.process_data.data_x, data->u.process_data.cmapper, data->u.process_data.pgs);
2215
14.8k
    case transform_pixel_region_end:
2216
14.8k
        data->state = NULL;
2217
14.8k
        return gx_default_transform_pixel_region_end(dev, state);
2218
0
    default:
2219
0
        return gs_error_unknownerror;
2220
535k
    }
2221
535k
}