Coverage Report

Created: 2025-06-10 06:59

/src/ghostpdl/base/gdevdflt.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
/* Default device implementation */
17
#include "math_.h"
18
#include "memory_.h"
19
#include "gx.h"
20
#include "gsstruct.h"
21
#include "gxobj.h"
22
#include "gserrors.h"
23
#include "gsropt.h"
24
#include "gxcomp.h"
25
#include "gxdevice.h"
26
#include "gxdevsop.h"
27
#include "gdevp14.h"        /* Needed to patch up the procs after compositor creation */
28
#include "gstrans.h"        /* For gs_pdf14trans_t */
29
#include "gxgstate.h"       /* for gs_image_state_s */
30
31
32
/* defined in gsdpram.c */
33
int gx_default_get_param(gx_device *dev, char *Param, void *list);
34
35
/* ---------------- Default device procedures ---------------- */
36
37
/*
38
 * Set a color model polarity to be additive or subtractive. In either
39
 * case, indicate an error (and don't modify the polarity) if the current
40
 * setting differs from the desired and is not GX_CINFO_POLARITY_UNKNOWN.
41
 */
42
static void
43
set_cinfo_polarity(gx_device * dev, gx_color_polarity_t new_polarity)
44
1.56M
{
45
#ifdef DEBUG
46
    /* sanity check */
47
    if (new_polarity == GX_CINFO_POLARITY_UNKNOWN) {
48
        dmprintf(dev->memory, "set_cinfo_polarity: illegal operand\n");
49
        return;
50
    }
51
#endif
52
    /*
53
     * The meory devices assume that single color devices are gray.
54
     * This may not be true if SeparationOrder is specified.  Thus only
55
     * change the value if the current value is unknown.
56
     */
57
1.56M
    if (dev->color_info.polarity == GX_CINFO_POLARITY_UNKNOWN)
58
0
        dev->color_info.polarity = new_polarity;
59
1.56M
}
60
61
static gx_color_index
62
(*get_encode_color(gx_device *dev))(gx_device *, const gx_color_value *)
63
21.7M
{
64
21.7M
    dev_proc_encode_color(*encode_proc);
65
66
    /* use encode_color if it has been provided */
67
21.7M
    if ((encode_proc = dev_proc(dev, encode_color)) == 0) {
68
1.56M
        if (dev->color_info.num_components == 1                          &&
69
1.56M
            dev_proc(dev, map_rgb_color) != 0) {
70
1.19M
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
71
1.19M
            encode_proc = gx_backwards_compatible_gray_encode;
72
1.19M
        } else  if ( (dev->color_info.num_components == 3    )           &&
73
369k
             (encode_proc = dev_proc(dev, map_rgb_color)) != 0  )
74
0
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
75
369k
        else if ( dev->color_info.num_components == 4                    &&
76
369k
                 (encode_proc = dev_proc(dev, map_cmyk_color)) != 0   )
77
0
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_SUBTRACTIVE);
78
1.56M
    }
79
80
    /*
81
     * If no encode_color procedure at this point, the color model had
82
     * better be monochrome (though not necessarily bi-level). In this
83
     * case, it is assumed to be additive, as that is consistent with
84
     * the pre-DeviceN code.
85
     *
86
     * If this is not the case, then the color model had better be known
87
     * to be separable and linear, for there is no other way to derive
88
     * an encoding. This is the case even for weakly linear and separable
89
     * color models with a known polarity.
90
     */
91
21.7M
    if (encode_proc == 0) {
92
369k
        if (dev->color_info.num_components == 1 && dev->color_info.depth != 0) {
93
369k
            set_cinfo_polarity(dev, GX_CINFO_POLARITY_ADDITIVE);
94
369k
            if (dev->color_info.max_gray == (1 << dev->color_info.depth) - 1)
95
369k
                encode_proc = gx_default_gray_fast_encode;
96
0
            else
97
0
                encode_proc = gx_default_gray_encode;
98
369k
            dev->color_info.separable_and_linear = GX_CINFO_SEP_LIN;
99
369k
        } else if (colors_are_separable_and_linear(&dev->color_info)) {
100
0
            gx_color_value  max_gray = dev->color_info.max_gray;
101
0
            gx_color_value  max_color = dev->color_info.max_color;
102
103
0
            if ( (max_gray & (max_gray + 1)) == 0  &&
104
0
                 (max_color & (max_color + 1)) == 0  )
105
                /* NB should be gx_default_fast_encode_color */
106
0
                encode_proc = gx_default_encode_color;
107
0
            else
108
0
                encode_proc = gx_default_encode_color;
109
0
        }
110
369k
    }
111
112
21.7M
    return encode_proc;
113
21.7M
}
114
115
/*
116
 * Determine if a color model has the properties of a DeviceRGB
117
 * color model. This procedure is, in all likelihood, high-grade
118
 * overkill, but since this is not a performance sensitive area
119
 * no harm is done.
120
 *
121
 * Since there is little benefit to checking the values 0, 1, or
122
 * 1/2, we use the values 1/4, 1/3, and 3/4 in their place. We
123
 * compare the results to see if the intensities match to within
124
 * a tolerance of .01, which is arbitrarily selected.
125
 */
126
127
static bool
128
is_like_DeviceRGB(gx_device * dev)
129
1.56M
{
130
1.56M
    frac                            cm_comp_fracs[3];
131
1.56M
    int                             i;
132
1.56M
    const gx_device                *cmdev;
133
1.56M
    const gx_cm_color_map_procs    *cmprocs;
134
135
1.56M
    if ( dev->color_info.num_components != 3                   ||
136
1.56M
         dev->color_info.polarity != GX_CINFO_POLARITY_ADDITIVE  )
137
1.56M
        return false;
138
139
0
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
140
141
    /* check the values 1/4, 1/3, and 3/4 */
142
0
    cmprocs->map_rgb(cmdev, 0, frac_1 / 4, frac_1 / 3, 3 * frac_1 / 4, cm_comp_fracs);
143
144
    /* verify results to .01 */
145
0
    cm_comp_fracs[0] -= frac_1 / 4;
146
0
    cm_comp_fracs[1] -= frac_1 / 3;
147
0
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
148
0
    for ( i = 0;
149
0
           i < 3                            &&
150
0
           -frac_1 / 100 < cm_comp_fracs[i] &&
151
0
           cm_comp_fracs[i] < frac_1 / 100;
152
0
          i++ )
153
0
        ;
154
0
    return i == 3;
155
1.56M
}
156
157
/*
158
 * Similar to is_like_DeviceRGB, but for DeviceCMYK.
159
 */
160
static bool
161
is_like_DeviceCMYK(gx_device * dev)
162
0
{
163
0
    frac                            cm_comp_fracs[4];
164
0
    int                             i;
165
0
    const gx_device                *cmdev;
166
0
    const gx_cm_color_map_procs    *cmprocs;
167
168
0
    if ( dev->color_info.num_components != 4                      ||
169
0
         dev->color_info.polarity != GX_CINFO_POLARITY_SUBTRACTIVE  )
170
0
        return false;
171
172
0
    cmprocs = dev_proc(dev, get_color_mapping_procs)(dev, &cmdev);
173
    /* check the values 1/4, 1/3, 3/4, and 1/8 */
174
175
0
    cmprocs->map_cmyk(cmdev,
176
0
                      frac_1 / 4,
177
0
                      frac_1 / 3,
178
0
                      3 * frac_1 / 4,
179
0
                      frac_1 / 8,
180
0
                      cm_comp_fracs);
181
182
    /* verify results to .01 */
183
0
    cm_comp_fracs[0] -= frac_1 / 4;
184
0
    cm_comp_fracs[1] -= frac_1 / 3;
185
0
    cm_comp_fracs[2] -= 3 * frac_1 / 4;
186
0
    cm_comp_fracs[3] -= frac_1 / 8;
187
0
    for ( i = 0;
188
0
           i < 4                            &&
189
0
           -frac_1 / 100 < cm_comp_fracs[i] &&
190
0
           cm_comp_fracs[i] < frac_1 / 100;
191
0
          i++ )
192
0
        ;
193
0
    return i == 4;
194
0
}
195
196
/*
197
 * Two default decode_color procedures to use for monochrome devices.
198
 * These will make use of the map_color_rgb routine, and use the first
199
 * component of the returned value or its inverse.
200
 */
201
static int
202
gx_default_1_add_decode_color(
203
    gx_device *     dev,
204
    gx_color_index  color,
205
    gx_color_value  cv[1] )
206
0
{
207
0
    gx_color_value  rgb[3];
208
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
209
210
0
    cv[0] = rgb[0];
211
0
    return code;
212
0
}
213
214
static int
215
gx_default_1_sub_decode_color(
216
    gx_device *     dev,
217
    gx_color_index  color,
218
    gx_color_value  cv[1] )
219
0
{
220
0
    gx_color_value  rgb[3];
221
0
    int             code = dev_proc(dev, map_color_rgb)(dev, color, rgb);
222
223
0
    cv[0] = gx_max_color_value - rgb[0];
224
0
    return code;
225
0
}
226
227
/*
228
 * A default decode_color procedure for DeviceCMYK color models.
229
 *
230
 * There is no generally accurate way of decode a DeviceCMYK color using
231
 * the map_color_rgb method. Unfortunately, there are many older devices
232
 * employ the DeviceCMYK color model but don't provide a decode_color
233
 * method. The code below works on the assumption of full undercolor
234
 * removal and black generation. This may not be accurate, but is the
235
 * best that can be done in the general case without other information.
236
 */
237
static int
238
gx_default_cmyk_decode_color(
239
    gx_device *     dev,
240
    gx_color_index  color,
241
    gx_color_value  cv[4] )
242
0
{
243
    /* The device may have been determined to be 'separable'. */
244
0
    if (colors_are_separable_and_linear(&dev->color_info))
245
0
        return gx_default_decode_color(dev, color, cv);
246
0
    else {
247
0
        int i, code = dev_proc(dev, map_color_rgb)(dev, color, cv);
248
0
        gx_color_value min_val = gx_max_color_value;
249
250
0
        for (i = 0; i < 3; i++) {
251
0
            if ((cv[i] = gx_max_color_value - cv[i]) < min_val)
252
0
                min_val = cv[i];
253
0
        }
254
0
        for (i = 0; i < 3; i++)
255
0
            cv[i] -= min_val;
256
0
        cv[3] = min_val;
257
258
0
        return code;
259
0
    }
260
0
}
261
262
/*
263
 * Special case default color decode routine for a canonical 1-bit per
264
 * component DeviceCMYK color model.
265
 */
266
static int
267
gx_1bit_cmyk_decode_color(
268
    gx_device *     dev,
269
    gx_color_index  color,
270
    gx_color_value  cv[4] )
271
0
{
272
0
    cv[0] = ((color & 0x8) != 0 ? gx_max_color_value : 0);
273
0
    cv[1] = ((color & 0x4) != 0 ? gx_max_color_value : 0);
274
0
    cv[2] = ((color & 0x2) != 0 ? gx_max_color_value : 0);
275
0
    cv[3] = ((color & 0x1) != 0 ? gx_max_color_value : 0);
276
0
    return 0;
277
0
}
278
279
static int
280
(*get_decode_color(gx_device * dev))(gx_device *, gx_color_index, gx_color_value *)
281
21.7M
{
282
    /* if a method has already been provided, use it */
283
21.7M
    if (dev_proc(dev, decode_color) != 0)
284
20.1M
        return dev_proc(dev, decode_color);
285
286
    /*
287
     * If a map_color_rgb method has been provided, we may be able to use it.
288
     * Currently this will always be the case, as a default value will be
289
     * provided this method. While this default may not be correct, we are not
290
     * introducing any new errors by using it.
291
     */
292
1.56M
    if (dev_proc(dev, map_color_rgb) != 0) {
293
294
        /* if the device has a DeviceRGB color model, use map_color_rgb */
295
1.56M
        if (is_like_DeviceRGB(dev))
296
0
            return dev_proc(dev, map_color_rgb);
297
298
        /* If separable ande linear then use default */
299
1.56M
        if (colors_are_separable_and_linear(&dev->color_info))
300
369k
            return &gx_default_decode_color;
301
302
        /* gray devices can be handled based on their polarity */
303
1.19M
        if ( dev->color_info.num_components == 1 &&
304
1.19M
             dev->color_info.gray_index == 0       )
305
1.19M
            return dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE
306
1.19M
                       ? &gx_default_1_add_decode_color
307
1.19M
                       : &gx_default_1_sub_decode_color;
308
309
        /*
310
         * There is no accurate way to decode colors for cmyk devices
311
         * using the map_color_rgb procedure. Unfortunately, this cases
312
         * arises with some frequency, so it is useful not to generate an
313
         * error in this case. The mechanism below assumes full undercolor
314
         * removal and black generation, which may not be accurate but are
315
         * the  best that can be done in the general case in the absence of
316
         * other information.
317
         *
318
         * As a hack to handle certain common devices, if the map_rgb_color
319
         * routine is cmyk_1bit_map_color_rgb, we provide a direct one-bit
320
         * decoder.
321
         */
322
0
        if (is_like_DeviceCMYK(dev)) {
323
0
            if (dev_proc(dev, map_color_rgb) == cmyk_1bit_map_color_rgb)
324
0
                return &gx_1bit_cmyk_decode_color;
325
0
            else
326
0
                return &gx_default_cmyk_decode_color;
327
0
        }
328
0
    }
329
330
    /*
331
     * The separable and linear case will already have been handled by
332
     * code in gx_device_fill_in_procs, so at this point we can only hope
333
     * the device doesn't use the decode_color method.
334
     */
335
0
    if (colors_are_separable_and_linear(&dev->color_info))
336
0
        return &gx_default_decode_color;
337
0
    else
338
0
        return &gx_error_decode_color;
339
0
}
340
341
/*
342
 * If a device has a linear and separable encode color function then
343
 * set up the comp_bits, comp_mask, and comp_shift fields.  Note:  This
344
 * routine assumes that the colorant shift factor decreases with the
345
 * component number.  See check_device_separable() for a general routine.
346
 */
347
void
348
set_linear_color_bits_mask_shift(gx_device * dev)
349
9.86k
{
350
9.86k
    int i;
351
9.86k
    byte gray_index = dev->color_info.gray_index;
352
9.86k
    gx_color_value max_gray = dev->color_info.max_gray;
353
9.86k
    gx_color_value max_color = dev->color_info.max_color;
354
9.86k
    int num_components = dev->color_info.num_components;
355
356
19.7k
#define comp_bits (dev->color_info.comp_bits)
357
9.86k
#define comp_mask (dev->color_info.comp_mask)
358
19.7k
#define comp_shift (dev->color_info.comp_shift)
359
9.86k
    comp_shift[num_components - 1] = 0;
360
9.86k
    for ( i = num_components - 1 - 1; i >= 0; i-- ) {
361
0
        comp_shift[i] = comp_shift[i + 1] +
362
0
            ( i == gray_index ? ilog2(max_gray + 1) : ilog2(max_color + 1) );
363
0
    }
364
19.7k
    for ( i = 0; i < num_components; i++ ) {
365
9.86k
        comp_bits[i] = ( i == gray_index ?
366
9.86k
                         ilog2(max_gray + 1) :
367
9.86k
                         ilog2(max_color + 1) );
368
9.86k
        comp_mask[i] = (((gx_color_index)1 << comp_bits[i]) - 1)
369
9.86k
                                               << comp_shift[i];
370
9.86k
    }
371
9.86k
#undef comp_bits
372
9.86k
#undef comp_mask
373
9.86k
#undef comp_shift
374
9.86k
}
375
376
/* Determine if a number is a power of two.  Works only for integers. */
377
126k
#define is_power_of_two(x) ((((x) - 1) & (x)) == 0)
378
379
/* A brutish way to check if we are a HT device */
380
bool
381
device_is_contone(gx_device* pdev)
382
89.8k
{
383
89.8k
    if ((float)pdev->color_info.depth / (float)pdev->color_info.num_components >= 8)
384
89.8k
        return true;
385
0
    return false;
386
89.8k
}
387
388
/*
389
 * This routine attempts to determine if a device's encode_color procedure
390
 * produces gx_color_index values which are 'separable'.  A 'separable' value
391
 * means two things.  Each colorant has a group of bits in the gx_color_index
392
 * value which is associated with the colorant.  These bits are separate.
393
 * I.e. no bit is associated with more than one colorant.  If a colorant has
394
 * a value of zero then the bits associated with that colorant are zero.
395
 * These criteria allows the graphics library to build gx_color_index values
396
 * from the colorant values and not using the encode_color routine. This is
397
 * useful and necessary for overprinting, halftoning more
398
 * than four colorants, and the fast shading logic.  However this information
399
 * is not setup by the default device macros.  Thus we attempt to derive this
400
 * information.
401
 *
402
 * This routine can be fooled.  However it usually errors on the side of
403
 * assuing that a device is not separable.  In this case it does not create
404
 * any new problems.  In theory it can be fooled into believing that a device
405
 * is separable when it is not.  However we do not know of any real cases that
406
 * will fool it.
407
 */
408
void
409
check_device_separable(gx_device * dev)
410
20.4M
{
411
20.4M
    int i, j;
412
20.4M
    gx_device_color_info * pinfo = &(dev->color_info);
413
20.4M
    int num_components = pinfo->num_components;
414
20.4M
    byte comp_shift[GX_DEVICE_COLOR_MAX_COMPONENTS];
415
20.4M
    byte comp_bits[GX_DEVICE_COLOR_MAX_COMPONENTS];
416
20.4M
    gx_color_index comp_mask[GX_DEVICE_COLOR_MAX_COMPONENTS];
417
20.4M
    gx_color_index color_index;
418
20.4M
    gx_color_index current_bits = 0;
419
20.4M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
420
421
    /* If this is already known then we do not need to do anything. */
422
20.4M
    if (pinfo->separable_and_linear != GX_CINFO_UNKNOWN_SEP_LIN)
423
19.1M
        return;
424
    /* If there is not an encode_color_routine then we cannot proceed. */
425
1.24M
    if (dev_proc(dev, encode_color) == NULL)
426
1.19M
        return;
427
    /*
428
     * If these values do not check then we should have an error.  However
429
     * we do not know what to do so we are simply exitting and hoping that
430
     * the device will clean up its values.
431
     */
432
42.0k
    if (pinfo->gray_index < num_components &&
433
42.0k
        (!pinfo->dither_grays || pinfo->dither_grays != (pinfo->max_gray + 1)))
434
0
            return;
435
42.0k
    if ((num_components > 1 || pinfo->gray_index != 0) &&
436
42.0k
        (!pinfo->dither_colors || pinfo->dither_colors != (pinfo->max_color + 1)))
437
0
        return;
438
    /*
439
     * If dither_grays or dither_colors is not a power of two then we assume
440
     * that the device is not separable.  In theory this not a requirement
441
     * but it has been true for all of the devices that we have seen so far.
442
     * This assumption also makes the logic in the next section easier.
443
     */
444
42.0k
    if (!is_power_of_two(pinfo->dither_grays)
445
42.0k
                    || !is_power_of_two(pinfo->dither_colors))
446
0
        return;
447
    /*
448
     * Use the encode_color routine to try to verify that the device is
449
     * separable and to determine the shift count, etc. for each colorant.
450
     */
451
42.0k
    color_index = dev_proc(dev, encode_color)(dev, colorants);
452
42.0k
    if (color_index != 0)
453
25
        return;    /* Exit if zero colorants produce a non zero index */
454
84.1k
    for (i = 0; i < num_components; i++) {
455
        /* Check this colorant = max with all others = 0 */
456
84.1k
        for (j = 0; j < num_components; j++)
457
42.0k
            colorants[j] = 0;
458
42.0k
        colorants[i] = gx_max_color_value;
459
42.0k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
460
42.0k
        if (color_index == 0)  /* If no bits then we have a problem */
461
0
            return;
462
42.0k
        if (color_index & current_bits)  /* Check for overlapping bits */
463
0
            return;
464
42.0k
        current_bits |= color_index;
465
42.0k
        comp_mask[i] = color_index;
466
        /* Determine the shift count for the colorant */
467
42.0k
        for (j = 0; (color_index & 1) == 0 && color_index != 0; j++)
468
0
            color_index >>= 1;
469
42.0k
        comp_shift[i] = j;
470
        /* Determine the bit count for the colorant */
471
153k
        for (j = 0; color_index != 0; j++) {
472
111k
            if ((color_index & 1) == 0) /* check for non-consecutive bits */
473
0
                return;
474
111k
            color_index >>= 1;
475
111k
        }
476
42.0k
        comp_bits[i] = j;
477
        /*
478
         * We could verify that the bit count matches the dither_grays or
479
         * dither_colors values, but this is not really required unless we
480
         * are halftoning.  Thus we are allowing for non equal colorant sizes.
481
         */
482
        /* Check for overlap with other colorant if they are all maxed */
483
84.1k
        for (j = 0; j < num_components; j++)
484
42.0k
            colorants[j] = gx_max_color_value;
485
42.0k
        colorants[i] = 0;
486
42.0k
        color_index = dev_proc(dev, encode_color)(dev, colorants);
487
42.0k
        if (color_index & comp_mask[i])  /* Check for overlapping bits */
488
0
            return;
489
42.0k
    }
490
    /* If we get to here then the device is very likely to be separable. */
491
42.0k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN;
492
84.1k
    for (i = 0; i < num_components; i++) {
493
42.0k
        pinfo->comp_shift[i] = comp_shift[i];
494
42.0k
        pinfo->comp_bits[i] = comp_bits[i];
495
42.0k
        pinfo->comp_mask[i] = comp_mask[i];
496
42.0k
    }
497
    /*
498
     * The 'gray_index' value allows one colorant to have a different number
499
     * of shades from the remainder.  Since the default macros only guess at
500
     * an appropriate value, we are setting its value based upon the data that
501
     * we just determined.  Note:  In some cases the macros set max_gray to 0
502
     * and dither_grays to 1.  This is not valid so ignore this case.
503
     */
504
42.0k
    for (i = 0; i < num_components; i++) {
505
42.0k
        int dither = 1 << comp_bits[i];
506
507
42.0k
        if (pinfo->dither_grays != 1 && dither == pinfo->dither_grays) {
508
42.0k
            pinfo->gray_index = i;
509
42.0k
            break;
510
42.0k
        }
511
42.0k
    }
512
42.0k
}
513
#undef is_power_of_two
514
515
/*
516
 * This routine attempts to determine if a device's encode_color procedure
517
 * produces values that are in keeping with "the standard encoding".
518
 * i.e. that given by pdf14_encode_color.
519
 *
520
 * It works by first checking to see if we are separable_and_linear. If not
521
 * we cannot hope to be the standard encoding.
522
 *
523
 * Then, we check to see if we are a dev device - if so, we must be
524
 * compatible.
525
 *
526
 * Failing that it checks to see if the encoding uses the appropriate
527
 * bit ranges for each individual color.
528
 *
529
 * If those (quick) tests pass, then we try the slower test of checking
530
 * the encodings. We can do this far faster than an exhaustive check, by
531
 * relying on the separability and linearity - we only need to check 256
532
 * possible values.
533
 *
534
 * The one tricky section there is to avoid the special case for
535
 * gx_no_color_index_value (which can occur when we have a 32bit
536
 * gx_color_index type, and a 4 component device, such as cmyk).
537
 * We allow the encoding to be off in the lower bits for that case.
538
 */
539
void check_device_compatible_encoding(gx_device *dev)
540
19.3M
{
541
19.3M
    gx_device_color_info * pinfo = &(dev->color_info);
542
19.3M
    int num_components = pinfo->num_components;
543
19.3M
    gx_color_index mul, color_index;
544
19.3M
    int i, j;
545
19.3M
    gx_color_value colorants[GX_DEVICE_COLOR_MAX_COMPONENTS];
546
19.3M
    bool deep = device_is_deep(dev);
547
548
19.3M
    if (pinfo->separable_and_linear == GX_CINFO_UNKNOWN_SEP_LIN)
549
0
        check_device_separable(dev);
550
19.3M
    if (pinfo->separable_and_linear != GX_CINFO_SEP_LIN)
551
19.3M
        return;
552
553
9.86k
    if (dev_proc(dev, ret_devn_params)(dev) != NULL) {
554
        /* We know all devn devices are compatible. */
555
0
        pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
556
0
        return;
557
0
    }
558
559
    /* Do the superficial quick checks */
560
19.7k
    for (i = 0; i < num_components; i++) {
561
9.86k
        int shift = (num_components-1-i)*(8<<deep);
562
9.86k
        if (pinfo->comp_shift[i] != shift)
563
0
            goto bad;
564
9.86k
        if (pinfo->comp_bits[i] != 8<<deep)
565
0
            goto bad;
566
9.86k
        if (pinfo->comp_mask[i] != ((gx_color_index)(deep ? 65535 : 255))<<shift)
567
0
            goto bad;
568
9.86k
    }
569
570
    /* OK, now we are going to be slower. */
571
9.86k
    mul = 0;
572
19.7k
    for (i = 0; i < num_components; i++) {
573
9.86k
        mul = (mul<<(8<<deep)) | 1;
574
9.86k
    }
575
    /* In the deep case, we don't exhaustively test */
576
2.52M
    for (i = 0; i < 255; i++) {
577
5.02M
        for (j = 0; j < num_components; j++)
578
2.51M
            colorants[j] = i*257;
579
2.51M
        color_index = dev_proc(dev, encode_color)(dev, colorants);
580
2.51M
        if (color_index != i*mul*(deep ? 257 : 1) && (i*mul*(deep ? 257 : 1) != gx_no_color_index_value))
581
0
            goto bad;
582
2.51M
    }
583
    /* If we reach here, then every value matched, except possibly the last one.
584
     * We'll allow that to differ just in the lowest bits. */
585
9.86k
    if ((color_index | mul) != 255*mul*(deep ? 257 : 1))
586
0
        goto bad;
587
588
9.86k
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_STANDARD;
589
9.86k
    return;
590
0
bad:
591
0
    pinfo->separable_and_linear = GX_CINFO_SEP_LIN_NON_STANDARD;
592
0
}
593
594
int gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth);
595
596
/* Fill in NULL procedures in a device procedure record. */
597
void
598
gx_device_fill_in_procs(register gx_device * dev)
599
21.7M
{
600
21.7M
    fill_dev_proc(dev, open_device, gx_default_open_device);
601
21.7M
    fill_dev_proc(dev, get_initial_matrix, gx_default_get_initial_matrix);
602
21.7M
    fill_dev_proc(dev, sync_output, gx_default_sync_output);
603
21.7M
    fill_dev_proc(dev, output_page, gx_default_output_page);
604
21.7M
    fill_dev_proc(dev, close_device, gx_default_close_device);
605
    /* see below for map_rgb_color */
606
21.7M
    fill_dev_proc(dev, map_color_rgb, gx_default_map_color_rgb);
607
    /* NOT fill_rectangle */
608
21.7M
    fill_dev_proc(dev, copy_mono, gx_default_copy_mono);
609
21.7M
    fill_dev_proc(dev, copy_color, gx_default_copy_color);
610
21.7M
    fill_dev_proc(dev, get_params, gx_default_get_params);
611
21.7M
    fill_dev_proc(dev, put_params, gx_default_put_params);
612
    /* see below for map_cmyk_color */
613
21.7M
    fill_dev_proc(dev, get_page_device, gx_default_get_page_device);
614
21.7M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
615
21.7M
    fill_dev_proc(dev, copy_alpha, gx_default_copy_alpha);
616
21.7M
    fill_dev_proc(dev, fill_path, gx_default_fill_path);
617
21.7M
    fill_dev_proc(dev, stroke_path, gx_default_stroke_path);
618
21.7M
    fill_dev_proc(dev, fill_mask, gx_default_fill_mask);
619
21.7M
    fill_dev_proc(dev, fill_trapezoid, gx_default_fill_trapezoid);
620
21.7M
    fill_dev_proc(dev, fill_parallelogram, gx_default_fill_parallelogram);
621
21.7M
    fill_dev_proc(dev, fill_triangle, gx_default_fill_triangle);
622
21.7M
    fill_dev_proc(dev, draw_thin_line, gx_default_draw_thin_line);
623
21.7M
    fill_dev_proc(dev, get_alpha_bits, gx_default_get_alpha_bits);
624
21.7M
    fill_dev_proc(dev, strip_tile_rectangle, gx_default_strip_tile_rectangle);
625
21.7M
    fill_dev_proc(dev, strip_copy_rop2, gx_default_strip_copy_rop2);
626
21.7M
    fill_dev_proc(dev, strip_tile_rect_devn, gx_default_strip_tile_rect_devn);
627
21.7M
    fill_dev_proc(dev, get_clipping_box, gx_default_get_clipping_box);
628
21.7M
    fill_dev_proc(dev, begin_typed_image, gx_default_begin_typed_image);
629
21.7M
    fill_dev_proc(dev, get_bits_rectangle, gx_default_get_bits_rectangle);
630
21.7M
    fill_dev_proc(dev, composite, gx_default_composite);
631
21.7M
    fill_dev_proc(dev, get_hardware_params, gx_default_get_hardware_params);
632
21.7M
    fill_dev_proc(dev, text_begin, gx_default_text_begin);
633
634
21.7M
    set_dev_proc(dev, encode_color, get_encode_color(dev));
635
21.7M
    if (dev->color_info.num_components == 3)
636
19.1M
        set_dev_proc(dev, map_rgb_color, dev_proc(dev, encode_color));
637
21.7M
    if (dev->color_info.num_components == 4)
638
0
        set_dev_proc(dev, map_cmyk_color, dev_proc(dev, encode_color));
639
640
21.7M
    if (colors_are_separable_and_linear(&dev->color_info)) {
641
19.7M
        fill_dev_proc(dev, encode_color, gx_default_encode_color);
642
19.7M
        fill_dev_proc(dev, map_cmyk_color, gx_default_encode_color);
643
19.7M
        fill_dev_proc(dev, map_rgb_color, gx_default_encode_color);
644
19.7M
    } else {
645
        /* if it isn't set now punt */
646
1.96M
        fill_dev_proc(dev, encode_color, gx_error_encode_color);
647
1.96M
        fill_dev_proc(dev, map_cmyk_color, gx_error_encode_color);
648
1.96M
        fill_dev_proc(dev, map_rgb_color, gx_error_encode_color);
649
1.96M
    }
650
651
    /*
652
     * Fill in the color mapping procedures and the component index
653
     * assignment procedure if they have not been provided by the client.
654
     *
655
     * Because it is difficult to provide default encoding procedures
656
     * that handle level inversion, this code needs to check both
657
     * the number of components and the polarity of color model.
658
     */
659
21.7M
    switch (dev->color_info.num_components) {
660
2.58M
    case 1:     /* DeviceGray or DeviceInvertGray */
661
        /*
662
         * If not gray then the device must provide the color
663
         * mapping procs.
664
         */
665
2.58M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
666
2.58M
            fill_dev_proc( dev,
667
2.58M
                       get_color_mapping_procs,
668
2.58M
                       gx_default_DevGray_get_color_mapping_procs );
669
2.58M
        } else
670
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
671
2.58M
        fill_dev_proc( dev,
672
2.58M
                       get_color_comp_index,
673
2.58M
                       gx_default_DevGray_get_color_comp_index );
674
2.58M
        break;
675
676
19.1M
    case 3:
677
19.1M
        if (dev->color_info.polarity == GX_CINFO_POLARITY_ADDITIVE) {
678
19.1M
            fill_dev_proc( dev,
679
19.1M
                       get_color_mapping_procs,
680
19.1M
                       gx_default_DevRGB_get_color_mapping_procs );
681
19.1M
            fill_dev_proc( dev,
682
19.1M
                       get_color_comp_index,
683
19.1M
                       gx_default_DevRGB_get_color_comp_index );
684
19.1M
        } else {
685
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
686
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
687
0
        }
688
19.1M
        break;
689
690
0
    case 4:
691
0
        fill_dev_proc(dev, get_color_mapping_procs, gx_default_DevCMYK_get_color_mapping_procs);
692
0
        fill_dev_proc(dev, get_color_comp_index, gx_default_DevCMYK_get_color_comp_index);
693
0
        break;
694
0
    default:    /* Unknown color model - set error handlers */
695
0
        if (dev_proc(dev, get_color_mapping_procs) == NULL) {
696
0
            fill_dev_proc(dev, get_color_mapping_procs, gx_error_get_color_mapping_procs);
697
0
            fill_dev_proc(dev, get_color_comp_index, gx_error_get_color_comp_index);
698
0
        }
699
21.7M
    }
700
701
21.7M
    set_dev_proc(dev, decode_color, get_decode_color(dev));
702
21.7M
    fill_dev_proc(dev, get_profile, gx_default_get_profile);
703
21.7M
    fill_dev_proc(dev, set_graphics_type_tag, gx_default_set_graphics_type_tag);
704
705
21.7M
    fill_dev_proc(dev, fill_rectangle_hl_color, gx_default_fill_rectangle_hl_color);
706
21.7M
    fill_dev_proc(dev, include_color_space, gx_default_include_color_space);
707
21.7M
    fill_dev_proc(dev, fill_linear_color_scanline, gx_default_fill_linear_color_scanline);
708
21.7M
    fill_dev_proc(dev, fill_linear_color_trapezoid, gx_default_fill_linear_color_trapezoid);
709
21.7M
    fill_dev_proc(dev, fill_linear_color_triangle, gx_default_fill_linear_color_triangle);
710
21.7M
    fill_dev_proc(dev, update_spot_equivalent_colors, gx_default_update_spot_equivalent_colors);
711
21.7M
    fill_dev_proc(dev, ret_devn_params, gx_default_ret_devn_params);
712
21.7M
    fill_dev_proc(dev, fillpage, gx_default_fillpage);
713
21.7M
    fill_dev_proc(dev, copy_alpha_hl_color, gx_default_no_copy_alpha_hl_color);
714
715
21.7M
    fill_dev_proc(dev, begin_transparency_group, gx_default_begin_transparency_group);
716
21.7M
    fill_dev_proc(dev, end_transparency_group, gx_default_end_transparency_group);
717
718
21.7M
    fill_dev_proc(dev, begin_transparency_mask, gx_default_begin_transparency_mask);
719
21.7M
    fill_dev_proc(dev, end_transparency_mask, gx_default_end_transparency_mask);
720
21.7M
    fill_dev_proc(dev, discard_transparency_layer, gx_default_discard_transparency_layer);
721
722
21.7M
    fill_dev_proc(dev, push_transparency_state, gx_default_push_transparency_state);
723
21.7M
    fill_dev_proc(dev, pop_transparency_state, gx_default_pop_transparency_state);
724
725
21.7M
    fill_dev_proc(dev, put_image, gx_default_put_image);
726
727
21.7M
    fill_dev_proc(dev, dev_spec_op, gx_default_dev_spec_op);
728
21.7M
    fill_dev_proc(dev, copy_planes, gx_default_copy_planes);
729
21.7M
    fill_dev_proc(dev, process_page, gx_default_process_page);
730
21.7M
    fill_dev_proc(dev, transform_pixel_region, gx_default_transform_pixel_region);
731
21.7M
    fill_dev_proc(dev, fill_stroke_path, gx_default_fill_stroke_path);
732
21.7M
    fill_dev_proc(dev, lock_pattern, gx_default_lock_pattern);
733
21.7M
}
734
735
736
int
737
gx_default_open_device(gx_device * dev)
738
33.0k
{
739
    /* Initialize the separable status if not known. */
740
33.0k
    check_device_separable(dev);
741
33.0k
    return 0;
742
33.0k
}
743
744
/* Get the initial matrix for a device with inverted Y. */
745
/* This includes essentially all printers and displays. */
746
/* Supports LeadingEdge, but no margins or viewports */
747
void
748
gx_default_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
749
19.8M
{
750
    /* NB this device has no paper margins */
751
19.8M
    double fs_res = dev->HWResolution[0] / 72.0;
752
19.8M
    double ss_res = dev->HWResolution[1] / 72.0;
753
754
19.8M
    switch(dev->LeadingEdge & LEADINGEDGE_MASK) {
755
0
    case 1: /* 90 degrees */
756
0
        pmat->xx = 0;
757
0
        pmat->xy = -ss_res;
758
0
        pmat->yx = -fs_res;
759
0
        pmat->yy = 0;
760
0
        pmat->tx = (float)dev->width;
761
0
        pmat->ty = (float)dev->height;
762
0
        break;
763
0
    case 2: /* 180 degrees */
764
0
        pmat->xx = -fs_res;
765
0
        pmat->xy = 0;
766
0
        pmat->yx = 0;
767
0
        pmat->yy = ss_res;
768
0
        pmat->tx = (float)dev->width;
769
0
        pmat->ty = 0;
770
0
        break;
771
0
    case 3: /* 270 degrees */
772
0
        pmat->xx = 0;
773
0
        pmat->xy = ss_res;
774
0
        pmat->yx = fs_res;
775
0
        pmat->yy = 0;
776
0
        pmat->tx = 0;
777
0
        pmat->ty = 0;
778
0
        break;
779
0
    default:
780
19.8M
    case 0:
781
19.8M
        pmat->xx = fs_res;
782
19.8M
        pmat->xy = 0;
783
19.8M
        pmat->yx = 0;
784
19.8M
        pmat->yy = -ss_res;
785
19.8M
        pmat->tx = 0;
786
19.8M
        pmat->ty = (float)dev->height;
787
        /****** tx/y is WRONG for devices with ******/
788
        /****** arbitrary initial matrix ******/
789
19.8M
        break;
790
19.8M
    }
791
19.8M
}
792
/* Get the initial matrix for a device with upright Y. */
793
/* This includes just a few printers and window systems. */
794
void
795
gx_upright_get_initial_matrix(gx_device * dev, register gs_matrix * pmat)
796
97.8k
{
797
97.8k
    pmat->xx = dev->HWResolution[0] / 72.0; /* x_pixels_per_inch */
798
97.8k
    pmat->xy = 0;
799
97.8k
    pmat->yx = 0;
800
97.8k
    pmat->yy = dev->HWResolution[1] / 72.0; /* y_pixels_per_inch */
801
    /****** tx/y is WRONG for devices with ******/
802
    /****** arbitrary initial matrix ******/
803
97.8k
    pmat->tx = 0;
804
97.8k
    pmat->ty = 0;
805
97.8k
}
806
807
int
808
gx_default_sync_output(gx_device * dev) /* lgtm [cpp/useless-expression] */
809
76.8k
{
810
76.8k
    return 0;
811
76.8k
}
812
813
int
814
gx_default_output_page(gx_device * dev, int num_copies, int flush)
815
0
{
816
0
    int code = dev_proc(dev, sync_output)(dev);
817
818
0
    if (code >= 0)
819
0
        code = gx_finish_output_page(dev, num_copies, flush);
820
0
    return code;
821
0
}
822
823
int
824
gx_default_close_device(gx_device * dev)
825
87.2k
{
826
87.2k
    return 0;
827
87.2k
}
828
829
gx_device *
830
gx_default_get_page_device(gx_device * dev)
831
36.9k
{
832
36.9k
    return NULL;
833
36.9k
}
834
gx_device *
835
gx_page_device_get_page_device(gx_device * dev)
836
3.43M
{
837
3.43M
    return dev;
838
3.43M
}
839
840
int
841
gx_default_get_alpha_bits(gx_device * dev, graphics_object_type type)
842
8.02M
{
843
8.02M
    return (type == go_text ? dev->color_info.anti_alias.text_bits :
844
8.02M
            dev->color_info.anti_alias.graphics_bits);
845
8.02M
}
846
847
void
848
gx_default_get_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
849
12.1M
{
850
12.1M
    pbox->p.x = 0;
851
12.1M
    pbox->p.y = 0;
852
12.1M
    pbox->q.x = int2fixed(dev->width);
853
12.1M
    pbox->q.y = int2fixed(dev->height);
854
12.1M
}
855
void
856
gx_get_largest_clipping_box(gx_device * dev, gs_fixed_rect * pbox)
857
0
{
858
0
    pbox->p.x = min_fixed;
859
0
    pbox->p.y = min_fixed;
860
0
    pbox->q.x = max_fixed;
861
0
    pbox->q.y = max_fixed;
862
0
}
863
864
int
865
gx_no_composite(gx_device * dev, gx_device ** pcdev,
866
                        const gs_composite_t * pcte,
867
                        gs_gstate * pgs, gs_memory_t * memory,
868
                        gx_device *cdev)
869
0
{
870
0
    return_error(gs_error_unknownerror);  /* not implemented */
871
0
}
872
int
873
gx_default_composite(gx_device * dev, gx_device ** pcdev,
874
                             const gs_composite_t * pcte,
875
                             gs_gstate * pgs, gs_memory_t * memory,
876
                             gx_device *cdev)
877
1.45M
{
878
1.45M
    return pcte->type->procs.create_default_compositor
879
1.45M
        (pcte, pcdev, dev, pgs, memory);
880
1.45M
}
881
int
882
gx_null_composite(gx_device * dev, gx_device ** pcdev,
883
                          const gs_composite_t * pcte,
884
                          gs_gstate * pgs, gs_memory_t * memory,
885
                          gx_device *cdev)
886
0
{
887
0
    *pcdev = dev;
888
0
    return 0;
889
0
}
890
891
/*
892
 * Default handler for creating a compositor device when writing the clist. */
893
int
894
gx_default_composite_clist_write_update(const gs_composite_t *pcte, gx_device * dev,
895
                gx_device ** pcdev, gs_gstate * pgs, gs_memory_t * mem)
896
24.5k
{
897
24.5k
    *pcdev = dev;   /* Do nothing -> return the same device */
898
24.5k
    return 0;
899
24.5k
}
900
901
/* Default handler for adjusting a compositor's CTM. */
902
int
903
gx_default_composite_adjust_ctm(gs_composite_t *pcte, int x0, int y0, gs_gstate *pgs)
904
6.11M
{
905
6.11M
    return 0;
906
6.11M
}
907
908
/*
909
 * Default check for closing compositor.
910
 */
911
gs_compositor_closing_state
912
gx_default_composite_is_closing(const gs_composite_t *this, gs_composite_t **pcte, gx_device *dev)
913
0
{
914
0
    return COMP_ENQUEUE;
915
0
}
916
917
/*
918
 * Default check whether a next operation is friendly to the compositor.
919
 */
920
bool
921
gx_default_composite_is_friendly(const gs_composite_t *this, byte cmd0, byte cmd1)
922
119k
{
923
119k
    return false;
924
119k
}
925
926
/*
927
 * Default handler for updating the clist device when reading a compositing
928
 * device.
929
 */
930
int
931
gx_default_composite_clist_read_update(gs_composite_t *pxcte, gx_device * cdev,
932
                gx_device * tdev, gs_gstate * pgs, gs_memory_t * mem)
933
6.11M
{
934
6.11M
    return 0;     /* Do nothing */
935
6.11M
}
936
937
/*
938
 * Default handler for get_cropping returns no cropping.
939
 */
940
int
941
gx_default_composite_get_cropping(const gs_composite_t *pxcte, int *ry, int *rheight,
942
                                  int cropping_min, int cropping_max)
943
24.5k
{
944
24.5k
    return 0;     /* No cropping. */
945
24.5k
}
946
947
int
948
gx_default_initialize_device(gx_device *dev)
949
0
{
950
0
    return 0;
951
0
}
952
953
int
954
gx_default_dev_spec_op(gx_device *pdev, int dev_spec_op, void *data, int size)
955
9.53M
{
956
9.53M
    switch(dev_spec_op) {
957
0
        case gxdso_form_begin:
958
0
        case gxdso_form_end:
959
921
        case gxdso_pattern_can_accum:
960
921
        case gxdso_pattern_start_accum:
961
921
        case gxdso_pattern_finish_accum:
962
8.18k
        case gxdso_pattern_load:
963
160k
        case gxdso_pattern_shading_area:
964
248k
        case gxdso_pattern_is_cpath_accum:
965
248k
        case gxdso_pattern_handles_clip_path:
966
251k
        case gxdso_is_pdf14_device:
967
251k
        case gxdso_supports_devn:
968
255k
        case gxdso_supports_hlcolor:
969
255k
        case gxdso_supports_saved_pages:
970
255k
        case gxdso_needs_invariant_palette:
971
270k
        case gxdso_supports_iccpostrender:
972
345k
        case gxdso_supports_alpha:
973
347k
        case gxdso_pdf14_sep_device:
974
621k
        case gxdso_supports_pattern_transparency:
975
621k
        case gxdso_overprintsim_state:
976
631k
        case gxdso_skip_icc_component_validation:
977
631k
            return 0;
978
0
        case gxdso_pattern_shfill_doesnt_need_path:
979
0
            return (dev_proc(pdev, fill_path) == gx_default_fill_path);
980
0
        case gxdso_is_std_cmyk_1bit:
981
0
            return (dev_proc(pdev, map_cmyk_color) == cmyk_1bit_map_cmyk_color);
982
0
        case gxdso_interpolate_antidropout:
983
0
            return pdev->color_info.use_antidropout_downscaler;
984
90.3k
        case gxdso_interpolate_threshold:
985
90.3k
            if ((pdev->color_info.num_components == 1 &&
986
90.3k
                 pdev->color_info.max_gray < 15) ||
987
90.3k
                (pdev->color_info.num_components > 1 &&
988
90.3k
                 pdev->color_info.max_color < 15)) {
989
                /* If we are a limited color device (i.e. we are halftoning)
990
                 * then only interpolate if we are upscaling by at least 4 */
991
0
                return 4;
992
0
            }
993
90.3k
            return 0; /* Otherwise no change */
994
324k
        case gxdso_get_dev_param:
995
324k
            {
996
324k
                dev_param_req_t *request = (dev_param_req_t *)data;
997
324k
                return gx_default_get_param(pdev, request->Param, request->list);
998
90.3k
            }
999
143k
        case gxdso_current_output_device:
1000
143k
            {
1001
143k
                *(gx_device **)data = pdev;
1002
143k
                return 0;
1003
90.3k
            }
1004
30.0k
        case gxdso_copy_color_is_fast:
1005
30.0k
            return (dev_proc(pdev, copy_color) != gx_default_copy_color);
1006
402k
        case gxdso_is_encoding_direct:
1007
402k
            if (pdev->color_info.depth != 8 * pdev->color_info.num_components)
1008
0
                return 0;
1009
402k
            return (dev_proc(pdev, encode_color) == gx_default_encode_color ||
1010
402k
                    dev_proc(pdev, encode_color) == gx_default_rgb_map_rgb_color);
1011
        /* Just ignore information about events */
1012
0
        case gxdso_event_info:
1013
0
            return 0;
1014
1.40k
        case gxdso_overprint_active:
1015
1.40k
            return 0;
1016
9.53M
    }
1017
9.53M
    return_error(gs_error_undefined);
1018
9.53M
}
1019
1020
int
1021
gx_default_fill_rectangle_hl_color(gx_device *pdev,
1022
    const gs_fixed_rect *rect,
1023
    const gs_gstate *pgs, const gx_drawing_color *pdcolor,
1024
    const gx_clip_path *pcpath)
1025
0
{
1026
0
    return_error(gs_error_rangecheck);
1027
0
}
1028
1029
int
1030
gx_default_include_color_space(gx_device *pdev, gs_color_space *cspace,
1031
        const byte *res_name, int name_length)
1032
0
{
1033
0
    return 0;
1034
0
}
1035
1036
/*
1037
 * If a device wants to determine an equivalent color for its spot colors then
1038
 * it needs to implement this method.  See comments at the start of
1039
 * src/gsequivc.c.
1040
 */
1041
int
1042
gx_default_update_spot_equivalent_colors(gx_device *pdev, const gs_gstate * pgs, const gs_color_space *pcs)
1043
1.39k
{
1044
1.39k
    return 0;
1045
1.39k
}
1046
1047
/*
1048
 * If a device wants to determine implement support for spot colors then
1049
 * it needs to implement this method.
1050
 */
1051
gs_devn_params *
1052
gx_default_ret_devn_params(gx_device *pdev)
1053
19.2M
{
1054
19.2M
    return NULL;
1055
19.2M
}
1056
1057
int
1058
gx_default_process_page(gx_device *dev, gx_process_page_options_t *options)
1059
0
{
1060
0
    gs_int_rect rect;
1061
0
    int code = 0;
1062
0
    void *buffer = NULL;
1063
1064
    /* Possible future improvements in here could be given by us dividing the
1065
     * page up into n chunks, and spawning a thread per chunk to do the
1066
     * process_fn call on. n could be given by NumRenderingThreads. This
1067
     * would give us multi-core advantages even without clist. */
1068
0
    if (options->init_buffer_fn) {
1069
0
        code = options->init_buffer_fn(options->arg, dev, dev->memory, dev->width, dev->height, &buffer);
1070
0
        if (code < 0)
1071
0
            return code;
1072
0
    }
1073
1074
0
    rect.p.x = 0;
1075
0
    rect.p.y = 0;
1076
0
    rect.q.x = dev->width;
1077
0
    rect.q.y = dev->height;
1078
0
    if (options->process_fn)
1079
0
        code = options->process_fn(options->arg, dev, dev, &rect, buffer);
1080
0
    if (code >= 0 && options->output_fn)
1081
0
        code = options->output_fn(options->arg, dev, buffer);
1082
1083
0
    if (options->free_buffer_fn)
1084
0
        options->free_buffer_fn(options->arg, dev, dev->memory, buffer);
1085
1086
0
    return code;
1087
0
}
1088
1089
int
1090
gx_default_begin_transparency_group(gx_device *dev, const gs_transparency_group_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1091
0
{
1092
0
    return 0;
1093
0
}
1094
1095
int
1096
gx_default_end_transparency_group(gx_device *dev, gs_gstate *pgs)
1097
0
{
1098
0
    return 0;
1099
0
}
1100
1101
int
1102
gx_default_begin_transparency_mask(gx_device *dev, const gx_transparency_mask_params_t *ptgp, const gs_rect *pbbox, gs_gstate *pgs, gs_memory_t *mem)
1103
0
{
1104
0
    return 0;
1105
0
}
1106
1107
int
1108
gx_default_end_transparency_mask(gx_device *dev, gs_gstate *pgs)
1109
0
{
1110
0
    return 0;
1111
0
}
1112
1113
int
1114
gx_default_discard_transparency_layer(gx_device *dev, gs_gstate *pgs)
1115
0
{
1116
0
    return 0;
1117
0
}
1118
1119
int
1120
gx_default_push_transparency_state(gx_device *dev, gs_gstate *pgs)
1121
0
{
1122
0
    return 0;
1123
0
}
1124
1125
int
1126
gx_default_pop_transparency_state(gx_device *dev, gs_gstate *pgs)
1127
0
{
1128
0
    return 0;
1129
0
}
1130
1131
int
1132
gx_default_put_image(gx_device *dev, gx_device *mdev, const byte **buffers, int num_chan, int x, int y, int width, int height, int row_stride, int alpha_plane_index, int tag_plane_index)
1133
0
{
1134
0
    return_error(gs_error_undefined);
1135
0
}
1136
1137
int
1138
gx_default_no_copy_alpha_hl_color(gx_device * dev, const byte * data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth)
1139
0
{
1140
0
    return_error(gs_error_undefined);
1141
0
}
1142
1143
int
1144
gx_default_copy_planes(gx_device *dev, const byte *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, int plane_height)
1145
0
{
1146
0
    return_error(gs_error_undefined);
1147
0
}
1148
1149
/* ---------------- Default per-instance procedures ---------------- */
1150
1151
int
1152
gx_default_install(gx_device * dev, gs_gstate * pgs)
1153
41.2k
{
1154
41.2k
    return 0;
1155
41.2k
}
1156
1157
int
1158
gx_default_begin_page(gx_device * dev, gs_gstate * pgs)
1159
57.0k
{
1160
57.0k
    return 0;
1161
57.0k
}
1162
1163
int
1164
gx_default_end_page(gx_device * dev, int reason, gs_gstate * pgs)
1165
66.9k
{
1166
66.9k
    return (reason != 2 ? 1 : 0);
1167
66.9k
}
1168
1169
void
1170
gx_default_set_graphics_type_tag(gx_device *dev, gs_graphics_type_tag_t graphics_type_tag)
1171
356k
{
1172
    /* set the tag but carefully preserve GS_DEVICE_ENCODES_TAGS */
1173
356k
    dev->graphics_type_tag = (dev->graphics_type_tag & GS_DEVICE_ENCODES_TAGS) | graphics_type_tag;
1174
356k
}
1175
1176
/* ---------------- Device subclassing procedures ---------------- */
1177
1178
/* Non-obvious code. The 'dest_procs' is the 'procs' memory occupied by the original device that we decided to subclass,
1179
 * 'src_procs' is the newly allocated piece of memory, to which we have already copied the content of the
1180
 * original device (including the procs), prototype is the device structure prototype for the subclassing device.
1181
 * Here we copy the methods from the prototype to the original device procs memory *but* if the original (src_procs)
1182
 * device had a NULL method, we make the new device procs have a NULL method too.
1183
 * The reason for ths is ugly, there are some places in the graphics library which explicitly check for
1184
 * a device having a NULL method and take different code paths depending on the result.
1185
 * Now in general we expect subclassing devices to implement *every* method, so if we didn't copy
1186
 * over NULL methods present in the original source device then the code path could be inappropriate for
1187
 * that underlying (now subclassed) device.
1188
 */
1189
/* November 10th 2017 Restored the original behaviour of the device methods, they should now never be NULL.
1190
 * Howwever, there are still places in the code which take different code paths if the device method is (now)
1191
 * the default device method, rather than a device-specific method.
1192
 * So instead of checking for NULL, we now need to check against the default implementation, and *NOT* copy the
1193
 * prototype (subclass device) method if the original device had the default implementation.
1194
 * I suspect a combination of forwarding and subclassing devices will not work properly for this reason.
1195
 */
1196
int gx_copy_device_procs(gx_device *dest, const gx_device *src, const gx_device *pprototype)
1197
0
{
1198
0
    gx_device prototype = *pprototype;
1199
1200
    /* In the new (as of 2021) world, the prototype does not contain
1201
     * device procs. We need to call the 'initialize_device_procs'
1202
     * function to properly populate the procs array. We can't write to
1203
     * the const prototype pointer we are passed in, so copy it to a
1204
     * local block, and initialize that instead, */
1205
0
    prototype.initialize_device_procs(&prototype);
1206
    /* Fill in missing entries with the global defaults */
1207
0
    gx_device_fill_in_procs(&prototype);
1208
1209
0
    if (dest->initialize_device_procs == NULL)
1210
0
       dest->initialize_device_procs = prototype.initialize_device_procs;
1211
1212
0
    set_dev_proc(dest, initialize_device, dev_proc(&prototype, initialize_device));
1213
0
    set_dev_proc(dest, open_device, dev_proc(&prototype, open_device));
1214
0
    set_dev_proc(dest, get_initial_matrix, dev_proc(&prototype, get_initial_matrix));
1215
0
    set_dev_proc(dest, sync_output, dev_proc(&prototype, sync_output));
1216
0
    set_dev_proc(dest, output_page, dev_proc(&prototype, output_page));
1217
0
    set_dev_proc(dest, close_device, dev_proc(&prototype, close_device));
1218
0
    set_dev_proc(dest, map_rgb_color, dev_proc(&prototype, map_rgb_color));
1219
0
    set_dev_proc(dest, map_color_rgb, dev_proc(&prototype, map_color_rgb));
1220
0
    set_dev_proc(dest, fill_rectangle, dev_proc(&prototype, fill_rectangle));
1221
0
    set_dev_proc(dest, copy_mono, dev_proc(&prototype, copy_mono));
1222
0
    set_dev_proc(dest, copy_color, dev_proc(&prototype, copy_color));
1223
0
    set_dev_proc(dest, get_params, dev_proc(&prototype, get_params));
1224
0
    set_dev_proc(dest, put_params, dev_proc(&prototype, put_params));
1225
0
    set_dev_proc(dest, map_cmyk_color, dev_proc(&prototype, map_cmyk_color));
1226
0
    set_dev_proc(dest, get_page_device, dev_proc(&prototype, get_page_device));
1227
0
    set_dev_proc(dest, get_alpha_bits, dev_proc(&prototype, get_alpha_bits));
1228
0
    set_dev_proc(dest, copy_alpha, dev_proc(&prototype, copy_alpha));
1229
0
    set_dev_proc(dest, fill_path, dev_proc(&prototype, fill_path));
1230
0
    set_dev_proc(dest, stroke_path, dev_proc(&prototype, stroke_path));
1231
0
    set_dev_proc(dest, fill_trapezoid, dev_proc(&prototype, fill_trapezoid));
1232
0
    set_dev_proc(dest, fill_parallelogram, dev_proc(&prototype, fill_parallelogram));
1233
0
    set_dev_proc(dest, fill_triangle, dev_proc(&prototype, fill_triangle));
1234
0
    set_dev_proc(dest, draw_thin_line, dev_proc(&prototype, draw_thin_line));
1235
0
    set_dev_proc(dest, strip_tile_rectangle, dev_proc(&prototype, strip_tile_rectangle));
1236
0
    set_dev_proc(dest, get_clipping_box, dev_proc(&prototype, get_clipping_box));
1237
0
    set_dev_proc(dest, begin_typed_image, dev_proc(&prototype, begin_typed_image));
1238
0
    set_dev_proc(dest, get_bits_rectangle, dev_proc(&prototype, get_bits_rectangle));
1239
0
    set_dev_proc(dest, composite, dev_proc(&prototype, composite));
1240
0
    set_dev_proc(dest, get_hardware_params, dev_proc(&prototype, get_hardware_params));
1241
0
    set_dev_proc(dest, text_begin, dev_proc(&prototype, text_begin));
1242
0
    set_dev_proc(dest, discard_transparency_layer, dev_proc(&prototype, discard_transparency_layer));
1243
0
    set_dev_proc(dest, get_color_mapping_procs, dev_proc(&prototype, get_color_mapping_procs));
1244
0
    set_dev_proc(dest, get_color_comp_index, dev_proc(&prototype, get_color_comp_index));
1245
0
    set_dev_proc(dest, encode_color, dev_proc(&prototype, encode_color));
1246
0
    set_dev_proc(dest, decode_color, dev_proc(&prototype, decode_color));
1247
0
    set_dev_proc(dest, fill_rectangle_hl_color, dev_proc(&prototype, fill_rectangle_hl_color));
1248
0
    set_dev_proc(dest, include_color_space, dev_proc(&prototype, include_color_space));
1249
0
    set_dev_proc(dest, fill_linear_color_scanline, dev_proc(&prototype, fill_linear_color_scanline));
1250
0
    set_dev_proc(dest, fill_linear_color_trapezoid, dev_proc(&prototype, fill_linear_color_trapezoid));
1251
0
    set_dev_proc(dest, fill_linear_color_triangle, dev_proc(&prototype, fill_linear_color_triangle));
1252
0
    set_dev_proc(dest, update_spot_equivalent_colors, dev_proc(&prototype, update_spot_equivalent_colors));
1253
0
    set_dev_proc(dest, ret_devn_params, dev_proc(&prototype, ret_devn_params));
1254
0
    set_dev_proc(dest, fillpage, dev_proc(&prototype, fillpage));
1255
0
    set_dev_proc(dest, push_transparency_state, dev_proc(&prototype, push_transparency_state));
1256
0
    set_dev_proc(dest, pop_transparency_state, dev_proc(&prototype, pop_transparency_state));
1257
0
    set_dev_proc(dest, dev_spec_op, dev_proc(&prototype, dev_spec_op));
1258
0
    set_dev_proc(dest, get_profile, dev_proc(&prototype, get_profile));
1259
0
    set_dev_proc(dest, strip_copy_rop2, dev_proc(&prototype, strip_copy_rop2));
1260
0
    set_dev_proc(dest, strip_tile_rect_devn, dev_proc(&prototype, strip_tile_rect_devn));
1261
0
    set_dev_proc(dest, process_page, dev_proc(&prototype, process_page));
1262
0
    set_dev_proc(dest, transform_pixel_region, dev_proc(&prototype, transform_pixel_region));
1263
0
    set_dev_proc(dest, fill_stroke_path, dev_proc(&prototype, fill_stroke_path));
1264
0
    set_dev_proc(dest, lock_pattern, dev_proc(&prototype, lock_pattern));
1265
1266
    /*
1267
     * We absolutely must set the 'set_graphics_type_tag' to the default subclass one
1268
     * even if the subclassed device is using the default. This is because the
1269
     * default implementation sets a flag in the device structure, and if we
1270
     * copy the default method, we'll end up setting the flag in the subclassing device
1271
     * instead of the subclassed device!
1272
     */
1273
0
    set_dev_proc(dest, set_graphics_type_tag, dev_proc(&prototype, set_graphics_type_tag));
1274
1275
    /* These are the routines whose existence is checked against the default at
1276
     * some point in the code. The code path differs when the device implements a
1277
     * method other than the default, so the subclassing device needs to ensure that
1278
     * if the subclassed device has one of these methods set to the default, we
1279
     * do not overwrite the default method.
1280
     */
1281
0
    if (dev_proc(src, fill_mask) != gx_default_fill_mask)
1282
0
        set_dev_proc(dest, fill_mask, dev_proc(&prototype, fill_mask));
1283
0
    if (dev_proc(src, begin_transparency_group) != gx_default_begin_transparency_group)
1284
0
        set_dev_proc(dest, begin_transparency_group, dev_proc(&prototype, begin_transparency_group));
1285
0
    if (dev_proc(src, end_transparency_group) != gx_default_end_transparency_group)
1286
0
        set_dev_proc(dest, end_transparency_group, dev_proc(&prototype, end_transparency_group));
1287
0
    if (dev_proc(src, put_image) != gx_default_put_image)
1288
0
        set_dev_proc(dest, put_image, dev_proc(&prototype, put_image));
1289
0
    if (dev_proc(src, copy_planes) != gx_default_copy_planes)
1290
0
        set_dev_proc(dest, copy_planes, dev_proc(&prototype, copy_planes));
1291
0
    if (dev_proc(src, copy_alpha_hl_color) != gx_default_no_copy_alpha_hl_color)
1292
0
        set_dev_proc(dest, copy_alpha_hl_color, dev_proc(&prototype, copy_alpha_hl_color));
1293
1294
0
    return 0;
1295
0
}
1296
1297
int gx_device_subclass(gx_device *dev_to_subclass, gx_device *new_prototype, unsigned int private_data_size)
1298
0
{
1299
0
    gx_device *child_dev;
1300
0
    void *psubclass_data;
1301
0
    gs_memory_struct_type_t *a_std = NULL, *b_std = NULL;
1302
0
    int dynamic = dev_to_subclass->stype_is_dynamic;
1303
0
    char *ptr, *ptr1;
1304
1305
    /* If this happens we are stuffed, as there is no way to get hold
1306
     * of the original device's stype structure, which means we cannot
1307
     * allocate a replacement structure. Abort if so.
1308
     * Also abort if the new_prototype device struct is too large.
1309
     */
1310
0
    if (!dev_to_subclass->stype ||
1311
0
        dev_to_subclass->stype->ssize < new_prototype->params_size)
1312
0
        return_error(gs_error_VMerror);
1313
1314
    /* We make a 'stype' structure for our new device, and copy the old stype into it
1315
     * This means our new device will always have the 'stype_is_dynamic' flag set
1316
     */
1317
0
    a_std = (gs_memory_struct_type_t *)
1318
0
        gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*a_std),
1319
0
                                 "gs_device_subclass(stype)");
1320
0
    if (!a_std)
1321
0
        return_error(gs_error_VMerror);
1322
0
    *a_std = *dev_to_subclass->stype;
1323
0
    a_std->ssize = dev_to_subclass->params_size;
1324
1325
0
    if (!dynamic) {
1326
0
        b_std = (gs_memory_struct_type_t *)
1327
0
            gs_alloc_bytes_immovable(dev_to_subclass->memory->non_gc_memory, sizeof(*b_std),
1328
0
                                     "gs_device_subclass(stype)");
1329
0
        if (!b_std) {
1330
0
            gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1331
0
            return_error(gs_error_VMerror);
1332
0
        }
1333
0
    }
1334
1335
    /* Allocate a device structure for the new child device */
1336
0
    child_dev = gs_alloc_struct_immovable(dev_to_subclass->memory->stable_memory, gx_device, a_std,
1337
0
                                        "gs_device_subclass(device)");
1338
0
    if (child_dev == 0) {
1339
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1340
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1341
0
        return_error(gs_error_VMerror);
1342
0
    }
1343
1344
    /* Make sure all methods are filled in, note this won't work for a forwarding device
1345
     * so forwarding devices will have to be filled in before being subclassed. This doesn't fill
1346
     * in the fill_rectangle proc, that gets done in the ultimate device's open proc.
1347
     */
1348
0
    gx_device_fill_in_procs(dev_to_subclass);
1349
0
    memcpy(child_dev, dev_to_subclass, dev_to_subclass->stype->ssize);
1350
0
    child_dev->stype = a_std;
1351
0
    child_dev->stype_is_dynamic = 1;
1352
1353
    /* At this point, the only counted reference to the child is from its parent, and we need it to use the right allocator */
1354
0
    rc_init(child_dev, dev_to_subclass->memory->stable_memory, 1);
1355
1356
0
    psubclass_data = (void *)gs_alloc_bytes(dev_to_subclass->memory->non_gc_memory, private_data_size, "subclass memory for subclassing device");
1357
0
    if (psubclass_data == 0){
1358
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, b_std, "gs_device_subclass(stype)");
1359
        /* We *don't* want to run the finalize routine. This would free the stype and
1360
         * properly handle the icc_struct and PageList, but for devices with a custom
1361
         * finalize (eg psdcmyk) it might also free memory it had allocated, and we're
1362
         * still pointing at that memory in the parent.
1363
         */
1364
0
        a_std->finalize = NULL;
1365
0
        gs_set_object_type(dev_to_subclass->memory->stable_memory, child_dev, a_std);
1366
0
        gs_free_object(dev_to_subclass->memory->stable_memory, child_dev, "free subclass memory for subclassing device");
1367
0
        gs_free_const_object(dev_to_subclass->memory->non_gc_memory, a_std, "gs_device_subclass(stype)");
1368
0
        return_error(gs_error_VMerror);
1369
0
    }
1370
0
    memset(psubclass_data, 0x00, private_data_size);
1371
1372
0
    gx_copy_device_procs(dev_to_subclass, child_dev, new_prototype);
1373
0
    dev_to_subclass->finalize = new_prototype->finalize;
1374
0
    dev_to_subclass->dname = new_prototype->dname;
1375
0
    if (dev_to_subclass->icc_struct)
1376
0
        rc_increment(dev_to_subclass->icc_struct);
1377
0
    if (dev_to_subclass->PageList)
1378
0
        rc_increment(dev_to_subclass->PageList);
1379
0
    if (dev_to_subclass->NupControl)
1380
0
        rc_increment(dev_to_subclass->NupControl);
1381
1382
0
    dev_to_subclass->page_procs = new_prototype->page_procs;
1383
0
    gx_subclass_fill_in_page_procs(dev_to_subclass);
1384
1385
    /* In case the new device we're creating has already been initialised, copy
1386
     * its additional data.
1387
     */
1388
0
    ptr = ((char *)dev_to_subclass) + sizeof(gx_device);
1389
0
    ptr1 = ((char *)new_prototype) + sizeof(gx_device);
1390
0
    memcpy(ptr, ptr1, new_prototype->params_size - sizeof(gx_device));
1391
1392
    /* If the original device's stype structure was dynamically allocated, we need
1393
     * to 'fixup' the contents, it's procs need to point to the new device's procs
1394
     * for instance.
1395
     */
1396
0
    if (dynamic) {
1397
0
        if (new_prototype->stype) {
1398
0
            b_std = (gs_memory_struct_type_t *)dev_to_subclass->stype;
1399
0
            *b_std = *new_prototype->stype;
1400
0
            b_std->ssize = a_std->ssize;
1401
0
            dev_to_subclass->stype_is_dynamic = 1;
1402
0
        } else {
1403
0
            gs_free_const_object(child_dev->memory->non_gc_memory, dev_to_subclass->stype,
1404
0
                             "unsubclass");
1405
0
            dev_to_subclass->stype = NULL;
1406
0
            b_std = (gs_memory_struct_type_t *)new_prototype->stype;
1407
0
            dev_to_subclass->stype_is_dynamic = 0;
1408
0
        }
1409
0
    }
1410
0
    else {
1411
0
        *b_std = *new_prototype->stype;
1412
0
        b_std->ssize = a_std->ssize;
1413
0
        dev_to_subclass->stype_is_dynamic = 1;
1414
0
    }
1415
0
    dev_to_subclass->stype = b_std;
1416
    /* We have to patch up the "type" parameters that the memory manage/garbage
1417
     * collector will use, as well.
1418
     */
1419
0
    gs_set_object_type(child_dev->memory, dev_to_subclass, b_std);
1420
1421
0
    dev_to_subclass->subclass_data = psubclass_data;
1422
0
    dev_to_subclass->child = child_dev;
1423
0
    if (child_dev->parent) {
1424
0
        dev_to_subclass->parent = child_dev->parent;
1425
0
        child_dev->parent->child = dev_to_subclass;
1426
0
    }
1427
0
    if (child_dev->child) {
1428
0
        child_dev->child->parent = child_dev;
1429
0
    }
1430
0
    child_dev->parent = dev_to_subclass;
1431
1432
0
    return 0;
1433
0
}
1434
1435
void gx_device_unsubclass(gx_device *dev)
1436
0
{
1437
0
    generic_subclass_data *psubclass_data;
1438
0
    gx_device *parent, *child;
1439
0
    gs_memory_struct_type_t *a_std = 0, *b_std = 0;
1440
0
    int dynamic, ref_count;
1441
0
    gs_memory_t *rcmem;
1442
1443
    /* This should not happen... */
1444
0
    if (!dev)
1445
0
        return;
1446
1447
0
    ref_count = dev->rc.ref_count;
1448
0
    rcmem = dev->rc.memory;
1449
1450
0
    child = dev->child;
1451
0
    psubclass_data = (generic_subclass_data *)dev->subclass_data;
1452
0
    parent = dev->parent;
1453
0
    dynamic = dev->stype_is_dynamic;
1454
1455
    /* We need to account for the fact that we are removing ourselves from
1456
     * the device chain after a clist device has been pushed, due to a
1457
     * compositor action. Since we patched the clist 'composite'
1458
     * method (and target device) when it was pushed.
1459
     * A point to note; we *don't* want to change the forwarding device's
1460
     * 'target', because when we copy the child up to replace 'this' device
1461
     * we do still want the forwarding device to point here. NB its the *child*
1462
     * device that goes away.
1463
     */
1464
0
    if (psubclass_data != NULL && psubclass_data->forwarding_dev != NULL && psubclass_data->saved_compositor_method)
1465
0
        psubclass_data->forwarding_dev->procs.composite = psubclass_data->saved_compositor_method;
1466
1467
    /* If ths device's stype is dynamically allocated, keep a copy of it
1468
     * in case we might need it.
1469
     */
1470
0
    if (dynamic) {
1471
0
        a_std = (gs_memory_struct_type_t *)dev->stype;
1472
0
        if (child)
1473
0
            *a_std = *child->stype;
1474
0
    }
1475
1476
    /* If ths device has any private storage, free it now */
1477
0
    if (psubclass_data)
1478
0
        gs_free_object(dev->memory->non_gc_memory, psubclass_data, "gx_device_unsubclass");
1479
1480
    /* Copy the child device into ths device's memory */
1481
0
    if (child) {
1482
0
        b_std = (gs_memory_struct_type_t *)dev->stype;
1483
0
        rc_decrement(dev->icc_struct, "unsubclass device");
1484
0
        rc_increment(child->icc_struct);
1485
0
        memcpy(dev, child, child->stype->ssize);
1486
        /* Patch back the 'stype' in the memory manager */
1487
0
        gs_set_object_type(child->memory, dev, b_std);
1488
1489
0
        dev->stype = b_std;
1490
        /* The reference count of the subclassing device may have been
1491
         * changed (eg graphics states pointing to it) after we subclassed
1492
         * the device. We need to ensure that we do not overwrite this
1493
         * when we copy back the subclassed device.
1494
         */
1495
0
        dev->rc.ref_count = ref_count;
1496
0
        dev->rc.memory = rcmem;
1497
1498
        /* If we have a chain of devices, make sure the chain beyond the
1499
         * device we're unsubclassing doesn't get broken, we need to
1500
         * detach the lower chain and reattach it at the new highest level.
1501
         */
1502
0
        if (child->child)
1503
0
            child->child->parent = dev;
1504
0
        child->parent->child = child->child;
1505
0
    }
1506
1507
    /* How can we have a subclass device with no child ? Simples; when we
1508
     * hit the end of job restore, the devices are not freed in device
1509
     * chain order. To make sure we don't end up following stale pointers,
1510
     * when a device is freed we remove it from the chain and update
1511
     * any dangling pointers to NULL. When we later free the remaining
1512
     * devices it's possible that their child pointer can then be NULL.
1513
     */
1514
0
    if (child) {
1515
        /* We cannot afford to free the child device if its stype is not
1516
         * dynamic because we can't 'null' the finalise routine, and we
1517
         * cannot permit the device to be finalised because we have copied
1518
         * it up one level, not discarded it. (This shouldn't happen! Child
1519
         * devices are always created with a dynamic stype.) If this ever
1520
         * happens garbage collecton will eventually clean up the memory.
1521
         */
1522
0
        if (child->stype_is_dynamic) {
1523
            /* Make sure that nothing will try to follow the device chain,
1524
             * just security here. */
1525
0
            child->parent = NULL;
1526
0
            child->child = NULL;
1527
1528
            /* We *don't* want to run the finalize routine. This would free
1529
             * the stype and properly handle the icc_struct and PageList,
1530
             * but for devices with a custom finalize (eg psdcmyk) it might
1531
             * also free memory it had allocated, and we're still pointing
1532
             * at that memory in the parent. The indirection through a
1533
             * variable is just to get rid of const warnings.
1534
             */
1535
0
            b_std = (gs_memory_struct_type_t *)child->stype;
1536
0
            gs_free_const_object(dev->memory->non_gc_memory, b_std, "gs_device_unsubclass(stype)");
1537
            /* Make this into a generic device */
1538
0
            child->stype = &st_device;
1539
0
            child->stype_is_dynamic = false;
1540
1541
            /* We can't simply discard the child device, because there may be references to it elsewhere,
1542
               but equally, we really don't want it doing anything, so set the procs so actions are just discarded.
1543
             */
1544
0
            gx_copy_device_procs(child, (gx_device *)&gs_null_device, (gx_device *)&gs_null_device);
1545
1546
            /* Having changed the stype, we need to make sure the memory
1547
             * manager uses it. It keeps a copy in its own data structure,
1548
             * and would use that copy, which would mean it would call the
1549
             * finalize routine that we just patched out.
1550
             */
1551
0
            gs_set_object_type(dev->memory->stable_memory, child, child->stype);
1552
0
            child->finalize = NULL;
1553
            /* Now (finally) free the child memory */
1554
0
            rc_decrement(child, "gx_device_unsubclass(device)");
1555
0
        }
1556
0
    }
1557
0
    dev->parent = parent;
1558
1559
    /* If this device has a dynamic stype, we wnt to keep using it, but we copied
1560
     * the stype pointer from the child when we copied the rest of the device. So
1561
     * we update the stype pointer with the saved pointer to this device's stype.
1562
     */
1563
0
    if (dynamic) {
1564
0
        dev->stype = a_std;
1565
0
        dev->stype_is_dynamic = 1;
1566
0
    } else {
1567
0
        dev->stype_is_dynamic = 0;
1568
0
    }
1569
0
}
1570
1571
int gx_update_from_subclass(gx_device *dev)
1572
0
{
1573
0
    if (!dev->child)
1574
0
        return 0;
1575
1576
0
    memcpy(&dev->color_info, &dev->child->color_info, sizeof(gx_device_color_info));
1577
0
    memcpy(&dev->cached_colors, &dev->child->cached_colors, sizeof(gx_device_cached_colors_t));
1578
0
    dev->max_fill_band = dev->child->max_fill_band;
1579
0
    dev->width = dev->child->width;
1580
0
    dev->height = dev->child->height;
1581
0
    dev->pad = dev->child->pad;
1582
0
    dev->log2_align_mod = dev->child->log2_align_mod;
1583
0
    dev->max_fill_band = dev->child->max_fill_band;
1584
0
    dev->num_planar_planes = dev->child->num_planar_planes;
1585
0
    dev->LeadingEdge = dev->child->LeadingEdge;
1586
0
    memcpy(&dev->ImagingBBox, &dev->child->ImagingBBox, sizeof(dev->child->ImagingBBox));
1587
0
    dev->ImagingBBox_set = dev->child->ImagingBBox_set;
1588
0
    memcpy(&dev->MediaSize, &dev->child->MediaSize, sizeof(dev->child->MediaSize));
1589
0
    memcpy(&dev->HWResolution, &dev->child->HWResolution, sizeof(dev->child->HWResolution));
1590
0
    memcpy(&dev->Margins, &dev->child->Margins, sizeof(dev->child->Margins));
1591
0
    memcpy(&dev->HWMargins, &dev->child->HWMargins, sizeof(dev->child->HWMargins));
1592
0
    dev->FirstPage = dev->child->FirstPage;
1593
0
    dev->LastPage = dev->child->LastPage;
1594
0
    dev->PageCount = dev->child->PageCount;
1595
0
    dev->ShowpageCount = dev->child->ShowpageCount;
1596
0
    dev->NumCopies = dev->child->NumCopies;
1597
0
    dev->NumCopies_set = dev->child->NumCopies_set;
1598
0
    dev->IgnoreNumCopies = dev->child->IgnoreNumCopies;
1599
0
    dev->UseCIEColor = dev->child->UseCIEColor;
1600
0
    dev->LockSafetyParams= dev->child->LockSafetyParams;
1601
0
    dev->band_offset_x = dev->child->band_offset_y;
1602
0
    dev->sgr = dev->child->sgr;
1603
0
    dev->MaxPatternBitmap = dev->child->MaxPatternBitmap;
1604
0
    dev->page_uses_transparency = dev->child->page_uses_transparency;
1605
0
    memcpy(&dev->space_params, &dev->child->space_params, sizeof(gdev_space_params));
1606
0
    dev->graphics_type_tag = dev->child->graphics_type_tag;
1607
1608
0
    return 0;
1609
0
}
1610
1611
int gx_subclass_composite(gx_device *dev, gx_device **pcdev, const gs_composite_t *pcte,
1612
    gs_gstate *pgs, gs_memory_t *memory, gx_device *cdev)
1613
0
{
1614
0
    pdf14_clist_device *p14dev;
1615
0
    generic_subclass_data *psubclass_data;
1616
0
    int code = 0;
1617
1618
0
    p14dev = (pdf14_clist_device *)dev;
1619
0
    psubclass_data = (generic_subclass_data *)p14dev->target->subclass_data;
1620
1621
0
    set_dev_proc(dev, composite, psubclass_data->saved_compositor_method);
1622
1623
0
    if (gs_is_pdf14trans_compositor(pcte) != 0 && strncmp(dev->dname, "pdf14clist", 10) == 0) {
1624
0
        const gs_pdf14trans_t * pdf14pct = (const gs_pdf14trans_t *) pcte;
1625
1626
0
        switch (pdf14pct->params.pdf14_op) {
1627
0
            case PDF14_POP_DEVICE:
1628
0
                {
1629
0
                    pdf14_clist_device *p14dev = (pdf14_clist_device *)dev;
1630
0
                    gx_device *subclass_device;
1631
1632
0
                    p14dev->target->color_info = p14dev->saved_target_color_info;
1633
0
                    if (p14dev->target->child) {
1634
0
                        p14dev->target->child->color_info = p14dev->saved_target_color_info;
1635
1636
0
                        set_dev_proc(p14dev->target->child, encode_color, p14dev->saved_target_encode_color);
1637
0
                        set_dev_proc(p14dev->target->child, decode_color, p14dev->saved_target_decode_color);
1638
0
                        set_dev_proc(p14dev->target->child, get_color_mapping_procs, p14dev->saved_target_get_color_mapping_procs);
1639
0
                        set_dev_proc(p14dev->target->child, get_color_comp_index, p14dev->saved_target_get_color_comp_index);
1640
0
                    }
1641
1642
0
                    pgs->get_cmap_procs = p14dev->save_get_cmap_procs;
1643
0
                    gx_set_cmap_procs(pgs, p14dev->target);
1644
1645
0
                    subclass_device = p14dev->target;
1646
0
                    p14dev->target = p14dev->target->child;
1647
1648
0
                    code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1649
1650
0
                    p14dev->target = subclass_device;
1651
1652
                    /* We return 0, rather than 1, as we have not created
1653
                     * a new compositor that wraps dev. */
1654
0
                    if (code == 1)
1655
0
                        code = 0;
1656
0
                    return code;
1657
0
                }
1658
0
                break;
1659
0
            default:
1660
0
                code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1661
0
                break;
1662
0
        }
1663
0
    } else {
1664
0
        code = dev_proc(dev, composite)(dev, pcdev, pcte, pgs, memory, cdev);
1665
0
    }
1666
0
    set_dev_proc(dev, composite, gx_subclass_composite);
1667
0
    return code;
1668
0
}
1669
1670
typedef enum
1671
{
1672
    transform_pixel_region_portrait,
1673
    transform_pixel_region_landscape,
1674
    transform_pixel_region_skew
1675
} transform_pixel_region_posture;
1676
1677
typedef struct gx_default_transform_pixel_region_state_s gx_default_transform_pixel_region_state_t;
1678
1679
typedef int (gx_default_transform_pixel_region_render_fn)(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs);
1680
1681
struct gx_default_transform_pixel_region_state_s
1682
{
1683
    gs_memory_t *mem;
1684
    gx_dda_fixed_point pixels;
1685
    gx_dda_fixed_point rows;
1686
    gs_int_rect clip;
1687
    int w;
1688
    int h;
1689
    int spp;
1690
    transform_pixel_region_posture posture;
1691
    gs_logical_operation_t lop;
1692
    byte *line;
1693
    gx_default_transform_pixel_region_render_fn *render;
1694
};
1695
1696
static void
1697
get_portrait_y_extent(gx_default_transform_pixel_region_state_t *state, int *iy, int *ih)
1698
788k
{
1699
788k
    fixed y0, y1;
1700
788k
    gx_dda_fixed row = state->rows.y;
1701
1702
788k
    y0 = dda_current(row);
1703
788k
    dda_next(row);
1704
788k
    y1 = dda_current(row);
1705
1706
788k
    if (y1 < y0) {
1707
1.75k
        fixed t = y1; y1 = y0; y0 = t;
1708
1.75k
    }
1709
1710
788k
    *iy = fixed2int_pixround_perfect(y0);
1711
788k
    *ih = fixed2int_pixround_perfect(y1) - *iy;
1712
788k
}
1713
1714
static void
1715
get_landscape_x_extent(gx_default_transform_pixel_region_state_t *state, int *ix, int *iw)
1716
318
{
1717
318
    fixed x0, x1;
1718
318
    gx_dda_fixed row = state->rows.x;
1719
1720
318
    x0 = dda_current(row);
1721
318
    dda_next(row);
1722
318
    x1 = dda_current(row);
1723
1724
318
    if (x1 < x0) {
1725
0
        fixed t = x1; x1 = x0; x0 = t;
1726
0
    }
1727
1728
318
    *ix = fixed2int_pixround_perfect(x0);
1729
318
    *iw = fixed2int_pixround_perfect(x1) - *ix;
1730
318
}
1731
1732
static void
1733
get_skew_extents(gx_default_transform_pixel_region_state_t *state, fixed *w, fixed *h)
1734
1.90k
{
1735
1.90k
    fixed x0, x1, y0, y1;
1736
1.90k
    gx_dda_fixed_point row = state->rows;
1737
1738
1.90k
    x0 = dda_current(row.x);
1739
1.90k
    y0 = dda_current(row.y);
1740
1.90k
    dda_next(row.x);
1741
1.90k
    dda_next(row.y);
1742
1.90k
    x1 = dda_current(row.x);
1743
1.90k
    y1 = dda_current(row.y);
1744
1745
1.90k
    *w = x1-x0;
1746
1.90k
    *h = y1-y0;
1747
1.90k
}
1748
1749
static int
1750
transform_pixel_region_render_portrait(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1751
384k
{
1752
384k
    gs_logical_operation_t lop = state->lop;
1753
384k
    gx_dda_fixed_point pnext;
1754
384k
    int vci, vdi;
1755
384k
    int irun;     /* int x/rrun */
1756
384k
    int w = state->w;
1757
384k
    int h = state->h;
1758
384k
    int spp = state->spp;
1759
384k
    const byte *data = buffer[0] + data_x * spp;
1760
384k
    const byte *bufend = NULL;
1761
384k
    int code = 0;
1762
384k
    const byte *run = NULL;
1763
384k
    int k;
1764
384k
    gx_color_value *conc = &cmapper->conc[0];
1765
384k
    int to_rects;
1766
384k
    gx_cmapper_fn *mapper = cmapper->set_color;
1767
384k
    int minx, maxx;
1768
1769
384k
    if (h == 0)
1770
0
        return 0;
1771
1772
    /* Clip on Y */
1773
384k
    get_portrait_y_extent(state, &vci, &vdi);
1774
384k
    if (vci < state->clip.p.y)
1775
14.3k
        vdi += vci - state->clip.p.y, vci = state->clip.p.y;
1776
384k
    if (vci+vdi > state->clip.q.y)
1777
6.52k
        vdi = state->clip.q.y - vci;
1778
384k
    if (vdi <= 0)
1779
186k
        return 0;
1780
1781
198k
    pnext = state->pixels;
1782
198k
    dda_translate(pnext.x,  (-fixed_epsilon));
1783
198k
    irun = fixed2int_var_rounded(dda_current(pnext.x));
1784
198k
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1785
198k
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1786
198k
    to_rects = (dev->color_info.depth != spp*8);
1787
198k
    if (to_rects == 0) {
1788
198k
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1789
168k
            to_rects = 1;
1790
198k
    }
1791
1792
198k
    minx = state->clip.p.x;
1793
198k
    maxx = state->clip.q.x;
1794
198k
    bufend = data + w * spp;
1795
198k
    if (to_rects) {
1796
20.8M
        while (data < bufend) {
1797
            /* Find the length of the next run. It will either end when we hit
1798
             * the end of the source data, or when the pixel data differs. */
1799
20.6M
            run = data + spp;
1800
75.3M
            while (1) {
1801
75.3M
                dda_next(pnext.x);
1802
75.3M
                if (run >= bufend)
1803
168k
                    break;
1804
75.1M
                if (memcmp(run, data, spp))
1805
20.5M
                    break;
1806
54.6M
                run += spp;
1807
54.6M
            }
1808
            /* So we have a run of pixels from data to run that are all the same. */
1809
            /* This needs to be sped up */
1810
76.5M
            for (k = 0; k < spp; k++) {
1811
55.8M
                conc[k] = gx_color_value_from_byte(data[k]);
1812
55.8M
            }
1813
20.6M
            mapper(cmapper);
1814
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1815
20.6M
            {
1816
20.6M
                int xi = irun;
1817
20.6M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1818
1819
20.6M
                if (wi < 0)
1820
278
                    xi += wi, wi = -wi;
1821
20.6M
                if (xi < minx)
1822
4.11k
                    wi += xi - minx, xi = minx;
1823
20.6M
                if (xi + wi > maxx)
1824
14.0k
                    wi = maxx - xi;
1825
20.6M
                if (wi > 0)
1826
19.4M
                    code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1827
20.6M
                                                        &cmapper->devc, dev, lop);
1828
20.6M
            }
1829
20.6M
            if (code < 0)
1830
0
                goto err;
1831
20.6M
            data = run;
1832
20.6M
        }
1833
168k
    } else {
1834
30.0k
        int pending_left = irun;
1835
30.0k
        int pending_right;
1836
30.0k
        byte *out;
1837
30.0k
        int depth = spp;
1838
30.0k
        if (state->line == NULL) {
1839
254
            state->line = gs_alloc_bytes(state->mem,
1840
254
                                         (size_t)dev->width * depth,
1841
254
                                         "image line");
1842
254
            if (state->line == NULL)
1843
0
                return gs_error_VMerror;
1844
254
        }
1845
30.0k
        out = state->line;
1846
1847
30.0k
        if (minx < 0)
1848
0
            minx = 0;
1849
30.0k
        if (maxx > dev->width)
1850
0
            maxx = dev->width;
1851
1852
30.0k
        if (pending_left < minx)
1853
214
            pending_left = minx;
1854
29.8k
        else if (pending_left > maxx)
1855
0
            pending_left = maxx;
1856
30.0k
        pending_right = pending_left;
1857
1858
1.20M
        while (data < bufend) {
1859
            /* Find the length of the next run. It will either end when we hit
1860
             * the end of the source data, or when the pixel data differs. */
1861
1.17M
            run = data + spp;
1862
14.8M
            while (1) {
1863
14.8M
                dda_next(pnext.x);
1864
14.8M
                if (run >= bufend)
1865
30.0k
                    break;
1866
14.8M
                if (memcmp(run, data, spp))
1867
1.14M
                    break;
1868
13.6M
                run += spp;
1869
13.6M
            }
1870
            /* So we have a run of pixels from data to run that are all the same. */
1871
            /* This needs to be sped up */
1872
2.34M
            for (k = 0; k < spp; k++) {
1873
1.17M
                conc[k] = gx_color_value_from_byte(data[k]);
1874
1.17M
            }
1875
1.17M
            mapper(cmapper);
1876
            /* Fill the region between irun and fixed2int_var_rounded(pnext.x) */
1877
1.17M
            {
1878
1.17M
                int xi = irun;
1879
1.17M
                int wi = (irun = fixed2int_var_rounded(dda_current(pnext.x))) - xi;
1880
1881
1.17M
                if (wi < 0)
1882
166
                    xi += wi, wi = -wi;
1883
1884
1.17M
                if (xi < minx)
1885
380
                    wi += xi - minx, xi = minx;
1886
1.17M
                if (xi + wi > maxx)
1887
19.3k
                    wi = maxx - xi;
1888
1889
1.17M
                if (wi > 0) {
1890
921k
                    if (color_is_pure(&cmapper->devc)) {
1891
921k
                        gx_color_index color = cmapper->devc.colors.pure;
1892
921k
                        int xii = xi * spp;
1893
1894
921k
                        if (pending_left > xi)
1895
166
                            pending_left = xi;
1896
921k
                        else
1897
921k
                            pending_right = xi + wi;
1898
9.72M
                        do {
1899
                            /* Excuse the double shifts below, that's to stop the
1900
                             * C compiler complaining if the color index type is
1901
                             * 32 bits. */
1902
9.72M
                            switch(depth)
1903
9.72M
                            {
1904
0
                            case 8: out[xii++] = ((color>>28)>>28) & 0xff;
1905
0
                            case 7: out[xii++] = ((color>>24)>>24) & 0xff;
1906
0
                            case 6: out[xii++] = ((color>>24)>>16) & 0xff;
1907
0
                            case 5: out[xii++] = ((color>>24)>>8) & 0xff;
1908
0
                            case 4: out[xii++] = (color>>24) & 0xff;
1909
0
                            case 3: out[xii++] = (color>>16) & 0xff;
1910
0
                            case 2: out[xii++] = (color>>8) & 0xff;
1911
9.72M
                            case 1: out[xii++] = color & 0xff;
1912
9.72M
                            }
1913
9.72M
                        } while (--wi != 0);
1914
921k
                    } else {
1915
0
                        if (pending_left != pending_right) {
1916
0
                            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1917
0
                            if (code < 0)
1918
0
                                goto err;
1919
0
                        }
1920
0
                        pending_left = pending_right = xi + (pending_left > xi ? 0 : wi);
1921
0
                        code = gx_fill_rectangle_device_rop(xi, vci, wi, vdi,
1922
0
                                                            &cmapper->devc, dev, lop);
1923
0
                    }
1924
921k
                }
1925
1.17M
                if (code < 0)
1926
0
                    goto err;
1927
1.17M
            }
1928
1.17M
            data = run;
1929
1.17M
        }
1930
30.0k
        if (pending_left != pending_right) {
1931
30.0k
            code = dev_proc(dev, copy_color)(dev, out, pending_left, 0, 0, pending_left, vci, pending_right - pending_left, vdi);
1932
30.0k
            if (code < 0)
1933
0
                goto err;
1934
30.0k
        }
1935
30.0k
    }
1936
198k
    return 1;
1937
    /* Save position if error, in case we resume. */
1938
0
err:
1939
0
    buffer[0] = run;
1940
0
    return code;
1941
198k
}
1942
1943
static int
1944
transform_pixel_region_render_landscape(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
1945
159
{
1946
159
    gs_logical_operation_t lop = state->lop;
1947
159
    gx_dda_fixed_point pnext;
1948
159
    int vci, vdi;
1949
159
    int irun;     /* int x/rrun */
1950
159
    int w = state->w;
1951
159
    int h = state->h;
1952
159
    int spp = state->spp;
1953
159
    const byte *data = buffer[0] + data_x * spp;
1954
159
    const byte *bufend = NULL;
1955
159
    int code = 0;
1956
159
    const byte *run;
1957
159
    int k;
1958
159
    gx_color_value *conc = &cmapper->conc[0];
1959
159
    int to_rects;
1960
159
    gx_cmapper_fn *mapper = cmapper->set_color;
1961
159
    int miny, maxy;
1962
1963
159
    if (h == 0)
1964
0
        return 0;
1965
1966
    /* Clip on X */
1967
159
    get_landscape_x_extent(state, &vci, &vdi);
1968
159
    if (vci < state->clip.p.x)
1969
0
        vdi += vci - state->clip.p.x, vci = state->clip.p.x;
1970
159
    if (vci+vdi > state->clip.q.x)
1971
0
        vdi = state->clip.q.x - vci;
1972
159
    if (vdi <= 0)
1973
159
        return 0;
1974
1975
0
    pnext = state->pixels;
1976
0
    dda_translate(pnext.x,  (-fixed_epsilon));
1977
0
    irun = fixed2int_var_rounded(dda_current(pnext.y));
1978
0
    if_debug5m('b', dev->memory, "[b]y=%d data_x=%d w=%d xt=%f yt=%f\n",
1979
0
               vci, data_x, w, fixed2float(dda_current(pnext.x)), fixed2float(dda_current(pnext.y)));
1980
0
    to_rects = (dev->color_info.depth != spp*8);
1981
0
    if (to_rects == 0) {
1982
0
        if (dev_proc(dev, dev_spec_op)(dev, gxdso_copy_color_is_fast, NULL, 0) <= 0)
1983
0
            to_rects = 1;
1984
0
    }
1985
1986
0
    miny = state->clip.p.y;
1987
0
    maxy = state->clip.q.y;
1988
0
    bufend = data + w * spp;
1989
0
    while (data < bufend) {
1990
        /* Find the length of the next run. It will either end when we hit
1991
         * the end of the source data, or when the pixel data differs. */
1992
0
        run = data + spp;
1993
0
        while (1) {
1994
0
            dda_next(pnext.y);
1995
0
            if (run >= bufend)
1996
0
                break;
1997
0
            if (memcmp(run, data, spp))
1998
0
                break;
1999
0
            run += spp;
2000
0
        }
2001
        /* So we have a run of pixels from data to run that are all the same. */
2002
        /* This needs to be sped up */
2003
0
        for (k = 0; k < spp; k++) {
2004
0
            conc[k] = gx_color_value_from_byte(data[k]);
2005
0
        }
2006
0
        mapper(cmapper);
2007
        /* Fill the region between irun and fixed2int_var_rounded(pnext.y) */
2008
0
        {              /* 90 degree rotated rectangle */
2009
0
            int yi = irun;
2010
0
            int hi = (irun = fixed2int_var_rounded(dda_current(pnext.y))) - yi;
2011
2012
0
            if (hi < 0)
2013
0
                yi += hi, hi = -hi;
2014
0
            if (yi < miny)
2015
0
                hi += yi - miny, yi = miny;
2016
0
            if (yi + hi > maxy)
2017
0
                hi = maxy - yi;
2018
0
            if (hi > 0)
2019
0
                code = gx_fill_rectangle_device_rop(vci, yi, vdi, hi,
2020
0
                                                    &cmapper->devc, dev, lop);
2021
0
        }
2022
0
        if (code < 0)
2023
0
            goto err;
2024
0
        data = run;
2025
0
    }
2026
0
    return 1;
2027
    /* Save position if error, in case we resume. */
2028
0
err:
2029
0
    buffer[0] = run;
2030
0
    return code;
2031
0
}
2032
2033
static int
2034
transform_pixel_region_render_skew(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2035
1.90k
{
2036
1.90k
    gs_logical_operation_t lop = state->lop;
2037
1.90k
    gx_dda_fixed_point pnext;
2038
1.90k
    fixed xprev, yprev;
2039
1.90k
    fixed pdyx, pdyy;   /* edge of parallelogram */
2040
1.90k
    int w = state->w;
2041
1.90k
    int h = state->h;
2042
1.90k
    int spp = state->spp;
2043
1.90k
    const byte *data = buffer[0] + data_x * spp;
2044
1.90k
    fixed xpos;     /* x ditto */
2045
1.90k
    fixed ypos;     /* y ditto */
2046
1.90k
    const byte *bufend = data + w * spp;
2047
1.90k
    int code = 0;
2048
1.90k
    int k;
2049
1.90k
    byte initial_run[GX_DEVICE_COLOR_MAX_COMPONENTS] = { 0 };
2050
1.90k
    const byte *prev = &initial_run[0];
2051
1.90k
    gx_cmapper_fn *mapper = cmapper->set_color;
2052
1.90k
    gx_color_value *conc = &cmapper->conc[0];
2053
2054
1.90k
    if (h == 0)
2055
0
        return 0;
2056
1.90k
    pnext = state->pixels;
2057
1.90k
    get_skew_extents(state, &pdyx, &pdyy);
2058
1.90k
    dda_translate(pnext.x,  (-fixed_epsilon));
2059
1.90k
    xprev = dda_current(pnext.x);
2060
1.90k
    yprev = dda_current(pnext.y);
2061
1.90k
    if_debug4m('b', dev->memory, "[b]y=? data_x=%d w=%d xt=%f yt=%f\n",
2062
1.90k
               data_x, w, fixed2float(xprev), fixed2float(yprev));
2063
1.90k
    initial_run[0] = ~data[0];  /* Force intial setting */
2064
116k
    while (data < bufend) {
2065
114k
        dda_next(pnext.x);
2066
114k
        dda_next(pnext.y);
2067
114k
        xpos = dda_current(pnext.x);
2068
114k
        ypos = dda_current(pnext.y);
2069
2070
114k
        if (memcmp(prev, data, spp) != 0)
2071
41.2k
        {
2072
            /* This needs to be sped up */
2073
92.8k
            for (k = 0; k < spp; k++) {
2074
51.6k
                conc[k] = gx_color_value_from_byte(data[k]);
2075
51.6k
            }
2076
41.2k
            mapper(cmapper);
2077
41.2k
        }
2078
        /* Fill the region between */
2079
        /* xprev/yprev and xpos/ypos */
2080
        /* Parallelogram */
2081
114k
        code = (*dev_proc(dev, fill_parallelogram))
2082
114k
                    (dev, xprev, yprev, xpos - xprev, ypos - yprev, pdyx, pdyy,
2083
114k
                     &cmapper->devc, lop);
2084
114k
        xprev = xpos;
2085
114k
        yprev = ypos;
2086
114k
        if (code < 0)
2087
0
            goto err;
2088
114k
        prev = data;
2089
114k
        data += spp;
2090
114k
    }
2091
1.90k
    return 1;
2092
    /* Save position if error, in case we resume. */
2093
0
err:
2094
    /* Only set buffer[0] if we've managed to set prev to something valid. */
2095
0
    if (prev != &initial_run[0]) buffer[0] = prev;
2096
0
    return code;
2097
1.90k
}
2098
2099
static int
2100
gx_default_transform_pixel_region_begin(gx_device *dev, int w, int h, int spp,
2101
                             const gx_dda_fixed_point *pixels, const gx_dda_fixed_point *rows,
2102
                             const gs_int_rect *clip, gs_logical_operation_t lop,
2103
                             gx_default_transform_pixel_region_state_t **statep)
2104
19.3k
{
2105
19.3k
    gx_default_transform_pixel_region_state_t *state;
2106
19.3k
    gs_memory_t *mem = dev->memory->non_gc_memory;
2107
2108
19.3k
    *statep = state = (gx_default_transform_pixel_region_state_t *)gs_alloc_bytes(mem, sizeof(gx_default_transform_pixel_region_state_t), "gx_default_transform_pixel_region_state_t");
2109
19.3k
    if (state == NULL)
2110
0
        return gs_error_VMerror;
2111
19.3k
    state->mem = mem;
2112
19.3k
    state->rows = *rows;
2113
19.3k
    state->pixels = *pixels;
2114
19.3k
    state->clip = *clip;
2115
19.3k
    state->w = w;
2116
19.3k
    state->h = h;
2117
19.3k
    state->spp = spp;
2118
19.3k
    state->lop = lop;
2119
19.3k
    state->line = NULL;
2120
2121
    /* FIXME: Consider sheers here too. Probably happens rarely enough not to be worth it. */
2122
19.3k
    if (rows->x.step.dQ == 0 && rows->x.step.dR == 0 && pixels->y.step.dQ == 0 && pixels->y.step.dR == 0)
2123
19.2k
        state->posture = transform_pixel_region_portrait;
2124
70
    else if (rows->y.step.dQ == 0 && rows->y.step.dR == 0 && pixels->x.step.dQ == 0 && pixels->x.step.dR == 0)
2125
1
        state->posture = transform_pixel_region_landscape;
2126
69
    else
2127
69
        state->posture = transform_pixel_region_skew;
2128
2129
19.3k
    if (state->posture == transform_pixel_region_portrait)
2130
19.2k
        state->render = transform_pixel_region_render_portrait;
2131
70
    else if (state->posture == transform_pixel_region_landscape)
2132
1
        state->render = transform_pixel_region_render_landscape;
2133
69
    else
2134
69
        state->render = transform_pixel_region_render_skew;
2135
2136
19.3k
    return 0;
2137
19.3k
}
2138
2139
static void
2140
step_to_next_line(gx_default_transform_pixel_region_state_t *state)
2141
405k
{
2142
405k
    fixed x = dda_current(state->rows.x);
2143
405k
    fixed y = dda_current(state->rows.y);
2144
2145
405k
    dda_next(state->rows.x);
2146
405k
    dda_next(state->rows.y);
2147
405k
    x = dda_current(state->rows.x) - x;
2148
405k
    y = dda_current(state->rows.y) - y;
2149
405k
    dda_translate(state->pixels.x, x);
2150
405k
    dda_translate(state->pixels.y, y);
2151
405k
}
2152
2153
static int
2154
gx_default_transform_pixel_region_data_needed(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2155
405k
{
2156
405k
    if (state->posture == transform_pixel_region_portrait) {
2157
403k
        int iy, ih;
2158
2159
403k
        get_portrait_y_extent(state, &iy, &ih);
2160
2161
403k
        if (iy + ih < state->clip.p.y || iy >= state->clip.q.y) {
2162
            /* Skip this line. */
2163
19.1k
            step_to_next_line(state);
2164
19.1k
            return 0;
2165
19.1k
        }
2166
403k
    } else if (state->posture == transform_pixel_region_landscape) {
2167
159
        int ix, iw;
2168
2169
159
        get_landscape_x_extent(state, &ix, &iw);
2170
2171
159
        if (ix + iw < state->clip.p.x || ix >= state->clip.q.x) {
2172
            /* Skip this line. */
2173
0
            step_to_next_line(state);
2174
0
            return 0;
2175
0
        }
2176
159
    }
2177
2178
386k
    return 1;
2179
405k
}
2180
2181
static int
2182
gx_default_transform_pixel_region_process_data(gx_device *dev, gx_default_transform_pixel_region_state_t *state, const unsigned char **buffer, int data_x, gx_cmapper_t *cmapper, const gs_gstate *pgs)
2183
386k
{
2184
386k
    int ret = state->render(dev, state, buffer, data_x, cmapper, pgs);
2185
2186
386k
    step_to_next_line(state);
2187
386k
    return ret;
2188
386k
}
2189
2190
static int
2191
gx_default_transform_pixel_region_end(gx_device *dev, gx_default_transform_pixel_region_state_t *state)
2192
19.3k
{
2193
19.3k
    if (state) {
2194
19.3k
        gs_free_object(state->mem, state->line, "image line");
2195
19.3k
        gs_free_object(state->mem, state, "gx_default_transform_pixel_region_state_t");
2196
19.3k
    }
2197
19.3k
    return 0;
2198
19.3k
}
2199
2200
int
2201
gx_default_transform_pixel_region(gx_device *dev,
2202
                       transform_pixel_region_reason reason,
2203
                       transform_pixel_region_data *data)
2204
831k
{
2205
831k
    gx_default_transform_pixel_region_state_t *state = (gx_default_transform_pixel_region_state_t *)data->state;
2206
2207
831k
    switch (reason)
2208
831k
    {
2209
19.3k
    case transform_pixel_region_begin:
2210
19.3k
        return gx_default_transform_pixel_region_begin(dev, data->u.init.w, data->u.init.h, data->u.init.spp, data->u.init.pixels, data->u.init.rows, data->u.init.clip, data->u.init.lop, (gx_default_transform_pixel_region_state_t **)&data->state);
2211
405k
    case transform_pixel_region_data_needed:
2212
405k
        return gx_default_transform_pixel_region_data_needed(dev, state);
2213
386k
    case transform_pixel_region_process_data:
2214
386k
        return gx_default_transform_pixel_region_process_data(dev, state, data->u.process_data.buffer, data->u.process_data.data_x, data->u.process_data.cmapper, data->u.process_data.pgs);
2215
19.3k
    case transform_pixel_region_end:
2216
19.3k
        data->state = NULL;
2217
19.3k
        return gx_default_transform_pixel_region_end(dev, state);
2218
0
    default:
2219
0
        return gs_error_unknownerror;
2220
831k
    }
2221
831k
}