Coverage Report

Created: 2025-06-10 06:56

/src/ghostpdl/base/gsmatrix.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Matrix operators for Ghostscript library */
18
#include "math_.h"
19
#include "memory_.h"
20
#include "gx.h"
21
#include "gserrors.h"
22
#include "gxfarith.h"
23
#include "gxfixed.h"
24
#include "gxmatrix.h"
25
#include "stream.h"
26
27
/* The identity matrix */
28
static const gs_matrix gs_identity_matrix =
29
{identity_matrix_body};
30
31
/* ------ Matrix creation ------ */
32
33
/* Create an identity matrix */
34
void
35
gs_make_identity(gs_matrix * pmat)
36
4.26M
{
37
4.26M
    *pmat = gs_identity_matrix;
38
4.26M
}
39
40
/* Create a translation matrix */
41
int
42
gs_make_translation(double dx, double dy, gs_matrix * pmat)
43
1.99k
{
44
1.99k
    *pmat = gs_identity_matrix;
45
1.99k
    pmat->tx = dx;
46
1.99k
    pmat->ty = dy;
47
1.99k
    return 0;
48
1.99k
}
49
50
/* Create a scaling matrix */
51
int
52
gs_make_scaling(double sx, double sy, gs_matrix * pmat)
53
869
{
54
869
    *pmat = gs_identity_matrix;
55
869
    pmat->xx = sx;
56
869
    pmat->yy = sy;
57
869
    return 0;
58
869
}
59
60
/* Create a rotation matrix. */
61
/* The angle is in degrees. */
62
int
63
gs_make_rotation(double ang, gs_matrix * pmat)
64
223k
{
65
223k
    gs_sincos_t sincos;
66
67
223k
    gs_sincos_degrees(ang, &sincos);
68
223k
    pmat->yy = pmat->xx = sincos.cos;
69
223k
    pmat->xy = sincos.sin;
70
223k
    pmat->yx = -sincos.sin;
71
223k
    pmat->tx = pmat->ty = 0.0;
72
223k
    return 0;
73
223k
}
74
75
/* ------ Matrix arithmetic ------ */
76
77
/* Multiply two matrices.  We should check for floating exceptions, */
78
/* but for the moment it's just too awkward. */
79
/* Since this is used heavily, we check for shortcuts. */
80
int
81
gs_matrix_multiply(const gs_matrix * pm1, const gs_matrix * pm2, gs_matrix * pmr)
82
2.09M
{
83
2.09M
    double xx1 = pm1->xx, yy1 = pm1->yy;
84
2.09M
    double tx1 = pm1->tx, ty1 = pm1->ty;
85
2.09M
    double xx2 = pm2->xx, yy2 = pm2->yy;
86
2.09M
    double xy2 = pm2->xy, yx2 = pm2->yx;
87
88
2.09M
    if (is_xxyy(pm1)) {
89
2.05M
        pmr->tx = tx1 * xx2 + pm2->tx;
90
2.05M
        pmr->ty = ty1 * yy2 + pm2->ty;
91
2.05M
        if (is_fzero(xy2))
92
2.02M
            pmr->xy = 0;
93
32.8k
        else
94
32.8k
            pmr->xy = xx1 * xy2,
95
32.8k
                pmr->ty += tx1 * xy2;
96
2.05M
        pmr->xx = xx1 * xx2;
97
2.05M
        if (is_fzero(yx2))
98
2.02M
            pmr->yx = 0;
99
33.4k
        else
100
33.4k
            pmr->yx = yy1 * yx2,
101
33.4k
                pmr->tx += ty1 * yx2;
102
2.05M
        pmr->yy = yy1 * yy2;
103
2.05M
    } else {
104
36.7k
        double xy1 = pm1->xy, yx1 = pm1->yx;
105
106
36.7k
        pmr->xx = xx1 * xx2 + xy1 * yx2;
107
36.7k
        pmr->xy = xx1 * xy2 + xy1 * yy2;
108
36.7k
        pmr->yy = yx1 * xy2 + yy1 * yy2;
109
36.7k
        pmr->yx = yx1 * xx2 + yy1 * yx2;
110
36.7k
        pmr->tx = tx1 * xx2 + ty1 * yx2 + pm2->tx;
111
36.7k
        pmr->ty = tx1 * xy2 + ty1 * yy2 + pm2->ty;
112
36.7k
    }
113
2.09M
    return 0;
114
2.09M
}
115
int
116
gs_matrix_multiply_double(const gs_matrix_double * pm1, const gs_matrix * pm2, gs_matrix_double * pmr)
117
61.4k
{
118
61.4k
    double xx1 = pm1->xx, yy1 = pm1->yy;
119
61.4k
    double tx1 = pm1->tx, ty1 = pm1->ty;
120
61.4k
    double xx2 = pm2->xx, yy2 = pm2->yy;
121
61.4k
    double xy2 = pm2->xy, yx2 = pm2->yx;
122
123
61.4k
    if (is_xxyy(pm1)) {
124
61.4k
        pmr->tx = tx1 * xx2 + pm2->tx;
125
61.4k
        pmr->ty = ty1 * yy2 + pm2->ty;
126
61.4k
        if (is_fzero(xy2))
127
46.3k
            pmr->xy = 0;
128
15.1k
        else
129
15.1k
            pmr->xy = xx1 * xy2,
130
15.1k
                pmr->ty += tx1 * xy2;
131
61.4k
        pmr->xx = xx1 * xx2;
132
61.4k
        if (is_fzero(yx2))
133
46.2k
            pmr->yx = 0;
134
15.1k
        else
135
15.1k
            pmr->yx = yy1 * yx2,
136
15.1k
                pmr->tx += ty1 * yx2;
137
61.4k
        pmr->yy = yy1 * yy2;
138
61.4k
    } else {
139
0
        double xy1 = pm1->xy, yx1 = pm1->yx;
140
141
0
        pmr->xx = xx1 * xx2 + xy1 * yx2;
142
0
        pmr->xy = xx1 * xy2 + xy1 * yy2;
143
0
        pmr->yy = yx1 * xy2 + yy1 * yy2;
144
0
        pmr->yx = yx1 * xx2 + yy1 * yx2;
145
0
        pmr->tx = tx1 * xx2 + ty1 * yx2 + pm2->tx;
146
0
        pmr->ty = tx1 * xy2 + ty1 * yy2 + pm2->ty;
147
0
    }
148
61.4k
    return 0;
149
61.4k
}
150
151
/* Invert a matrix.  Return gs_error_undefinedresult if not invertible. */
152
int
153
gs_matrix_invert(const gs_matrix * pm, gs_matrix * pmr)
154
1.49M
{       /* We have to be careful about fetch/store order, */
155
    /* because pm might be the same as pmr. */
156
1.49M
    if (is_xxyy(pm)) {
157
977k
        if (is_fzero(pm->xx) || is_fzero(pm->yy))
158
112
            return_error(gs_error_undefinedresult);
159
976k
        pmr->tx = -(pmr->xx = 1.0 / pm->xx) * pm->tx;
160
976k
        pmr->xy = 0.0;
161
976k
        pmr->yx = 0.0;
162
976k
        pmr->ty = -(pmr->yy = 1.0 / pm->yy) * pm->ty;
163
976k
    } else {
164
518k
        float mxx = pm->xx, myy = pm->yy, mxy = pm->xy, myx = pm->yx;
165
518k
        float mtx = pm->tx, mty = pm->ty;
166
        /* we declare det as double since on at least some computer (i.e. peeves)
167
           declaring it as a float results in different values for pmr depending
168
           on whether or not optimization is turned on.  I believe this is caused
169
           by the compiler keeping the det value in an internal register when
170
           optimization is enable.  As evidence of this if you add a debugging
171
           statement to print out det the optimized code acts the same as the
172
           unoptimized code.  declearing det as double does not change the CET 10-09.ps
173
           output. */
174
518k
        double det = (float)(mxx * myy) - (float)(mxy * myx);
175
176
        /*
177
         * We are doing the math as floats instead of doubles to reproduce
178
         * the results in page 1 of CET 10-09.ps
179
         */
180
518k
        if (det == 0)
181
673
            return_error(gs_error_undefinedresult);
182
517k
        pmr->xx = myy / det;
183
517k
        pmr->xy = -mxy / det;
184
517k
        pmr->yx = -myx / det;
185
517k
        pmr->yy = mxx / det;
186
517k
        pmr->tx = (((float)(mty * myx) - (float)(mtx * myy))) / det;
187
517k
        pmr->ty = (((float)(mtx * mxy) - (float)(mty * mxx))) / det;
188
517k
    }
189
1.49M
    return 0;
190
1.49M
}
191
int
192
gs_matrix_invert_to_double(const gs_matrix * pm, gs_matrix_double * pmr)
193
61.4k
{       /* We have to be careful about fetch/store order, */
194
    /* because pm might be the same as pmr. */
195
61.4k
    if (is_xxyy(pm)) {
196
61.4k
        if (is_fzero(pm->xx) || is_fzero(pm->yy))
197
4
            return_error(gs_error_undefinedresult);
198
61.4k
        pmr->tx = -(pmr->xx = 1.0 / pm->xx) * pm->tx;
199
61.4k
        pmr->xy = 0.0;
200
61.4k
        pmr->yx = 0.0;
201
61.4k
        pmr->ty = -(pmr->yy = 1.0 / pm->yy) * pm->ty;
202
61.4k
    } else {
203
0
        double mxx = pm->xx, myy = pm->yy, mxy = pm->xy, myx = pm->yx;
204
0
        double mtx = pm->tx, mty = pm->ty;
205
0
        double det = (mxx * myy) - (mxy * myx);
206
207
        /*
208
         * We are doing the math as floats instead of doubles to reproduce
209
         * the results in page 1 of CET 10-09.ps
210
         */
211
0
        if (det == 0)
212
0
            return_error(gs_error_undefinedresult);
213
0
        pmr->xx = myy / det;
214
0
        pmr->xy = -mxy / det;
215
0
        pmr->yx = -myx / det;
216
0
        pmr->yy = mxx / det;
217
0
        pmr->tx = (((mty * myx) - (mtx * myy))) / det;
218
0
        pmr->ty = (((mtx * mxy) - (mty * mxx))) / det;
219
0
    }
220
61.4k
    return 0;
221
61.4k
}
222
223
/* Translate a matrix, possibly in place. */
224
int
225
gs_matrix_translate(const gs_matrix * pm, double dx, double dy, gs_matrix * pmr)
226
0
{
227
0
    gs_point trans;
228
0
    int code = gs_distance_transform(dx, dy, pm, &trans);
229
230
0
    if (code < 0)
231
0
        return code;
232
0
    if (pmr != pm)
233
0
        *pmr = *pm;
234
0
    pmr->tx += trans.x;
235
0
    pmr->ty += trans.y;
236
0
    return 0;
237
0
}
238
239
/* Scale a matrix, possibly in place. */
240
int
241
gs_matrix_scale(const gs_matrix * pm, double sx, double sy, gs_matrix * pmr)
242
30
{
243
30
    pmr->xx = pm->xx * sx;
244
30
    pmr->xy = pm->xy * sx;
245
30
    pmr->yx = pm->yx * sy;
246
30
    pmr->yy = pm->yy * sy;
247
30
    if (pmr != pm) {
248
30
        pmr->tx = pm->tx;
249
30
        pmr->ty = pm->ty;
250
30
    }
251
30
    return 0;
252
30
}
253
254
/* Rotate a matrix, possibly in place.  The angle is in degrees. */
255
int
256
gs_matrix_rotate(const gs_matrix * pm, double ang, gs_matrix * pmr)
257
1.54k
{
258
1.54k
    double mxx, mxy;
259
1.54k
    gs_sincos_t sincos;
260
261
1.54k
    gs_sincos_degrees(ang, &sincos);
262
1.54k
    mxx = pm->xx, mxy = pm->xy;
263
1.54k
    pmr->xx = sincos.cos * mxx + sincos.sin * pm->yx;
264
1.54k
    pmr->xy = sincos.cos * mxy + sincos.sin * pm->yy;
265
1.54k
    pmr->yx = sincos.cos * pm->yx - sincos.sin * mxx;
266
1.54k
    pmr->yy = sincos.cos * pm->yy - sincos.sin * mxy;
267
1.54k
    if (pmr != pm) {
268
0
        pmr->tx = pm->tx;
269
0
        pmr->ty = pm->ty;
270
0
    }
271
1.54k
    return 0;
272
1.54k
}
273
274
/* ------ Coordinate transformations (floating point) ------ */
275
276
/* Note that all the transformation routines take separate */
277
/* x and y arguments, but return their result in a point. */
278
279
/* Transform a point. */
280
int
281
gs_point_transform(double x, double y, const gs_matrix * pmat,
282
                   gs_point * ppt)
283
20.9M
{
284
    /*
285
     * The float casts are there to reproduce results in CET 10-01.ps
286
     * page 4.
287
     */
288
20.9M
    ppt->x = (float)(x * pmat->xx) + pmat->tx;
289
20.9M
    ppt->y = (float)(y * pmat->yy) + pmat->ty;
290
20.9M
    if (!is_fzero(pmat->yx))
291
15.4M
        ppt->x += (float)(y * pmat->yx);
292
20.9M
    if (!is_fzero(pmat->xy))
293
15.4M
        ppt->y += (float)(x * pmat->xy);
294
20.9M
    return 0;
295
20.9M
}
296
297
/* Inverse-transform a point. */
298
/* Return gs_error_undefinedresult if the matrix is not invertible. */
299
int
300
gs_point_transform_inverse(double x, double y, const gs_matrix * pmat,
301
                           gs_point * ppt)
302
3.23M
{
303
3.23M
    if (is_xxyy(pmat)) {
304
3.12M
        if (is_fzero(pmat->xx) || is_fzero(pmat->yy))
305
53
            return_error(gs_error_undefinedresult);
306
3.12M
        ppt->x = (x - pmat->tx) / pmat->xx;
307
3.12M
        ppt->y = (y - pmat->ty) / pmat->yy;
308
3.12M
        return 0;
309
3.12M
    } else if (is_xyyx(pmat)) {
310
75.7k
        if (is_fzero(pmat->xy) || is_fzero(pmat->yx))
311
0
            return_error(gs_error_undefinedresult);
312
75.7k
        ppt->x = (y - pmat->ty) / pmat->xy;
313
75.7k
        ppt->y = (x - pmat->tx) / pmat->yx;
314
75.7k
        return 0;
315
75.7k
    } else {     /* There are faster ways to do this, */
316
        /* but we won't implement one unless we have to. */
317
37.5k
        gs_matrix imat;
318
37.5k
        int code = gs_matrix_invert(pmat, &imat);
319
320
37.5k
        if (code < 0)
321
48
            return code;
322
37.4k
        return gs_point_transform(x, y, &imat, ppt);
323
37.5k
    }
324
3.23M
}
325
326
/* Transform a distance. */
327
int
328
gs_distance_transform(double dx, double dy, const gs_matrix * pmat,
329
                      gs_point * pdpt)
330
13.7M
{
331
13.7M
    pdpt->x = dx * pmat->xx;
332
13.7M
    pdpt->y = dy * pmat->yy;
333
13.7M
    if (!is_fzero(pmat->yx))
334
7.85M
        pdpt->x += dy * pmat->yx;
335
13.7M
    if (!is_fzero(pmat->xy))
336
7.85M
        pdpt->y += dx * pmat->xy;
337
13.7M
    return 0;
338
13.7M
}
339
340
/* Inverse-transform a distance. */
341
/* Return gs_error_undefinedresult if the matrix is not invertible. */
342
int
343
gs_distance_transform_inverse(double dx, double dy,
344
                              const gs_matrix * pmat, gs_point * pdpt)
345
571k
{
346
571k
    if (is_xxyy(pmat)) {
347
524k
        if (is_fzero(pmat->xx) || is_fzero(pmat->yy))
348
3.53k
            return_error(gs_error_undefinedresult);
349
521k
        pdpt->x = dx / pmat->xx;
350
521k
        pdpt->y = dy / pmat->yy;
351
521k
    } else if (is_xyyx(pmat)) {
352
25.1k
        if (is_fzero(pmat->xy) || is_fzero(pmat->yx))
353
22
            return_error(gs_error_undefinedresult);
354
25.1k
        pdpt->x = dy / pmat->xy;
355
25.1k
        pdpt->y = dx / pmat->yx;
356
25.1k
    } else {
357
21.0k
        double det = pmat->xx * pmat->yy - pmat->xy * pmat->yx;
358
359
21.0k
        if (det == 0)
360
435
            return_error(gs_error_undefinedresult);
361
20.6k
        pdpt->x = (dx * pmat->yy - dy * pmat->yx) / det;
362
20.6k
        pdpt->y = (dy * pmat->xx - dx * pmat->xy) / det;
363
20.6k
    }
364
567k
    return 0;
365
571k
}
366
367
/* Compute the bounding box of 4 points. */
368
int
369
gs_points_bbox(const gs_point pts[4], gs_rect * pbox)
370
1.27M
{
371
1.27M
#define assign_min_max(vmin, vmax, v0, v1)\
372
5.10M
  if ( v0 < v1 ) vmin = v0, vmax = v1; else vmin = v1, vmax = v0
373
1.27M
#define assign_min_max_4(vmin, vmax, v0, v1, v2, v3)\
374
2.55M
  { double min01, max01, min23, max23;\
375
2.55M
    assign_min_max(min01, max01, v0, v1);\
376
2.55M
    assign_min_max(min23, max23, v2, v3);\
377
2.55M
    vmin = min(min01, min23);\
378
2.55M
    vmax = max(max01, max23);\
379
2.55M
  }
380
1.27M
    assign_min_max_4(pbox->p.x, pbox->q.x,
381
1.27M
                     pts[0].x, pts[1].x, pts[2].x, pts[3].x);
382
1.27M
    assign_min_max_4(pbox->p.y, pbox->q.y,
383
1.27M
                     pts[0].y, pts[1].y, pts[2].y, pts[3].y);
384
1.27M
#undef assign_min_max
385
1.27M
#undef assign_min_max_4
386
1.27M
    return 0;
387
1.27M
}
388
389
/* Transform or inverse-transform a bounding box. */
390
/* Return gs_error_undefinedresult if the matrix is not invertible. */
391
static int
392
bbox_transform_either_only(const gs_rect * pbox_in, const gs_matrix * pmat,
393
                           gs_point pts[4],
394
     int (*point_xform) (double, double, const gs_matrix *, gs_point *))
395
1.27M
{
396
1.27M
    int code;
397
398
1.27M
    if ((code = (*point_xform) (pbox_in->p.x, pbox_in->p.y, pmat, &pts[0])) < 0 ||
399
1.27M
        (code = (*point_xform) (pbox_in->p.x, pbox_in->q.y, pmat, &pts[1])) < 0 ||
400
1.27M
        (code = (*point_xform) (pbox_in->q.x, pbox_in->p.y, pmat, &pts[2])) < 0 ||
401
1.27M
     (code = (*point_xform) (pbox_in->q.x, pbox_in->q.y, pmat, &pts[3])) < 0
402
1.27M
        )
403
1.27M
        DO_NOTHING;
404
1.27M
    return code;
405
1.27M
}
406
407
static int
408
bbox_transform_either(const gs_rect * pbox_in, const gs_matrix * pmat,
409
                      gs_rect * pbox_out,
410
     int (*point_xform) (double, double, const gs_matrix *, gs_point *))
411
1.27M
{
412
1.27M
    int code;
413
414
    /*
415
     * In principle, we could transform only one point and two
416
     * distance vectors; however, because of rounding, we will only
417
     * get fully consistent results if we transform all 4 points.
418
     * We must compute the max and min after transforming,
419
     * since a rotation may be involved.
420
     */
421
1.27M
    gs_point pts[4];
422
423
1.27M
    if ((code = bbox_transform_either_only(pbox_in, pmat, pts, point_xform)) < 0)
424
74
        return code;
425
1.27M
    return gs_points_bbox(pts, pbox_out);
426
1.27M
}
427
int
428
gs_bbox_transform(const gs_rect * pbox_in, const gs_matrix * pmat,
429
                  gs_rect * pbox_out)
430
765k
{
431
765k
    return bbox_transform_either(pbox_in, pmat, pbox_out,
432
765k
                                 gs_point_transform);
433
765k
}
434
int
435
gs_bbox_transform_only(const gs_rect * pbox_in, const gs_matrix * pmat,
436
                       gs_point points[4])
437
0
{
438
0
    return bbox_transform_either_only(pbox_in, pmat, points,
439
0
                                      gs_point_transform);
440
0
}
441
int
442
gs_bbox_transform_inverse(const gs_rect * pbox_in, const gs_matrix * pmat,
443
                          gs_rect * pbox_out)
444
510k
{
445
510k
    int code = bbox_transform_either(pbox_in, pmat, pbox_out,
446
510k
                                 gs_point_transform_inverse);
447
448
510k
    return code;
449
510k
}
450
451
/* ------ Coordinate transformations (to fixed point) ------ */
452
453
55.5k
#define f_fits_in_fixed(f) f_fits_in_bits(f, fixed_int_bits)
454
455
/* Make a gs_matrix_fixed from a gs_matrix. */
456
int
457
gs_matrix_fixed_from_matrix(gs_matrix_fixed *pfmat, const gs_matrix *pmat)
458
18.1k
{
459
18.1k
    *(gs_matrix *)pfmat = *pmat;
460
18.1k
    if (f_fits_in_fixed(pmat->tx) && f_fits_in_fixed(pmat->ty)) {
461
18.1k
        pfmat->tx = fixed2float(pfmat->tx_fixed = float2fixed(pmat->tx));
462
18.1k
        pfmat->ty = fixed2float(pfmat->ty_fixed = float2fixed(pmat->ty));
463
18.1k
        pfmat->txy_fixed_valid = true;
464
18.1k
    } else {
465
0
        pfmat->txy_fixed_valid = false;
466
0
    }
467
18.1k
    return 0;
468
18.1k
}
469
470
/* Transform a point with a fixed-point result. */
471
int
472
gs_point_transform2fixed(const gs_matrix_fixed * pmat,
473
                         double x, double y, gs_fixed_point * ppt)
474
1.13M
{
475
1.13M
    fixed px, py, t;
476
1.13M
    double xtemp, ytemp;
477
1.13M
    int code;
478
479
1.13M
    if (!pmat->txy_fixed_valid) { /* The translation is out of range.  Do the */
480
        /* computation in floating point, and convert to */
481
        /* fixed at the end. */
482
2
        gs_point fpt;
483
484
2
        gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt);
485
2
        if (!(f_fits_in_fixed(fpt.x) && f_fits_in_fixed(fpt.y)))
486
2
            return_error(gs_error_limitcheck);
487
0
        ppt->x = float2fixed(fpt.x);
488
0
        ppt->y = float2fixed(fpt.y);
489
0
        return 0;
490
2
    }
491
1.13M
    if (!is_fzero(pmat->xy)) { /* Hope for 90 degree rotation */
492
10.7k
        if ((code = CHECK_DFMUL2FIXED_VARS(px, y, pmat->yx, xtemp)) < 0 ||
493
10.7k
            (code = CHECK_DFMUL2FIXED_VARS(py, x, pmat->xy, ytemp)) < 0
494
10.7k
            )
495
1
            return code;
496
10.7k
        FINISH_DFMUL2FIXED_VARS(px, xtemp);
497
10.7k
        FINISH_DFMUL2FIXED_VARS(py, ytemp);
498
10.7k
        if (!is_fzero(pmat->xx)) {
499
9.06k
            if ((code = CHECK_DFMUL2FIXED_VARS(t, x, pmat->xx, xtemp)) < 0)
500
0
                return code;
501
9.06k
            FINISH_DFMUL2FIXED_VARS(t, xtemp);
502
9.06k
            if ((code = CHECK_SET_FIXED_SUM(px, px, t)) < 0)
503
0
                return code;
504
9.06k
        }
505
10.7k
        if (!is_fzero(pmat->yy)) {
506
9.04k
            if ((code = CHECK_DFMUL2FIXED_VARS(t, y, pmat->yy, ytemp)) < 0)
507
0
                return code;
508
9.04k
            FINISH_DFMUL2FIXED_VARS(t, ytemp);
509
9.04k
            if ((code = CHECK_SET_FIXED_SUM(py, py, t)) < 0)
510
0
                return code;
511
9.04k
        }
512
1.12M
    } else {
513
1.12M
        if ((code = CHECK_DFMUL2FIXED_VARS(px, x, pmat->xx, xtemp)) < 0 ||
514
1.12M
            (code = CHECK_DFMUL2FIXED_VARS(py, y, pmat->yy, ytemp)) < 0
515
1.12M
            )
516
1
            return code;
517
1.12M
        FINISH_DFMUL2FIXED_VARS(px, xtemp);
518
1.12M
        FINISH_DFMUL2FIXED_VARS(py, ytemp);
519
1.12M
        if (!is_fzero(pmat->yx)) {
520
0
            if ((code = CHECK_DFMUL2FIXED_VARS(t, y, pmat->yx, ytemp)) < 0)
521
0
                return code;
522
0
            FINISH_DFMUL2FIXED_VARS(t, ytemp);
523
0
            if ((code = CHECK_SET_FIXED_SUM(px, px, t)) < 0)
524
0
                return code;
525
0
        }
526
1.12M
    }
527
1.13M
    if (((code = CHECK_SET_FIXED_SUM(ppt->x, px, pmat->tx_fixed)) < 0) ||
528
1.13M
        ((code = CHECK_SET_FIXED_SUM(ppt->y, py, pmat->ty_fixed)) < 0) )
529
0
        return code;
530
1.13M
    return 0;
531
1.13M
}
532
533
#if PRECISE_CURRENTPOINT
534
/* Transform a point with a fixed-point result. */
535
/* Used for the best precision of the current point,
536
   see comment in clamp_point_aux. */
537
int
538
gs_point_transform2fixed_rounding(const gs_matrix_fixed * pmat,
539
                         double x, double y, gs_fixed_point * ppt)
540
9.60k
{
541
9.60k
    gs_point fpt;
542
543
9.60k
    gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt);
544
9.60k
    if (!(f_fits_in_fixed(fpt.x) && f_fits_in_fixed(fpt.y)))
545
7
        return_error(gs_error_limitcheck);
546
9.59k
    ppt->x = float2fixed_rounded(fpt.x);
547
9.59k
    ppt->y = float2fixed_rounded(fpt.y);
548
9.59k
    return 0;
549
9.60k
}
550
#endif
551
552
/* Transform a distance with a fixed-point result. */
553
int
554
gs_distance_transform2fixed(const gs_matrix_fixed * pmat,
555
                            double dx, double dy, gs_fixed_point * ppt)
556
5.85M
{
557
5.85M
    fixed px, py, t;
558
5.85M
    double xtemp, ytemp;
559
5.85M
    int code;
560
561
5.85M
    if ((code = CHECK_DFMUL2FIXED_VARS(px, dx, pmat->xx, xtemp)) < 0 ||
562
5.85M
        (code = CHECK_DFMUL2FIXED_VARS(py, dy, pmat->yy, ytemp)) < 0
563
5.85M
        )
564
7.15k
        return code;
565
5.84M
    FINISH_DFMUL2FIXED_VARS(px, xtemp);
566
5.84M
    FINISH_DFMUL2FIXED_VARS(py, ytemp);
567
5.84M
    if (!is_fzero(pmat->yx)) {
568
89.4k
        if ((code = CHECK_DFMUL2FIXED_VARS(t, dy, pmat->yx, ytemp)) < 0)
569
35
            return code;
570
89.4k
        FINISH_DFMUL2FIXED_VARS(t, ytemp);
571
89.4k
        if ((code = CHECK_SET_FIXED_SUM(px, px, t)) < 0)
572
0
            return code;
573
89.4k
    }
574
5.84M
    if (!is_fzero(pmat->xy)) {
575
81.3k
        if ((code = CHECK_DFMUL2FIXED_VARS(t, dx, pmat->xy, xtemp)) < 0)
576
227
            return code;
577
81.1k
        FINISH_DFMUL2FIXED_VARS(t, xtemp);
578
81.1k
        if ((code = CHECK_SET_FIXED_SUM(py, py, t)) < 0)
579
0
            return code;
580
81.1k
    }
581
5.84M
    ppt->x = px;
582
5.84M
    ppt->y = py;
583
5.84M
    return 0;
584
5.84M
}
585
586
/* ------ Serialization ------ */
587
588
/*
589
 * For maximum conciseness in band lists, we write a matrix as a control
590
 * byte followed by 0 to 6 values.  The control byte has the format
591
 * AABBCD00.  AA and BB control (xx,yy) and (xy,yx) as follows:
592
 *  00 = values are (0.0, 0.0)
593
 *  01 = values are (V, V) [1 value follows]
594
 *  10 = values are (V, -V) [1 value follows]
595
 *  11 = values are (U, V) [2 values follow]
596
 * C and D control tx and ty as follows:
597
 *  0 = value is 0.0
598
 *  1 = value follows
599
 * The following code is the only place that knows this representation.
600
 */
601
602
/* Put a matrix on a stream. */
603
int
604
sput_matrix(stream *s, const gs_matrix *pmat)
605
618k
{
606
618k
    byte buf[1 + 6 * sizeof(float)];
607
618k
    byte *cp = buf + 1;
608
618k
    byte b = 0;
609
618k
    float coeff[6];
610
618k
    int i;
611
618k
    uint ignore;
612
613
618k
    coeff[0] = pmat->xx;
614
618k
    coeff[1] = pmat->xy;
615
618k
    coeff[2] = pmat->yx;
616
618k
    coeff[3] = pmat->yy;
617
618k
    coeff[4] = pmat->tx;
618
618k
    coeff[5] = pmat->ty;
619
1.85M
    for (i = 0; i < 4; i += 2) {
620
1.23M
        float u = coeff[i], v = coeff[i ^ 3];
621
622
1.23M
        b <<= 2;
623
1.23M
        if (u != 0 || v != 0) {
624
737k
            memcpy(cp, &u, sizeof(float));
625
737k
            cp += sizeof(float);
626
627
737k
            if (v == u)
628
25.7k
                b += 1;
629
711k
            else if (v == -u)
630
362k
                b += 2;
631
349k
            else {
632
349k
                b += 3;
633
349k
                memcpy(cp, &v, sizeof(float));
634
349k
                cp += sizeof(float);
635
349k
            }
636
737k
        }
637
1.23M
    }
638
1.85M
    for (; i < 6; ++i) {
639
1.23M
        float v = coeff[i];
640
641
1.23M
        b <<= 1;
642
1.23M
        if (v != 0) {
643
1.13M
            ++b;
644
1.13M
            memcpy(cp, &v, sizeof(float));
645
1.13M
            cp += sizeof(float);
646
1.13M
        }
647
1.23M
    }
648
618k
    buf[0] = b << 2;
649
618k
    return sputs(s, buf, cp - buf, &ignore);
650
618k
}
651
652
/* Get a matrix from a stream. */
653
int
654
sget_matrix(stream *s, gs_matrix *pmat)
655
947k
{
656
947k
    int b = sgetc(s);
657
947k
    float coeff[6];
658
947k
    int i;
659
947k
    int status;
660
947k
    uint nread;
661
662
947k
    if (b < 0)
663
0
        return b;
664
2.84M
    for (i = 0; i < 4; i += 2, b <<= 2)
665
1.89M
        if (!(b & 0xc0))
666
884k
            coeff[i] = coeff[i ^ 3] = 0.0;
667
1.01M
        else {
668
1.01M
            float value;
669
670
1.01M
            status = sgets(s, (byte *)&value, sizeof(value), &nread);
671
1.01M
            if (status < 0 && status != EOFC)
672
0
                return_error(gs_error_ioerror);
673
1.01M
            coeff[i] = value;
674
1.01M
            switch ((b >> 6) & 3) {
675
16.2k
                case 1:
676
16.2k
                    coeff[i ^ 3] = value;
677
16.2k
                    break;
678
645k
                case 2:
679
645k
                    coeff[i ^ 3] = -value;
680
645k
                    break;
681
349k
                case 3:
682
349k
                    status = sgets(s, (byte *)&coeff[i ^ 3],
683
349k
                                   sizeof(coeff[0]), &nread);
684
349k
                    if (status < 0 && status != EOFC)
685
0
                        return_error(gs_error_ioerror);
686
1.01M
            }
687
1.01M
        }
688
2.84M
    for (; i < 6; ++i, b <<= 1)
689
1.89M
        if (b & 0x80) {
690
1.61M
            status = sgets(s, (byte *)&coeff[i], sizeof(coeff[0]), &nread);
691
1.61M
            if (status < 0 && status != EOFC)
692
0
                return_error(gs_error_ioerror);
693
1.61M
        } else
694
284k
            coeff[i] = 0.0;
695
947k
    pmat->xx = coeff[0];
696
947k
    pmat->xy = coeff[1];
697
947k
    pmat->yx = coeff[2];
698
947k
    pmat->yy = coeff[3];
699
947k
    pmat->tx = coeff[4];
700
947k
    pmat->ty = coeff[5];
701
947k
    return 0;
702
947k
}
703
704
/* Compare two matrices */
705
int
706
0
gs_matrix_compare(const gs_matrix *pmat1, const gs_matrix *pmat2) {
707
0
  if (pmat1->xx != pmat2->xx)
708
0
    return(1);
709
0
  if (pmat1->xy != pmat2->xy)
710
0
    return(1);
711
0
  if (pmat1->yx != pmat2->yx)
712
0
    return(1);
713
0
  if (pmat1->yy != pmat2->yy)
714
0
    return(1);
715
0
  if (pmat1->tx != pmat2->tx)
716
0
    return(1);
717
0
  if (pmat1->ty != pmat2->ty)
718
0
    return(1);
719
0
  return(0);
720
0
}