Coverage Report

Created: 2025-06-10 06:58

/src/ghostpdl/base/gscie.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* CIE color rendering cache management */
18
#include "math_.h"
19
#include "memory_.h"
20
#include "gx.h"
21
#include "gserrors.h"
22
#include "gsstruct.h"
23
#include "gsmatrix.h"   /* for gscolor2.h */
24
#include "gxcspace.h"   /* for gxcie.c */
25
#include "gscolor2.h"   /* for gs_set/currentcolorrendering */
26
#include "gxarith.h"
27
#include "gxcie.h"
28
#include "gxdevice.h"   /* for gxcmap.h */
29
#include "gxcmap.h"
30
#include "gzstate.h"
31
#include "gsicc.h"
32
33
/*
34
 * Define whether to optimize the CIE mapping process by combining steps.
35
 * This should only be disabled (commented out) for debugging.
36
 */
37
#define OPTIMIZE_CIE_MAPPING
38
39
/* Forward references */
40
static int cie_joint_caches_init(gx_cie_joint_caches *,
41
                                  const gs_cie_common *,
42
                                  gs_cie_render *);
43
static void cie_joint_caches_complete(gx_cie_joint_caches *,
44
                                       const gs_cie_common *,
45
                                       const gs_cie_abc *,
46
                                       const gs_cie_render *);
47
static void cie_cache_restrict(cie_cache_floats *, const gs_range *);
48
static void cie_invert3(const gs_matrix3 *, gs_matrix3 *);
49
static void cie_matrix_init(gs_matrix3 *);
50
51
/* Allocator structure types */
52
private_st_joint_caches();
53
extern_st(st_gs_gstate);
54
55
#define RESTRICTED_INDEX(v, n, itemp)\
56
0
  ((uint)(itemp = (int)(v)) >= (n) ?\
57
0
   (itemp < 0 ? 0 : (n) - 1) : itemp)
58
59
/* Define cache interpolation threshold values. */
60
#ifdef CIE_CACHE_INTERPOLATE
61
#  ifdef CIE_INTERPOLATE_THRESHOLD
62
10.3k
#    define CACHE_THRESHOLD CIE_INTERPOLATE_THRESHOLD
63
#  else
64
#    define CACHE_THRESHOLD 0 /* always interpolate */
65
#  endif
66
#else
67
#  define CACHE_THRESHOLD 1.0e6 /* never interpolate */
68
#endif
69
#ifdef CIE_RENDER_TABLE_INTERPOLATE
70
#  define RENDER_TABLE_THRESHOLD 0
71
#else
72
#  define RENDER_TABLE_THRESHOLD 1.0e6
73
#endif
74
75
/*
76
 * Determine whether a function is a linear transformation of the form
77
 * f(x) = scale * x + origin.
78
 */
79
static bool
80
cache_is_linear(cie_linear_params_t *params, const cie_cache_floats *pcf)
81
0
{
82
0
    double origin = pcf->values[0];
83
0
    double diff = pcf->values[countof(pcf->values) - 1] - origin;
84
0
    double scale = diff / (countof(pcf->values) - 1);
85
0
    int i;
86
0
    double test = origin + scale;
87
88
0
    for (i = 1; i < countof(pcf->values) - 1; ++i, test += scale)
89
0
        if (fabs(pcf->values[i] - test) >= 0.5 / countof(pcf->values))
90
0
            return (params->is_linear = false);
91
0
    params->origin = origin - pcf->params.base;
92
0
    params->scale =
93
0
        diff * pcf->params.factor / (countof(pcf->values) - 1);
94
0
    return (params->is_linear = true);
95
0
}
96
97
static void
98
cache_set_linear(cie_cache_floats *pcf)
99
30.9k
{
100
30.9k
        if (pcf->params.is_identity) {
101
30.9k
            if_debug1('c', "[c]is_linear("PRI_INTPTR") = true (is_identity)\n",
102
30.9k
                      (intptr_t)pcf);
103
30.9k
            pcf->params.linear.is_linear = true;
104
30.9k
            pcf->params.linear.origin = 0;
105
30.9k
            pcf->params.linear.scale = 1;
106
30.9k
        } else if (cache_is_linear(&pcf->params.linear, pcf)) {
107
0
            if (pcf->params.linear.origin == 0 &&
108
0
                fabs(pcf->params.linear.scale - 1) < 0.00001)
109
0
                pcf->params.is_identity = true;
110
0
            if_debug4('c',
111
0
                      "[c]is_linear("PRI_INTPTR") = true, origin = %g, scale = %g%s\n",
112
0
                      (intptr_t)pcf, pcf->params.linear.origin,
113
0
                      pcf->params.linear.scale,
114
0
                      (pcf->params.is_identity ? " (=> is_identity)" : ""));
115
0
        }
116
#ifdef DEBUG
117
        else
118
            if_debug1('c', "[c]linear("PRI_INTPTR") = false\n", (intptr_t)pcf);
119
#endif
120
30.9k
}
121
static void
122
cache3_set_linear(gx_cie_vector_cache3_t *pvc)
123
10.3k
{
124
10.3k
    cache_set_linear(&pvc->caches[0].floats);
125
10.3k
    cache_set_linear(&pvc->caches[1].floats);
126
10.3k
    cache_set_linear(&pvc->caches[2].floats);
127
10.3k
}
128
129
#ifdef DEBUG
130
static void
131
if_debug_vector3(const char *str, const gs_vector3 *vec)
132
{
133
    if_debug4('c', "%s[%g %g %g]\n", str, vec->u, vec->v, vec->w);
134
}
135
static void
136
if_debug_matrix3(const char *str, const gs_matrix3 *mat)
137
{
138
    if_debug10('c', "%s [%g %g %g] [%g %g %g] [%g %g %g]\n", str,
139
               mat->cu.u, mat->cu.v, mat->cu.w,
140
               mat->cv.u, mat->cv.v, mat->cv.w,
141
               mat->cw.u, mat->cw.v, mat->cw.w);
142
}
143
#else
144
103k
#  define if_debug_vector3(str, vec) DO_NOTHING
145
133k
#  define if_debug_matrix3(str, mat) DO_NOTHING
146
#endif
147
148
/* ------ Default values for CIE dictionary elements ------ */
149
150
/* Default transformation procedures. */
151
152
float
153
a_identity(double in, const gs_cie_a * pcie)
154
0
{
155
0
    return in;
156
0
}
157
static float
158
a_from_cache(double in, const gs_cie_a * pcie)
159
0
{
160
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeA.floats);
161
0
}
162
163
float
164
abc_identity(double in, const gs_cie_abc * pcie)
165
0
{
166
0
    return in;
167
0
}
168
static float
169
abc_from_cache_0(double in, const gs_cie_abc * pcie)
170
0
{
171
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[0].floats);
172
0
}
173
static float
174
abc_from_cache_1(double in, const gs_cie_abc * pcie)
175
0
{
176
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[1].floats);
177
0
}
178
static float
179
abc_from_cache_2(double in, const gs_cie_abc * pcie)
180
0
{
181
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[2].floats);
182
0
}
183
184
static float
185
def_identity(double in, const gs_cie_def * pcie)
186
0
{
187
0
    return in;
188
0
}
189
static float
190
def_from_cache_0(double in, const gs_cie_def * pcie)
191
0
{
192
0
    return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[0].floats);
193
0
}
194
static float
195
def_from_cache_1(double in, const gs_cie_def * pcie)
196
0
{
197
0
    return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[1].floats);
198
0
}
199
static float
200
def_from_cache_2(double in, const gs_cie_def * pcie)
201
0
{
202
0
    return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[2].floats);
203
0
}
204
205
static float
206
defg_identity(double in, const gs_cie_defg * pcie)
207
0
{
208
0
    return in;
209
0
}
210
static float
211
defg_from_cache_0(double in, const gs_cie_defg * pcie)
212
0
{
213
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[0].floats);
214
0
}
215
static float
216
defg_from_cache_1(double in, const gs_cie_defg * pcie)
217
0
{
218
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[1].floats);
219
0
}
220
static float
221
defg_from_cache_2(double in, const gs_cie_defg * pcie)
222
0
{
223
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[2].floats);
224
0
}
225
static float
226
defg_from_cache_3(double in, const gs_cie_defg * pcie)
227
0
{
228
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[3].floats);
229
0
}
230
231
float
232
common_identity(double in, const gs_cie_common * pcie)
233
0
{
234
0
    return in;
235
0
}
236
static float
237
lmn_from_cache_0(double in, const gs_cie_common * pcie)
238
0
{
239
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[0].floats);
240
0
}
241
static float
242
lmn_from_cache_1(double in, const gs_cie_common * pcie)
243
0
{
244
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[1].floats);
245
0
}
246
static float
247
lmn_from_cache_2(double in, const gs_cie_common * pcie)
248
0
{
249
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[2].floats);
250
0
}
251
252
/* Transformation procedures for accessing an already-loaded cache. */
253
254
float
255
gs_cie_cached_value(double in, const cie_cache_floats *pcache)
256
0
{
257
    /*
258
     * We need to get the same results when we sample an already-loaded
259
     * cache, so we need to round the index just a tiny bit.
260
     */
261
0
    int index =
262
0
        (int)((in - pcache->params.base) * pcache->params.factor + 0.0001);
263
264
0
    CIE_CLAMP_INDEX(index);
265
0
    return pcache->values[index];
266
0
}
267
268
/* Default vectors and matrices. */
269
270
const gs_range3 Range3_default = {
271
    { {0, 1}, {0, 1}, {0, 1} }
272
};
273
const gs_range4 Range4_default = {
274
    { {0, 1}, {0, 1}, {0, 1}, {0, 1} }
275
};
276
const gs_cie_defg_proc4 DecodeDEFG_default = {
277
    {defg_identity, defg_identity, defg_identity, defg_identity}
278
};
279
const gs_cie_defg_proc4 DecodeDEFG_from_cache = {
280
    {defg_from_cache_0, defg_from_cache_1, defg_from_cache_2, defg_from_cache_3}
281
};
282
const gs_cie_def_proc3 DecodeDEF_default = {
283
    {def_identity, def_identity, def_identity}
284
};
285
const gs_cie_def_proc3 DecodeDEF_from_cache = {
286
    {def_from_cache_0, def_from_cache_1, def_from_cache_2}
287
};
288
const gs_cie_abc_proc3 DecodeABC_default = {
289
    {abc_identity, abc_identity, abc_identity}
290
};
291
const gs_cie_abc_proc3 DecodeABC_from_cache = {
292
    {abc_from_cache_0, abc_from_cache_1, abc_from_cache_2}
293
};
294
const gs_cie_common_proc3 DecodeLMN_default = {
295
    {common_identity, common_identity, common_identity}
296
};
297
const gs_cie_common_proc3 DecodeLMN_from_cache = {
298
    {lmn_from_cache_0, lmn_from_cache_1, lmn_from_cache_2}
299
};
300
const gs_matrix3 Matrix3_default = {
301
    {1, 0, 0},
302
    {0, 1, 0},
303
    {0, 0, 1},
304
    1 /*true */
305
};
306
const gs_range RangeA_default = {0, 1};
307
const gs_cie_a_proc DecodeA_default = a_identity;
308
const gs_cie_a_proc DecodeA_from_cache = a_from_cache;
309
const gs_vector3 MatrixA_default = {1, 1, 1};
310
const gs_vector3 BlackPoint_default = {0, 0, 0};
311
312
/* Initialize a CIE color. */
313
/* This only happens on setcolorspace. */
314
void
315
gx_init_CIE(gs_client_color * pcc, const gs_color_space * pcs)
316
0
{
317
0
    gx_init_paint_4(pcc, pcs);
318
    /* (0...) may not be within the range of allowable values. */
319
0
    (*pcs->type->restrict_color)(pcc, pcs);
320
0
}
321
322
/* Restrict CIE colors. */
323
324
static inline void
325
cie_restrict(float *pv, const gs_range *range)
326
0
{
327
0
    if (*pv <= range->rmin)
328
0
        *pv = range->rmin;
329
0
    else if (*pv >= range->rmax)
330
0
        *pv = range->rmax;
331
0
}
332
333
void
334
gx_restrict_CIEDEFG(gs_client_color * pcc, const gs_color_space * pcs)
335
0
{
336
0
    const gs_cie_defg *pcie = pcs->params.defg;
337
338
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeDEFG.ranges[0]);
339
0
    cie_restrict(&pcc->paint.values[1], &pcie->RangeDEFG.ranges[1]);
340
0
    cie_restrict(&pcc->paint.values[2], &pcie->RangeDEFG.ranges[2]);
341
0
    cie_restrict(&pcc->paint.values[3], &pcie->RangeDEFG.ranges[3]);
342
0
}
343
void
344
gx_restrict_CIEDEF(gs_client_color * pcc, const gs_color_space * pcs)
345
0
{
346
0
    const gs_cie_def *pcie = pcs->params.def;
347
348
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeDEF.ranges[0]);
349
0
    cie_restrict(&pcc->paint.values[1], &pcie->RangeDEF.ranges[1]);
350
0
    cie_restrict(&pcc->paint.values[2], &pcie->RangeDEF.ranges[2]);
351
0
}
352
void
353
gx_restrict_CIEABC(gs_client_color * pcc, const gs_color_space * pcs)
354
0
{
355
0
    const gs_cie_abc *pcie = pcs->params.abc;
356
357
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeABC.ranges[0]);
358
0
    cie_restrict(&pcc->paint.values[1], &pcie->RangeABC.ranges[1]);
359
0
    cie_restrict(&pcc->paint.values[2], &pcie->RangeABC.ranges[2]);
360
0
}
361
void
362
gx_restrict_CIEA(gs_client_color * pcc, const gs_color_space * pcs)
363
0
{
364
0
    const gs_cie_a *pcie = pcs->params.a;
365
366
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeA);
367
0
}
368
369
/* ================ Table setup ================ */
370
371
/* ------ Install a CIE color space ------ */
372
373
static void cie_cache_mult(gx_cie_vector_cache *, const gs_vector3 *,
374
                            const cie_cache_floats *, double);
375
static bool cie_cache_mult3(gx_cie_vector_cache3_t *,
376
                             const gs_matrix3 *, double);
377
378
int
379
gx_install_cie_abc(gs_cie_abc *pcie, gs_gstate * pgs)
380
0
{
381
0
    if_debug_matrix3("[c]CIE MatrixABC =", &pcie->MatrixABC);
382
0
    cie_matrix_init(&pcie->MatrixABC);
383
0
    CIE_LOAD_CACHE_BODY(pcie->caches.DecodeABC.caches, pcie->RangeABC.ranges,
384
0
                        &pcie->DecodeABC, DecodeABC_default, pcie,
385
0
                        "DecodeABC");
386
0
    gx_cie_load_common_cache(&pcie->common, pgs);
387
0
    gs_cie_abc_complete(pcie);
388
0
    return gs_cie_cs_complete(pgs, true);
389
0
}
390
391
int
392
gx_install_CIEDEFG(gs_color_space * pcs, gs_gstate * pgs)
393
0
{
394
0
    gs_cie_defg *pcie = pcs->params.defg;
395
396
0
    CIE_LOAD_CACHE_BODY(pcie->caches_defg.DecodeDEFG, pcie->RangeDEFG.ranges,
397
0
                        &pcie->DecodeDEFG, DecodeDEFG_default, pcie,
398
0
                        "DecodeDEFG");
399
0
    return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
400
0
}
401
402
int
403
gx_install_CIEDEF(gs_color_space * pcs, gs_gstate * pgs)
404
0
{
405
0
    gs_cie_def *pcie = pcs->params.def;
406
407
0
    CIE_LOAD_CACHE_BODY(pcie->caches_def.DecodeDEF, pcie->RangeDEF.ranges,
408
0
                        &pcie->DecodeDEF, DecodeDEF_default, pcie,
409
0
                        "DecodeDEF");
410
0
    return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
411
0
}
412
413
int
414
gx_install_CIEABC(gs_color_space * pcs, gs_gstate * pgs)
415
0
{
416
0
    return gx_install_cie_abc(pcs->params.abc, pgs);
417
0
}
418
419
int
420
gx_install_CIEA(gs_color_space * pcs, gs_gstate * pgs)
421
0
{
422
0
    gs_cie_a *pcie = pcs->params.a;
423
0
    gs_sample_loop_params_t lp;
424
0
    int i;
425
426
0
    gs_cie_cache_init(&pcie->caches.DecodeA.floats.params, &lp,
427
0
                      &pcie->RangeA, "DecodeA");
428
0
    for (i = 0; i <= lp.N; ++i) {
429
0
        float in = SAMPLE_LOOP_VALUE(i, lp);
430
431
0
        pcie->caches.DecodeA.floats.values[i] = (*pcie->DecodeA)(in, pcie);
432
0
        if_debug3m('C', pgs->memory, "[C]DecodeA[%d] = %g => %g\n",
433
0
                   i, in, pcie->caches.DecodeA.floats.values[i]);
434
0
    }
435
0
    gx_cie_load_common_cache(&pcie->common, pgs);
436
0
    gs_cie_a_complete(pcie);
437
0
    return gs_cie_cs_complete(pgs, true);
438
0
}
439
440
/* Load the common caches when installing the color space. */
441
/* This routine is exported for the benefit of gsicc.c */
442
void
443
gx_cie_load_common_cache(gs_cie_common * pcie, gs_gstate * pgs)
444
0
{
445
0
    if_debug_matrix3("[c]CIE MatrixLMN =", &pcie->MatrixLMN);
446
0
    cie_matrix_init(&pcie->MatrixLMN);
447
0
    CIE_LOAD_CACHE_BODY(pcie->caches.DecodeLMN, pcie->RangeLMN.ranges,
448
0
                        &pcie->DecodeLMN, DecodeLMN_default, pcie,
449
0
                        "DecodeLMN");
450
0
}
451
452
/* Complete loading the common caches. */
453
/* This routine is exported for the benefit of gsicc.c */
454
void
455
gx_cie_common_complete(gs_cie_common *pcie)
456
0
{
457
0
    int i;
458
459
0
    for (i = 0; i < 3; ++i)
460
0
        cache_set_linear(&pcie->caches.DecodeLMN[i].floats);
461
0
}
462
463
/*
464
 * Restrict the DecodeDEF[G] cache according to RangeHIJ[K], and scale to
465
 * the dimensions of Table.
466
 */
467
static void
468
gs_cie_defx_scale(float *values, const gs_range *range, int dim)
469
0
{
470
0
    double scale = (dim - 1.0) / (range->rmax - range->rmin);
471
0
    int i;
472
473
0
    for (i = 0; i < gx_cie_cache_size; ++i) {
474
0
        float value = values[i];
475
476
0
        values[i] =
477
0
            (value <= range->rmin ? 0 :
478
0
             value >= range->rmax ? dim - 1 :
479
0
             (value - range->rmin) * scale);
480
0
    }
481
0
}
482
483
/* Complete loading a CIEBasedDEFG color space. */
484
/* This routine is NOT idempotent. */
485
void
486
gs_cie_defg_complete(gs_cie_defg * pcie)
487
0
{
488
0
    int j;
489
490
0
    for (j = 0; j < 4; ++j)
491
0
        gs_cie_defx_scale(pcie->caches_defg.DecodeDEFG[j].floats.values,
492
0
                          &pcie->RangeHIJK.ranges[j], pcie->Table.dims[j]);
493
0
    gs_cie_abc_complete((gs_cie_abc *)pcie);
494
0
}
495
496
/* Complete loading a CIEBasedDEF color space. */
497
/* This routine is NOT idempotent. */
498
void
499
gs_cie_def_complete(gs_cie_def * pcie)
500
0
{
501
0
    int j;
502
503
0
    for (j = 0; j < 3; ++j)
504
0
        gs_cie_defx_scale(pcie->caches_def.DecodeDEF[j].floats.values,
505
0
                          &pcie->RangeHIJ.ranges[j], pcie->Table.dims[j]);
506
0
    gs_cie_abc_complete((gs_cie_abc *)pcie);
507
0
}
508
509
/* Complete loading a CIEBasedABC color space. */
510
/* This routine is idempotent. */
511
void
512
gs_cie_abc_complete(gs_cie_abc * pcie)
513
0
{
514
0
    cache3_set_linear(&pcie->caches.DecodeABC);
515
0
    pcie->caches.skipABC =
516
0
        cie_cache_mult3(&pcie->caches.DecodeABC, &pcie->MatrixABC,
517
0
                        CACHE_THRESHOLD);
518
0
    gx_cie_common_complete((gs_cie_common *)pcie);
519
0
}
520
521
/* Complete loading a CIEBasedA color space. */
522
/* This routine is idempotent. */
523
void
524
gs_cie_a_complete(gs_cie_a * pcie)
525
0
{
526
0
    cie_cache_mult(&pcie->caches.DecodeA, &pcie->MatrixA,
527
0
                   &pcie->caches.DecodeA.floats,
528
0
                   CACHE_THRESHOLD);
529
0
    cache_set_linear(&pcie->caches.DecodeA.floats);
530
0
    gx_cie_common_complete((gs_cie_common *)pcie);
531
0
}
532
533
/*
534
 * Set the ranges where interpolation is required in a vector cache.
535
 * This procedure is idempotent.
536
 */
537
typedef struct cie_cache_range_temp_s {
538
    cie_cached_value prev;
539
    int imin, imax;
540
} cie_cache_range_temp_t;
541
static inline void
542
check_interpolation_required(cie_cache_range_temp_t *pccr,
543
                             cie_cached_value cur, int i, double threshold)
544
47.4M
{
545
47.4M
    cie_cached_value prev = pccr->prev;
546
547
47.4M
    if (cie_cached_abs(cur - prev) > threshold * min(cie_cached_abs(prev), cie_cached_abs(cur))) {
548
4.04M
        if (i - 1 < pccr->imin)
549
30.9k
            pccr->imin = i - 1;
550
4.04M
        if (i > pccr->imax)
551
4.04M
            pccr->imax = i;
552
4.04M
    }
553
47.4M
    pccr->prev = cur;
554
47.4M
}
555
static void
556
cie_cache_set_interpolation(gx_cie_vector_cache *pcache, double threshold)
557
30.9k
{
558
30.9k
    cie_cached_value base = pcache->vecs.params.base;
559
30.9k
    cie_cached_value factor = pcache->vecs.params.factor;
560
30.9k
    cie_cache_range_temp_t temp[3];
561
30.9k
    int i, j;
562
563
123k
    for (j = 0; j < 3; ++j)
564
92.7k
        temp[j].imin = gx_cie_cache_size, temp[j].imax = -1;
565
30.9k
    temp[0].prev = pcache->vecs.values[0].u;
566
30.9k
    temp[1].prev = pcache->vecs.values[0].v;
567
30.9k
    temp[2].prev = pcache->vecs.values[0].w;
568
569
15.8M
    for (i = 0; i < gx_cie_cache_size; ++i) {
570
15.8M
        check_interpolation_required(&temp[0], pcache->vecs.values[i].u, i,
571
15.8M
                                     threshold);
572
15.8M
        check_interpolation_required(&temp[1], pcache->vecs.values[i].v, i,
573
15.8M
                                     threshold);
574
15.8M
        check_interpolation_required(&temp[2], pcache->vecs.values[i].w, i,
575
15.8M
                                     threshold);
576
15.8M
    }
577
578
123k
    for (j = 0; j < 3; ++j) {
579
92.7k
        pcache->vecs.params.interpolation_ranges[j].rmin =
580
92.7k
            base + (cie_cached_value)((double)temp[j].imin / factor);
581
92.7k
        pcache->vecs.params.interpolation_ranges[j].rmax =
582
92.7k
            base + (cie_cached_value)((double)temp[j].imax / factor);
583
92.7k
        if_debug3('c', "[c]interpolation_ranges[%d] = %g, %g\n", j,
584
92.7k
                  cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmin),
585
92.7k
                  cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmax));
586
92.7k
    }
587
588
30.9k
}
589
590
/*
591
 * Convert a scalar cache to a vector cache by multiplying the scalar
592
 * values by a vector.  Also set the range where interpolation is needed.
593
 * This procedure is idempotent.
594
 */
595
static void
596
cie_cache_mult(gx_cie_vector_cache * pcache, const gs_vector3 * pvec,
597
               const cie_cache_floats * pcf, double threshold)
598
30.9k
{
599
30.9k
    float u = pvec->u, v = pvec->v, w = pvec->w;
600
30.9k
    int i;
601
602
30.9k
    pcache->vecs.params.base = float2cie_cached(pcf->params.base);
603
30.9k
    pcache->vecs.params.factor = float2cie_cached(pcf->params.factor);
604
30.9k
    pcache->vecs.params.limit =
605
30.9k
        float2cie_cached((gx_cie_cache_size - 1) / pcf->params.factor +
606
30.9k
                         pcf->params.base);
607
15.8M
    for (i = 0; i < gx_cie_cache_size; ++i) {
608
15.8M
        float f = pcf->values[i];
609
610
15.8M
        pcache->vecs.values[i].u = float2cie_cached(f * u);
611
15.8M
        pcache->vecs.values[i].v = float2cie_cached(f * v);
612
15.8M
        pcache->vecs.values[i].w = float2cie_cached(f * w);
613
15.8M
    }
614
30.9k
    cie_cache_set_interpolation(pcache, threshold);
615
30.9k
}
616
617
/*
618
 * Set the interpolation ranges in a 3-vector cache, based on the ranges in
619
 * the individual vector caches.  This procedure is idempotent.
620
 */
621
static void
622
cie_cache3_set_interpolation(gx_cie_vector_cache3_t * pvc)
623
10.3k
{
624
10.3k
    int j, k;
625
626
    /* Iterate over output components. */
627
41.2k
    for (j = 0; j < 3; ++j) {
628
        /* Iterate over sub-caches. */
629
30.9k
        cie_interpolation_range_t *p =
630
30.9k
                &pvc->caches[0].vecs.params.interpolation_ranges[j];
631
30.9k
        cie_cached_value rmin = p->rmin, rmax = p->rmax;
632
633
92.7k
        for (k = 1; k < 3; ++k) {
634
61.8k
            p = &pvc->caches[k].vecs.params.interpolation_ranges[j];
635
61.8k
            rmin = min(rmin, p->rmin), rmax = max(rmax, p->rmax);
636
61.8k
        }
637
30.9k
        pvc->interpolation_ranges[j].rmin = rmin;
638
30.9k
        pvc->interpolation_ranges[j].rmax = rmax;
639
30.9k
        if_debug3('c', "[c]Merged interpolation_ranges[%d] = %g, %g\n",
640
30.9k
                  j, rmin, rmax);
641
30.9k
    }
642
10.3k
}
643
644
/*
645
 * Convert 3 scalar caches to vector caches by multiplying by a matrix.
646
 * Return true iff the resulting cache is an identity transformation.
647
 * This procedure is idempotent.
648
 */
649
static bool
650
cie_cache_mult3(gx_cie_vector_cache3_t * pvc, const gs_matrix3 * pmat,
651
                double threshold)
652
10.3k
{
653
10.3k
    cie_cache_mult(&pvc->caches[0], &pmat->cu, &pvc->caches[0].floats, threshold);
654
10.3k
    cie_cache_mult(&pvc->caches[1], &pmat->cv, &pvc->caches[1].floats, threshold);
655
10.3k
    cie_cache_mult(&pvc->caches[2], &pmat->cw, &pvc->caches[2].floats, threshold);
656
10.3k
    cie_cache3_set_interpolation(pvc);
657
10.3k
    return pmat->is_identity & pvc->caches[0].floats.params.is_identity &
658
10.3k
        pvc->caches[1].floats.params.is_identity &
659
10.3k
        pvc->caches[2].floats.params.is_identity;
660
10.3k
}
661
662
/* ------ Install a rendering dictionary ------ */
663
664
bool
665
vector_equal(const gs_vector3 *p1, const gs_vector3 *p2)
666
0
{
667
0
    if (p1->u != p2->u)
668
0
        return false;
669
0
    if (p1->v != p2->v)
670
0
        return false;
671
0
    if (p1->w != p2->w)
672
0
        return false;
673
0
    return true;
674
0
}
675
676
bool
677
matrix_equal(const gs_matrix3 *p1, const gs_matrix3 *p2)
678
0
{
679
0
    if (p1->is_identity != p2->is_identity)
680
0
        return false;
681
0
    if (!vector_equal(&(p1->cu), &(p2->cu)))
682
0
        return false;
683
0
    if (!vector_equal(&(p1->cv), &(p2->cv)))
684
0
        return false;
685
0
    if (!vector_equal(&(p1->cw), &(p2->cw)))
686
0
        return false;
687
0
    return true;
688
0
}
689
690
static bool
691
transform_equal(const gs_cie_transform_proc3 *p1, const gs_cie_transform_proc3 *p2)
692
0
{
693
0
    if (p1->proc != p2->proc)
694
0
        return false;
695
0
    if (p1->proc_data.size != p2->proc_data.size)
696
0
        return false;
697
0
    if (memcmp(p1->proc_data.data, p2->proc_data.data, p1->proc_data.size) != 0)
698
0
        return false;
699
0
    if (p1->driver_name != p2->driver_name)
700
0
        return false;
701
0
    if (p1->proc_name != p2->proc_name)
702
0
        return false;
703
0
    return true;
704
0
}
705
706
bool
707
range_equal(const gs_range3 *p1, const gs_range3 *p2)
708
0
{
709
0
    int k;
710
711
0
    for (k = 0; k < 3; k++) {
712
0
        if (p1->ranges[k].rmax != p2->ranges[k].rmax)
713
0
            return false;
714
0
        if (p1->ranges[k].rmin != p2->ranges[k].rmin)
715
0
            return false;
716
0
    }
717
0
    return true;
718
0
}
719
720
/* setcolorrendering */
721
int
722
gs_setcolorrendering(gs_gstate * pgs, gs_cie_render * pcrd)
723
10.3k
{
724
10.3k
    int code = gs_cie_render_complete(pcrd);
725
10.3k
    const gs_cie_render *pcrd_old = pgs->cie_render;
726
10.3k
    bool joint_ok;
727
728
10.3k
    if (code < 0)
729
0
        return code;
730
10.3k
    if (pcrd_old != 0 && pcrd->id == pcrd_old->id)
731
0
        return 0;   /* detect needless reselecting */
732
10.3k
    joint_ok =
733
10.3k
        pcrd_old != 0 &&
734
10.3k
        vector_equal(&pcrd->points.WhitePoint, &pcrd_old->points.WhitePoint) &&
735
10.3k
        vector_equal(&pcrd->points.BlackPoint, &pcrd_old->points.BlackPoint) &&
736
10.3k
        matrix_equal(&pcrd->MatrixPQR, &pcrd_old->MatrixPQR) &&
737
10.3k
        range_equal(&pcrd->RangePQR, &pcrd_old->RangePQR) &&
738
10.3k
        transform_equal(&pcrd->TransformPQR, &pcrd_old->TransformPQR);
739
10.3k
    rc_assign(pgs->cie_render, pcrd, "gs_setcolorrendering");
740
    /* Initialize the joint caches if needed. */
741
10.3k
    if (!joint_ok)
742
10.3k
        code = gs_cie_cs_complete(pgs, true);
743
10.3k
    gx_unset_dev_color(pgs);
744
10.3k
    return code;
745
10.3k
}
746
747
/* currentcolorrendering */
748
const gs_cie_render *
749
gs_currentcolorrendering(const gs_gstate * pgs)
750
0
{
751
0
    return pgs->cie_render;
752
0
}
753
754
/* Unshare (allocating if necessary) the joint caches. */
755
gx_cie_joint_caches *
756
gx_unshare_cie_caches(gs_gstate * pgs)
757
10.3k
{
758
10.3k
    gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
759
760
10.3k
    rc_unshare_struct(pgs->cie_joint_caches, gx_cie_joint_caches,
761
10.3k
                      &st_joint_caches, pgs->memory,
762
10.3k
                      return 0, "gx_unshare_cie_caches");
763
10.3k
    if (pgs->cie_joint_caches != pjc) {
764
10.3k
        pjc = pgs->cie_joint_caches;
765
10.3k
        pjc->cspace_id = pjc->render_id = gs_no_id;
766
10.3k
        pjc->id_status = pjc->status = CIE_JC_STATUS_BUILT;
767
10.3k
    }
768
10.3k
    return pjc;
769
10.3k
}
770
771
gx_cie_joint_caches *
772
gx_get_cie_caches_ref(gs_gstate * pgs, gs_memory_t * mem)
773
0
{
774
0
    gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
775
776
    /* Take a reference here, to allow for the one that
777
     * rc_unshare_struct might drop if it has to copy it.
778
     * Whatever happens we will have taken 1 net new
779
     * reference which we return to the caller. */
780
0
    rc_increment(pgs->cie_joint_caches);
781
0
    rc_unshare_struct(pjc, gx_cie_joint_caches,
782
0
                      &st_joint_caches, mem,
783
0
                      return NULL, "gx_unshare_cie_caches");
784
0
    return pjc;
785
0
}
786
787
/* Compute the parameters for loading a cache, setting base and factor. */
788
/* This procedure is idempotent. */
789
void
790
gs_cie_cache_init(cie_cache_params * pcache, gs_sample_loop_params_t * pslp,
791
                  const gs_range * domain, client_name_t cname)
792
61.8k
{
793
    /*
794
      We need to map the values in the range [domain->rmin..domain->rmax].
795
      However, if rmin < 0 < rmax and the function is non-linear, this can
796
      lead to anomalies at zero, which is the default value for CIE colors.
797
      The "correct" way to approach this is to run the mapping functions on
798
      demand, but we don't want to deal with the complexities of the
799
      callbacks this would involve (especially in the middle of rendering
800
      images); instead, we adjust the range so that zero maps precisely to a
801
      cache slot.  Define:
802
803
      A = domain->rmin;
804
      B = domain->rmax;
805
      N = gx_cie_cache_size - 1;
806
807
      R = B - A;
808
      h(v) = N * (v - A) / R;   // the index of v in the cache
809
      X = h(0).
810
811
      If X is not an integer, we can decrease A and/increase B to make it
812
      one.  Let A' and B' be the adjusted values of A and B respectively,
813
      and let K be the integer derived from X (either floor(X) or ceil(X)).
814
      Define
815
816
      f(K) = (K * B' + (N - K) * A') / N).
817
818
      We want f(K) = 0.  This occurs precisely when, for any real number
819
      C != 0,
820
821
      A' = -K * C;
822
      B' = (N - K) * C.
823
824
      In order to ensure A' <= A and B' >= B, we require
825
826
      C >= -A / K;
827
      C >= B / (N - K).
828
829
      Since A' and B' must be exactly representable as floats, we round C
830
      upward to ensure that it has no more than M mantissa bits, where
831
832
      M = ARCH_FLOAT_MANTISSA_BITS - ceil(log2(N)).
833
    */
834
61.8k
    float A = domain->rmin, B = domain->rmax;
835
61.8k
    double R = B - A, delta;
836
309k
#define NN (gx_cie_cache_size - 1) /* 'N' is a member name, see end of proc */
837
247k
#define N NN
838
61.8k
#define CEIL_LOG2_N CIE_LOG2_CACHE_SIZE
839
840
    /* Adjust the range if necessary. */
841
61.8k
    if (A < 0 && B >= 0) {
842
30.9k
        const double X = -N * A / R; /* know X > 0 */
843
        /* Choose K to minimize range expansion. */
844
30.9k
        const int K = (int)(A + B < 0 ? floor(X) : ceil(X)); /* know 0 < K < N */
845
30.9k
        const int M = ARCH_FLOAT_MANTISSA_BITS - CEIL_LOG2_N;
846
30.9k
        int cexp;
847
848
30.9k
        double Ca, Cb;
849
30.9k
        double C;
850
30.9k
        double cfrac;
851
852
30.9k
        if (K != 0)
853
30.9k
            Ca = -A / K;
854
0
        else
855
0
            Ca = 0;
856
857
30.9k
        if (N != K)
858
30.9k
            Cb = B / (N - K); /* know Ca, Cb > 0 */
859
0
        else
860
0
            Cb = 0;
861
862
30.9k
        C = max(Ca, Cb); /* know C > 0 */
863
30.9k
        cfrac = frexp(C, &cexp);
864
865
30.9k
        if_debug4('c', "[c]adjusting cache_init(%8g, %8g), X = %8g, K = %d:\n",
866
30.9k
                  A, B, X, K);
867
        /* Round C to no more than M significant bits.  See above. */
868
30.9k
        C = ldexp(ceil(ldexp(cfrac, M)), cexp - M);
869
        /* Finally, compute A' and B'. */
870
30.9k
        A = -K * C;
871
30.9k
        B = (N - K) * C;
872
30.9k
        if_debug2('c', "[c]  => %8g, %8g\n", A, B);
873
30.9k
        R = B - A;
874
30.9k
    }
875
61.8k
    delta = R / N;
876
61.8k
#ifdef CIE_CACHE_INTERPOLATE
877
61.8k
    pcache->base = A;   /* no rounding */
878
#else
879
    pcache->base = A - delta / 2; /* so lookup will round */
880
#endif
881
    /*
882
     * If size of the domain is zero, then use 1.0 as the scaling
883
     * factor.  This prevents divide by zero errors in later calculations.
884
     * This should only occurs with zero matrices.  It does occur with
885
     * Genoa test file 050-01.ps.
886
     */
887
61.8k
    pcache->factor = (any_abs(delta) < 1e-30 ? 1.0 : N / R);
888
61.8k
    if_debug4('c', "[c]cache %s "PRI_INTPTR" base=%g, factor=%g\n",
889
61.8k
              (const char *)cname, (intptr_t)pcache,
890
61.8k
              pcache->base, pcache->factor);
891
61.8k
    pslp->A = A;
892
61.8k
    pslp->B = B;
893
61.8k
#undef N
894
61.8k
    pslp->N = NN;
895
61.8k
#undef NN
896
61.8k
}
897
898
/* ------ Complete a rendering structure ------ */
899
900
/*
901
 * Compute the derived values in a CRD that don't involve the cached
902
 * procedure values.  This procedure is idempotent.
903
 */
904
static void cie_transform_range3(const gs_range3 *, const gs_matrix3 *,
905
                                  gs_range3 *);
906
int
907
gs_cie_render_init(gs_cie_render * pcrd)
908
10.3k
{
909
10.3k
    gs_matrix3 PQR_inverse;
910
911
10.3k
    if (pcrd->status >= CIE_RENDER_STATUS_INITED)
912
0
        return 0;   /* init already done */
913
10.3k
    if_debug_matrix3("[c]CRD MatrixLMN =", &pcrd->MatrixLMN);
914
10.3k
    cie_matrix_init(&pcrd->MatrixLMN);
915
10.3k
    if_debug_matrix3("[c]CRD MatrixABC =", &pcrd->MatrixABC);
916
10.3k
    cie_matrix_init(&pcrd->MatrixABC);
917
10.3k
    if_debug_matrix3("[c]CRD MatrixPQR =", &pcrd->MatrixPQR);
918
10.3k
    cie_matrix_init(&pcrd->MatrixPQR);
919
10.3k
    cie_invert3(&pcrd->MatrixPQR, &PQR_inverse);
920
10.3k
    cie_matrix_mult3(&pcrd->MatrixLMN, &PQR_inverse,
921
10.3k
                     &pcrd->MatrixPQR_inverse_LMN);
922
10.3k
    cie_transform_range3(&pcrd->RangePQR, &pcrd->MatrixPQR_inverse_LMN,
923
10.3k
                         &pcrd->DomainLMN);
924
10.3k
    cie_transform_range3(&pcrd->RangeLMN, &pcrd->MatrixABC,
925
10.3k
                         &pcrd->DomainABC);
926
10.3k
    cie_mult3(&pcrd->points.WhitePoint, &pcrd->MatrixPQR, &pcrd->wdpqr);
927
10.3k
    cie_mult3(&pcrd->points.BlackPoint, &pcrd->MatrixPQR, &pcrd->bdpqr);
928
10.3k
    pcrd->status = CIE_RENDER_STATUS_INITED;
929
10.3k
    return 0;
930
10.3k
}
931
932
/*
933
 * Sample the EncodeLMN, EncodeABC, and RenderTableT CRD procedures, and
934
 * load the caches.  This procedure is idempotent.
935
 */
936
int
937
gs_cie_render_sample(gs_cie_render * pcrd)
938
10.3k
{
939
10.3k
    int code;
940
941
10.3k
    if (pcrd->status >= CIE_RENDER_STATUS_SAMPLED)
942
0
        return 0;   /* sampling already done */
943
10.3k
    code = gs_cie_render_init(pcrd);
944
10.3k
    if (code < 0)
945
0
        return code;
946
10.3k
    CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeLMN.caches, pcrd->DomainLMN.ranges,
947
10.3k
                        &pcrd->EncodeLMN, Encode_default, pcrd, "EncodeLMN");
948
10.3k
    cache3_set_linear(&pcrd->caches.EncodeLMN);
949
10.3k
    CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeABC, pcrd->DomainABC.ranges,
950
10.3k
                        &pcrd->EncodeABC, Encode_default, pcrd, "EncodeABC");
951
10.3k
    if (pcrd->RenderTable.lookup.table != 0) {
952
0
        int i, j, m = pcrd->RenderTable.lookup.m;
953
0
        gs_sample_loop_params_t lp;
954
0
        bool is_identity = true;
955
956
0
        for (j = 0; j < m; j++) {
957
0
            gs_cie_cache_init(&pcrd->caches.RenderTableT[j].fracs.params,
958
0
                              &lp, &Range3_default.ranges[0],
959
0
                              "RenderTableT");
960
0
            is_identity &= pcrd->RenderTable.T.procs[j] ==
961
0
                RenderTableT_default.procs[j];
962
0
        }
963
0
        pcrd->caches.RenderTableT_is_identity = is_identity;
964
        /*
965
         * Unfortunately, we defined the first argument of the RenderTable
966
         * T procedures as being a byte, limiting the number of distinct
967
         * cache entries to 256 rather than gx_cie_cache_size.
968
         * We confine this decision to this loop, rather than propagating
969
         * it to the procedures that use the cached data, so that we can
970
         * change it more easily at some future time.
971
         */
972
0
        for (i = 0; i < gx_cie_cache_size; i++) {
973
0
#if gx_cie_log2_cache_size >= 8
974
0
            byte value = i >> (gx_cie_log2_cache_size - 8);
975
#else
976
            byte value = (i << (8 - gx_cie_log2_cache_size)) +
977
                (i >> (gx_cie_log2_cache_size * 2 - 8));
978
#endif
979
0
            for (j = 0; j < m; j++) {
980
0
                pcrd->caches.RenderTableT[j].fracs.values[i] =
981
0
                    (*pcrd->RenderTable.T.procs[j])(value, pcrd);
982
0
                if_debug3('C', "[C]RenderTableT[%d,%d] = %g\n",
983
0
                          i, j,
984
0
                          frac2float(pcrd->caches.RenderTableT[j].fracs.values[i]));
985
0
            }
986
0
        }
987
0
    }
988
10.3k
    pcrd->status = CIE_RENDER_STATUS_SAMPLED;
989
10.3k
    return 0;
990
10.3k
}
991
992
/* Transform a set of ranges. */
993
static void
994
cie_transform_range(const gs_range3 * in, double mu, double mv, double mw,
995
                    gs_range * out)
996
61.8k
{
997
61.8k
    float umin = mu * in->ranges[0].rmin, umax = mu * in->ranges[0].rmax;
998
61.8k
    float vmin = mv * in->ranges[1].rmin, vmax = mv * in->ranges[1].rmax;
999
61.8k
    float wmin = mw * in->ranges[2].rmin, wmax = mw * in->ranges[2].rmax;
1000
61.8k
    float temp;
1001
1002
61.8k
    if (umin > umax)
1003
20.6k
        temp = umin, umin = umax, umax = temp;
1004
61.8k
    if (vmin > vmax)
1005
20.6k
        temp = vmin, vmin = vmax, vmax = temp;
1006
61.8k
    if (wmin > wmax)
1007
20.6k
        temp = wmin, wmin = wmax, wmax = temp;
1008
61.8k
    out->rmin = umin + vmin + wmin;
1009
61.8k
    out->rmax = umax + vmax + wmax;
1010
61.8k
}
1011
static void
1012
cie_transform_range3(const gs_range3 * in, const gs_matrix3 * mat,
1013
                     gs_range3 * out)
1014
20.6k
{
1015
20.6k
    cie_transform_range(in, mat->cu.u, mat->cv.u, mat->cw.u,
1016
20.6k
                        &out->ranges[0]);
1017
20.6k
    cie_transform_range(in, mat->cu.v, mat->cv.v, mat->cw.v,
1018
20.6k
                        &out->ranges[1]);
1019
20.6k
    cie_transform_range(in, mat->cu.w, mat->cv.w, mat->cw.w,
1020
20.6k
                        &out->ranges[2]);
1021
20.6k
}
1022
1023
/*
1024
 * Finish preparing a CRD for installation, by restricting and/or
1025
 * transforming the cached procedure values.
1026
 * This procedure is idempotent.
1027
 */
1028
int
1029
gs_cie_render_complete(gs_cie_render * pcrd)
1030
10.3k
{
1031
10.3k
    int code;
1032
1033
10.3k
    if (pcrd->status >= CIE_RENDER_STATUS_COMPLETED)
1034
0
        return 0;   /* completion already done */
1035
10.3k
    code = gs_cie_render_sample(pcrd);
1036
10.3k
    if (code < 0)
1037
0
        return code;
1038
    /*
1039
     * Since range restriction happens immediately after
1040
     * the cache lookup, we can save a step by restricting
1041
     * the values in the cache entries.
1042
     *
1043
     * If there is no lookup table, we want the final ABC values
1044
     * to be fracs; if there is a table, we want them to be
1045
     * appropriately scaled ints.
1046
     */
1047
10.3k
    pcrd->MatrixABCEncode = pcrd->MatrixABC;
1048
10.3k
    {
1049
10.3k
        int c;
1050
10.3k
        double f;
1051
1052
41.2k
        for (c = 0; c < 3; c++) {
1053
30.9k
            gx_cie_float_fixed_cache *pcache = &pcrd->caches.EncodeABC[c];
1054
1055
30.9k
            cie_cache_restrict(&pcrd->caches.EncodeLMN.caches[c].floats,
1056
30.9k
                               &pcrd->RangeLMN.ranges[c]);
1057
30.9k
            cie_cache_restrict(&pcrd->caches.EncodeABC[c].floats,
1058
30.9k
                               &pcrd->RangeABC.ranges[c]);
1059
30.9k
            if (pcrd->RenderTable.lookup.table == 0) {
1060
30.9k
                cie_cache_restrict(&pcache->floats,
1061
30.9k
                                   &Range3_default.ranges[0]);
1062
30.9k
                gs_cie_cache_to_fracs(&pcache->floats, &pcache->fixeds.fracs);
1063
30.9k
                pcache->fixeds.fracs.params.is_identity = false;
1064
30.9k
            } else {
1065
0
                int i;
1066
0
                int n = pcrd->RenderTable.lookup.dims[c];
1067
1068
0
#ifdef CIE_RENDER_TABLE_INTERPOLATE
1069
0
#  define SCALED_INDEX(f, n, itemp)\
1070
0
     RESTRICTED_INDEX(f * (1 << _cie_interpolate_bits),\
1071
0
                      (n) << _cie_interpolate_bits, itemp)
1072
#else
1073
                int m = pcrd->RenderTable.lookup.m;
1074
                int k =
1075
                    (c == 0 ? 1 : c == 1 ?
1076
                     m * pcrd->RenderTable.lookup.dims[2] : m);
1077
#  define SCALED_INDEX(f, n, itemp)\
1078
     (RESTRICTED_INDEX(f, n, itemp) * k)
1079
#endif
1080
0
                const gs_range *prange = pcrd->RangeABC.ranges + c;
1081
0
                double scale = (n - 1) / (prange->rmax - prange->rmin);
1082
1083
0
                for (i = 0; i < gx_cie_cache_size; ++i) {
1084
0
                    float v =
1085
0
                        (pcache->floats.values[i] - prange->rmin) * scale
1086
#ifndef CIE_RENDER_TABLE_INTERPOLATE
1087
                        + 0.5
1088
#endif
1089
0
                        ;
1090
0
                    int itemp;
1091
1092
0
                    if_debug5('c',
1093
0
                              "[c]cache[%d][%d] = %g => %g => %d\n",
1094
0
                              c, i, pcache->floats.values[i], v,
1095
0
                              SCALED_INDEX(v, n, itemp));
1096
0
                    pcache->fixeds.ints.values[i] =
1097
0
                        SCALED_INDEX(v, n, itemp);
1098
0
                }
1099
0
                pcache->fixeds.ints.params = pcache->floats.params;
1100
0
                pcache->fixeds.ints.params.is_identity = false;
1101
0
#undef SCALED_INDEX
1102
0
            }
1103
30.9k
        }
1104
        /* Fold the scaling of the EncodeABC cache index */
1105
        /* into MatrixABC. */
1106
10.3k
#define MABC(i, t)\
1107
30.9k
  f = pcrd->caches.EncodeABC[i].floats.params.factor;\
1108
30.9k
  pcrd->MatrixABCEncode.cu.t *= f;\
1109
30.9k
  pcrd->MatrixABCEncode.cv.t *= f;\
1110
30.9k
  pcrd->MatrixABCEncode.cw.t *= f;\
1111
30.9k
  pcrd->EncodeABC_base[i] =\
1112
30.9k
    float2cie_cached(pcrd->caches.EncodeABC[i].floats.params.base * f)
1113
10.3k
        MABC(0, u);
1114
10.3k
        MABC(1, v);
1115
10.3k
        MABC(2, w);
1116
10.3k
#undef MABC
1117
10.3k
        pcrd->MatrixABCEncode.is_identity = 0;
1118
10.3k
    }
1119
10.3k
    cie_cache_mult3(&pcrd->caches.EncodeLMN, &pcrd->MatrixABCEncode,
1120
10.3k
                    CACHE_THRESHOLD);
1121
10.3k
    pcrd->status = CIE_RENDER_STATUS_COMPLETED;
1122
10.3k
    return 0;
1123
10.3k
}
1124
1125
/* Apply a range restriction to a cache. */
1126
static void
1127
cie_cache_restrict(cie_cache_floats * pcache, const gs_range * prange)
1128
92.7k
{
1129
92.7k
    int i;
1130
1131
47.5M
    for (i = 0; i < gx_cie_cache_size; i++) {
1132
47.4M
        float v = pcache->values[i];
1133
1134
47.4M
        if (v < prange->rmin)
1135
4.98M
            pcache->values[i] = prange->rmin;
1136
42.5M
        else if (v > prange->rmax)
1137
6.80M
            pcache->values[i] = prange->rmax;
1138
47.4M
    }
1139
92.7k
}
1140
1141
/* Convert a cache from floats to fracs. */
1142
/* Note that the two may be aliased. */
1143
void
1144
gs_cie_cache_to_fracs(const cie_cache_floats *pfloats, cie_cache_fracs *pfracs)
1145
30.9k
{
1146
30.9k
    int i;
1147
1148
    /* Loop from bottom to top so that we don't */
1149
    /* overwrite elements before they're used. */
1150
15.8M
    for (i = 0; i < gx_cie_cache_size; ++i)
1151
15.8M
        pfracs->values[i] = float2frac(pfloats->values[i]);
1152
30.9k
    pfracs->params = pfloats->params;
1153
30.9k
}
1154
1155
/* ------ Fill in the joint cache ------ */
1156
1157
/* If the current color space is a CIE space, or has a CIE base space, */
1158
/* return a pointer to the common part of the space; otherwise return 0. */
1159
static const gs_cie_common *
1160
cie_cs_common_abc(const gs_color_space *pcs_orig, const gs_cie_abc **ppabc)
1161
10.3k
{
1162
10.3k
    const gs_color_space *pcs = pcs_orig;
1163
1164
10.3k
    *ppabc = 0;
1165
10.3k
    do {
1166
10.3k
        switch (pcs->type->index) {
1167
0
        case gs_color_space_index_CIEDEF:
1168
0
            *ppabc = (const gs_cie_abc *)pcs->params.def;
1169
0
            return &pcs->params.def->common;
1170
0
        case gs_color_space_index_CIEDEFG:
1171
0
            *ppabc = (const gs_cie_abc *)pcs->params.defg;
1172
0
            return &pcs->params.defg->common;
1173
0
        case gs_color_space_index_CIEABC:
1174
0
            *ppabc = pcs->params.abc;
1175
0
            return &pcs->params.abc->common;
1176
0
        case gs_color_space_index_CIEA:
1177
0
            return &pcs->params.a->common;
1178
10.3k
        default:
1179
10.3k
            pcs = gs_cspace_base_space(pcs);
1180
10.3k
            break;
1181
10.3k
        }
1182
10.3k
    } while (pcs != 0);
1183
1184
10.3k
    return 0;
1185
10.3k
}
1186
const gs_cie_common *
1187
gs_cie_cs_common(const gs_gstate * pgs)
1188
10.3k
{
1189
10.3k
    const gs_cie_abc *ignore_pabc;
1190
1191
10.3k
    return cie_cs_common_abc(gs_currentcolorspace_inline(pgs), &ignore_pabc);
1192
10.3k
}
1193
1194
/*
1195
 * Mark the joint caches as needing completion.  This is done lazily,
1196
 * when a color is being mapped.  However, make sure the joint caches
1197
 * exist now.
1198
 */
1199
int
1200
gs_cie_cs_complete(gs_gstate * pgs, bool init)
1201
10.3k
{
1202
10.3k
    gx_cie_joint_caches *pjc = gx_unshare_cie_caches(pgs);
1203
1204
10.3k
    if (pjc == 0)
1205
0
        return_error(gs_error_VMerror);
1206
10.3k
    pjc->status = (init ? CIE_JC_STATUS_BUILT : CIE_JC_STATUS_INITED);
1207
10.3k
    return 0;
1208
10.3k
}
1209
/* Actually complete the joint caches. */
1210
int
1211
gs_cie_jc_complete(const gs_gstate *pgs, const gs_color_space *pcs)
1212
0
{
1213
0
    const gs_cie_abc *pabc;
1214
0
    const gs_cie_common *common = cie_cs_common_abc(pcs, &pabc);
1215
0
    gs_cie_render *pcrd = pgs->cie_render;
1216
0
    gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
1217
1218
0
    if (pjc->cspace_id == pcs->id &&
1219
0
        pjc->render_id == pcrd->id)
1220
0
        pjc->status = pjc->id_status;
1221
0
    switch (pjc->status) {
1222
0
    case CIE_JC_STATUS_BUILT: {
1223
0
        int code = cie_joint_caches_init(pjc, common, pcrd);
1224
1225
0
        if (code < 0)
1226
0
            return code;
1227
0
    }
1228
        /* falls through */
1229
0
    case CIE_JC_STATUS_INITED:
1230
0
        cie_joint_caches_complete(pjc, common, pabc, pcrd);
1231
0
        pjc->cspace_id = pcs->id;
1232
0
        pjc->render_id = pcrd->id;
1233
0
        pjc->id_status = pjc->status = CIE_JC_STATUS_COMPLETED;
1234
        /* falls through */
1235
0
    case CIE_JC_STATUS_COMPLETED:
1236
0
        break;
1237
0
    }
1238
0
    return 0;
1239
0
}
1240
1241
/*
1242
 * Compute the source and destination WhitePoint and BlackPoint for
1243
 * the TransformPQR procedure.
1244
 */
1245
int
1246
gs_cie_compute_points_sd(gx_cie_joint_caches *pjc,
1247
                         const gs_cie_common * pcie,
1248
                         const gs_cie_render * pcrd)
1249
0
{
1250
0
    gs_cie_wbsd *pwbsd = &pjc->points_sd;
1251
1252
0
    pwbsd->ws.xyz = pcie->points.WhitePoint;
1253
0
    cie_mult3(&pwbsd->ws.xyz, &pcrd->MatrixPQR, &pwbsd->ws.pqr);
1254
0
    pwbsd->bs.xyz = pcie->points.BlackPoint;
1255
0
    cie_mult3(&pwbsd->bs.xyz, &pcrd->MatrixPQR, &pwbsd->bs.pqr);
1256
0
    pwbsd->wd.xyz = pcrd->points.WhitePoint;
1257
0
    pwbsd->wd.pqr = pcrd->wdpqr;
1258
0
    pwbsd->bd.xyz = pcrd->points.BlackPoint;
1259
0
    pwbsd->bd.pqr = pcrd->bdpqr;
1260
0
    return 0;
1261
0
}
1262
1263
/*
1264
 * Sample the TransformPQR procedure for the joint caches.
1265
 * This routine is idempotent.
1266
 */
1267
static int
1268
cie_joint_caches_init(gx_cie_joint_caches * pjc,
1269
                      const gs_cie_common * pcie,
1270
                      gs_cie_render * pcrd)
1271
0
{
1272
0
    bool is_identity;
1273
0
    int j;
1274
1275
0
    gs_cie_compute_points_sd(pjc, pcie, pcrd);
1276
    /*
1277
     * If a client pre-loaded the cache, we can't adjust the range.
1278
     * ****** WRONG ******
1279
     */
1280
0
    if (pcrd->TransformPQR.proc == TransformPQR_from_cache.proc)
1281
0
        return 0;
1282
0
    is_identity = pcrd->TransformPQR.proc == TransformPQR_default.proc;
1283
0
    for (j = 0; j < 3; j++) {
1284
0
        int i;
1285
0
        gs_sample_loop_params_t lp;
1286
1287
0
        gs_cie_cache_init(&pjc->TransformPQR.caches[j].floats.params, &lp,
1288
0
                          &pcrd->RangePQR.ranges[j], "TransformPQR");
1289
0
        for (i = 0; i <= lp.N; ++i) {
1290
0
            float in = SAMPLE_LOOP_VALUE(i, lp);
1291
0
            float out;
1292
0
            int code = (*pcrd->TransformPQR.proc)(j, in, &pjc->points_sd,
1293
0
                                                  pcrd, &out);
1294
1295
0
            if (code < 0)
1296
0
                return code;
1297
0
            pjc->TransformPQR.caches[j].floats.values[i] = out;
1298
0
            if_debug4('C', "[C]TransformPQR[%d,%d] = %g => %g\n",
1299
0
                      j, i, in, out);
1300
0
        }
1301
0
        pjc->TransformPQR.caches[j].floats.params.is_identity = is_identity;
1302
0
    }
1303
0
    return 0;
1304
0
}
1305
1306
/*
1307
 * Complete the loading of the joint caches.
1308
 * This routine is idempotent.
1309
 */
1310
static void
1311
cie_joint_caches_complete(gx_cie_joint_caches * pjc,
1312
                          const gs_cie_common * pcie,
1313
                          const gs_cie_abc * pabc /* NULL if CIEA */,
1314
                          const gs_cie_render * pcrd)
1315
0
{
1316
0
    gs_matrix3 mat3, mat2;
1317
0
    gs_matrix3 MatrixLMN_PQR;
1318
0
    int j;
1319
1320
0
    pjc->remap_finish = gx_cie_real_remap_finish;
1321
1322
    /*
1323
     * We number the pipeline steps as follows:
1324
     *   1 - DecodeABC/MatrixABC
1325
     *   2 - DecodeLMN/MatrixLMN/MatrixPQR
1326
     *   3 - TransformPQR/MatrixPQR'/MatrixLMN
1327
     *   4 - EncodeLMN/MatrixABC
1328
     *   5 - EncodeABC, RenderTable (we don't do anything with this here)
1329
     * We work from back to front, combining steps where possible.
1330
     * Currently we only combine steps if a procedure is the identity
1331
     * transform, but we could do it whenever the procedure is linear.
1332
     * A project for another day....
1333
     */
1334
1335
        /* Step 4 */
1336
1337
0
#ifdef OPTIMIZE_CIE_MAPPING
1338
0
    if (pcrd->caches.EncodeLMN.caches[0].floats.params.is_identity &&
1339
0
        pcrd->caches.EncodeLMN.caches[1].floats.params.is_identity &&
1340
0
        pcrd->caches.EncodeLMN.caches[2].floats.params.is_identity
1341
0
        ) {
1342
        /* Fold step 4 into step 3. */
1343
0
        if_debug0('c', "[c]EncodeLMN is identity, folding MatrixABC(Encode) into MatrixPQR'+LMN.\n");
1344
0
        cie_matrix_mult3(&pcrd->MatrixABCEncode, &pcrd->MatrixPQR_inverse_LMN,
1345
0
                         &mat3);
1346
0
        pjc->skipEncodeLMN = true;
1347
0
    } else
1348
0
#endif /* OPTIMIZE_CIE_MAPPING */
1349
0
    {
1350
0
        if_debug0('c', "[c]EncodeLMN is not identity.\n");
1351
0
        mat3 = pcrd->MatrixPQR_inverse_LMN;
1352
0
        pjc->skipEncodeLMN = false;
1353
0
    }
1354
1355
        /* Step 3 */
1356
1357
0
    cache3_set_linear(&pjc->TransformPQR);
1358
0
    cie_matrix_mult3(&pcrd->MatrixPQR, &pcie->MatrixLMN,
1359
0
                     &MatrixLMN_PQR);
1360
1361
0
#ifdef OPTIMIZE_CIE_MAPPING
1362
0
    if (pjc->TransformPQR.caches[0].floats.params.is_identity &
1363
0
        pjc->TransformPQR.caches[1].floats.params.is_identity &
1364
0
        pjc->TransformPQR.caches[2].floats.params.is_identity
1365
0
        ) {
1366
        /* Fold step 3 into step 2. */
1367
0
        if_debug0('c', "[c]TransformPQR is identity, folding MatrixPQR'+LMN into MatrixLMN+PQR.\n");
1368
0
        cie_matrix_mult3(&mat3, &MatrixLMN_PQR, &mat2);
1369
0
        pjc->skipPQR = true;
1370
0
    } else
1371
0
#endif /* OPTIMIZE_CIE_MAPPING */
1372
0
    {
1373
0
        if_debug0('c', "[c]TransformPQR is not identity.\n");
1374
0
        mat2 = MatrixLMN_PQR;
1375
0
        for (j = 0; j < 3; j++) {
1376
0
            cie_cache_restrict(&pjc->TransformPQR.caches[j].floats,
1377
0
                               &pcrd->RangePQR.ranges[j]);
1378
0
        }
1379
0
        cie_cache_mult3(&pjc->TransformPQR, &mat3, CACHE_THRESHOLD);
1380
0
        pjc->skipPQR = false;
1381
0
    }
1382
1383
        /* Steps 2 & 1 */
1384
1385
0
#ifdef OPTIMIZE_CIE_MAPPING
1386
0
    if (pcie->caches.DecodeLMN[0].floats.params.is_identity &
1387
0
        pcie->caches.DecodeLMN[1].floats.params.is_identity &
1388
0
        pcie->caches.DecodeLMN[2].floats.params.is_identity
1389
0
        ) {
1390
0
        if_debug0('c', "[c]DecodeLMN is identity, folding MatrixLMN+PQR into MatrixABC.\n");
1391
0
        if (!pabc) {
1392
0
            pjc->skipDecodeLMN = mat2.is_identity;
1393
0
            pjc->skipDecodeABC = false;
1394
0
            if (!pjc->skipDecodeLMN) {
1395
0
                for (j = 0; j < 3; j++) {
1396
0
                    cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
1397
0
                                   &pcie->caches.DecodeLMN[j].floats,
1398
0
                                   CACHE_THRESHOLD);
1399
0
                }
1400
0
                cie_cache3_set_interpolation(&pjc->DecodeLMN);
1401
0
            }
1402
0
        } else {
1403
            /*
1404
             * Fold step 2 into step 1.  This is a little different because
1405
             * the data for step 1 are in the color space structure.
1406
             */
1407
0
            gs_matrix3 mat1;
1408
1409
0
            cie_matrix_mult3(&mat2, &pabc->MatrixABC, &mat1);
1410
0
            for (j = 0; j < 3; j++) {
1411
0
                cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat1.cu + j,
1412
0
                               &pabc->caches.DecodeABC.caches[j].floats,
1413
0
                               CACHE_THRESHOLD);
1414
0
            }
1415
0
            cie_cache3_set_interpolation(&pjc->DecodeLMN);
1416
0
            pjc->skipDecodeLMN = false;
1417
0
            pjc->skipDecodeABC = true;
1418
0
        }
1419
0
    } else
1420
0
#endif /* OPTIMIZE_CIE_MAPPING */
1421
0
    {
1422
0
        if_debug0('c', "[c]DecodeLMN is not identity.\n");
1423
0
        for (j = 0; j < 3; j++) {
1424
0
            cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
1425
0
                           &pcie->caches.DecodeLMN[j].floats,
1426
0
                           CACHE_THRESHOLD);
1427
0
        }
1428
0
        cie_cache3_set_interpolation(&pjc->DecodeLMN);
1429
0
        pjc->skipDecodeLMN = false;
1430
0
        pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
1431
0
    }
1432
1433
0
}
1434
1435
/*
1436
 * Initialize (just enough of) an gs_gstate so that "concretizing" colors
1437
 * using this gs_gstate will do only the CIE->XYZ mapping.  This is a
1438
 * semi-hack for the PDF writer.
1439
 */
1440
int
1441
gx_cie_to_xyz_alloc(gs_gstate **ppgs, const gs_color_space *pcs,
1442
                    gs_memory_t *mem)
1443
0
{
1444
    /*
1445
     * In addition to the gs_gstate itself, we need the joint caches.
1446
     */
1447
0
    gs_gstate *pgs =
1448
0
        gs_alloc_struct(mem, gs_gstate, &st_gs_gstate,
1449
0
                        "gx_cie_to_xyz_alloc(gs_gstate)");
1450
0
    gx_cie_joint_caches *pjc;
1451
0
    const gs_cie_abc *pabc;
1452
0
    const gs_cie_common *pcie = cie_cs_common_abc(pcs, &pabc);
1453
0
    int j;
1454
1455
0
    if (pgs == 0)
1456
0
        return_error(gs_error_VMerror);
1457
0
    memset(pgs, 0, sizeof(*pgs)); /* mostly paranoia */
1458
0
    pgs->memory = mem;
1459
0
    GS_STATE_INIT_VALUES(pgs, 1.0);
1460
0
    gs_gstate_initialize(pgs, mem);
1461
1462
0
    pjc = gs_alloc_struct(mem, gx_cie_joint_caches, &st_joint_caches,
1463
0
                          "gx_cie_to_xyz_free(joint caches)");
1464
0
    if (pjc == 0) {
1465
0
        gs_free_object(mem, pgs, "gx_cie_to_xyz_alloc(gs_gstate)");
1466
0
        return_error(gs_error_VMerror);
1467
0
    }
1468
0
    rc_init(pjc, mem, 1);
1469
1470
    /*
1471
     * Perform an abbreviated version of cie_joint_caches_complete.
1472
     * Don't bother with any optimizations.
1473
     */
1474
0
    for (j = 0; j < 3; j++) {
1475
0
        cie_cache_mult(&pjc->DecodeLMN.caches[j], &pcie->MatrixLMN.cu + j,
1476
0
                       &pcie->caches.DecodeLMN[j].floats,
1477
0
                       CACHE_THRESHOLD);
1478
0
    }
1479
0
    cie_cache3_set_interpolation(&pjc->DecodeLMN);
1480
0
    pjc->skipDecodeLMN = false;
1481
0
    pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
1482
    /* Mark the joint caches as completed. */
1483
0
    pjc->remap_finish = gx_cie_xyz_remap_finish;
1484
0
    pjc->cspace_id = pcs->id;
1485
0
    pjc->status = CIE_JC_STATUS_COMPLETED;
1486
0
    pgs->cie_joint_caches = pjc;
1487
0
    pgs->cie_to_xyz = true;
1488
0
    *ppgs = pgs;
1489
0
    return 0;
1490
0
}
1491
void
1492
gx_cie_to_xyz_free(gs_gstate *pgs)
1493
0
{
1494
0
    gs_memory_t *mem = pgs->memory;
1495
1496
0
    rc_decrement(pgs->cie_joint_caches,"gx_cie_to_xyz_free");
1497
1498
    /* Free up the ICC objects if created */    /* FIXME: does this need to be thread safe */
1499
0
    if (pgs->icc_link_cache != NULL) {
1500
0
        rc_decrement(pgs->icc_link_cache,"gx_cie_to_xyz_free");
1501
0
    }
1502
0
    if (pgs->icc_manager != NULL) {
1503
0
        rc_decrement(pgs->icc_manager,"gx_cie_to_xyz_free");
1504
0
    }
1505
0
    if (pgs->icc_profile_cache != NULL) {
1506
0
        rc_decrement(pgs->icc_profile_cache,"gx_cie_to_xyz_free");
1507
0
    }
1508
0
    gs_free_object(mem, pgs, "gx_cie_to_xyz_free(gs_gstate)");
1509
0
}
1510
1511
/* ================ Utilities ================ */
1512
1513
/* Multiply a vector by a matrix. */
1514
/* Note that we are computing M * V where v is a column vector. */
1515
void
1516
cie_mult3(const gs_vector3 * in, register const gs_matrix3 * mat,
1517
          gs_vector3 * out)
1518
51.5k
{
1519
51.5k
    if_debug_vector3("[c]mult", in);
1520
51.5k
    if_debug_matrix3("  *", mat);
1521
51.5k
    {
1522
51.5k
        float u = in->u, v = in->v, w = in->w;
1523
1524
51.5k
        out->u = (u * mat->cu.u) + (v * mat->cv.u) + (w * mat->cw.u);
1525
51.5k
        out->v = (u * mat->cu.v) + (v * mat->cv.v) + (w * mat->cw.v);
1526
51.5k
        out->w = (u * mat->cu.w) + (v * mat->cv.w) + (w * mat->cw.w);
1527
51.5k
    }
1528
51.5k
    if_debug_vector3("  =", out);
1529
51.5k
}
1530
1531
/*
1532
 * Multiply two matrices.  Note that the composition of the transformations
1533
 * M1 followed by M2 is M2 * M1, not M1 * M2.  (See gscie.h for details.)
1534
 */
1535
void
1536
cie_matrix_mult3(const gs_matrix3 *ma, const gs_matrix3 *mb, gs_matrix3 *mc)
1537
10.3k
{
1538
10.3k
    gs_matrix3 mprod;
1539
10.3k
    gs_matrix3 *mp = (mc == ma || mc == mb ? &mprod : mc);
1540
1541
10.3k
    if_debug_matrix3("[c]matrix_mult", ma);
1542
10.3k
    if_debug_matrix3("             *", mb);
1543
10.3k
    cie_mult3(&mb->cu, ma, &mp->cu);
1544
10.3k
    cie_mult3(&mb->cv, ma, &mp->cv);
1545
10.3k
    cie_mult3(&mb->cw, ma, &mp->cw);
1546
10.3k
    cie_matrix_init(mp);
1547
10.3k
    if_debug_matrix3("             =", mp);
1548
10.3k
    if (mp != mc)
1549
0
        *mc = *mp;
1550
10.3k
}
1551
1552
/*
1553
 * Transpose a 3x3 matrix. In and out can not be the same
1554
 */
1555
void
1556
cie_matrix_transpose3(const gs_matrix3 *in, gs_matrix3 *out)
1557
0
{
1558
0
    out->cu.u = in->cu.u;
1559
0
    out->cu.v = in->cv.u;
1560
0
    out->cu.w = in->cw.u;
1561
1562
0
    out->cv.u = in->cu.v;
1563
0
    out->cv.v = in->cv.v;
1564
0
    out->cv.w = in->cw.v;
1565
1566
0
    out->cw.u = in->cu.w;
1567
0
    out->cw.v = in->cv.w;
1568
0
    out->cw.w = in->cw.w;
1569
0
}
1570
1571
/* Invert a matrix. */
1572
/* The output must not be an alias for the input. */
1573
static void
1574
cie_invert3(const gs_matrix3 *in, gs_matrix3 *out)
1575
10.3k
{ /* This is a brute force algorithm; maybe there are better. */
1576
    /* We label the array elements */
1577
    /*   [ A B C ]   */
1578
    /*   [ D E F ]   */
1579
    /*   [ G H I ]   */
1580
61.8k
#define A cu.u
1581
61.8k
#define B cv.u
1582
61.8k
#define C cw.u
1583
51.5k
#define D cu.v
1584
51.5k
#define E cv.v
1585
51.5k
#define F cw.v
1586
51.5k
#define G cu.w
1587
51.5k
#define H cv.w
1588
51.5k
#define I cw.w
1589
10.3k
    double coA = in->E * in->I - in->F * in->H;
1590
10.3k
    double coB = in->F * in->G - in->D * in->I;
1591
10.3k
    double coC = in->D * in->H - in->E * in->G;
1592
10.3k
    double det = in->A * coA + in->B * coB + in->C * coC;
1593
1594
10.3k
    if_debug_matrix3("[c]invert", in);
1595
10.3k
    out->A = coA / det;
1596
10.3k
    out->D = coB / det;
1597
10.3k
    out->G = coC / det;
1598
10.3k
    out->B = (in->C * in->H - in->B * in->I) / det;
1599
10.3k
    out->E = (in->A * in->I - in->C * in->G) / det;
1600
10.3k
    out->H = (in->B * in->G - in->A * in->H) / det;
1601
10.3k
    out->C = (in->B * in->F - in->C * in->E) / det;
1602
10.3k
    out->F = (in->C * in->D - in->A * in->F) / det;
1603
10.3k
    out->I = (in->A * in->E - in->B * in->D) / det;
1604
10.3k
    if_debug_matrix3("        =", out);
1605
10.3k
#undef A
1606
10.3k
#undef B
1607
10.3k
#undef C
1608
10.3k
#undef D
1609
10.3k
#undef E
1610
10.3k
#undef F
1611
10.3k
#undef G
1612
10.3k
#undef H
1613
10.3k
#undef I
1614
10.3k
    out->is_identity = in->is_identity;
1615
10.3k
}
1616
1617
/* Set the is_identity flag that accelerates multiplication. */
1618
static void
1619
cie_matrix_init(register gs_matrix3 * mat)
1620
41.2k
{
1621
41.2k
    mat->is_identity =
1622
41.2k
        mat->cu.u == 1.0 && is_fzero2(mat->cu.v, mat->cu.w) &&
1623
41.2k
        mat->cv.v == 1.0 && is_fzero2(mat->cv.u, mat->cv.w) &&
1624
41.2k
        mat->cw.w == 1.0 && is_fzero2(mat->cw.u, mat->cw.v);
1625
41.2k
}
1626
1627
bool
1628
gx_color_space_needs_cie_caches(const gs_color_space * pcs)
1629
0
{
1630
0
    switch (pcs->type->index) {
1631
0
        case gs_color_space_index_CIEDEFG:
1632
0
        case gs_color_space_index_CIEDEF:
1633
0
        case gs_color_space_index_CIEABC:
1634
0
        case gs_color_space_index_CIEA:
1635
0
            return true;
1636
0
        case gs_color_space_index_ICC:
1637
0
            return false;
1638
0
        case gs_color_space_index_DevicePixel:
1639
0
        case gs_color_space_index_DeviceN:
1640
0
        case gs_color_space_index_Separation:
1641
0
        case gs_color_space_index_Indexed:
1642
0
        case gs_color_space_index_Pattern:
1643
0
            return gx_color_space_needs_cie_caches(pcs->base_space);
1644
0
        default:
1645
0
            return false;
1646
0
    }
1647
0
}