Coverage Report

Created: 2025-06-10 06:58

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
1.06k
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
242
{
110
242
    const subpath *psub;
111
242
    const segment *pseg;
112
242
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
242
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
242
    double expand = pgs->line_params.half_width;
115
242
    int result = 1;
116
117
242
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
242
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
242
    if (pgs->line_params.start_cap == gs_cap_square ||
124
242
        pgs->line_params.end_cap == gs_cap_square)
125
0
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
242
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
242
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
242
        ) {
131
224
        bool must_be_closed =
132
224
            !(pgs->line_params.start_cap == gs_cap_square ||
133
224
              pgs->line_params.start_cap == gs_cap_round  ||
134
224
              pgs->line_params.end_cap   == gs_cap_square ||
135
224
              pgs->line_params.end_cap   == gs_cap_round  ||
136
224
              pgs->line_params.dash_cap  == gs_cap_square ||
137
224
              pgs->line_params.dash_cap  == gs_cap_round);
138
224
        gs_fixed_point prev;
139
140
224
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
247
        for (pseg = (const segment *)psub; pseg;
142
224
             prev = pseg->pt, pseg = pseg->next
143
224
             )
144
100
            switch (pseg->type) {
145
77
            case s_start:
146
77
                if (((const subpath *)pseg)->curve_count ||
147
77
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
77
                    )
149
54
                    goto not_exact;
150
23
                break;
151
23
            case s_line:
152
23
            case s_dash:
153
23
            case s_line_close:
154
23
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
23
                    goto not_exact;
156
0
                break;
157
0
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
100
            }
161
147
        result = 0;             /* exact result */
162
147
    }
163
242
not_exact:
164
242
    if (result) {
165
95
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
95
            (psub == 0 || (pseg = psub->next) == 0 ||
167
71
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
95
            DO_NOTHING;
169
36
        else {
170
36
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
36
            if (pgs->line_params.curve_join >= 0)
173
0
                factor = max(factor, join_expansion_factor(pgs,
174
36
                                (gs_line_join)pgs->line_params.curve_join));
175
36
            expand *= factor;
176
36
        }
177
95
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
242
    {
181
242
        float exx = expand * cx;
182
242
        float exy = expand * cy;
183
242
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
242
        if (code < 0)
186
17
            return code;
187
225
        code = set_float2fixed_vars(ppt->y, exy);
188
225
        if (code < 0)
189
0
            return code;
190
225
    }
191
192
225
    return result;
193
225
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
36
{
197
36
    switch (join) {
198
35
    case gs_join_miter: return pgs->line_params.miter_limit;
199
0
    case gs_join_triangle: return 2.0;
200
1
    default: return 1.0;
201
36
    }
202
36
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
1.61k
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
1.61k
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
2.32k
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
0
{
342
0
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
0
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
0
    gx_device_cpath_accum adev;
345
0
    gx_device_color devc;
346
0
    gx_clip_path stroke_as_clip_path;
347
0
    int code;
348
0
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
0
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
0
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
0
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
0
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
0
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
0
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
0
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
0
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
0
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
0
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
0
    gs_set_logical_op_inline(pgs, save_lop);
368
0
    if (code >= 0)
369
0
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
0
        gs_fixed_rect clip_box, shading_box;
373
0
        gs_int_rect cb;
374
0
        gx_device_clip cdev;
375
376
0
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
0
        if (gx_dc_is_pattern2_color(pdevc) &&
382
0
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
0
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
0
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
0
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
0
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
0
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
0
        code = pdevc->type->fill_rectangle(pdevc,
392
0
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
0
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
0
        gx_destroy_clip_device_on_stack(&cdev);
395
0
    }
396
0
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
0
    return code;
399
0
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
65
{
408
65
    if (gx_dc_is_pattern2_color(pdevc) ||
409
65
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
65
        (gx_dc_is_pattern1_color(pdevc) &&
411
65
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
0
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
0
                                                         pdevc, pcpath);
414
65
    else
415
65
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
65
                                   pdevc, pcpath);
417
65
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
1.22k
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
1.22k
     (final || lop_is_idempotent(pgs->log_op))) {\
425
458
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
458
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
458
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
458
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
458
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
458
    if ( code < 0 ) goto exit;\
434
458
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
458
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
242
{
509
242
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
242
    bool traditional = CPSI_mode | params->traditional;
511
242
    stroke_line_proc_t line_proc =
512
242
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
242
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
242
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
242
    gs_fixed_rect ibox, cbox;
516
242
    gx_device_clip cdev;
517
242
    gx_device *dev = pdev;
518
242
    int code = 0;
519
242
    gx_fill_params fill_params;
520
242
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
242
    int dash_count = pgs_lp->dash.pattern_size;
522
242
    gx_path fpath, dpath;
523
242
    gx_path stroke_path_body;
524
242
    gx_path stroke_path_reverse;
525
242
    gx_path *to_path_reverse = NULL;
526
242
    const gx_path *spath;
527
242
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
242
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
242
    int uniform;
535
242
    bool reflected;
536
242
    orientation orient =
537
242
        (
538
242
#ifdef OPTIMIZE_ORIENTATION
539
242
         is_fzero2(xy, yx) ?
540
224
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
224
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
224
          orient_portrait) :
543
242
         is_fzero2(xx, yy) ?
544
0
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
0
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
0
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
18
#endif
550
18
         (uniform = 0,
551
18
          reflected = xy * yx > xx * yy,
552
18
          orient_other));
553
242
    const segment_notes not_first = sn_not_first;
554
242
    gs_line_join curve_join =
555
242
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
242
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
205
            gs_join_bevel : pgs_lp->join);
558
242
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
242
    bool always_thin;
560
242
    double line_width_and_scale;
561
242
    double device_line_width_scale = 0; /* Quiet compiler. */
562
242
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
242
    const subpath *psub;
564
242
    gs_matrix initial_matrix;
565
242
    bool initial_matrix_reflected, flattened_path = false;
566
242
    note_flags flags;
567
568
242
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
242
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
242
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
242
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
242
    {
595
242
        gs_fixed_point expansion;
596
597
242
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
17
            ibox.p.x = ibox.p.y = min_fixed;
600
17
            ibox.q.x = ibox.q.y = max_fixed;
601
225
        } else {
602
225
            expansion.x += pgs->fill_adjust.x;
603
225
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
225
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
225
                        ibox.p.x - expansion.x);
610
225
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
225
                        ibox.p.y - expansion.y);
612
225
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
225
                        ibox.q.x + expansion.x);
614
225
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
225
                        ibox.q.y + expansion.y);
616
225
        }
617
242
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
242
    if (pcpath)
620
65
        gx_cpath_inner_box(pcpath, &cbox);
621
177
    else if (pdevc)
622
0
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
177
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
177
        cbox = ibox;
626
177
    }
627
242
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
20
        gs_fixed_rect bbox;
631
632
20
        if (pcpath) {
633
20
            gx_cpath_outer_box(pcpath, &bbox);
634
20
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
20
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
20
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
20
            rect_intersect(ibox, bbox);
638
20
        } else
639
20
            rect_intersect(ibox, cbox);
640
20
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
16
            return 0;
643
16
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
4
        if (pcpath && line_proc == stroke_fill) {
664
4
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
4
            cdev.max_fill_band = pdev->max_fill_band;
666
4
            dev = (gx_device *)&cdev;
667
4
        }
668
4
    }
669
226
    fill_params.rule = gx_rule_winding_number;
670
226
    fill_params.flatness = pgs->flatness;
671
226
    if (line_width < 0)
672
0
        line_width = -line_width;
673
226
    line_width_and_scale = line_width * (double)int2fixed(1);
674
226
    if (is_fzero(line_width))
675
0
        always_thin = true;
676
226
    else {
677
226
        float xa, ya;
678
679
226
        switch (orient) {
680
224
            case orient_portrait:
681
224
                xa = xx, ya = yy;
682
224
                goto sat;
683
0
            case orient_landscape:
684
0
                xa = xy, ya = yx;
685
224
              sat:
686
224
                if (xa < 0)
687
0
                    xa = -xa;
688
224
                if (ya < 0)
689
12
                    ya = -ya;
690
224
                always_thin = (max(xa, ya) * line_width < 0.5);
691
224
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
218
                    device_line_width_scale = line_width_and_scale * xa;
693
218
                }
694
224
                break;
695
2
            default:
696
2
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
2
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
2
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
2
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
2
                                          )
712
2
                                     )/2;
713
714
2
                    always_thin = max_rr * line_width * line_width < 0.25;
715
2
                }
716
226
        }
717
226
    }
718
226
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
226
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
226
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
226
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
207
        if (!ppath->first_subpath) {
739
147
            if (dev == (gx_device *)&cdev)
740
0
                gx_destroy_clip_device_on_stack(&cdev);
741
147
            return 0;
742
147
        }
743
60
        spath = ppath;
744
60
    } else {
745
19
        gx_path_init_local(&fpath, ppath->memory);
746
19
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
19
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
19
        spath = &fpath;
753
19
        flattened_path = true;
754
19
    }
755
79
    if (dash_count) {
756
49
        float max_dash_len = 0;
757
49
        float expand_squared;
758
49
        int i;
759
49
        float adjust = (float)pgs->fill_adjust.x;
760
49
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
197
        for (i = 0; i < dash_count; i++) {
763
148
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
74
                max_dash_len = pgs_lp->dash.pattern[i];
765
148
        }
766
49
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
49
        if (expand_squared < 0)
768
1
            expand_squared = -expand_squared;
769
49
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
49
        if (pgs->line_params.half_width > 1)
773
0
            adjust /= pgs->line_params.half_width;
774
49
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
48
            gx_path_init_local(&dpath, ppath->memory);
776
48
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
48
            if (code < 0)
778
0
                goto exf;
779
48
            spath = &dpath;
780
48
        } else {
781
1
            dash_count = 0;
782
1
        }
783
49
    }
784
79
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
49
        to_path = &stroke_path_body;
787
49
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
49
    }
789
79
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
661
    for (psub = spath->first_subpath; psub != 0;) {
794
582
        int index = 0;
795
582
        const segment *pseg = (const segment *)psub;
796
582
        fixed x = pseg->pt.x;
797
582
        fixed y = pseg->pt.y;
798
582
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
582
        partial_line pl, pl_prev, pl_first;
800
582
        bool zero_length = true;
801
582
        int pseg_notes = pseg->notes;
802
803
582
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
1.38k
        while ((pseg = pseg->next) != 0 &&
810
1.38k
               pseg->type != s_start
811
807
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
807
            fixed sx, udx, sy, udy;
815
807
            bool is_dash_segment;
816
817
807
            pseg_notes = pseg->notes;
818
819
807
         d2:is_dash_segment = false;
820
807
         d1:if (pseg->type == s_dash) {
821
443
                dash_segment *pd = (dash_segment *)pseg;
822
823
443
                sx = pd->pt.x;
824
443
                sy = pd->pt.y;
825
443
                udx = pd->tangent.x;
826
443
                udy = pd->tangent.y;
827
443
                is_dash_segment = true;
828
443
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
364
            } else {
835
364
                sx = pseg->pt.x;
836
364
                sy = pseg->pt.y;
837
364
                udx = sx - x;
838
364
                udy = sy - y;
839
364
            }
840
807
            zero_length &= ((udx | udy) == 0);
841
807
            pl.o.p.x = x, pl.o.p.y = y;
842
809
          d:flags = (((pseg_notes & sn_not_first) ?
843
609
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
809
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
809
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
809
                     (flags & ~nf_all_from_arc));
847
809
            pl.e.p.x = sx, pl.e.p.y = sy;
848
809
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
445
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
0
                {
856
0
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
0
                        continue;
858
0
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
0
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
0
                                  (pseg->notes & ~sn_not_first) :
866
0
                                  pseg->notes);
867
0
                    goto d2;
868
0
                }
869
                /* Check for a degenerate subpath. */
870
445
                while ((pseg = pseg->next) != 0 &&
871
445
                       pseg->type != s_start
872
445
                    ) {
873
1
                    if (is_dash_segment)
874
0
                        break;
875
1
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
1
                    sx = pseg->pt.x, udx = sx - x;
878
1
                    sy = pseg->pt.y, udy = sy - y;
879
1
                    if (udx | udy) {
880
1
                        zero_length = false;
881
1
                        goto d;
882
1
                    }
883
1
                }
884
444
                if (pgs_lp->dot_length == 0 &&
885
444
                    pgs_lp->start_cap != gs_cap_round &&
886
444
                    pgs_lp->end_cap != gs_cap_round &&
887
444
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
0
                    break;
893
0
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
444
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
444
                    const segment *end = psub->last;
906
907
444
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
443
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
444
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
444
                if ((udx | udy) == 0) {
917
1
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
1
                        udx = fixed_1;
920
1
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
1
                }
925
444
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
214
                    double scale = device_dot_length /
927
214
                                hypot((double)udx, (double)udy);
928
214
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
214
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
214
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
214
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
214
                    udx1 = (fixed) (udx * scale);
944
214
                    udy1 = (fixed) (udy * scale);
945
214
                    sx = x + udx1;
946
214
                    sy = y + udy1;
947
214
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
444
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
444
                if (!is_dash_segment)
953
1
                    goto d;
954
443
                pl.e.p.x = sx;
955
443
                pl.e.p.y = sy;
956
443
            }
957
807
            pl.vector.x = udx;
958
807
            pl.vector.y = udy;
959
807
            if (always_thin) {
960
0
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
0
                pl.width.x = pl.width.y = 0;
962
0
                pl.thin = true;
963
807
            } else {
964
807
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
785
                    double dpx = udx, dpy = udy;
968
785
                    double wl = device_line_width_scale /
969
785
                    hypot(dpx, dpy);
970
971
785
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
785
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
785
                    if (initial_matrix_reflected)
976
0
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
785
                    else
978
785
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
785
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
785
                } else {
983
22
                    gs_point dpt;       /* unscaled */
984
22
                    float wl;
985
986
22
                    code = gs_gstate_idtransform(pgs,
987
22
                                                 (float)udx, (float)udy,
988
22
                                                 &dpt);
989
22
                    if (code < 0) {
990
4
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
4
                        code = 0;
993
18
                    } else {
994
18
                        wl = line_width_and_scale /
995
18
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
18
                        dpt.x *= wl;
999
18
                        dpt.y *= wl;
1000
18
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
22
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
22
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
22
                    if (orient != orient_portrait)
1016
17
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
17
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
22
                    if (!reflected ^ initial_matrix_reflected)
1019
9
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
22
                    pl.width.x = (fixed) (dpt.y * xx),
1021
22
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
22
                    if (orient != orient_portrait)
1023
17
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
17
                            pl.width.y += (fixed) (dpt.y * xy);
1025
22
                    pl.thin = width_is_thin(&pl);
1026
22
                }
1027
807
                if (!pl.thin) {
1028
806
                    if (index)
1029
225
                        dev->sgr.stroke_stored = false;
1030
806
                    adjust_stroke(dev, &pl, pgs, false,
1031
806
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
806
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
806
                            (zero_length || !is_closed),
1034
806
                            COMBINE_FLAGS(flags));
1035
806
                    compute_caps(&pl);
1036
806
                }
1037
807
            }
1038
807
            if (index++) {
1039
225
                gs_line_join join =
1040
225
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
225
                int first;
1042
225
                pl_ptr lptr;
1043
225
                bool ensure_closed;
1044
1045
225
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
0
                    first = 0;
1049
0
                    lptr = 0;
1050
0
                    index = 1;
1051
225
                } else {
1052
225
                    first = (is_closed ? 1 : index - 2);
1053
225
                    lptr = &pl;
1054
225
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
225
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
225
                ensure_closed = ((to_path == &stroke_path_body &&
1068
225
                                  lop_is_idempotent(pgs->log_op)) ||
1069
225
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
225
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
225
                                     first, &pl_prev, lptr,
1074
225
                                     pdevc, dev, pgs, params, &cbox,
1075
225
                                     uniform, join, initial_matrix_reflected,
1076
225
                                     COMBINE_FLAGS(flags));
1077
225
                if (code < 0)
1078
0
                    goto exit;
1079
225
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
582
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
582
                pl_first = pl;
1086
807
            pl_prev = pl;
1087
807
            x = sx, y = sy;
1088
807
            flags = (flags<<4) | nf_all_from_arc;
1089
807
        }
1090
582
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
582
            segment_notes notes = (pseg == 0 ?
1093
79
                                   (const segment *)spath->first_subpath :
1094
582
                                   pseg)->notes;
1095
582
            gs_line_join join = (notes & not_first ? curve_join :
1096
582
                                 pgs_lp->join);
1097
582
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
582
            pl_ptr lptr =
1101
582
                (!is_closed || join == gs_join_none || zero_length ?
1102
581
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
582
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
582
            flags = (((notes & sn_not_first) ?
1113
582
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
582
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
582
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
582
                     (flags & ~nf_all_from_arc));
1117
582
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
582
                                 index - 1, &pl_prev, lptr, pdevc,
1119
582
                                 dev, pgs, params, &cbox, uniform, join,
1120
582
                                 initial_matrix_reflected,
1121
582
                                 COMBINE_FLAGS(flags));
1122
582
            if (code < 0)
1123
0
                goto exit;
1124
582
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
582
            cap = ((flags & nf_prev_dash_head) ?
1126
482
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
582
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
336
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
336
                if (code < 0)
1131
0
                    goto exit;
1132
336
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
336
            }
1134
582
        }
1135
582
        psub = (const subpath *)pseg;
1136
582
    }
1137
79
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
79
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
79
  exit:
1141
79
    if (dev == (gx_device *)&cdev)
1142
4
        cdev.target->sgr = cdev.sgr;
1143
79
    if (to_path == &stroke_path_body)
1144
49
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
79
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
79
  exf:
1148
79
    if (dash_count)
1149
48
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
79
    if(flattened_path)
1152
19
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
79
    if (dev == (gx_device *)&cdev)
1154
4
        gx_destroy_clip_device_on_stack(&cdev);
1155
79
    return code;
1156
79
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
242
{
1163
242
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
242
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
22
{
1177
22
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
22
    if ((dy = plp->vector.y) == 0)
1181
14
        return any_abs(wy) < fixed_half;
1182
8
    if ((dx = plp->vector.x) == 0)
1183
0
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
8
    return false;
1249
8
#endif
1250
8
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
97
{
1256
97
    fixed *pw;
1257
97
    fixed *pov;
1258
97
    fixed *pev;
1259
97
    fixed w, w2;
1260
97
    fixed adj2;
1261
1262
97
    if (horiz) {
1263
        /* More horizontal stroke */
1264
75
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
75
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
75
    } else {
1267
        /* More vertical stroke */
1268
22
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
22
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
22
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
97
    w = *pw;
1276
97
    if (w > 0)
1277
47
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
50
    else
1279
50
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
97
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
97
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
94
        if (w >= 0)
1290
47
            w2 += adj2;
1291
47
        else
1292
47
            w2 = adj2 - w2;
1293
94
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
94
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
0
        else                    /* even width, move to pixel */
1296
0
            *pov = *pev = fixed_rounded(*pov);
1297
1298
94
    }
1299
97
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
49
{
1306
1307
49
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
49
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
49
    if (*pow == *pew) {
1313
48
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
48
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
48
        fixed length = any_abs(*pov - *pev);
1316
48
        fixed length_r, length_r_2;
1317
48
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
48
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
48
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
48
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
48
            return;
1329
0
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
0
            length_r = fixed_rounded(length);
1331
0
            if (length_r < fixed_1)
1332
0
                length_r = fixed_1;
1333
0
            length_r_2 = length_r / 2;
1334
0
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
0
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
0
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
0
            length_r_2 = fixed_rounded(length) / 2;
1340
0
        }
1341
0
        if (length_r & fixed_1)
1342
0
            mv_r = fixed_floor(mv) + fixed_half;
1343
0
        else
1344
0
            mv_r = fixed_floor(mv);
1345
0
        if (*pov < *pev) {
1346
0
            *pov = mv_r - length_r_2;
1347
0
            *pev = mv_r + length_r_2;
1348
0
        } else {
1349
0
            *pov = mv_r + length_r_2;
1350
0
            *pev = mv_r - length_r_2;
1351
0
        }
1352
0
    }
1353
49
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
806
{
1362
806
    bool horiz, adjust = true;
1363
806
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
32
                             pgs->line_params.dash_cap :
1365
806
                             pgs->line_params.start_cap);
1366
806
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
80
                             pgs->line_params.dash_cap :
1368
806
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
806
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
709
        dev->sgr.stroke_stored = false;
1374
709
        return;                 /* don't adjust */
1375
709
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
97
    if (dev->sgr.stroke_stored &&
1380
97
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
97
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
46
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
46
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
46
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
0
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
0
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
0
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
0
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
0
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
0
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
0
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
0
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
0
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
0
            }
1443
0
        }
1444
46
    }
1445
97
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
94
        dev->sgr.stroke_stored = true;
1447
94
        dev->sgr.orig[0] = plp->o.p;
1448
94
        dev->sgr.orig[1] = plp->e.p;
1449
94
        dev->sgr.orig[2] = plp->width;
1450
94
        dev->sgr.orig[3] = plp->vector;
1451
94
    } else
1452
3
        dev->sgr.stroke_stored = false;
1453
97
    if (adjust) {
1454
97
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
97
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
97
        if (adjust_longitude)
1457
49
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
97
    }
1459
97
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
94
        dev->sgr.adjusted[0] = plp->o.p;
1461
94
        dev->sgr.adjusted[1] = plp->e.p;
1462
94
        dev->sgr.adjusted[2] = plp->width;
1463
94
        dev->sgr.adjusted[3] = plp->vector;
1464
94
    }
1465
97
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
368
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
368
    double u1 = pd1->x, v1 = pd1->y;
1482
368
    double u2 = pd2->x, v2 = pd2->y;
1483
368
    double denom = u1 * v2 - u2 * v1;
1484
368
    double xdiff = pp2->x - pp1->x;
1485
368
    double ydiff = pp2->y - pp1->y;
1486
368
    double f1;
1487
368
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
368
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
0
        if_debug0('O', "\tdegenerate!\n");
1506
0
        return -1;
1507
0
    }
1508
368
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
368
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
368
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
368
    if_debug2('O', "\t%f,%f\n",
1512
368
              fixed2float(pi->x), fixed2float(pi->y));
1513
368
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
368
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
0
{
1521
0
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
0
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
0
    if (any_abs(dx) > any_abs(dy)) {
1525
0
        plp->width.x = plp->e.cdelta.y = 0;
1526
0
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
0
    } else {
1528
0
        plp->width.y = plp->e.cdelta.x = 0;
1529
0
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
0
    }
1531
0
#undef TRSIGN
1532
0
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
459
{
1545
459
    const fixed lix = plp->o.p.x;
1546
459
    const fixed liy = plp->o.p.y;
1547
459
    const fixed litox = plp->e.p.x;
1548
459
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
459
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
1
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
1
                                                pdevc, pgs->log_op,
1555
1
                                                pgs->fill_adjust.x,
1556
1
                                                pgs->fill_adjust.y);
1557
1
    }
1558
    /* Check for being able to fill directly. */
1559
458
    {
1560
458
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
458
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
262
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
458
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
274
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
458
        if (first != 0)
1567
226
            start_cap = gs_cap_butt;
1568
458
        if (nplp != 0)
1569
226
            end_cap = gs_cap_butt;
1570
458
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
458
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
458
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
458
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
343
                join == gs_join_none)
1575
458
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
458
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
458
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
458
 general:
1641
458
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
458
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
458
                      flags);
1644
458
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
458
{
1655
458
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
458
    gs_fixed_point points[8];
1657
458
    int npoints;
1658
458
    int code;
1659
458
    bool moveto_first = true;
1660
458
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
262
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
458
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
274
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
458
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
0
        set_thin_widths(plp);
1669
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
0
        compute_caps(plp);
1671
0
    }
1672
    /* Create an initial cap if desired. */
1673
458
    if (first == 0 && start_cap == gs_cap_round) {
1674
115
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
115
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
115
        npoints = 0;
1678
115
        moveto_first = false;
1679
343
    } else {
1680
343
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
343
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
343
    }
1684
458
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
232
        if (end_cap == gs_cap_round) {
1687
115
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
115
            ++npoints;
1689
115
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
115
            code = add_pie_cap(ppath, &plp->e);
1692
115
            goto done;
1693
115
        }
1694
117
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
226
    } else if (nplp->thin) /* no join */
1696
0
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
226
    else if (join == gs_join_round) {
1698
2
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
2
        ++npoints;
1700
2
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
2
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
2
        goto done;
1704
224
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
144
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
144
        ++npoints;
1710
144
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
144
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
144
        goto done;
1714
144
    } else                      /* non-round join */
1715
80
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
80
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
80
                                join, reflected);
1718
197
    if (code < 0)
1719
0
        return code;
1720
197
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
458
  done:
1722
458
    if (code < 0)
1723
0
        return code;
1724
458
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
458
        (nplp != NULL) && (!nplp->thin))
1726
212
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
458
    return gx_path_close_subpath(ppath);
1728
458
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
80
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
80
    float check;
1794
80
    double u1, v1, u2, v2;
1795
80
    double num, denom;
1796
80
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
80
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
80
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
56
        return 1;
1806
1807
24
    check = pgs_lp->miter_check;
1808
24
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
24
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
24
    if (pmat) {
1812
0
        gs_point pt;
1813
1814
0
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
0
        if (code < 0)
1816
0
        return code;
1817
0
        v1 = pt.x, u1 = pt.y;
1818
0
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
0
        if (code < 0)
1820
0
            return code;
1821
0
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
0
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
0
    }
1846
24
    num = u1 * v2 - u2 * v1;
1847
24
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
24
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
0
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
24
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
24
    if (denom < 0)
1881
24
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
24
    if (check > 0 ?
1884
24
        (num < 0 || num >= denom * check) :
1885
24
        (num < 0 && num >= denom * check)
1886
24
        ) {
1887
        /* OK to use a miter join. */
1888
24
        gs_fixed_point dirn1, dirn2;
1889
1890
24
        dirn1.x = plp->e.cdelta.x;
1891
24
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
24
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
24
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
0
        {
1898
0
            float scale = 65536.0;
1899
0
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
0
                scale /= abs(plp->vector.x);
1901
0
            else
1902
0
                scale /= abs(plp->vector.y);
1903
0
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
0
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
0
        }
1906
24
        dirn2.x = nplp->o.cdelta.x;
1907
24
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
24
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
24
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
0
        {
1914
0
            float scale = 65536.0;
1915
0
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
0
                scale /= abs(nplp->vector.x);
1917
0
            else
1918
0
                scale /= abs(nplp->vector.y);
1919
0
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
0
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
0
        }
1922
24
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
24
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
19
            return 0;
1926
24
    }
1927
5
    return 1;
1928
24
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
348
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
348
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
348
    gs_fixed_point points[6];
2286
348
    int npoints;
2287
348
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
348
    int code;
2289
2290
348
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
0
        set_thin_widths(plp);
2294
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
0
        compute_caps(plp);
2296
0
    }
2297
    /* The segment itself : */
2298
348
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
348
    ASSIGN_POINT(&points[1], plp->e.co);
2300
348
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
348
    ASSIGN_POINT(&points[3], plp->o.co);
2302
348
    code = add_points(ppath, points, 4, moveto_first);
2303
348
    if (code < 0)
2304
0
        return code;
2305
348
    code = gx_path_close_subpath(ppath);
2306
348
    if (code < 0)
2307
0
        return code;
2308
348
    npoints = 0;
2309
348
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
348
        if (pgs_lp->start_cap == gs_cap_butt)
2312
12
            return 0;
2313
336
        if (pgs_lp->start_cap == gs_cap_round) {
2314
336
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
336
            ++npoints;
2316
336
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
336
            return add_round_cap(ppath, &plp->e);
2319
336
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
0
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
0
    } else if (nplp->thin) {    /* no join */
2335
0
        npoints = 0;
2336
0
    } else {                    /* non-round join */
2337
0
        bool ccw =
2338
0
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
0
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
0
        if (ccw ^ reflected) {
2342
0
            ASSIGN_POINT(&points[0], plp->e.co);
2343
0
            ++npoints;
2344
0
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
0
                                    join, reflected);
2347
0
            if (code < 0)
2348
0
                return code;
2349
0
            code--; /* Drop the last point of the non-compatible mode. */
2350
0
            npoints += code;
2351
0
        } else {
2352
0
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
0
                                    join, reflected);
2355
0
            if (code < 0)
2356
0
                return code;
2357
0
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
0
            npoints = code;
2359
0
        }
2360
0
    }
2361
0
    code = add_points(ppath, points, npoints, moveto_first);
2362
0
    if (code < 0)
2363
0
        return code;
2364
0
    code = gx_path_close_subpath(ppath);
2365
0
    return code;
2366
0
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
336
{
2379
336
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
336
    gs_fixed_point points[5];
2381
336
    int npoints = 0;
2382
336
    int code;
2383
2384
336
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
336
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
0
        set_thin_widths(plp);
2390
0
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
0
        compute_caps(plp);
2392
0
    }
2393
    /* Create an initial cap if desired. */
2394
336
    if (pgs_lp->start_cap == gs_cap_round) {
2395
336
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
336
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
336
            )
2398
0
            return code;
2399
336
        return 0;
2400
336
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
336
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
1.14k
{
2420
1.14k
    int code;
2421
2422
1.14k
    if (moveto_first) {
2423
1.02k
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
1.02k
        if (code < 0)
2425
0
            return code;
2426
1.02k
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
1.02k
    } else {
2428
115
        return gx_path_add_lines(ppath, points, npoints);
2429
115
    }
2430
1.14k
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
80
{
2443
80
#define jp1 join_points[0]
2444
80
#define np1 join_points[1]
2445
80
#define np2 join_points[2]
2446
80
#define jp2 join_points[3]
2447
80
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
80
    bool ccw =
2476
80
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
80
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
80
    bool ccw0 = ccw;
2479
80
    p_ptr outp, np;
2480
80
    int   code;
2481
80
    gs_fixed_point mpt;
2482
2483
80
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
80
    ASSIGN_POINT(&jp1, plp->e.co);
2487
80
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
80
    if (!ccw) {
2495
24
        outp = &jp2;
2496
24
        ASSIGN_POINT(&np2, nplp->o.co);
2497
24
        ASSIGN_POINT(&np1, nplp->o.p);
2498
24
        np = &np2;
2499
56
    } else {
2500
56
        outp = &jp1;
2501
56
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
56
        ASSIGN_POINT(&np2, nplp->o.p);
2503
56
        np = &np1;
2504
56
    }
2505
80
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
80
    if (join == gs_join_triangle) {
2509
0
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
0
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
0
        ASSIGN_POINT(&jpx, jp2);
2513
0
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
0
            jp2.x = tpx, jp2.y = tpy;
2516
0
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
0
            ASSIGN_POINT(&jp2, np2);
2519
0
            ASSIGN_POINT(&np2, np1);
2520
0
            np1.x = tpx, np1.y = tpy;
2521
0
        }
2522
0
        return 5;
2523
0
    }
2524
80
    if (join == gs_join_miter &&
2525
80
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
19
        if (code < 0)
2527
0
            return code;
2528
19
        ASSIGN_POINT(outp, mpt);
2529
19
    }
2530
80
    return 4;
2531
80
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
806
{
2594
806
    fixed wx2 = plp->width.x;
2595
806
    fixed wy2 = plp->width.y;
2596
2597
806
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
806
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
806
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
806
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
806
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
806
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
806
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
672
{
2630
672
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
672
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
672
                                        xo + cdx, yo + cdy,
2638
672
                                        quarter_arc_fraction)) < 0 ||
2639
672
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
672
                                        quarter_arc_fraction)) < 0 ||
2641
672
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
672
                                        xe - cdx, ye - cdy,
2643
672
                                        quarter_arc_fraction)) < 0 ||
2644
672
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
672
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
672
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
672
        )
2649
0
        return code;
2650
672
    return 0;
2651
672
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
230
{
2658
230
    int code;
2659
2660
230
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
230
                                        xo + cdx, yo + cdy,
2662
230
                                        quarter_arc_fraction)) < 0 ||
2663
230
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
230
                                        quarter_arc_fraction)) < 0 ||
2665
230
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
230
    return 0;
2668
230
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
144
{
2676
144
    int code;
2677
144
    double rad_squared, dist_squared, F;
2678
144
    gs_fixed_point current, tangent, tangmeet;
2679
2680
144
    tangent.x = current_tangent->x;
2681
144
    tangent.y = current_tangent->y;
2682
144
    current.x = current_orig->x;
2683
144
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
144
    if ((double)tangent.x * (double)final_tangent->x +
2687
144
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
0
        code = gx_path_add_partial_arc(ppath,
2690
0
                                       centre->x + tangent.x,
2691
0
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
0
                                       current.x + tangent.x,
2694
0
                                       current.y + tangent.y,
2695
0
                                       quarter_arc_fraction);
2696
0
        if (code < 0)
2697
0
            return code;
2698
0
        current.x = centre->x + tangent.x;
2699
0
        current.y = centre->y + tangent.y;
2700
0
        if (ccw) {
2701
0
            int tmp = tangent.x;
2702
0
            tangent.x = -tangent.y;
2703
0
            tangent.y = tmp;
2704
0
        } else {
2705
0
            int tmp = tangent.x;
2706
0
            tangent.x = tangent.y;
2707
0
            tangent.y = -tmp;
2708
0
        }
2709
0
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
144
    if (line_intersect(&current, &tangent,
2714
144
                       final, final_tangent, &tangmeet) != 0) {
2715
71
        return gx_path_add_line(ppath, final->x, final->y);
2716
71
    }
2717
73
    current.x -= tangmeet.x;
2718
73
    current.y -= tangmeet.y;
2719
73
    dist_squared = ((double)current.x) * current.x +
2720
73
                   ((double)current.y) * current.y;
2721
73
    rad_squared  = ((double)width->x) * width->x +
2722
73
                   ((double)width->y) * width->y;
2723
73
    dist_squared /= rad_squared;
2724
73
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
73
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
144
                                   tangmeet.x, tangmeet.y, F);
2727
144
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
146
{
2735
146
    int code;
2736
146
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
146
    double l, r;
2738
146
    bool ccw;
2739
2740
146
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
146
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
146
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
2
        if (cap &&
2746
2
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
0
            return add_pie_cap(ppath, &plp->e);
2748
2
        else
2749
2
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
2
    }
2751
2752
144
    ccw = (l > r);
2753
2754
144
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
144
    if (ccw) {
2758
144
        current       = & plp->e.co;
2759
144
        final         = &nplp->o.ce;
2760
144
        tangent       = & plp->e.cdelta;
2761
144
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
144
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
144
    } else {
2767
0
        current       = &nplp->o.co;
2768
0
        final         = & plp->e.ce;
2769
0
        tangent       = &nplp->o.cdelta;
2770
0
        final_tangent = & plp->e.cdelta;
2771
0
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
0
        if (code < 0)
2773
0
            return code;
2774
0
        code = gx_path_add_line(ppath, current->x, current->y);
2775
0
        if (code < 0)
2776
0
            return code;
2777
0
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
0
    }
2780
2781
144
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
144
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
144
    if (ccw &&
2785
144
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
144
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
144
    return 0;
2790
144
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
212
{
2819
212
    int code;
2820
212
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
212
    double l, r;
2822
212
    bool ccw;
2823
2824
212
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
212
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
212
    if (l == r)
2828
12
        return 0;
2829
2830
200
    ccw = (l > r);
2831
2832
200
    ccw ^= reflected;
2833
2834
200
    if (ccw) {
2835
200
        dirn1.x = - plp->width.x;
2836
200
        dirn1.y = - plp->width.y;
2837
200
        dirn2.x = -nplp->width.x;
2838
200
        dirn2.y = -nplp->width.y;
2839
200
        if (line_intersect(& plp->o.co, &dirn1,
2840
200
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
200
            return 0;
2842
0
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
0
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
0
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
0
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
0
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
0
                                &plp->width)))
2848
0
            return code;
2849
0
    } else {
2850
0
        if (line_intersect(& plp->o.ce, & plp->width,
2851
0
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
0
            return 0;
2853
0
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
0
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
0
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
0
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
0
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
0
                                &plp->width)))
2859
0
            return code;
2860
0
    }
2861
0
    return 0;
2862
200
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
460
{
2869
460
#define PUT_POINT(i, px, py)\
2870
920
  pts[i].x = (px), pts[i].y = (py)
2871
460
    switch (type) {
2872
460
        case gs_cap_butt:
2873
460
            PUT_POINT(0, xo, yo);
2874
460
            PUT_POINT(1, xe, ye);
2875
460
            return 2;
2876
0
        case gs_cap_square:
2877
0
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
0
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
0
            return 2;
2880
0
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
0
            PUT_POINT(0, xo, yo);
2882
0
            PUT_POINT(1, px + cdx, py + cdy);
2883
0
            PUT_POINT(2, xe, ye);
2884
0
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
460
    }
2888
460
#undef PUT_POINT
2889
460
}