Coverage Report

Created: 2025-06-10 06:56

/src/ghostpdl/base/gsimage.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Image setup procedures for Ghostscript library */
18
#include "memory_.h"
19
#include "math_.h"
20
#include "gx.h"
21
#include "gserrors.h"
22
#include "gsstruct.h"
23
#include "gscspace.h"
24
#include "gsmatrix.h"   /* for gsiparam.h */
25
#include "gsimage.h"
26
#include "gxarith.h"    /* for igcd */
27
#include "gxdevice.h"
28
#include "gxiparam.h"
29
#include "gxpath.h"   /* for gx_effective_clip_path */
30
#include "gximask.h"
31
#include "gzstate.h"
32
#include "gsutil.h"
33
#include "gxdevsop.h"
34
#include "gximage.h"
35
36
/*
37
  The main internal invariant for the gs_image machinery is
38
  straightforward.  The state consists primarily of N plane buffers
39
  (planes[]).
40
*/
41
typedef struct image_enum_plane_s {
42
/*
43
  The state of each plane consists of:
44
45
  - A row buffer, aligned and (logically) large enough to hold one scan line
46
    for that plane.  (It may have to be reallocated if the plane width or
47
    depth changes.)  A row buffer is "full" if it holds exactly a full scan
48
    line.
49
*/
50
    gs_string row;
51
/*
52
  - A position within the row buffer, indicating how many initial bytes are
53
    occupied.
54
*/
55
    uint pos;
56
/*
57
  - A (retained) source string, which may be empty (size = 0).
58
*/
59
    gs_const_string source;
60
    /* The gs_string 'orig' is only set if the 'txfer_control' flag was set when
61
     * the 'source' string data was initally passed in. In this case we now control the lifetime
62
     * of the string. So when we empty the source string, free it. We need to know the actual
63
     * address of the string, and that gets modified in the peunum->planes->source and size
64
     * members, so we use 'orig' as both a marker for the control and the original size and location.
65
     */
66
    gs_const_string orig;
67
} image_enum_plane_t;
68
/*
69
  The possible states for each plane do not depend on the state of any other
70
  plane.  Either:
71
72
  - pos = 0, source.size = 0.
73
74
  - If the underlying image processor says the plane is currently wanted,
75
    either:
76
77
    - pos = 0, source.size >= one full row of data for this plane.  This
78
      case allows us to avoid copying the data from the source string to the
79
      row buffer if the client is providing data in blocks of at least one
80
      scan line.
81
82
    - pos = full, source.size may have any value.
83
84
    - pos > 0, pos < full, source.size = 0;
85
86
  - If the underlying image processor says the plane is not currently
87
    wanted:
88
89
    - pos = 0, source.size may have any value.
90
91
  This invariant holds at the beginning and end of each call on
92
  gs_image_next_planes.  Note that for each plane, the "plane wanted" status
93
  and size of a full row may change after each call of plane_data.  As
94
  documented in gxiparam.h, we assume that a call of plane_data can only
95
  change a plane's status from "wanted" to "not wanted", or change the width
96
  or depth of a wanted plane, if data for that plane was actually supplied
97
  (and used).
98
*/
99
100
/* Define the enumeration state for this interface layer. */
101
/*typedef struct gs_image_enum_s gs_image_enum; *//* in gsimage.h */
102
struct gs_image_enum_s {
103
    /* The following are set at initialization time. */
104
    gs_memory_t *memory;
105
    gx_device *dev;   /* if 0, just skip over the data */
106
    gx_image_enum_common_t *info; /* driver bookkeeping structure */
107
    int num_planes;
108
    int height;
109
    bool wanted_varies;
110
    /* The following are updated dynamically. */
111
    int plane_index;    /* index of next plane of data, */
112
                                /* only needed for gs_image_next */
113
    int y;
114
    bool error;
115
    byte wanted[GS_IMAGE_MAX_COMPONENTS]; /* cache gx_image_planes_wanted */
116
    byte client_wanted[GS_IMAGE_MAX_COMPONENTS]; /* see gsimage.h */
117
    image_enum_plane_t planes[GS_IMAGE_MAX_COMPONENTS]; /* see above */
118
    /*
119
     * To reduce setup for transferring complete rows, we maintain a
120
     * partially initialized parameter array for gx_image_plane_data_rows.
121
     * The data member is always set just before calling
122
     * gx_image_plane_data_rows; the data_x and raster members are reset
123
     * when needed.
124
     */
125
    gx_image_plane_t image_planes[GS_IMAGE_MAX_COMPONENTS];
126
};
127
128
gs_private_st_composite(st_gs_image_enum, gs_image_enum, "gs_image_enum",
129
                        gs_image_enum_enum_ptrs, gs_image_enum_reloc_ptrs);
130
0
#define gs_image_enum_num_ptrs 2
131
132
/* GC procedures */
133
static
134
0
ENUM_PTRS_WITH(gs_image_enum_enum_ptrs, gs_image_enum *eptr)
135
0
{
136
    /* Enumerate the data planes. */
137
0
    index -= gs_image_enum_num_ptrs;
138
0
    if (index < eptr->num_planes)
139
0
        ENUM_RETURN_STRING_PTR(gs_image_enum, planes[index].source);
140
0
    index -= eptr->num_planes;
141
0
    if (index < eptr->num_planes)
142
0
        ENUM_RETURN_STRING_PTR(gs_image_enum, planes[index].row);
143
0
    return 0;
144
0
}
145
0
ENUM_PTR(0, gs_image_enum, dev);
146
0
ENUM_PTR(1, gs_image_enum, info);
147
0
ENUM_PTRS_END
148
0
static RELOC_PTRS_WITH(gs_image_enum_reloc_ptrs, gs_image_enum *eptr)
149
0
{
150
0
    int i;
151
152
0
    RELOC_PTR(gs_image_enum, dev);
153
0
    RELOC_PTR(gs_image_enum, info);
154
0
    for (i = 0; i < eptr->num_planes; i++)
155
0
        RELOC_CONST_STRING_PTR(gs_image_enum, planes[i].source);
156
0
    for (i = 0; i < eptr->num_planes; i++)
157
0
        RELOC_STRING_PTR(gs_image_enum, planes[i].row);
158
0
}
159
0
RELOC_PTRS_END
160
161
static int
162
is_image_visible(const gs_image_common_t * pic, gs_gstate * pgs, gx_clip_path *pcpath)
163
21.5k
{
164
21.5k
    gs_rect image_rect = {{0, 0}, {0, 0}};
165
21.5k
    gs_rect device_rect;
166
21.5k
    gs_int_rect device_int_rect;
167
21.5k
    gs_matrix mat;
168
21.5k
    int code;
169
170
21.5k
    image_rect.q.x = pic->Width;
171
21.5k
    image_rect.q.y = pic->Height;
172
21.5k
    if (pic->ImageMatrix.xx == ctm_only(pgs).xx &&
173
21.5k
        pic->ImageMatrix.xy == ctm_only(pgs).xy &&
174
21.5k
        pic->ImageMatrix.yx == ctm_only(pgs).yx &&
175
21.5k
        pic->ImageMatrix.yy == ctm_only(pgs).yy) {
176
        /* Handle common special case separately to accept singular matrix */
177
1.97k
        mat.xx = mat.yy = 1.;
178
1.97k
        mat.yx = mat.xy = 0.;
179
1.97k
        mat.tx = ctm_only(pgs).tx - pic->ImageMatrix.tx;
180
1.97k
        mat.ty = ctm_only(pgs).ty - pic->ImageMatrix.ty;
181
19.5k
    } else {
182
19.5k
        code = gs_matrix_invert(&pic->ImageMatrix, &mat);
183
19.5k
        if (code < 0)
184
0
            return code;
185
19.5k
        code = gs_matrix_multiply(&mat, &ctm_only(pgs), &mat);
186
19.5k
        if (code < 0)
187
0
            return code;
188
19.5k
    }
189
21.5k
    code = gs_bbox_transform(&image_rect, &mat, &device_rect);
190
21.5k
    if (code < 0)
191
0
        return code;
192
21.5k
    device_int_rect.p.x = (int)floor(device_rect.p.x);
193
21.5k
    device_int_rect.p.y = (int)floor(device_rect.p.y);
194
21.5k
    device_int_rect.q.x = (int)ceil(device_rect.q.x);
195
21.5k
    device_int_rect.q.y = (int)ceil(device_rect.q.y);
196
21.5k
    if (!gx_cpath_rect_visible(pcpath, &device_int_rect))
197
2.45k
        return 0;
198
19.0k
    return 1;
199
21.5k
}
200
201
/* Create an image enumerator given image parameters and a graphics state. */
202
int
203
gs_image_begin_typed(const gs_image_common_t * pic, gs_gstate * pgs,
204
                     bool uses_color, bool image_is_text, gx_image_enum_common_t ** ppie)
205
21.5k
{
206
21.5k
    gx_device *dev = gs_currentdevice(pgs);
207
21.5k
    gx_clip_path *pcpath;
208
21.5k
    int code = gx_effective_clip_path(pgs, &pcpath);
209
21.5k
    gx_device *dev2 = dev;
210
21.5k
    gx_device_color dc_temp, *pdevc = gs_currentdevicecolor_inline(pgs);
211
212
21.5k
    if (code < 0)
213
0
        return code;
214
    /* Processing an image object operation, but this may be for a text object */
215
21.5k
    ensure_tag_is_set(pgs, pgs->device, image_is_text ? GS_TEXT_TAG : GS_IMAGE_TAG);  /* NB: may unset_dev_color */
216
217
21.5k
    if (uses_color) {
218
13.4k
        code = gx_set_dev_color(pgs);
219
13.4k
        if (code != 0)
220
1
            return code;
221
13.4k
        code = gs_gstate_color_load(pgs);
222
13.4k
        if (code < 0)
223
0
            return code;
224
13.4k
    }
225
226
21.5k
    if (pgs->overprint || (!pgs->overprint && dev_proc(pgs->device, dev_spec_op)(pgs->device,
227
21.5k
        gxdso_overprint_active, NULL, 0))) {
228
13
        gs_overprint_params_t op_params = { 0 };
229
230
13
        if_debug0m(gs_debug_flag_overprint, pgs->memory,
231
13
            "[overprint] Image Overprint\n");
232
13
        code = gs_do_set_overprint(pgs);
233
13
        if (code < 0)
234
0
            return code;
235
236
13
        op_params.op_state = OP_STATE_FILL;
237
13
        gs_gstate_update_overprint(pgs, &op_params);
238
239
13
        dev = gs_currentdevice(pgs);
240
13
        dev2 = dev;
241
13
    }
242
243
    /* Imagemask with shading color needs a special optimization
244
       with converting the image into a clipping.
245
       Check for such case after gs_gstate_color_load is done,
246
       because it can cause interpreter callout.
247
     */
248
21.5k
    if (pic->type->begin_typed_image == &gx_begin_image1) {
249
21.4k
        gs_image_t *image = (gs_image_t *)pic;
250
251
21.4k
        if(image->ImageMask) {
252
13.4k
            bool transpose = false;
253
13.4k
            gs_matrix_double mat;
254
255
13.4k
            if((code = gx_image_compute_mat(pgs, NULL, &(image->ImageMatrix), &mat)) < 0)
256
1
                return code;
257
13.4k
            if ((any_abs(mat.xy) > any_abs(mat.xx)) && (any_abs(mat.yx) > any_abs(mat.yy)))
258
7.46k
                transpose = true;   /* pure landscape */
259
13.4k
            code = gx_image_fill_masked_start(dev, gs_currentdevicecolor_inline(pgs), transpose,
260
13.4k
                                              pcpath, pgs->memory, pgs->log_op, &dev2);
261
13.4k
            if (code < 0)
262
0
                return code;
263
13.4k
        }
264
21.4k
        if (dev->interpolate_control < 0) {   /* Force interpolation before begin_typed_image */
265
0
            ((gs_data_image_t *)pic)->Interpolate = true;
266
0
        }
267
21.4k
        else if (dev->interpolate_control == 0) {
268
21.4k
            ((gs_data_image_t *)pic)->Interpolate = false; /* Suppress interpolation */
269
21.4k
        }
270
21.4k
        if (dev2 != dev) {
271
16
            set_nonclient_dev_color(&dc_temp, 1);
272
16
            pdevc = &dc_temp;
273
16
        }
274
21.4k
    }
275
21.5k
    code = gx_device_begin_typed_image(dev2, (const gs_gstate *)pgs,
276
21.5k
                NULL, pic, NULL, pdevc, pcpath, pgs->memory, ppie);
277
21.5k
    if (code < 0)
278
5
        return code;
279
21.5k
    code = is_image_visible(pic, pgs, pcpath);
280
21.5k
    if (code < 0)
281
0
        return code;
282
21.5k
    if (!code)
283
2.45k
        (*ppie)->skipping = true;
284
21.5k
    return 0;
285
21.5k
}
286
287
/* Allocate an image enumerator. */
288
static void
289
image_enum_init(gs_image_enum * penum)
290
42.4k
{
291
    /* Clean pointers for GC. */
292
42.4k
    penum->info = 0;
293
42.4k
    penum->dev = 0;
294
42.4k
    penum->plane_index = 0;
295
42.4k
    penum->num_planes = 0;
296
42.4k
}
297
gs_image_enum *
298
gs_image_enum_alloc(gs_memory_t * mem, client_name_t cname)
299
21.5k
{
300
21.5k
    gs_image_enum *penum =
301
21.5k
        gs_alloc_struct(mem, gs_image_enum, &st_gs_image_enum, cname);
302
303
21.5k
    if (penum != 0) {
304
21.5k
        penum->memory = mem;
305
21.5k
        image_enum_init(penum);
306
21.5k
    }
307
21.5k
    return penum;
308
21.5k
}
309
310
/* Start processing an ImageType 1 image. */
311
int
312
gs_image_init(gs_image_enum * penum, const gs_image_t * pim, bool multi,
313
              bool image_is_text, gs_gstate * pgs)
314
1.96k
{
315
1.96k
    gs_image_t image;
316
1.96k
    gx_image_enum_common_t *pie;
317
1.96k
    int code;
318
319
1.96k
    image = *pim;
320
1.96k
    if (image.ImageMask) {
321
1.96k
        image.ColorSpace = NULL;
322
1.96k
        if (pgs->in_cachedevice <= 1)
323
1.96k
            image.adjust = false;
324
1.96k
    } else {
325
0
        if (pgs->in_cachedevice)
326
0
            return_error(gs_error_undefined);
327
0
        if (image.ColorSpace == NULL) {
328
            /*
329
             * Use of a non-current color space is potentially
330
             * incorrect, but it appears this case doesn't arise.
331
             */
332
0
            image.ColorSpace = gs_cspace_new_DeviceGray(pgs->memory);
333
0
            if (image.ColorSpace == NULL)
334
0
                return_error(gs_error_VMerror);
335
0
        }
336
0
    }
337
1.96k
    code = gs_image_begin_typed((const gs_image_common_t *)&image, pgs,
338
1.96k
                                image.ImageMask | image.CombineWithColor,
339
1.96k
                                image_is_text, &pie);
340
1.96k
    if (code < 0)
341
0
        return code;
342
1.96k
    return gs_image_enum_init(penum, pie, (const gs_data_image_t *)&image,
343
1.96k
                              pgs);
344
1.96k
}
345
346
/*
347
 * Return the number of bytes of data per row for a given plane.
348
 */
349
inline uint
350
gs_image_bytes_per_plane_row(const gs_image_enum * penum, int plane)
351
33.4k
{
352
33.4k
    const gx_image_enum_common_t *pie = penum->info;
353
354
33.4k
    return (pie->plane_widths[plane] * pie->plane_depths[plane] + 7) >> 3;
355
33.4k
}
356
357
/* Cache information when initializing, or after transferring plane data. */
358
static void
359
cache_planes(gs_image_enum *penum)
360
835k
{
361
835k
    int i;
362
363
835k
    if (penum->wanted_varies) {
364
27.2k
        penum->wanted_varies =
365
27.2k
            !gx_image_planes_wanted(penum->info, penum->wanted);
366
60.7k
        for (i = 0; i < penum->num_planes; ++i)
367
33.5k
            if (penum->wanted[i])
368
33.4k
                penum->image_planes[i].raster =
369
33.4k
                    gs_image_bytes_per_plane_row(penum, i);
370
85
            else
371
85
                penum->image_planes[i].data = 0;
372
27.2k
    }
373
835k
}
374
/* Advance to the next wanted plane. */
375
static void
376
next_plane(gs_image_enum *penum)
377
184k
{
378
184k
    int px = penum->plane_index;
379
380
184k
    do {
381
184k
        if (++px == penum->num_planes)
382
163k
            px = 0;
383
184k
    } while (!penum->wanted[px]);
384
184k
    penum->plane_index = px;
385
184k
}
386
/*
387
 * Initialize plane_index and (if appropriate) wanted and
388
 * wanted_varies at the beginning of a group of planes.
389
 */
390
static void
391
begin_planes(gs_image_enum *penum)
392
20.9k
{
393
20.9k
    cache_planes(penum);
394
20.9k
    penum->plane_index = -1;
395
20.9k
    next_plane(penum);
396
20.9k
}
397
398
int
399
gs_image_common_init(gs_image_enum * penum, gx_image_enum_common_t * pie,
400
            const gs_data_image_t * pim, gx_device * dev)
401
21.5k
{
402
    /*
403
     * HACK : For a compatibility with gs_image_cleanup_and_free_enum,
404
     * penum->memory must be initialized in advance
405
     * with the memory heap that owns *penum.
406
     */
407
21.5k
    int i;
408
409
21.5k
    if (pim->Width == 0 || pim->Height == 0) {
410
624
        gx_device *cdev = pie->dev;
411
412
624
        gx_image_end(pie, false);
413
624
        if (dev_proc(cdev, dev_spec_op)(cdev,
414
624
                    gxdso_pattern_is_cpath_accum, NULL, 0))
415
0
            gx_device_retain((gx_device *)cdev, false);
416
624
        return 1;
417
624
    }
418
20.9k
    image_enum_init(penum);
419
20.9k
    penum->dev = dev;
420
20.9k
    penum->info = pie;
421
20.9k
    penum->num_planes = pie->num_planes;
422
    /*
423
     * Note that for ImageType 3 InterleaveType 2, penum->height (the
424
     * expected number of data rows) differs from pim->Height (the height
425
     * of the source image in scan lines).  This doesn't normally cause
426
     * any problems, because penum->height is not used to determine when
427
     * all the data has been processed: that is up to the plane_data
428
     * procedure for the specific image type.
429
     */
430
20.9k
    penum->height = pim->Height;
431
41.8k
    for (i = 0; i < pie->num_planes; ++i) {
432
20.9k
        penum->planes[i].pos = 0;
433
20.9k
        penum->planes[i].source.size = 0; /* for gs_image_next_planes */
434
20.9k
        penum->planes[i].source.data = 0; /* for GC */
435
20.9k
        penum->planes[i].row.data = 0; /* for GC */
436
20.9k
        penum->planes[i].row.size = 0; /* ditto */
437
20.9k
        penum->image_planes[i].data_x = 0; /* just init once, never changes */
438
20.9k
    }
439
    /* Initialize the dynamic part of the state. */
440
20.9k
    penum->y = 0;
441
20.9k
    penum->error = false;
442
20.9k
    penum->wanted_varies = true;
443
20.9k
    begin_planes(penum);
444
20.9k
    return 0;
445
21.5k
}
446
447
/* Initialize an enumerator for a general image.
448
   penum->memory must be initialized in advance.
449
*/
450
int
451
gs_image_enum_init(gs_image_enum * penum, gx_image_enum_common_t * pie,
452
                   const gs_data_image_t * pim, gs_gstate *pgs)
453
21.5k
{
454
21.5k
    pgs->device->sgr.stroke_stored = false;
455
21.5k
    return gs_image_common_init(penum, pie, pim,
456
21.5k
                                (pgs->in_charpath ? NULL :
457
21.5k
                                 gs_currentdevice_inline(pgs)));
458
21.5k
}
459
460
/* Return the set of planes wanted. */
461
const byte *
462
gs_image_planes_wanted(gs_image_enum *penum)
463
13
{
464
13
    int i;
465
466
    /*
467
     * A plane is wanted at this interface if it is wanted by the
468
     * underlying machinery and has no buffered or retained data.
469
     */
470
26
    for (i = 0; i < penum->num_planes; ++i)
471
13
        penum->client_wanted[i] =
472
13
            (penum->wanted[i] &&
473
13
             penum->planes[i].pos + penum->planes[i].source.size <
474
13
               penum->image_planes[i].raster);
475
13
    return penum->client_wanted;
476
13
}
477
478
/*
479
 * Return the enumerator memory used for allocating the row buffers.
480
 * Because some PostScript files use save/restore within an image data
481
 * reading procedure, this must be a stable allocator.
482
 */
483
static gs_memory_t *
484
gs_image_row_memory(const gs_image_enum *penum)
485
1.50M
{
486
1.50M
    return gs_memory_stable(penum->memory);
487
1.50M
}
488
489
/* Free the row buffers when cleaning up. */
490
static void
491
free_row_buffers(gs_image_enum *penum, int num_planes, client_name_t cname)
492
21.5k
{
493
21.5k
    int i;
494
495
42.4k
    for (i = num_planes - 1; i >= 0; --i) {
496
20.9k
        if_debug3m('b', penum->memory, "[b]free plane %d row ("PRI_INTPTR",%u)\n",
497
20.9k
                   i, (intptr_t)penum->planes[i].row.data,
498
20.9k
                   penum->planes[i].row.size);
499
20.9k
        gs_free_string(gs_image_row_memory(penum), penum->planes[i].row.data,
500
20.9k
                       penum->planes[i].row.size, cname);
501
20.9k
        penum->planes[i].row.data = 0;
502
20.9k
        penum->planes[i].row.size = 0;
503
20.9k
    }
504
21.5k
}
505
506
/* Process the next piece of an image. */
507
int
508
gs_image_next(gs_image_enum * penum, const byte * dbytes, uint dsize,
509
              uint * pused)
510
163k
{
511
163k
    int px = penum->plane_index;
512
163k
    int num_planes = penum->num_planes;
513
163k
    int i, code;
514
163k
    uint used[GS_IMAGE_MAX_COMPONENTS];
515
163k
    gs_const_string plane_data[GS_IMAGE_MAX_COMPONENTS];
516
517
163k
    if (penum->planes[px].source.size != 0)
518
0
        return_error(gs_error_rangecheck);
519
327k
    for (i = 0; i < num_planes; i++)
520
163k
        plane_data[i].size = 0;
521
163k
    plane_data[px].data = dbytes;
522
163k
    plane_data[px].size = dsize;
523
163k
    penum->error = false;
524
163k
    code = gs_image_next_planes(penum, plane_data, used, false);
525
163k
    *pused = used[px];
526
163k
    if (code >= 0)
527
163k
        next_plane(penum);
528
163k
    return code;
529
163k
}
530
531
int
532
gs_image_next_planes(gs_image_enum * penum,
533
                     gs_const_string *plane_data /*[num_planes]*/,
534
                     uint *used /*[num_planes]*/, bool txfer_control)
535
1.18M
{
536
1.18M
    const int num_planes = penum->num_planes;
537
1.18M
    int i;
538
1.18M
    int code = 0;
539
540
#ifdef DEBUG
541
    if (gs_debug_c('b')) {
542
        int pi;
543
544
        for (pi = 0; pi < num_planes; ++pi)
545
            dmprintf6(penum->memory, "[b]plane %d source="PRI_INTPTR",%u pos=%u data="PRI_INTPTR",%u\n",
546
                     pi, (intptr_t)penum->planes[pi].source.data,
547
                     penum->planes[pi].source.size, penum->planes[pi].pos,
548
                     (intptr_t)plane_data[pi].data, plane_data[pi].size);
549
    }
550
#endif
551
2.38M
    for (i = 0; i < num_planes; ++i) {
552
1.19M
        used[i] = 0;
553
1.19M
        if (penum->wanted[i] && plane_data[i].size != 0) {
554
1.19M
            penum->planes[i].source.size = plane_data[i].size;
555
1.19M
            penum->planes[i].source.data = plane_data[i].data;
556
            /* The gs_string 'orig' in penum->planes is set here if the 'txfer_control' flag is set.
557
             * In this case we now control the lifetime of the string. We need to know the actual
558
             * address of the string, and that gets modified in the peunum->planes->source and size
559
             * members, so we use 'orig' as both a marker for the control and the originalsize and location.
560
             */
561
1.19M
            if (txfer_control) {
562
8
                penum->planes[i].orig.data = plane_data[i].data;
563
8
                penum->planes[i].orig.size = plane_data[i].size;
564
1.19M
            } else {
565
1.19M
                penum->planes[i].orig.data = NULL;
566
1.19M
                penum->planes[i].orig.size = 0;
567
1.19M
            }
568
1.19M
        }
569
1.19M
    }
570
1.98M
    for (;;) {
571
        /* If wanted can vary, only transfer 1 row at a time. */
572
1.98M
        int h = (penum->wanted_varies ? 1 : max_int);
573
574
        /* Move partial rows from source[] to row[]. */
575
3.97M
        for (i = 0; i < num_planes; ++i) {
576
1.99M
            int pos, size;
577
1.99M
            uint raster;
578
579
1.99M
            if (!penum->wanted[i])
580
87
                continue;  /* skip unwanted planes */
581
1.99M
            pos = penum->planes[i].pos;
582
1.99M
            size = penum->planes[i].source.size;
583
1.99M
            raster = penum->image_planes[i].raster;
584
1.99M
            if (size > 0) {
585
1.76M
                if (pos < raster && (pos != 0 || size < raster)) {
586
                    /* Buffer a partial row. */
587
1.46M
                    int copy = min(size, raster - pos);
588
1.46M
                    uint old_size = penum->planes[i].row.size;
589
1.46M
                    gs_memory_t *mem = gs_image_row_memory(penum);
590
591
                    /* Make sure the row buffer is fully allocated. */
592
1.46M
                    if (raster > old_size) {
593
5.52k
                        byte *old_data = penum->planes[i].row.data;
594
5.52k
                        byte *row =
595
5.52k
                            (old_data == 0 ?
596
5.52k
                             gs_alloc_string(mem, raster,
597
5.52k
                                             "gs_image_next(row)") :
598
5.52k
                             gs_resize_string(mem, old_data, old_size, raster,
599
5.52k
                                              "gs_image_next(row)"));
600
601
5.52k
                        if_debug5m('b', mem, "[b]plane %d row ("PRI_INTPTR",%u) => ("PRI_INTPTR",%u)\n",
602
5.52k
                                   i, (intptr_t)old_data, old_size,
603
5.52k
                                   (intptr_t)row, raster);
604
5.52k
                        if (row == 0) {
605
0
                            code = gs_note_error(gs_error_VMerror);
606
0
                            free_row_buffers(penum, i, "gs_image_next(row)");
607
0
                            break;
608
0
                        }
609
5.52k
                        penum->planes[i].row.data = row;
610
5.52k
                        penum->planes[i].row.size = raster;
611
5.52k
                    }
612
1.46M
                    memcpy(penum->planes[i].row.data + pos,
613
1.46M
                           penum->planes[i].source.data, copy);
614
1.46M
                    penum->planes[i].source.data += copy;
615
1.46M
                    penum->planes[i].source.size = size -= copy;
616
                    /* The gs_string 'orig' is only set if the 'txfer_control' flag was set when
617
                     * the 'source' string data was initally passed in. In this case we now control the lifetime
618
                     * of the string. So when we empty the source string, free it. We need to know the actual
619
                     * address of the string, and that gets modified in the peunum->planes->source and size
620
                     * members, so we use 'orig' as both a marker for the control and the originalsize and location.
621
                     */
622
1.46M
                    if (penum->planes[i].source.size == 0 && penum->planes[i].orig.size != 0) {
623
4
                        gs_free_string(mem, (byte *)penum->planes[i].orig.data, penum->planes[i].orig.size, "gs_image_next_planes");
624
4
                        penum->planes[i].orig.size = 0;
625
4
                        penum->planes[i].orig.data = NULL;
626
4
                    }
627
1.46M
                    penum->planes[i].pos = pos += copy;
628
1.46M
                    used[i] += copy;
629
1.46M
                }
630
1.76M
            }
631
1.99M
            if (h == 0)
632
36
                continue;  /* can't transfer any data this cycle */
633
1.99M
            if (pos == raster) {
634
                /*
635
                 * This plane will be transferred from the row buffer,
636
                 * so we can only transfer one row.
637
                 */
638
518k
                h = min(h, 1);
639
518k
                penum->image_planes[i].data = penum->planes[i].row.data;
640
1.47M
            } else if (pos == 0 && size >= raster) {
641
                /* We can transfer 1 or more planes from the source. */
642
304k
                if (raster) {
643
304k
                    h = min(h, size / raster);
644
304k
                    penum->image_planes[i].data = penum->planes[i].source.data;
645
304k
                }
646
0
                else
647
0
                    h = 0;
648
304k
            } else
649
1.16M
                h = 0;   /* not enough data in this plane */
650
1.99M
        }
651
1.98M
        if (h == 0 || code != 0)
652
1.16M
            break;
653
        /* Pass rows to the device. */
654
814k
        if (penum->dev == 0) {
655
            /*
656
             * ****** NOTE: THE FOLLOWING IS NOT CORRECT FOR ImageType 3
657
             * ****** InterleaveType 2, SINCE MASK HEIGHT AND IMAGE HEIGHT
658
             * ****** MAY DIFFER (BY AN INTEGER FACTOR).  ALSO, plane_depths[0]
659
             * ****** AND plane_widths[0] ARE NOT UPDATED.
660
         */
661
0
            if (penum->y + h < penum->height)
662
0
                code = 0;
663
0
            else
664
0
                h = penum->height - penum->y, code = 1;
665
814k
        } else {
666
814k
            code = gx_image_plane_data_rows(penum->info, penum->image_planes,
667
814k
                                            h, &h);
668
814k
            if_debug2m('b', penum->memory, "[b]used %d, code=%d\n", h, code);
669
814k
            penum->error = code < 0;
670
814k
        }
671
814k
        penum->y += h;
672
        /* Update positions and sizes. */
673
814k
        if (h == 0)
674
0
            break;
675
1.63M
        for (i = 0; i < num_planes; ++i) {
676
820k
            int count;
677
678
820k
            if (!penum->wanted[i])
679
84
                continue;
680
820k
            count = penum->image_planes[i].raster * h;
681
820k
            if (penum->planes[i].pos) {
682
                /* We transferred the row from the row buffer. */
683
518k
                penum->planes[i].pos = 0;
684
518k
            } else {
685
                /* We transferred the row(s) from the source. */
686
302k
                penum->planes[i].source.data += count;
687
302k
                penum->planes[i].source.size -= count;
688
                /* The gs_string 'orig' is only set if the 'txfer_control' flag was set when
689
                 * the 'source' string data was initally passed in. In this case we now control the lifetime
690
                 * of the string. So when we empty the source string, free it. We need to know the actual
691
                 * address of the string, and that gets modified in the peunum->planes->source and size
692
                 * members, so we use 'orig' as both a marker for the control and the originalsize and location.
693
                 */
694
302k
                if (penum->planes[i].source.size == 0 && penum->planes[i].orig.size != 0) {
695
3
                    gs_free_string(gs_image_row_memory(penum), (byte *)penum->planes[i].orig.data, penum->planes[i].orig.size, "gs_image_next_planes");
696
3
                    penum->planes[i].orig.size = 0;
697
3
                    penum->planes[i].orig.data = NULL;
698
3
                }
699
302k
                used[i] += count;
700
302k
            }
701
820k
        }
702
814k
        cache_planes(penum);
703
814k
        if (code != 0)
704
19.3k
            break;
705
814k
    }
706
    /* Return the retained data pointers. */
707
2.38M
    for (i = 0; i < num_planes; ++i)
708
1.19M
        plane_data[i] = penum->planes[i].source;
709
1.18M
    return code;
710
1.18M
}
711
712
/* Clean up after processing an image. */
713
/* Public for ghostpcl. */
714
int
715
gs_image_cleanup(gs_image_enum * penum, gs_gstate *pgs)
716
21.5k
{
717
21.5k
    int code = 0, code1;
718
719
21.5k
    free_row_buffers(penum, penum->num_planes, "gs_image_cleanup(row)");
720
21.5k
    if (penum->info != 0) {
721
20.9k
        if (dev_proc(penum->info->dev, dev_spec_op)(penum->info->dev,
722
20.9k
                    gxdso_pattern_is_cpath_accum, NULL, 0)) {
723
            /* Performing a conversion of imagemask into a clipping path. */
724
16
            gx_device *cdev = penum->info->dev;
725
726
16
            code = gx_image_end(penum->info, !penum->error); /* Releases penum->info . */
727
16
            code1 = gx_image_fill_masked_end(cdev, penum->dev, gs_currentdevicecolor_inline(pgs));
728
16
            if (code == 0)
729
16
                code = code1;
730
16
        } else
731
20.8k
            code = gx_image_end(penum->info, !penum->error);
732
20.9k
    }
733
    /* Don't free the local enumerator -- the client does that. */
734
735
21.5k
    return code;
736
21.5k
}
737
738
/* Clean up after processing an image and free the enumerator. */
739
int
740
gs_image_cleanup_and_free_enum(gs_image_enum * penum, gs_gstate *pgs)
741
21.5k
{
742
21.5k
    int code;
743
744
21.5k
    if (penum == NULL)
745
0
            return 0;
746
21.5k
    code = gs_image_cleanup(penum, pgs);
747
748
21.5k
    gs_free_object(penum->memory, penum, "gs_image_cleanup_and_free_enum");
749
21.5k
    return code;
750
21.5k
}