Coverage Report

Created: 2025-06-10 06:59

/src/ghostpdl/base/gscie.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* CIE color rendering cache management */
18
#include "math_.h"
19
#include "memory_.h"
20
#include "gx.h"
21
#include "gserrors.h"
22
#include "gsstruct.h"
23
#include "gsmatrix.h"   /* for gscolor2.h */
24
#include "gxcspace.h"   /* for gxcie.c */
25
#include "gscolor2.h"   /* for gs_set/currentcolorrendering */
26
#include "gxarith.h"
27
#include "gxcie.h"
28
#include "gxdevice.h"   /* for gxcmap.h */
29
#include "gxcmap.h"
30
#include "gzstate.h"
31
#include "gsicc.h"
32
33
/*
34
 * Define whether to optimize the CIE mapping process by combining steps.
35
 * This should only be disabled (commented out) for debugging.
36
 */
37
#define OPTIMIZE_CIE_MAPPING
38
39
/* Forward references */
40
static int cie_joint_caches_init(gx_cie_joint_caches *,
41
                                  const gs_cie_common *,
42
                                  gs_cie_render *);
43
static void cie_joint_caches_complete(gx_cie_joint_caches *,
44
                                       const gs_cie_common *,
45
                                       const gs_cie_abc *,
46
                                       const gs_cie_render *);
47
static void cie_cache_restrict(cie_cache_floats *, const gs_range *);
48
static void cie_invert3(const gs_matrix3 *, gs_matrix3 *);
49
static void cie_matrix_init(gs_matrix3 *);
50
51
/* Allocator structure types */
52
private_st_joint_caches();
53
extern_st(st_gs_gstate);
54
55
#define RESTRICTED_INDEX(v, n, itemp)\
56
0
  ((uint)(itemp = (int)(v)) >= (n) ?\
57
0
   (itemp < 0 ? 0 : (n) - 1) : itemp)
58
59
/* Define cache interpolation threshold values. */
60
#ifdef CIE_CACHE_INTERPOLATE
61
#  ifdef CIE_INTERPOLATE_THRESHOLD
62
9.86k
#    define CACHE_THRESHOLD CIE_INTERPOLATE_THRESHOLD
63
#  else
64
#    define CACHE_THRESHOLD 0 /* always interpolate */
65
#  endif
66
#else
67
#  define CACHE_THRESHOLD 1.0e6 /* never interpolate */
68
#endif
69
#ifdef CIE_RENDER_TABLE_INTERPOLATE
70
#  define RENDER_TABLE_THRESHOLD 0
71
#else
72
#  define RENDER_TABLE_THRESHOLD 1.0e6
73
#endif
74
75
/*
76
 * Determine whether a function is a linear transformation of the form
77
 * f(x) = scale * x + origin.
78
 */
79
static bool
80
cache_is_linear(cie_linear_params_t *params, const cie_cache_floats *pcf)
81
0
{
82
0
    double origin = pcf->values[0];
83
0
    double diff = pcf->values[countof(pcf->values) - 1] - origin;
84
0
    double scale = diff / (countof(pcf->values) - 1);
85
0
    int i;
86
0
    double test = origin + scale;
87
88
0
    for (i = 1; i < countof(pcf->values) - 1; ++i, test += scale)
89
0
        if (fabs(pcf->values[i] - test) >= 0.5 / countof(pcf->values))
90
0
            return (params->is_linear = false);
91
0
    params->origin = origin - pcf->params.base;
92
0
    params->scale =
93
0
        diff * pcf->params.factor / (countof(pcf->values) - 1);
94
0
    return (params->is_linear = true);
95
0
}
96
97
static void
98
cache_set_linear(cie_cache_floats *pcf)
99
29.5k
{
100
29.5k
        if (pcf->params.is_identity) {
101
29.5k
            if_debug1('c', "[c]is_linear("PRI_INTPTR") = true (is_identity)\n",
102
29.5k
                      (intptr_t)pcf);
103
29.5k
            pcf->params.linear.is_linear = true;
104
29.5k
            pcf->params.linear.origin = 0;
105
29.5k
            pcf->params.linear.scale = 1;
106
29.5k
        } else if (cache_is_linear(&pcf->params.linear, pcf)) {
107
0
            if (pcf->params.linear.origin == 0 &&
108
0
                fabs(pcf->params.linear.scale - 1) < 0.00001)
109
0
                pcf->params.is_identity = true;
110
0
            if_debug4('c',
111
0
                      "[c]is_linear("PRI_INTPTR") = true, origin = %g, scale = %g%s\n",
112
0
                      (intptr_t)pcf, pcf->params.linear.origin,
113
0
                      pcf->params.linear.scale,
114
0
                      (pcf->params.is_identity ? " (=> is_identity)" : ""));
115
0
        }
116
#ifdef DEBUG
117
        else
118
            if_debug1('c', "[c]linear("PRI_INTPTR") = false\n", (intptr_t)pcf);
119
#endif
120
29.5k
}
121
static void
122
cache3_set_linear(gx_cie_vector_cache3_t *pvc)
123
9.86k
{
124
9.86k
    cache_set_linear(&pvc->caches[0].floats);
125
9.86k
    cache_set_linear(&pvc->caches[1].floats);
126
9.86k
    cache_set_linear(&pvc->caches[2].floats);
127
9.86k
}
128
129
#ifdef DEBUG
130
static void
131
if_debug_vector3(const char *str, const gs_vector3 *vec)
132
{
133
    if_debug4('c', "%s[%g %g %g]\n", str, vec->u, vec->v, vec->w);
134
}
135
static void
136
if_debug_matrix3(const char *str, const gs_matrix3 *mat)
137
{
138
    if_debug10('c', "%s [%g %g %g] [%g %g %g] [%g %g %g]\n", str,
139
               mat->cu.u, mat->cu.v, mat->cu.w,
140
               mat->cv.u, mat->cv.v, mat->cv.w,
141
               mat->cw.u, mat->cw.v, mat->cw.w);
142
}
143
#else
144
98.6k
#  define if_debug_vector3(str, vec) DO_NOTHING
145
128k
#  define if_debug_matrix3(str, mat) DO_NOTHING
146
#endif
147
148
/* ------ Default values for CIE dictionary elements ------ */
149
150
/* Default transformation procedures. */
151
152
float
153
a_identity(double in, const gs_cie_a * pcie)
154
0
{
155
0
    return in;
156
0
}
157
static float
158
a_from_cache(double in, const gs_cie_a * pcie)
159
0
{
160
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeA.floats);
161
0
}
162
163
float
164
abc_identity(double in, const gs_cie_abc * pcie)
165
0
{
166
0
    return in;
167
0
}
168
static float
169
abc_from_cache_0(double in, const gs_cie_abc * pcie)
170
0
{
171
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[0].floats);
172
0
}
173
static float
174
abc_from_cache_1(double in, const gs_cie_abc * pcie)
175
0
{
176
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[1].floats);
177
0
}
178
static float
179
abc_from_cache_2(double in, const gs_cie_abc * pcie)
180
0
{
181
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[2].floats);
182
0
}
183
184
static float
185
def_identity(double in, const gs_cie_def * pcie)
186
0
{
187
0
    return in;
188
0
}
189
static float
190
def_from_cache_0(double in, const gs_cie_def * pcie)
191
0
{
192
0
    return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[0].floats);
193
0
}
194
static float
195
def_from_cache_1(double in, const gs_cie_def * pcie)
196
0
{
197
0
    return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[1].floats);
198
0
}
199
static float
200
def_from_cache_2(double in, const gs_cie_def * pcie)
201
0
{
202
0
    return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[2].floats);
203
0
}
204
205
static float
206
defg_identity(double in, const gs_cie_defg * pcie)
207
0
{
208
0
    return in;
209
0
}
210
static float
211
defg_from_cache_0(double in, const gs_cie_defg * pcie)
212
0
{
213
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[0].floats);
214
0
}
215
static float
216
defg_from_cache_1(double in, const gs_cie_defg * pcie)
217
0
{
218
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[1].floats);
219
0
}
220
static float
221
defg_from_cache_2(double in, const gs_cie_defg * pcie)
222
0
{
223
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[2].floats);
224
0
}
225
static float
226
defg_from_cache_3(double in, const gs_cie_defg * pcie)
227
0
{
228
0
    return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[3].floats);
229
0
}
230
231
float
232
common_identity(double in, const gs_cie_common * pcie)
233
0
{
234
0
    return in;
235
0
}
236
static float
237
lmn_from_cache_0(double in, const gs_cie_common * pcie)
238
0
{
239
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[0].floats);
240
0
}
241
static float
242
lmn_from_cache_1(double in, const gs_cie_common * pcie)
243
0
{
244
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[1].floats);
245
0
}
246
static float
247
lmn_from_cache_2(double in, const gs_cie_common * pcie)
248
0
{
249
0
    return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[2].floats);
250
0
}
251
252
/* Transformation procedures for accessing an already-loaded cache. */
253
254
float
255
gs_cie_cached_value(double in, const cie_cache_floats *pcache)
256
0
{
257
    /*
258
     * We need to get the same results when we sample an already-loaded
259
     * cache, so we need to round the index just a tiny bit.
260
     */
261
0
    int index =
262
0
        (int)((in - pcache->params.base) * pcache->params.factor + 0.0001);
263
264
0
    CIE_CLAMP_INDEX(index);
265
0
    return pcache->values[index];
266
0
}
267
268
/* Default vectors and matrices. */
269
270
const gs_range3 Range3_default = {
271
    { {0, 1}, {0, 1}, {0, 1} }
272
};
273
const gs_range4 Range4_default = {
274
    { {0, 1}, {0, 1}, {0, 1}, {0, 1} }
275
};
276
const gs_cie_defg_proc4 DecodeDEFG_default = {
277
    {defg_identity, defg_identity, defg_identity, defg_identity}
278
};
279
const gs_cie_defg_proc4 DecodeDEFG_from_cache = {
280
    {defg_from_cache_0, defg_from_cache_1, defg_from_cache_2, defg_from_cache_3}
281
};
282
const gs_cie_def_proc3 DecodeDEF_default = {
283
    {def_identity, def_identity, def_identity}
284
};
285
const gs_cie_def_proc3 DecodeDEF_from_cache = {
286
    {def_from_cache_0, def_from_cache_1, def_from_cache_2}
287
};
288
const gs_cie_abc_proc3 DecodeABC_default = {
289
    {abc_identity, abc_identity, abc_identity}
290
};
291
const gs_cie_abc_proc3 DecodeABC_from_cache = {
292
    {abc_from_cache_0, abc_from_cache_1, abc_from_cache_2}
293
};
294
const gs_cie_common_proc3 DecodeLMN_default = {
295
    {common_identity, common_identity, common_identity}
296
};
297
const gs_cie_common_proc3 DecodeLMN_from_cache = {
298
    {lmn_from_cache_0, lmn_from_cache_1, lmn_from_cache_2}
299
};
300
const gs_matrix3 Matrix3_default = {
301
    {1, 0, 0},
302
    {0, 1, 0},
303
    {0, 0, 1},
304
    1 /*true */
305
};
306
const gs_range RangeA_default = {0, 1};
307
const gs_cie_a_proc DecodeA_default = a_identity;
308
const gs_cie_a_proc DecodeA_from_cache = a_from_cache;
309
const gs_vector3 MatrixA_default = {1, 1, 1};
310
const gs_vector3 BlackPoint_default = {0, 0, 0};
311
312
/* Initialize a CIE color. */
313
/* This only happens on setcolorspace. */
314
void
315
gx_init_CIE(gs_client_color * pcc, const gs_color_space * pcs)
316
0
{
317
0
    gx_init_paint_4(pcc, pcs);
318
    /* (0...) may not be within the range of allowable values. */
319
0
    (*pcs->type->restrict_color)(pcc, pcs);
320
0
}
321
322
/* Restrict CIE colors. */
323
324
static inline void
325
cie_restrict(float *pv, const gs_range *range)
326
0
{
327
0
    if (*pv <= range->rmin)
328
0
        *pv = range->rmin;
329
0
    else if (*pv >= range->rmax)
330
0
        *pv = range->rmax;
331
0
}
332
333
void
334
gx_restrict_CIEDEFG(gs_client_color * pcc, const gs_color_space * pcs)
335
0
{
336
0
    const gs_cie_defg *pcie = pcs->params.defg;
337
338
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeDEFG.ranges[0]);
339
0
    cie_restrict(&pcc->paint.values[1], &pcie->RangeDEFG.ranges[1]);
340
0
    cie_restrict(&pcc->paint.values[2], &pcie->RangeDEFG.ranges[2]);
341
0
    cie_restrict(&pcc->paint.values[3], &pcie->RangeDEFG.ranges[3]);
342
0
}
343
void
344
gx_restrict_CIEDEF(gs_client_color * pcc, const gs_color_space * pcs)
345
0
{
346
0
    const gs_cie_def *pcie = pcs->params.def;
347
348
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeDEF.ranges[0]);
349
0
    cie_restrict(&pcc->paint.values[1], &pcie->RangeDEF.ranges[1]);
350
0
    cie_restrict(&pcc->paint.values[2], &pcie->RangeDEF.ranges[2]);
351
0
}
352
void
353
gx_restrict_CIEABC(gs_client_color * pcc, const gs_color_space * pcs)
354
0
{
355
0
    const gs_cie_abc *pcie = pcs->params.abc;
356
357
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeABC.ranges[0]);
358
0
    cie_restrict(&pcc->paint.values[1], &pcie->RangeABC.ranges[1]);
359
0
    cie_restrict(&pcc->paint.values[2], &pcie->RangeABC.ranges[2]);
360
0
}
361
void
362
gx_restrict_CIEA(gs_client_color * pcc, const gs_color_space * pcs)
363
0
{
364
0
    const gs_cie_a *pcie = pcs->params.a;
365
366
0
    cie_restrict(&pcc->paint.values[0], &pcie->RangeA);
367
0
}
368
369
/* ================ Table setup ================ */
370
371
/* ------ Install a CIE color space ------ */
372
373
static void cie_cache_mult(gx_cie_vector_cache *, const gs_vector3 *,
374
                            const cie_cache_floats *, double);
375
static bool cie_cache_mult3(gx_cie_vector_cache3_t *,
376
                             const gs_matrix3 *, double);
377
378
int
379
gx_install_cie_abc(gs_cie_abc *pcie, gs_gstate * pgs)
380
0
{
381
0
    if_debug_matrix3("[c]CIE MatrixABC =", &pcie->MatrixABC);
382
0
    cie_matrix_init(&pcie->MatrixABC);
383
0
    CIE_LOAD_CACHE_BODY(pcie->caches.DecodeABC.caches, pcie->RangeABC.ranges,
384
0
                        &pcie->DecodeABC, DecodeABC_default, pcie,
385
0
                        "DecodeABC");
386
0
    gx_cie_load_common_cache(&pcie->common, pgs);
387
0
    gs_cie_abc_complete(pcie);
388
0
    return gs_cie_cs_complete(pgs, true);
389
0
}
390
391
int
392
gx_install_CIEDEFG(gs_color_space * pcs, gs_gstate * pgs)
393
0
{
394
0
    gs_cie_defg *pcie = pcs->params.defg;
395
396
0
    CIE_LOAD_CACHE_BODY(pcie->caches_defg.DecodeDEFG, pcie->RangeDEFG.ranges,
397
0
                        &pcie->DecodeDEFG, DecodeDEFG_default, pcie,
398
0
                        "DecodeDEFG");
399
0
    return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
400
0
}
401
402
int
403
gx_install_CIEDEF(gs_color_space * pcs, gs_gstate * pgs)
404
0
{
405
0
    gs_cie_def *pcie = pcs->params.def;
406
407
0
    CIE_LOAD_CACHE_BODY(pcie->caches_def.DecodeDEF, pcie->RangeDEF.ranges,
408
0
                        &pcie->DecodeDEF, DecodeDEF_default, pcie,
409
0
                        "DecodeDEF");
410
0
    return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
411
0
}
412
413
int
414
gx_install_CIEABC(gs_color_space * pcs, gs_gstate * pgs)
415
0
{
416
0
    return gx_install_cie_abc(pcs->params.abc, pgs);
417
0
}
418
419
int
420
gx_install_CIEA(gs_color_space * pcs, gs_gstate * pgs)
421
0
{
422
0
    gs_cie_a *pcie = pcs->params.a;
423
0
    gs_sample_loop_params_t lp;
424
0
    int i;
425
426
0
    gs_cie_cache_init(&pcie->caches.DecodeA.floats.params, &lp,
427
0
                      &pcie->RangeA, "DecodeA");
428
0
    for (i = 0; i <= lp.N; ++i) {
429
0
        float in = SAMPLE_LOOP_VALUE(i, lp);
430
431
0
        pcie->caches.DecodeA.floats.values[i] = (*pcie->DecodeA)(in, pcie);
432
0
        if_debug3m('C', pgs->memory, "[C]DecodeA[%d] = %g => %g\n",
433
0
                   i, in, pcie->caches.DecodeA.floats.values[i]);
434
0
    }
435
0
    gx_cie_load_common_cache(&pcie->common, pgs);
436
0
    gs_cie_a_complete(pcie);
437
0
    return gs_cie_cs_complete(pgs, true);
438
0
}
439
440
/* Load the common caches when installing the color space. */
441
/* This routine is exported for the benefit of gsicc.c */
442
void
443
gx_cie_load_common_cache(gs_cie_common * pcie, gs_gstate * pgs)
444
0
{
445
0
    if_debug_matrix3("[c]CIE MatrixLMN =", &pcie->MatrixLMN);
446
0
    cie_matrix_init(&pcie->MatrixLMN);
447
0
    CIE_LOAD_CACHE_BODY(pcie->caches.DecodeLMN, pcie->RangeLMN.ranges,
448
0
                        &pcie->DecodeLMN, DecodeLMN_default, pcie,
449
0
                        "DecodeLMN");
450
0
}
451
452
/* Complete loading the common caches. */
453
/* This routine is exported for the benefit of gsicc.c */
454
void
455
gx_cie_common_complete(gs_cie_common *pcie)
456
0
{
457
0
    int i;
458
459
0
    for (i = 0; i < 3; ++i)
460
0
        cache_set_linear(&pcie->caches.DecodeLMN[i].floats);
461
0
}
462
463
/*
464
 * Restrict the DecodeDEF[G] cache according to RangeHIJ[K], and scale to
465
 * the dimensions of Table.
466
 */
467
static void
468
gs_cie_defx_scale(float *values, const gs_range *range, int dim)
469
0
{
470
0
    double scale = (dim - 1.0) / (range->rmax - range->rmin);
471
0
    int i;
472
473
0
    for (i = 0; i < gx_cie_cache_size; ++i) {
474
0
        float value = values[i];
475
476
0
        values[i] =
477
0
            (value <= range->rmin ? 0 :
478
0
             value >= range->rmax ? dim - 1 :
479
0
             (value - range->rmin) * scale);
480
0
    }
481
0
}
482
483
/* Complete loading a CIEBasedDEFG color space. */
484
/* This routine is NOT idempotent. */
485
void
486
gs_cie_defg_complete(gs_cie_defg * pcie)
487
0
{
488
0
    int j;
489
490
0
    for (j = 0; j < 4; ++j)
491
0
        gs_cie_defx_scale(pcie->caches_defg.DecodeDEFG[j].floats.values,
492
0
                          &pcie->RangeHIJK.ranges[j], pcie->Table.dims[j]);
493
0
    gs_cie_abc_complete((gs_cie_abc *)pcie);
494
0
}
495
496
/* Complete loading a CIEBasedDEF color space. */
497
/* This routine is NOT idempotent. */
498
void
499
gs_cie_def_complete(gs_cie_def * pcie)
500
0
{
501
0
    int j;
502
503
0
    for (j = 0; j < 3; ++j)
504
0
        gs_cie_defx_scale(pcie->caches_def.DecodeDEF[j].floats.values,
505
0
                          &pcie->RangeHIJ.ranges[j], pcie->Table.dims[j]);
506
0
    gs_cie_abc_complete((gs_cie_abc *)pcie);
507
0
}
508
509
/* Complete loading a CIEBasedABC color space. */
510
/* This routine is idempotent. */
511
void
512
gs_cie_abc_complete(gs_cie_abc * pcie)
513
0
{
514
0
    cache3_set_linear(&pcie->caches.DecodeABC);
515
0
    pcie->caches.skipABC =
516
0
        cie_cache_mult3(&pcie->caches.DecodeABC, &pcie->MatrixABC,
517
0
                        CACHE_THRESHOLD);
518
0
    gx_cie_common_complete((gs_cie_common *)pcie);
519
0
}
520
521
/* Complete loading a CIEBasedA color space. */
522
/* This routine is idempotent. */
523
void
524
gs_cie_a_complete(gs_cie_a * pcie)
525
0
{
526
0
    cie_cache_mult(&pcie->caches.DecodeA, &pcie->MatrixA,
527
0
                   &pcie->caches.DecodeA.floats,
528
0
                   CACHE_THRESHOLD);
529
0
    cache_set_linear(&pcie->caches.DecodeA.floats);
530
0
    gx_cie_common_complete((gs_cie_common *)pcie);
531
0
}
532
533
/*
534
 * Set the ranges where interpolation is required in a vector cache.
535
 * This procedure is idempotent.
536
 */
537
typedef struct cie_cache_range_temp_s {
538
    cie_cached_value prev;
539
    int imin, imax;
540
} cie_cache_range_temp_t;
541
static inline void
542
check_interpolation_required(cie_cache_range_temp_t *pccr,
543
                             cie_cached_value cur, int i, double threshold)
544
45.4M
{
545
45.4M
    cie_cached_value prev = pccr->prev;
546
547
45.4M
    if (cie_cached_abs(cur - prev) > threshold * min(cie_cached_abs(prev), cie_cached_abs(cur))) {
548
3.86M
        if (i - 1 < pccr->imin)
549
29.5k
            pccr->imin = i - 1;
550
3.86M
        if (i > pccr->imax)
551
3.86M
            pccr->imax = i;
552
3.86M
    }
553
45.4M
    pccr->prev = cur;
554
45.4M
}
555
static void
556
cie_cache_set_interpolation(gx_cie_vector_cache *pcache, double threshold)
557
29.5k
{
558
29.5k
    cie_cached_value base = pcache->vecs.params.base;
559
29.5k
    cie_cached_value factor = pcache->vecs.params.factor;
560
29.5k
    cie_cache_range_temp_t temp[3];
561
29.5k
    int i, j;
562
563
118k
    for (j = 0; j < 3; ++j)
564
88.7k
        temp[j].imin = gx_cie_cache_size, temp[j].imax = -1;
565
29.5k
    temp[0].prev = pcache->vecs.values[0].u;
566
29.5k
    temp[1].prev = pcache->vecs.values[0].v;
567
29.5k
    temp[2].prev = pcache->vecs.values[0].w;
568
569
15.1M
    for (i = 0; i < gx_cie_cache_size; ++i) {
570
15.1M
        check_interpolation_required(&temp[0], pcache->vecs.values[i].u, i,
571
15.1M
                                     threshold);
572
15.1M
        check_interpolation_required(&temp[1], pcache->vecs.values[i].v, i,
573
15.1M
                                     threshold);
574
15.1M
        check_interpolation_required(&temp[2], pcache->vecs.values[i].w, i,
575
15.1M
                                     threshold);
576
15.1M
    }
577
578
118k
    for (j = 0; j < 3; ++j) {
579
88.7k
        pcache->vecs.params.interpolation_ranges[j].rmin =
580
88.7k
            base + (cie_cached_value)((double)temp[j].imin / factor);
581
88.7k
        pcache->vecs.params.interpolation_ranges[j].rmax =
582
88.7k
            base + (cie_cached_value)((double)temp[j].imax / factor);
583
88.7k
        if_debug3('c', "[c]interpolation_ranges[%d] = %g, %g\n", j,
584
88.7k
                  cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmin),
585
88.7k
                  cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmax));
586
88.7k
    }
587
588
29.5k
}
589
590
/*
591
 * Convert a scalar cache to a vector cache by multiplying the scalar
592
 * values by a vector.  Also set the range where interpolation is needed.
593
 * This procedure is idempotent.
594
 */
595
static void
596
cie_cache_mult(gx_cie_vector_cache * pcache, const gs_vector3 * pvec,
597
               const cie_cache_floats * pcf, double threshold)
598
29.5k
{
599
29.5k
    float u = pvec->u, v = pvec->v, w = pvec->w;
600
29.5k
    int i;
601
602
29.5k
    pcache->vecs.params.base = float2cie_cached(pcf->params.base);
603
29.5k
    pcache->vecs.params.factor = float2cie_cached(pcf->params.factor);
604
29.5k
    pcache->vecs.params.limit =
605
29.5k
        float2cie_cached((gx_cie_cache_size - 1) / pcf->params.factor +
606
29.5k
                         pcf->params.base);
607
15.1M
    for (i = 0; i < gx_cie_cache_size; ++i) {
608
15.1M
        float f = pcf->values[i];
609
610
15.1M
        pcache->vecs.values[i].u = float2cie_cached(f * u);
611
15.1M
        pcache->vecs.values[i].v = float2cie_cached(f * v);
612
15.1M
        pcache->vecs.values[i].w = float2cie_cached(f * w);
613
15.1M
    }
614
29.5k
    cie_cache_set_interpolation(pcache, threshold);
615
29.5k
}
616
617
/*
618
 * Set the interpolation ranges in a 3-vector cache, based on the ranges in
619
 * the individual vector caches.  This procedure is idempotent.
620
 */
621
static void
622
cie_cache3_set_interpolation(gx_cie_vector_cache3_t * pvc)
623
9.86k
{
624
9.86k
    int j, k;
625
626
    /* Iterate over output components. */
627
39.4k
    for (j = 0; j < 3; ++j) {
628
        /* Iterate over sub-caches. */
629
29.5k
        cie_interpolation_range_t *p =
630
29.5k
                &pvc->caches[0].vecs.params.interpolation_ranges[j];
631
29.5k
        cie_cached_value rmin = p->rmin, rmax = p->rmax;
632
633
88.7k
        for (k = 1; k < 3; ++k) {
634
59.1k
            p = &pvc->caches[k].vecs.params.interpolation_ranges[j];
635
59.1k
            rmin = min(rmin, p->rmin), rmax = max(rmax, p->rmax);
636
59.1k
        }
637
29.5k
        pvc->interpolation_ranges[j].rmin = rmin;
638
29.5k
        pvc->interpolation_ranges[j].rmax = rmax;
639
29.5k
        if_debug3('c', "[c]Merged interpolation_ranges[%d] = %g, %g\n",
640
29.5k
                  j, rmin, rmax);
641
29.5k
    }
642
9.86k
}
643
644
/*
645
 * Convert 3 scalar caches to vector caches by multiplying by a matrix.
646
 * Return true iff the resulting cache is an identity transformation.
647
 * This procedure is idempotent.
648
 */
649
static bool
650
cie_cache_mult3(gx_cie_vector_cache3_t * pvc, const gs_matrix3 * pmat,
651
                double threshold)
652
9.86k
{
653
9.86k
    cie_cache_mult(&pvc->caches[0], &pmat->cu, &pvc->caches[0].floats, threshold);
654
9.86k
    cie_cache_mult(&pvc->caches[1], &pmat->cv, &pvc->caches[1].floats, threshold);
655
9.86k
    cie_cache_mult(&pvc->caches[2], &pmat->cw, &pvc->caches[2].floats, threshold);
656
9.86k
    cie_cache3_set_interpolation(pvc);
657
9.86k
    return pmat->is_identity & pvc->caches[0].floats.params.is_identity &
658
9.86k
        pvc->caches[1].floats.params.is_identity &
659
9.86k
        pvc->caches[2].floats.params.is_identity;
660
9.86k
}
661
662
/* ------ Install a rendering dictionary ------ */
663
664
bool
665
vector_equal(const gs_vector3 *p1, const gs_vector3 *p2)
666
0
{
667
0
    if (p1->u != p2->u)
668
0
        return false;
669
0
    if (p1->v != p2->v)
670
0
        return false;
671
0
    if (p1->w != p2->w)
672
0
        return false;
673
0
    return true;
674
0
}
675
676
bool
677
matrix_equal(const gs_matrix3 *p1, const gs_matrix3 *p2)
678
0
{
679
0
    if (p1->is_identity != p2->is_identity)
680
0
        return false;
681
0
    if (!vector_equal(&(p1->cu), &(p2->cu)))
682
0
        return false;
683
0
    if (!vector_equal(&(p1->cv), &(p2->cv)))
684
0
        return false;
685
0
    if (!vector_equal(&(p1->cw), &(p2->cw)))
686
0
        return false;
687
0
    return true;
688
0
}
689
690
static bool
691
transform_equal(const gs_cie_transform_proc3 *p1, const gs_cie_transform_proc3 *p2)
692
0
{
693
0
    if (p1->proc != p2->proc)
694
0
        return false;
695
0
    if (p1->proc_data.size != p2->proc_data.size)
696
0
        return false;
697
0
    if (memcmp(p1->proc_data.data, p2->proc_data.data, p1->proc_data.size) != 0)
698
0
        return false;
699
0
    if (p1->driver_name != p2->driver_name)
700
0
        return false;
701
0
    if (p1->proc_name != p2->proc_name)
702
0
        return false;
703
0
    return true;
704
0
}
705
706
bool
707
range_equal(const gs_range3 *p1, const gs_range3 *p2)
708
0
{
709
0
    int k;
710
711
0
    for (k = 0; k < 3; k++) {
712
0
        if (p1->ranges[k].rmax != p2->ranges[k].rmax)
713
0
            return false;
714
0
        if (p1->ranges[k].rmin != p2->ranges[k].rmin)
715
0
            return false;
716
0
    }
717
0
    return true;
718
0
}
719
720
/* setcolorrendering */
721
int
722
gs_setcolorrendering(gs_gstate * pgs, gs_cie_render * pcrd)
723
9.86k
{
724
9.86k
    int code = gs_cie_render_complete(pcrd);
725
9.86k
    const gs_cie_render *pcrd_old = pgs->cie_render;
726
9.86k
    bool joint_ok;
727
728
9.86k
    if (code < 0)
729
0
        return code;
730
9.86k
    if (pcrd_old != 0 && pcrd->id == pcrd_old->id)
731
0
        return 0;   /* detect needless reselecting */
732
9.86k
    joint_ok =
733
9.86k
        pcrd_old != 0 &&
734
9.86k
        vector_equal(&pcrd->points.WhitePoint, &pcrd_old->points.WhitePoint) &&
735
9.86k
        vector_equal(&pcrd->points.BlackPoint, &pcrd_old->points.BlackPoint) &&
736
9.86k
        matrix_equal(&pcrd->MatrixPQR, &pcrd_old->MatrixPQR) &&
737
9.86k
        range_equal(&pcrd->RangePQR, &pcrd_old->RangePQR) &&
738
9.86k
        transform_equal(&pcrd->TransformPQR, &pcrd_old->TransformPQR);
739
9.86k
    rc_assign(pgs->cie_render, pcrd, "gs_setcolorrendering");
740
    /* Initialize the joint caches if needed. */
741
9.86k
    if (!joint_ok)
742
9.86k
        code = gs_cie_cs_complete(pgs, true);
743
9.86k
    gx_unset_dev_color(pgs);
744
9.86k
    return code;
745
9.86k
}
746
747
/* currentcolorrendering */
748
const gs_cie_render *
749
gs_currentcolorrendering(const gs_gstate * pgs)
750
0
{
751
0
    return pgs->cie_render;
752
0
}
753
754
/* Unshare (allocating if necessary) the joint caches. */
755
gx_cie_joint_caches *
756
gx_unshare_cie_caches(gs_gstate * pgs)
757
9.86k
{
758
9.86k
    gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
759
760
9.86k
    rc_unshare_struct(pgs->cie_joint_caches, gx_cie_joint_caches,
761
9.86k
                      &st_joint_caches, pgs->memory,
762
9.86k
                      return 0, "gx_unshare_cie_caches");
763
9.86k
    if (pgs->cie_joint_caches != pjc) {
764
9.86k
        pjc = pgs->cie_joint_caches;
765
9.86k
        pjc->cspace_id = pjc->render_id = gs_no_id;
766
9.86k
        pjc->id_status = pjc->status = CIE_JC_STATUS_BUILT;
767
9.86k
    }
768
9.86k
    return pjc;
769
9.86k
}
770
771
gx_cie_joint_caches *
772
gx_get_cie_caches_ref(gs_gstate * pgs, gs_memory_t * mem)
773
0
{
774
0
    gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
775
776
    /* Take a reference here, to allow for the one that
777
     * rc_unshare_struct might drop if it has to copy it.
778
     * Whatever happens we will have taken 1 net new
779
     * reference which we return to the caller. */
780
0
    rc_increment(pgs->cie_joint_caches);
781
0
    rc_unshare_struct(pjc, gx_cie_joint_caches,
782
0
                      &st_joint_caches, mem,
783
0
                      return NULL, "gx_unshare_cie_caches");
784
0
    return pjc;
785
0
}
786
787
/* Compute the parameters for loading a cache, setting base and factor. */
788
/* This procedure is idempotent. */
789
void
790
gs_cie_cache_init(cie_cache_params * pcache, gs_sample_loop_params_t * pslp,
791
                  const gs_range * domain, client_name_t cname)
792
59.1k
{
793
    /*
794
      We need to map the values in the range [domain->rmin..domain->rmax].
795
      However, if rmin < 0 < rmax and the function is non-linear, this can
796
      lead to anomalies at zero, which is the default value for CIE colors.
797
      The "correct" way to approach this is to run the mapping functions on
798
      demand, but we don't want to deal with the complexities of the
799
      callbacks this would involve (especially in the middle of rendering
800
      images); instead, we adjust the range so that zero maps precisely to a
801
      cache slot.  Define:
802
803
      A = domain->rmin;
804
      B = domain->rmax;
805
      N = gx_cie_cache_size - 1;
806
807
      R = B - A;
808
      h(v) = N * (v - A) / R;   // the index of v in the cache
809
      X = h(0).
810
811
      If X is not an integer, we can decrease A and/increase B to make it
812
      one.  Let A' and B' be the adjusted values of A and B respectively,
813
      and let K be the integer derived from X (either floor(X) or ceil(X)).
814
      Define
815
816
      f(K) = (K * B' + (N - K) * A') / N).
817
818
      We want f(K) = 0.  This occurs precisely when, for any real number
819
      C != 0,
820
821
      A' = -K * C;
822
      B' = (N - K) * C.
823
824
      In order to ensure A' <= A and B' >= B, we require
825
826
      C >= -A / K;
827
      C >= B / (N - K).
828
829
      Since A' and B' must be exactly representable as floats, we round C
830
      upward to ensure that it has no more than M mantissa bits, where
831
832
      M = ARCH_FLOAT_MANTISSA_BITS - ceil(log2(N)).
833
    */
834
59.1k
    float A = domain->rmin, B = domain->rmax;
835
59.1k
    double R = B - A, delta;
836
295k
#define NN (gx_cie_cache_size - 1) /* 'N' is a member name, see end of proc */
837
236k
#define N NN
838
59.1k
#define CEIL_LOG2_N CIE_LOG2_CACHE_SIZE
839
840
    /* Adjust the range if necessary. */
841
59.1k
    if (A < 0 && B >= 0) {
842
29.5k
        const double X = -N * A / R; /* know X > 0 */
843
        /* Choose K to minimize range expansion. */
844
29.5k
        const int K = (int)(A + B < 0 ? floor(X) : ceil(X)); /* know 0 < K < N */
845
29.5k
        const int M = ARCH_FLOAT_MANTISSA_BITS - CEIL_LOG2_N;
846
29.5k
        int cexp;
847
848
29.5k
        double Ca, Cb;
849
29.5k
        double C;
850
29.5k
        double cfrac;
851
852
29.5k
        if (K != 0)
853
29.5k
            Ca = -A / K;
854
0
        else
855
0
            Ca = 0;
856
857
29.5k
        if (N != K)
858
29.5k
            Cb = B / (N - K); /* know Ca, Cb > 0 */
859
0
        else
860
0
            Cb = 0;
861
862
29.5k
        C = max(Ca, Cb); /* know C > 0 */
863
29.5k
        cfrac = frexp(C, &cexp);
864
865
29.5k
        if_debug4('c', "[c]adjusting cache_init(%8g, %8g), X = %8g, K = %d:\n",
866
29.5k
                  A, B, X, K);
867
        /* Round C to no more than M significant bits.  See above. */
868
29.5k
        C = ldexp(ceil(ldexp(cfrac, M)), cexp - M);
869
        /* Finally, compute A' and B'. */
870
29.5k
        A = -K * C;
871
29.5k
        B = (N - K) * C;
872
29.5k
        if_debug2('c', "[c]  => %8g, %8g\n", A, B);
873
29.5k
        R = B - A;
874
29.5k
    }
875
59.1k
    delta = R / N;
876
59.1k
#ifdef CIE_CACHE_INTERPOLATE
877
59.1k
    pcache->base = A;   /* no rounding */
878
#else
879
    pcache->base = A - delta / 2; /* so lookup will round */
880
#endif
881
    /*
882
     * If size of the domain is zero, then use 1.0 as the scaling
883
     * factor.  This prevents divide by zero errors in later calculations.
884
     * This should only occurs with zero matrices.  It does occur with
885
     * Genoa test file 050-01.ps.
886
     */
887
59.1k
    pcache->factor = (any_abs(delta) < 1e-30 ? 1.0 : N / R);
888
59.1k
    if_debug4('c', "[c]cache %s "PRI_INTPTR" base=%g, factor=%g\n",
889
59.1k
              (const char *)cname, (intptr_t)pcache,
890
59.1k
              pcache->base, pcache->factor);
891
59.1k
    pslp->A = A;
892
59.1k
    pslp->B = B;
893
59.1k
#undef N
894
59.1k
    pslp->N = NN;
895
59.1k
#undef NN
896
59.1k
}
897
898
/* ------ Complete a rendering structure ------ */
899
900
/*
901
 * Compute the derived values in a CRD that don't involve the cached
902
 * procedure values.  This procedure is idempotent.
903
 */
904
static void cie_transform_range3(const gs_range3 *, const gs_matrix3 *,
905
                                  gs_range3 *);
906
int
907
gs_cie_render_init(gs_cie_render * pcrd)
908
9.86k
{
909
9.86k
    gs_matrix3 PQR_inverse;
910
911
9.86k
    if (pcrd->status >= CIE_RENDER_STATUS_INITED)
912
0
        return 0;   /* init already done */
913
9.86k
    if_debug_matrix3("[c]CRD MatrixLMN =", &pcrd->MatrixLMN);
914
9.86k
    cie_matrix_init(&pcrd->MatrixLMN);
915
9.86k
    if_debug_matrix3("[c]CRD MatrixABC =", &pcrd->MatrixABC);
916
9.86k
    cie_matrix_init(&pcrd->MatrixABC);
917
9.86k
    if_debug_matrix3("[c]CRD MatrixPQR =", &pcrd->MatrixPQR);
918
9.86k
    cie_matrix_init(&pcrd->MatrixPQR);
919
9.86k
    cie_invert3(&pcrd->MatrixPQR, &PQR_inverse);
920
9.86k
    cie_matrix_mult3(&pcrd->MatrixLMN, &PQR_inverse,
921
9.86k
                     &pcrd->MatrixPQR_inverse_LMN);
922
9.86k
    cie_transform_range3(&pcrd->RangePQR, &pcrd->MatrixPQR_inverse_LMN,
923
9.86k
                         &pcrd->DomainLMN);
924
9.86k
    cie_transform_range3(&pcrd->RangeLMN, &pcrd->MatrixABC,
925
9.86k
                         &pcrd->DomainABC);
926
9.86k
    cie_mult3(&pcrd->points.WhitePoint, &pcrd->MatrixPQR, &pcrd->wdpqr);
927
9.86k
    cie_mult3(&pcrd->points.BlackPoint, &pcrd->MatrixPQR, &pcrd->bdpqr);
928
9.86k
    pcrd->status = CIE_RENDER_STATUS_INITED;
929
9.86k
    return 0;
930
9.86k
}
931
932
/*
933
 * Sample the EncodeLMN, EncodeABC, and RenderTableT CRD procedures, and
934
 * load the caches.  This procedure is idempotent.
935
 */
936
int
937
gs_cie_render_sample(gs_cie_render * pcrd)
938
9.86k
{
939
9.86k
    int code;
940
941
9.86k
    if (pcrd->status >= CIE_RENDER_STATUS_SAMPLED)
942
0
        return 0;   /* sampling already done */
943
9.86k
    code = gs_cie_render_init(pcrd);
944
9.86k
    if (code < 0)
945
0
        return code;
946
9.86k
    CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeLMN.caches, pcrd->DomainLMN.ranges,
947
9.86k
                        &pcrd->EncodeLMN, Encode_default, pcrd, "EncodeLMN");
948
9.86k
    cache3_set_linear(&pcrd->caches.EncodeLMN);
949
9.86k
    CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeABC, pcrd->DomainABC.ranges,
950
9.86k
                        &pcrd->EncodeABC, Encode_default, pcrd, "EncodeABC");
951
9.86k
    if (pcrd->RenderTable.lookup.table != 0) {
952
0
        int i, j, m = pcrd->RenderTable.lookup.m;
953
0
        gs_sample_loop_params_t lp;
954
0
        bool is_identity = true;
955
956
0
        for (j = 0; j < m; j++) {
957
0
            gs_cie_cache_init(&pcrd->caches.RenderTableT[j].fracs.params,
958
0
                              &lp, &Range3_default.ranges[0],
959
0
                              "RenderTableT");
960
0
            is_identity &= pcrd->RenderTable.T.procs[j] ==
961
0
                RenderTableT_default.procs[j];
962
0
        }
963
0
        pcrd->caches.RenderTableT_is_identity = is_identity;
964
        /*
965
         * Unfortunately, we defined the first argument of the RenderTable
966
         * T procedures as being a byte, limiting the number of distinct
967
         * cache entries to 256 rather than gx_cie_cache_size.
968
         * We confine this decision to this loop, rather than propagating
969
         * it to the procedures that use the cached data, so that we can
970
         * change it more easily at some future time.
971
         */
972
0
        for (i = 0; i < gx_cie_cache_size; i++) {
973
0
#if gx_cie_log2_cache_size >= 8
974
0
            byte value = i >> (gx_cie_log2_cache_size - 8);
975
#else
976
            byte value = (i << (8 - gx_cie_log2_cache_size)) +
977
                (i >> (gx_cie_log2_cache_size * 2 - 8));
978
#endif
979
0
            for (j = 0; j < m; j++) {
980
0
                pcrd->caches.RenderTableT[j].fracs.values[i] =
981
0
                    (*pcrd->RenderTable.T.procs[j])(value, pcrd);
982
0
                if_debug3('C', "[C]RenderTableT[%d,%d] = %g\n",
983
0
                          i, j,
984
0
                          frac2float(pcrd->caches.RenderTableT[j].fracs.values[i]));
985
0
            }
986
0
        }
987
0
    }
988
9.86k
    pcrd->status = CIE_RENDER_STATUS_SAMPLED;
989
9.86k
    return 0;
990
9.86k
}
991
992
/* Transform a set of ranges. */
993
static void
994
cie_transform_range(const gs_range3 * in, double mu, double mv, double mw,
995
                    gs_range * out)
996
59.1k
{
997
59.1k
    float umin = mu * in->ranges[0].rmin, umax = mu * in->ranges[0].rmax;
998
59.1k
    float vmin = mv * in->ranges[1].rmin, vmax = mv * in->ranges[1].rmax;
999
59.1k
    float wmin = mw * in->ranges[2].rmin, wmax = mw * in->ranges[2].rmax;
1000
59.1k
    float temp;
1001
1002
59.1k
    if (umin > umax)
1003
19.7k
        temp = umin, umin = umax, umax = temp;
1004
59.1k
    if (vmin > vmax)
1005
19.7k
        temp = vmin, vmin = vmax, vmax = temp;
1006
59.1k
    if (wmin > wmax)
1007
19.7k
        temp = wmin, wmin = wmax, wmax = temp;
1008
59.1k
    out->rmin = umin + vmin + wmin;
1009
59.1k
    out->rmax = umax + vmax + wmax;
1010
59.1k
}
1011
static void
1012
cie_transform_range3(const gs_range3 * in, const gs_matrix3 * mat,
1013
                     gs_range3 * out)
1014
19.7k
{
1015
19.7k
    cie_transform_range(in, mat->cu.u, mat->cv.u, mat->cw.u,
1016
19.7k
                        &out->ranges[0]);
1017
19.7k
    cie_transform_range(in, mat->cu.v, mat->cv.v, mat->cw.v,
1018
19.7k
                        &out->ranges[1]);
1019
19.7k
    cie_transform_range(in, mat->cu.w, mat->cv.w, mat->cw.w,
1020
19.7k
                        &out->ranges[2]);
1021
19.7k
}
1022
1023
/*
1024
 * Finish preparing a CRD for installation, by restricting and/or
1025
 * transforming the cached procedure values.
1026
 * This procedure is idempotent.
1027
 */
1028
int
1029
gs_cie_render_complete(gs_cie_render * pcrd)
1030
9.86k
{
1031
9.86k
    int code;
1032
1033
9.86k
    if (pcrd->status >= CIE_RENDER_STATUS_COMPLETED)
1034
0
        return 0;   /* completion already done */
1035
9.86k
    code = gs_cie_render_sample(pcrd);
1036
9.86k
    if (code < 0)
1037
0
        return code;
1038
    /*
1039
     * Since range restriction happens immediately after
1040
     * the cache lookup, we can save a step by restricting
1041
     * the values in the cache entries.
1042
     *
1043
     * If there is no lookup table, we want the final ABC values
1044
     * to be fracs; if there is a table, we want them to be
1045
     * appropriately scaled ints.
1046
     */
1047
9.86k
    pcrd->MatrixABCEncode = pcrd->MatrixABC;
1048
9.86k
    {
1049
9.86k
        int c;
1050
9.86k
        double f;
1051
1052
39.4k
        for (c = 0; c < 3; c++) {
1053
29.5k
            gx_cie_float_fixed_cache *pcache = &pcrd->caches.EncodeABC[c];
1054
1055
29.5k
            cie_cache_restrict(&pcrd->caches.EncodeLMN.caches[c].floats,
1056
29.5k
                               &pcrd->RangeLMN.ranges[c]);
1057
29.5k
            cie_cache_restrict(&pcrd->caches.EncodeABC[c].floats,
1058
29.5k
                               &pcrd->RangeABC.ranges[c]);
1059
29.5k
            if (pcrd->RenderTable.lookup.table == 0) {
1060
29.5k
                cie_cache_restrict(&pcache->floats,
1061
29.5k
                                   &Range3_default.ranges[0]);
1062
29.5k
                gs_cie_cache_to_fracs(&pcache->floats, &pcache->fixeds.fracs);
1063
29.5k
                pcache->fixeds.fracs.params.is_identity = false;
1064
29.5k
            } else {
1065
0
                int i;
1066
0
                int n = pcrd->RenderTable.lookup.dims[c];
1067
1068
0
#ifdef CIE_RENDER_TABLE_INTERPOLATE
1069
0
#  define SCALED_INDEX(f, n, itemp)\
1070
0
     RESTRICTED_INDEX(f * (1 << _cie_interpolate_bits),\
1071
0
                      (n) << _cie_interpolate_bits, itemp)
1072
#else
1073
                int m = pcrd->RenderTable.lookup.m;
1074
                int k =
1075
                    (c == 0 ? 1 : c == 1 ?
1076
                     m * pcrd->RenderTable.lookup.dims[2] : m);
1077
#  define SCALED_INDEX(f, n, itemp)\
1078
     (RESTRICTED_INDEX(f, n, itemp) * k)
1079
#endif
1080
0
                const gs_range *prange = pcrd->RangeABC.ranges + c;
1081
0
                double scale = (n - 1) / (prange->rmax - prange->rmin);
1082
1083
0
                for (i = 0; i < gx_cie_cache_size; ++i) {
1084
0
                    float v =
1085
0
                        (pcache->floats.values[i] - prange->rmin) * scale
1086
#ifndef CIE_RENDER_TABLE_INTERPOLATE
1087
                        + 0.5
1088
#endif
1089
0
                        ;
1090
0
                    int itemp;
1091
1092
0
                    if_debug5('c',
1093
0
                              "[c]cache[%d][%d] = %g => %g => %d\n",
1094
0
                              c, i, pcache->floats.values[i], v,
1095
0
                              SCALED_INDEX(v, n, itemp));
1096
0
                    pcache->fixeds.ints.values[i] =
1097
0
                        SCALED_INDEX(v, n, itemp);
1098
0
                }
1099
0
                pcache->fixeds.ints.params = pcache->floats.params;
1100
0
                pcache->fixeds.ints.params.is_identity = false;
1101
0
#undef SCALED_INDEX
1102
0
            }
1103
29.5k
        }
1104
        /* Fold the scaling of the EncodeABC cache index */
1105
        /* into MatrixABC. */
1106
9.86k
#define MABC(i, t)\
1107
29.5k
  f = pcrd->caches.EncodeABC[i].floats.params.factor;\
1108
29.5k
  pcrd->MatrixABCEncode.cu.t *= f;\
1109
29.5k
  pcrd->MatrixABCEncode.cv.t *= f;\
1110
29.5k
  pcrd->MatrixABCEncode.cw.t *= f;\
1111
29.5k
  pcrd->EncodeABC_base[i] =\
1112
29.5k
    float2cie_cached(pcrd->caches.EncodeABC[i].floats.params.base * f)
1113
9.86k
        MABC(0, u);
1114
9.86k
        MABC(1, v);
1115
9.86k
        MABC(2, w);
1116
9.86k
#undef MABC
1117
9.86k
        pcrd->MatrixABCEncode.is_identity = 0;
1118
9.86k
    }
1119
9.86k
    cie_cache_mult3(&pcrd->caches.EncodeLMN, &pcrd->MatrixABCEncode,
1120
9.86k
                    CACHE_THRESHOLD);
1121
9.86k
    pcrd->status = CIE_RENDER_STATUS_COMPLETED;
1122
9.86k
    return 0;
1123
9.86k
}
1124
1125
/* Apply a range restriction to a cache. */
1126
static void
1127
cie_cache_restrict(cie_cache_floats * pcache, const gs_range * prange)
1128
88.7k
{
1129
88.7k
    int i;
1130
1131
45.5M
    for (i = 0; i < gx_cie_cache_size; i++) {
1132
45.4M
        float v = pcache->values[i];
1133
1134
45.4M
        if (v < prange->rmin)
1135
4.77M
            pcache->values[i] = prange->rmin;
1136
40.6M
        else if (v > prange->rmax)
1137
6.50M
            pcache->values[i] = prange->rmax;
1138
45.4M
    }
1139
88.7k
}
1140
1141
/* Convert a cache from floats to fracs. */
1142
/* Note that the two may be aliased. */
1143
void
1144
gs_cie_cache_to_fracs(const cie_cache_floats *pfloats, cie_cache_fracs *pfracs)
1145
29.5k
{
1146
29.5k
    int i;
1147
1148
    /* Loop from bottom to top so that we don't */
1149
    /* overwrite elements before they're used. */
1150
15.1M
    for (i = 0; i < gx_cie_cache_size; ++i)
1151
15.1M
        pfracs->values[i] = float2frac(pfloats->values[i]);
1152
29.5k
    pfracs->params = pfloats->params;
1153
29.5k
}
1154
1155
/* ------ Fill in the joint cache ------ */
1156
1157
/* If the current color space is a CIE space, or has a CIE base space, */
1158
/* return a pointer to the common part of the space; otherwise return 0. */
1159
static const gs_cie_common *
1160
cie_cs_common_abc(const gs_color_space *pcs_orig, const gs_cie_abc **ppabc)
1161
9.86k
{
1162
9.86k
    const gs_color_space *pcs = pcs_orig;
1163
1164
9.86k
    *ppabc = 0;
1165
9.86k
    do {
1166
9.86k
        switch (pcs->type->index) {
1167
0
        case gs_color_space_index_CIEDEF:
1168
0
            *ppabc = (const gs_cie_abc *)pcs->params.def;
1169
0
            return &pcs->params.def->common;
1170
0
        case gs_color_space_index_CIEDEFG:
1171
0
            *ppabc = (const gs_cie_abc *)pcs->params.defg;
1172
0
            return &pcs->params.defg->common;
1173
0
        case gs_color_space_index_CIEABC:
1174
0
            *ppabc = pcs->params.abc;
1175
0
            return &pcs->params.abc->common;
1176
0
        case gs_color_space_index_CIEA:
1177
0
            return &pcs->params.a->common;
1178
9.86k
        default:
1179
9.86k
            pcs = gs_cspace_base_space(pcs);
1180
9.86k
            break;
1181
9.86k
        }
1182
9.86k
    } while (pcs != 0);
1183
1184
9.86k
    return 0;
1185
9.86k
}
1186
const gs_cie_common *
1187
gs_cie_cs_common(const gs_gstate * pgs)
1188
9.86k
{
1189
9.86k
    const gs_cie_abc *ignore_pabc;
1190
1191
9.86k
    return cie_cs_common_abc(gs_currentcolorspace_inline(pgs), &ignore_pabc);
1192
9.86k
}
1193
1194
/*
1195
 * Mark the joint caches as needing completion.  This is done lazily,
1196
 * when a color is being mapped.  However, make sure the joint caches
1197
 * exist now.
1198
 */
1199
int
1200
gs_cie_cs_complete(gs_gstate * pgs, bool init)
1201
9.86k
{
1202
9.86k
    gx_cie_joint_caches *pjc = gx_unshare_cie_caches(pgs);
1203
1204
9.86k
    if (pjc == 0)
1205
0
        return_error(gs_error_VMerror);
1206
9.86k
    pjc->status = (init ? CIE_JC_STATUS_BUILT : CIE_JC_STATUS_INITED);
1207
9.86k
    return 0;
1208
9.86k
}
1209
/* Actually complete the joint caches. */
1210
int
1211
gs_cie_jc_complete(const gs_gstate *pgs, const gs_color_space *pcs)
1212
0
{
1213
0
    const gs_cie_abc *pabc;
1214
0
    const gs_cie_common *common = cie_cs_common_abc(pcs, &pabc);
1215
0
    gs_cie_render *pcrd = pgs->cie_render;
1216
0
    gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
1217
1218
0
    if (pjc->cspace_id == pcs->id &&
1219
0
        pjc->render_id == pcrd->id)
1220
0
        pjc->status = pjc->id_status;
1221
0
    switch (pjc->status) {
1222
0
    case CIE_JC_STATUS_BUILT: {
1223
0
        int code = cie_joint_caches_init(pjc, common, pcrd);
1224
1225
0
        if (code < 0)
1226
0
            return code;
1227
0
    }
1228
        /* falls through */
1229
0
    case CIE_JC_STATUS_INITED:
1230
0
        cie_joint_caches_complete(pjc, common, pabc, pcrd);
1231
0
        pjc->cspace_id = pcs->id;
1232
0
        pjc->render_id = pcrd->id;
1233
0
        pjc->id_status = pjc->status = CIE_JC_STATUS_COMPLETED;
1234
        /* falls through */
1235
0
    case CIE_JC_STATUS_COMPLETED:
1236
0
        break;
1237
0
    }
1238
0
    return 0;
1239
0
}
1240
1241
/*
1242
 * Compute the source and destination WhitePoint and BlackPoint for
1243
 * the TransformPQR procedure.
1244
 */
1245
int
1246
gs_cie_compute_points_sd(gx_cie_joint_caches *pjc,
1247
                         const gs_cie_common * pcie,
1248
                         const gs_cie_render * pcrd)
1249
0
{
1250
0
    gs_cie_wbsd *pwbsd = &pjc->points_sd;
1251
1252
0
    pwbsd->ws.xyz = pcie->points.WhitePoint;
1253
0
    cie_mult3(&pwbsd->ws.xyz, &pcrd->MatrixPQR, &pwbsd->ws.pqr);
1254
0
    pwbsd->bs.xyz = pcie->points.BlackPoint;
1255
0
    cie_mult3(&pwbsd->bs.xyz, &pcrd->MatrixPQR, &pwbsd->bs.pqr);
1256
0
    pwbsd->wd.xyz = pcrd->points.WhitePoint;
1257
0
    pwbsd->wd.pqr = pcrd->wdpqr;
1258
0
    pwbsd->bd.xyz = pcrd->points.BlackPoint;
1259
0
    pwbsd->bd.pqr = pcrd->bdpqr;
1260
0
    return 0;
1261
0
}
1262
1263
/*
1264
 * Sample the TransformPQR procedure for the joint caches.
1265
 * This routine is idempotent.
1266
 */
1267
static int
1268
cie_joint_caches_init(gx_cie_joint_caches * pjc,
1269
                      const gs_cie_common * pcie,
1270
                      gs_cie_render * pcrd)
1271
0
{
1272
0
    bool is_identity;
1273
0
    int j;
1274
1275
0
    gs_cie_compute_points_sd(pjc, pcie, pcrd);
1276
    /*
1277
     * If a client pre-loaded the cache, we can't adjust the range.
1278
     * ****** WRONG ******
1279
     */
1280
0
    if (pcrd->TransformPQR.proc == TransformPQR_from_cache.proc)
1281
0
        return 0;
1282
0
    is_identity = pcrd->TransformPQR.proc == TransformPQR_default.proc;
1283
0
    for (j = 0; j < 3; j++) {
1284
0
        int i;
1285
0
        gs_sample_loop_params_t lp;
1286
1287
0
        gs_cie_cache_init(&pjc->TransformPQR.caches[j].floats.params, &lp,
1288
0
                          &pcrd->RangePQR.ranges[j], "TransformPQR");
1289
0
        for (i = 0; i <= lp.N; ++i) {
1290
0
            float in = SAMPLE_LOOP_VALUE(i, lp);
1291
0
            float out;
1292
0
            int code = (*pcrd->TransformPQR.proc)(j, in, &pjc->points_sd,
1293
0
                                                  pcrd, &out);
1294
1295
0
            if (code < 0)
1296
0
                return code;
1297
0
            pjc->TransformPQR.caches[j].floats.values[i] = out;
1298
0
            if_debug4('C', "[C]TransformPQR[%d,%d] = %g => %g\n",
1299
0
                      j, i, in, out);
1300
0
        }
1301
0
        pjc->TransformPQR.caches[j].floats.params.is_identity = is_identity;
1302
0
    }
1303
0
    return 0;
1304
0
}
1305
1306
/*
1307
 * Complete the loading of the joint caches.
1308
 * This routine is idempotent.
1309
 */
1310
static void
1311
cie_joint_caches_complete(gx_cie_joint_caches * pjc,
1312
                          const gs_cie_common * pcie,
1313
                          const gs_cie_abc * pabc /* NULL if CIEA */,
1314
                          const gs_cie_render * pcrd)
1315
0
{
1316
0
    gs_matrix3 mat3, mat2;
1317
0
    gs_matrix3 MatrixLMN_PQR;
1318
0
    int j;
1319
1320
0
    pjc->remap_finish = gx_cie_real_remap_finish;
1321
1322
    /*
1323
     * We number the pipeline steps as follows:
1324
     *   1 - DecodeABC/MatrixABC
1325
     *   2 - DecodeLMN/MatrixLMN/MatrixPQR
1326
     *   3 - TransformPQR/MatrixPQR'/MatrixLMN
1327
     *   4 - EncodeLMN/MatrixABC
1328
     *   5 - EncodeABC, RenderTable (we don't do anything with this here)
1329
     * We work from back to front, combining steps where possible.
1330
     * Currently we only combine steps if a procedure is the identity
1331
     * transform, but we could do it whenever the procedure is linear.
1332
     * A project for another day....
1333
     */
1334
1335
        /* Step 4 */
1336
1337
0
#ifdef OPTIMIZE_CIE_MAPPING
1338
0
    if (pcrd->caches.EncodeLMN.caches[0].floats.params.is_identity &&
1339
0
        pcrd->caches.EncodeLMN.caches[1].floats.params.is_identity &&
1340
0
        pcrd->caches.EncodeLMN.caches[2].floats.params.is_identity
1341
0
        ) {
1342
        /* Fold step 4 into step 3. */
1343
0
        if_debug0('c', "[c]EncodeLMN is identity, folding MatrixABC(Encode) into MatrixPQR'+LMN.\n");
1344
0
        cie_matrix_mult3(&pcrd->MatrixABCEncode, &pcrd->MatrixPQR_inverse_LMN,
1345
0
                         &mat3);
1346
0
        pjc->skipEncodeLMN = true;
1347
0
    } else
1348
0
#endif /* OPTIMIZE_CIE_MAPPING */
1349
0
    {
1350
0
        if_debug0('c', "[c]EncodeLMN is not identity.\n");
1351
0
        mat3 = pcrd->MatrixPQR_inverse_LMN;
1352
0
        pjc->skipEncodeLMN = false;
1353
0
    }
1354
1355
        /* Step 3 */
1356
1357
0
    cache3_set_linear(&pjc->TransformPQR);
1358
0
    cie_matrix_mult3(&pcrd->MatrixPQR, &pcie->MatrixLMN,
1359
0
                     &MatrixLMN_PQR);
1360
1361
0
#ifdef OPTIMIZE_CIE_MAPPING
1362
0
    if (pjc->TransformPQR.caches[0].floats.params.is_identity &
1363
0
        pjc->TransformPQR.caches[1].floats.params.is_identity &
1364
0
        pjc->TransformPQR.caches[2].floats.params.is_identity
1365
0
        ) {
1366
        /* Fold step 3 into step 2. */
1367
0
        if_debug0('c', "[c]TransformPQR is identity, folding MatrixPQR'+LMN into MatrixLMN+PQR.\n");
1368
0
        cie_matrix_mult3(&mat3, &MatrixLMN_PQR, &mat2);
1369
0
        pjc->skipPQR = true;
1370
0
    } else
1371
0
#endif /* OPTIMIZE_CIE_MAPPING */
1372
0
    {
1373
0
        if_debug0('c', "[c]TransformPQR is not identity.\n");
1374
0
        mat2 = MatrixLMN_PQR;
1375
0
        for (j = 0; j < 3; j++) {
1376
0
            cie_cache_restrict(&pjc->TransformPQR.caches[j].floats,
1377
0
                               &pcrd->RangePQR.ranges[j]);
1378
0
        }
1379
0
        cie_cache_mult3(&pjc->TransformPQR, &mat3, CACHE_THRESHOLD);
1380
0
        pjc->skipPQR = false;
1381
0
    }
1382
1383
        /* Steps 2 & 1 */
1384
1385
0
#ifdef OPTIMIZE_CIE_MAPPING
1386
0
    if (pcie->caches.DecodeLMN[0].floats.params.is_identity &
1387
0
        pcie->caches.DecodeLMN[1].floats.params.is_identity &
1388
0
        pcie->caches.DecodeLMN[2].floats.params.is_identity
1389
0
        ) {
1390
0
        if_debug0('c', "[c]DecodeLMN is identity, folding MatrixLMN+PQR into MatrixABC.\n");
1391
0
        if (!pabc) {
1392
0
            pjc->skipDecodeLMN = mat2.is_identity;
1393
0
            pjc->skipDecodeABC = false;
1394
0
            if (!pjc->skipDecodeLMN) {
1395
0
                for (j = 0; j < 3; j++) {
1396
0
                    cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
1397
0
                                   &pcie->caches.DecodeLMN[j].floats,
1398
0
                                   CACHE_THRESHOLD);
1399
0
                }
1400
0
                cie_cache3_set_interpolation(&pjc->DecodeLMN);
1401
0
            }
1402
0
        } else {
1403
            /*
1404
             * Fold step 2 into step 1.  This is a little different because
1405
             * the data for step 1 are in the color space structure.
1406
             */
1407
0
            gs_matrix3 mat1;
1408
1409
0
            cie_matrix_mult3(&mat2, &pabc->MatrixABC, &mat1);
1410
0
            for (j = 0; j < 3; j++) {
1411
0
                cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat1.cu + j,
1412
0
                               &pabc->caches.DecodeABC.caches[j].floats,
1413
0
                               CACHE_THRESHOLD);
1414
0
            }
1415
0
            cie_cache3_set_interpolation(&pjc->DecodeLMN);
1416
0
            pjc->skipDecodeLMN = false;
1417
0
            pjc->skipDecodeABC = true;
1418
0
        }
1419
0
    } else
1420
0
#endif /* OPTIMIZE_CIE_MAPPING */
1421
0
    {
1422
0
        if_debug0('c', "[c]DecodeLMN is not identity.\n");
1423
0
        for (j = 0; j < 3; j++) {
1424
0
            cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
1425
0
                           &pcie->caches.DecodeLMN[j].floats,
1426
0
                           CACHE_THRESHOLD);
1427
0
        }
1428
0
        cie_cache3_set_interpolation(&pjc->DecodeLMN);
1429
0
        pjc->skipDecodeLMN = false;
1430
0
        pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
1431
0
    }
1432
1433
0
}
1434
1435
/*
1436
 * Initialize (just enough of) an gs_gstate so that "concretizing" colors
1437
 * using this gs_gstate will do only the CIE->XYZ mapping.  This is a
1438
 * semi-hack for the PDF writer.
1439
 */
1440
int
1441
gx_cie_to_xyz_alloc(gs_gstate **ppgs, const gs_color_space *pcs,
1442
                    gs_memory_t *mem)
1443
0
{
1444
    /*
1445
     * In addition to the gs_gstate itself, we need the joint caches.
1446
     */
1447
0
    gs_gstate *pgs =
1448
0
        gs_alloc_struct(mem, gs_gstate, &st_gs_gstate,
1449
0
                        "gx_cie_to_xyz_alloc(gs_gstate)");
1450
0
    gx_cie_joint_caches *pjc;
1451
0
    const gs_cie_abc *pabc;
1452
0
    const gs_cie_common *pcie = cie_cs_common_abc(pcs, &pabc);
1453
0
    int j;
1454
1455
0
    if (pgs == 0)
1456
0
        return_error(gs_error_VMerror);
1457
0
    memset(pgs, 0, sizeof(*pgs)); /* mostly paranoia */
1458
0
    pgs->memory = mem;
1459
0
    GS_STATE_INIT_VALUES(pgs, 1.0);
1460
0
    gs_gstate_initialize(pgs, mem);
1461
1462
0
    pjc = gs_alloc_struct(mem, gx_cie_joint_caches, &st_joint_caches,
1463
0
                          "gx_cie_to_xyz_free(joint caches)");
1464
0
    if (pjc == 0) {
1465
0
        gs_free_object(mem, pgs, "gx_cie_to_xyz_alloc(gs_gstate)");
1466
0
        return_error(gs_error_VMerror);
1467
0
    }
1468
0
    rc_init(pjc, mem, 1);
1469
1470
    /*
1471
     * Perform an abbreviated version of cie_joint_caches_complete.
1472
     * Don't bother with any optimizations.
1473
     */
1474
0
    for (j = 0; j < 3; j++) {
1475
0
        cie_cache_mult(&pjc->DecodeLMN.caches[j], &pcie->MatrixLMN.cu + j,
1476
0
                       &pcie->caches.DecodeLMN[j].floats,
1477
0
                       CACHE_THRESHOLD);
1478
0
    }
1479
0
    cie_cache3_set_interpolation(&pjc->DecodeLMN);
1480
0
    pjc->skipDecodeLMN = false;
1481
0
    pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
1482
    /* Mark the joint caches as completed. */
1483
0
    pjc->remap_finish = gx_cie_xyz_remap_finish;
1484
0
    pjc->cspace_id = pcs->id;
1485
0
    pjc->status = CIE_JC_STATUS_COMPLETED;
1486
0
    pgs->cie_joint_caches = pjc;
1487
0
    pgs->cie_to_xyz = true;
1488
0
    *ppgs = pgs;
1489
0
    return 0;
1490
0
}
1491
void
1492
gx_cie_to_xyz_free(gs_gstate *pgs)
1493
0
{
1494
0
    gs_memory_t *mem = pgs->memory;
1495
1496
0
    rc_decrement(pgs->cie_joint_caches,"gx_cie_to_xyz_free");
1497
1498
    /* Free up the ICC objects if created */    /* FIXME: does this need to be thread safe */
1499
0
    if (pgs->icc_link_cache != NULL) {
1500
0
        rc_decrement(pgs->icc_link_cache,"gx_cie_to_xyz_free");
1501
0
    }
1502
0
    if (pgs->icc_manager != NULL) {
1503
0
        rc_decrement(pgs->icc_manager,"gx_cie_to_xyz_free");
1504
0
    }
1505
0
    if (pgs->icc_profile_cache != NULL) {
1506
0
        rc_decrement(pgs->icc_profile_cache,"gx_cie_to_xyz_free");
1507
0
    }
1508
0
    gs_free_object(mem, pgs, "gx_cie_to_xyz_free(gs_gstate)");
1509
0
}
1510
1511
/* ================ Utilities ================ */
1512
1513
/* Multiply a vector by a matrix. */
1514
/* Note that we are computing M * V where v is a column vector. */
1515
void
1516
cie_mult3(const gs_vector3 * in, register const gs_matrix3 * mat,
1517
          gs_vector3 * out)
1518
49.3k
{
1519
49.3k
    if_debug_vector3("[c]mult", in);
1520
49.3k
    if_debug_matrix3("  *", mat);
1521
49.3k
    {
1522
49.3k
        float u = in->u, v = in->v, w = in->w;
1523
1524
49.3k
        out->u = (u * mat->cu.u) + (v * mat->cv.u) + (w * mat->cw.u);
1525
49.3k
        out->v = (u * mat->cu.v) + (v * mat->cv.v) + (w * mat->cw.v);
1526
49.3k
        out->w = (u * mat->cu.w) + (v * mat->cv.w) + (w * mat->cw.w);
1527
49.3k
    }
1528
49.3k
    if_debug_vector3("  =", out);
1529
49.3k
}
1530
1531
/*
1532
 * Multiply two matrices.  Note that the composition of the transformations
1533
 * M1 followed by M2 is M2 * M1, not M1 * M2.  (See gscie.h for details.)
1534
 */
1535
void
1536
cie_matrix_mult3(const gs_matrix3 *ma, const gs_matrix3 *mb, gs_matrix3 *mc)
1537
9.86k
{
1538
9.86k
    gs_matrix3 mprod;
1539
9.86k
    gs_matrix3 *mp = (mc == ma || mc == mb ? &mprod : mc);
1540
1541
9.86k
    if_debug_matrix3("[c]matrix_mult", ma);
1542
9.86k
    if_debug_matrix3("             *", mb);
1543
9.86k
    cie_mult3(&mb->cu, ma, &mp->cu);
1544
9.86k
    cie_mult3(&mb->cv, ma, &mp->cv);
1545
9.86k
    cie_mult3(&mb->cw, ma, &mp->cw);
1546
9.86k
    cie_matrix_init(mp);
1547
9.86k
    if_debug_matrix3("             =", mp);
1548
9.86k
    if (mp != mc)
1549
0
        *mc = *mp;
1550
9.86k
}
1551
1552
/*
1553
 * Transpose a 3x3 matrix. In and out can not be the same
1554
 */
1555
void
1556
cie_matrix_transpose3(const gs_matrix3 *in, gs_matrix3 *out)
1557
0
{
1558
0
    out->cu.u = in->cu.u;
1559
0
    out->cu.v = in->cv.u;
1560
0
    out->cu.w = in->cw.u;
1561
1562
0
    out->cv.u = in->cu.v;
1563
0
    out->cv.v = in->cv.v;
1564
0
    out->cv.w = in->cw.v;
1565
1566
0
    out->cw.u = in->cu.w;
1567
0
    out->cw.v = in->cv.w;
1568
0
    out->cw.w = in->cw.w;
1569
0
}
1570
1571
/* Invert a matrix. */
1572
/* The output must not be an alias for the input. */
1573
static void
1574
cie_invert3(const gs_matrix3 *in, gs_matrix3 *out)
1575
9.86k
{ /* This is a brute force algorithm; maybe there are better. */
1576
    /* We label the array elements */
1577
    /*   [ A B C ]   */
1578
    /*   [ D E F ]   */
1579
    /*   [ G H I ]   */
1580
59.1k
#define A cu.u
1581
59.1k
#define B cv.u
1582
59.1k
#define C cw.u
1583
49.3k
#define D cu.v
1584
49.3k
#define E cv.v
1585
49.3k
#define F cw.v
1586
49.3k
#define G cu.w
1587
49.3k
#define H cv.w
1588
49.3k
#define I cw.w
1589
9.86k
    double coA = in->E * in->I - in->F * in->H;
1590
9.86k
    double coB = in->F * in->G - in->D * in->I;
1591
9.86k
    double coC = in->D * in->H - in->E * in->G;
1592
9.86k
    double det = in->A * coA + in->B * coB + in->C * coC;
1593
1594
9.86k
    if_debug_matrix3("[c]invert", in);
1595
9.86k
    out->A = coA / det;
1596
9.86k
    out->D = coB / det;
1597
9.86k
    out->G = coC / det;
1598
9.86k
    out->B = (in->C * in->H - in->B * in->I) / det;
1599
9.86k
    out->E = (in->A * in->I - in->C * in->G) / det;
1600
9.86k
    out->H = (in->B * in->G - in->A * in->H) / det;
1601
9.86k
    out->C = (in->B * in->F - in->C * in->E) / det;
1602
9.86k
    out->F = (in->C * in->D - in->A * in->F) / det;
1603
9.86k
    out->I = (in->A * in->E - in->B * in->D) / det;
1604
9.86k
    if_debug_matrix3("        =", out);
1605
9.86k
#undef A
1606
9.86k
#undef B
1607
9.86k
#undef C
1608
9.86k
#undef D
1609
9.86k
#undef E
1610
9.86k
#undef F
1611
9.86k
#undef G
1612
9.86k
#undef H
1613
9.86k
#undef I
1614
9.86k
    out->is_identity = in->is_identity;
1615
9.86k
}
1616
1617
/* Set the is_identity flag that accelerates multiplication. */
1618
static void
1619
cie_matrix_init(register gs_matrix3 * mat)
1620
39.4k
{
1621
39.4k
    mat->is_identity =
1622
39.4k
        mat->cu.u == 1.0 && is_fzero2(mat->cu.v, mat->cu.w) &&
1623
39.4k
        mat->cv.v == 1.0 && is_fzero2(mat->cv.u, mat->cv.w) &&
1624
39.4k
        mat->cw.w == 1.0 && is_fzero2(mat->cw.u, mat->cw.v);
1625
39.4k
}
1626
1627
bool
1628
gx_color_space_needs_cie_caches(const gs_color_space * pcs)
1629
0
{
1630
0
    switch (pcs->type->index) {
1631
0
        case gs_color_space_index_CIEDEFG:
1632
0
        case gs_color_space_index_CIEDEF:
1633
0
        case gs_color_space_index_CIEABC:
1634
0
        case gs_color_space_index_CIEA:
1635
0
            return true;
1636
0
        case gs_color_space_index_ICC:
1637
0
            return false;
1638
0
        case gs_color_space_index_DevicePixel:
1639
0
        case gs_color_space_index_DeviceN:
1640
0
        case gs_color_space_index_Separation:
1641
0
        case gs_color_space_index_Indexed:
1642
0
        case gs_color_space_index_Pattern:
1643
0
            return gx_color_space_needs_cie_caches(pcs->base_space);
1644
0
        default:
1645
0
            return false;
1646
0
    }
1647
0
}