Coverage Report

Created: 2025-06-10 06:59

/src/ghostpdl/base/gxshade6.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Rendering for Coons and tensor patch shadings */
18
/*
19
   A contiguous non-overlapping decomposition
20
   of a tensor shading into linear color triangles.
21
 */
22
#include "memory_.h"
23
#include "gx.h"
24
#include "gserrors.h"
25
#include "gsmatrix.h"           /* for gscoord.h */
26
#include "gscoord.h"
27
#include "gscicach.h"
28
#include "gxcspace.h"
29
#include "gxdcolor.h"
30
#include "gxgstate.h"
31
#include "gxshade.h"
32
#include "gxdevcli.h"
33
#include "gxshade4.h"
34
#include "gxarith.h"
35
#include "gzpath.h"
36
#include "stdint_.h"
37
#include "math_.h"
38
#include "gsicc_cache.h"
39
#include "gxdevsop.h"
40
41
/* The original version of the shading code 'decompose's shadings into
42
 * smaller and smaller regions until they are smaller than 1 pixel, and then
43
 * fills them. (Either with a constant colour, or with a linear filled trap).
44
 *
45
 * Previous versions of the code (from svn revision 7936 until June 2011
46
 * (shortly after the switch to git)) changed this limit to be 1 point or 1
47
 * pixel (whichever is larger) (on the grounds that as resolution increases,
48
 * we are unlikely to be able to notice increasingly small inaccuracies in
49
 * the shading). Given how people abuse the resolution at which things are
50
 * rendered (especially when rendering to images that can subsequently be
51
 * zoomed), this seems a poor trade off. See bug 691152.
52
 *
53
 * The code has now been changed back to operate with the proper 1 pixel
54
 * decomposition, which will cost us performance in some cases. Should
55
 * people want to restore the previous operation, they should build with
56
 * MAX_SHADING_RESOLUTION predefined to 72. In general, this symbol can be
57
 * set to the maximum dpi that shading should ever be performed at. Leaving
58
 * it undefined will leave the default (1 pixel limit) in place.
59
 *
60
 * A possible future optimisation here may be to use different max shading
61
 * resolutions for linear and non-linear shadings; linear shadings appear to
62
 * result in calls to "fill linear traps", and non linear ones appear to
63
 * result in calls to "fill constant color". As such linear shadings are much
64
 * more forgiving of a higher decomposition threshold.
65
 */
66
67
#if NOFILL_TEST
68
static bool dbg_nofill = false;
69
#endif
70
#if SKIP_TEST
71
static int dbg_patch_cnt = 0;
72
static int dbg_quad_cnt = 0;
73
static int dbg_triangle_cnt = 0;
74
static int dbg_wedge_triangle_cnt = 0;
75
#endif
76
77
enum {
78
    min_linear_grades = 255 /* The minimal number of device color grades,
79
            required to apply linear color device functions. */
80
};
81
82
/* ================ Utilities ================ */
83
84
static int
85
allocate_color_stack(patch_fill_state_t *pfs, gs_memory_t *memory)
86
3.69k
{
87
3.69k
    if (pfs->color_stack != NULL)
88
0
        return 0;
89
3.69k
    pfs->color_stack_step = offset_of(patch_color_t, cc.paint.values[pfs->num_components]);
90
3.69k
    pfs->color_stack_step = (pfs->color_stack_step + sizeof(void *) - 1) / sizeof(void *) * sizeof(void *); /* Alignment */
91
92
3.69k
    pfs->color_stack_size = pfs->color_stack_step * SHADING_COLOR_STACK_SIZE;
93
3.69k
    pfs->color_stack = gs_alloc_bytes(memory, pfs->color_stack_size, "allocate_color_stack");
94
3.69k
    if (pfs->color_stack == NULL)
95
0
        return_error(gs_error_VMerror);
96
3.69k
    pfs->color_stack_limit = pfs->color_stack + pfs->color_stack_size;
97
3.69k
    pfs->color_stack_ptr = pfs->color_stack;
98
3.69k
    pfs->memory = memory;
99
3.69k
    return 0;
100
3.69k
}
101
102
static inline byte *
103
reserve_colors_inline(patch_fill_state_t *pfs, patch_color_t *c[], int n)
104
6.38M
{
105
6.38M
    int i;
106
6.38M
    byte *ptr0 = pfs->color_stack_ptr, *ptr = ptr0;
107
108
21.2M
    for (i = 0; i < n; i++, ptr += pfs->color_stack_step)
109
14.9M
        c[i] = (patch_color_t *)ptr;
110
6.38M
    if (ptr > pfs->color_stack_limit) {
111
0
        c[0] = NULL; /* safety. */
112
0
        return NULL;
113
0
    }
114
6.38M
    pfs->color_stack_ptr = ptr;
115
6.38M
    return ptr0;
116
6.38M
}
117
118
byte *
119
reserve_colors(patch_fill_state_t *pfs, patch_color_t *c[], int n)
120
34
{
121
34
    return reserve_colors_inline(pfs, c, n);
122
34
}
123
124
static inline void
125
release_colors_inline(patch_fill_state_t *pfs, byte *ptr, int n)
126
6.38M
{
127
#if 0 /* Saving the invariant for records. */
128
    pfs->color_stack_ptr = pfs->color_stack_step * n;
129
    assert((byte *)pfs->color_stack_ptr == ptr);
130
#else
131
6.38M
    pfs->color_stack_ptr = ptr;
132
6.38M
#endif
133
6.38M
}
134
void
135
release_colors(patch_fill_state_t *pfs, byte *ptr, int n)
136
34
{
137
34
    release_colors_inline(pfs, ptr, n);
138
34
}
139
140
/* Get colors for patch vertices. */
141
static int
142
shade_next_colors(shade_coord_stream_t * cs, patch_curve_t * curves,
143
                  int num_vertices)
144
27.8k
{
145
27.8k
    int i, code = 0;
146
147
122k
    for (i = 0; i < num_vertices && code >= 0; ++i) {
148
94.6k
        curves[i].vertex.cc[1] = 0; /* safety. (patch_fill may assume 2 arguments) */
149
94.6k
        code = shade_next_color(cs, curves[i].vertex.cc);
150
94.6k
    }
151
27.8k
    return code;
152
27.8k
}
153
154
/* Get a Bezier or tensor patch element. */
155
static int
156
shade_next_curve(shade_coord_stream_t * cs, patch_curve_t * curve)
157
75.1k
{
158
75.1k
    int code = shade_next_coords(cs, &curve->vertex.p, 1);
159
160
75.1k
    if (code >= 0)
161
75.1k
        code = shade_next_coords(cs, curve->control,
162
75.1k
                                 countof(curve->control));
163
75.1k
    return code;
164
75.1k
}
165
166
/*
167
 * Parse the next patch out of the input stream.  Return 1 if done,
168
 * 0 if patch, <0 on error.
169
 */
170
static int
171
shade_next_patch(shade_coord_stream_t * cs, int BitsPerFlag,
172
        patch_curve_t curve[4], gs_fixed_point interior[4] /* 0 for Coons patch */)
173
27.9k
{
174
27.9k
    int flag = shade_next_flag(cs, BitsPerFlag);
175
27.9k
    int num_colors, code;
176
177
27.9k
    if (flag < 0) {
178
91
        if (!cs->is_eod(cs))
179
0
            return_error(gs_error_rangecheck);
180
91
        return 1;               /* no more data */
181
91
    }
182
27.8k
    if (cs->first_patch && (flag & 3) != 0) {
183
0
        return_error(gs_error_rangecheck);
184
0
    }
185
27.8k
    cs->first_patch = 0;
186
27.8k
    switch (flag & 3) {
187
0
        default:
188
0
            return_error(gs_error_rangecheck);  /* not possible */
189
19.5k
        case 0:
190
19.5k
            if ((code = shade_next_curve(cs, &curve[0])) < 0 ||
191
19.5k
                (code = shade_next_coords(cs, &curve[1].vertex.p, 1)) < 0
192
19.5k
                )
193
4
                return code;
194
19.5k
            num_colors = 4;
195
19.5k
            goto vx;
196
2.46k
        case 1:
197
2.46k
            curve[0] = curve[1], curve[1].vertex = curve[2].vertex;
198
2.46k
            goto v3;
199
2.52k
        case 2:
200
2.52k
            curve[0] = curve[2], curve[1].vertex = curve[3].vertex;
201
2.52k
            goto v3;
202
3.31k
        case 3:
203
3.31k
            curve[1].vertex = curve[0].vertex, curve[0] = curve[3];
204
8.30k
v3:         num_colors = 2;
205
27.8k
vx:         if ((code = shade_next_coords(cs, curve[1].control, 2)) < 0 ||
206
27.8k
                (code = shade_next_curve(cs, &curve[2])) < 0 ||
207
27.8k
                (code = shade_next_curve(cs, &curve[3])) < 0 ||
208
27.8k
                (interior != 0 &&
209
27.8k
                 (code = shade_next_coords(cs, interior, 4)) < 0) ||
210
27.8k
                (code = shade_next_colors(cs, &curve[4 - num_colors],
211
27.8k
                                          num_colors)) < 0
212
27.8k
                )
213
32
                return code;
214
27.8k
            cs->align(cs, 8); /* See shade_next_vertex. */
215
27.8k
    }
216
27.8k
    return 0;
217
27.8k
}
218
219
static inline bool
220
is_linear_color_applicable(const patch_fill_state_t *pfs)
221
399k
{
222
399k
    if (!USE_LINEAR_COLOR_PROCS)
223
0
        return false;
224
399k
    if (!colors_are_separable_and_linear(&pfs->dev->color_info))
225
0
        return false;
226
399k
    if (gx_get_cmap_procs(pfs->pgs, pfs->dev)->is_halftoned(pfs->pgs, pfs->dev))
227
0
        return false;
228
399k
    return true;
229
399k
}
230
231
static int
232
alloc_patch_fill_memory(patch_fill_state_t *pfs, gs_memory_t *memory, const gs_color_space *pcs)
233
3.69k
{
234
3.69k
    int code;
235
236
3.69k
    pfs->memory = memory;
237
3.69k
#   if LAZY_WEDGES
238
3.69k
        code = wedge_vertex_list_elem_buffer_alloc(pfs);
239
3.69k
        if (code < 0)
240
0
            return code;
241
3.69k
#   endif
242
3.69k
    pfs->max_small_coord = 1 << ((sizeof(int64_t) * 8 - 1/*sign*/) / 3);
243
3.69k
    code = allocate_color_stack(pfs, memory);
244
3.69k
    if (code < 0)
245
0
        return code;
246
3.69k
    if (pfs->unlinear || pcs == NULL)
247
0
        pfs->pcic = NULL;
248
3.69k
    else {
249
3.69k
        pfs->pcic = gs_color_index_cache_create(memory, pcs, pfs->dev, pfs->pgs, true, pfs->trans_device);
250
3.69k
        if (pfs->pcic == NULL)
251
0
            return_error(gs_error_VMerror);
252
3.69k
    }
253
3.69k
    return 0;
254
3.69k
}
255
256
int
257
init_patch_fill_state(patch_fill_state_t *pfs)
258
3.69k
{
259
    /* Warning : pfs->Function must be set in advance. */
260
3.69k
    const gs_color_space *pcs = pfs->direct_space;
261
3.69k
    gs_client_color fcc0, fcc1;
262
3.69k
    int i;
263
264
13.2k
    for (i = 0; i < pfs->num_components; i++) {
265
9.52k
        fcc0.paint.values[i] = -1000000;
266
9.52k
        fcc1.paint.values[i] = 1000000;
267
9.52k
    }
268
3.69k
    pcs->type->restrict_color(&fcc0, pcs);
269
3.69k
    pcs->type->restrict_color(&fcc1, pcs);
270
13.2k
    for (i = 0; i < pfs->num_components; i++)
271
9.52k
        pfs->color_domain.paint.values[i] = max(fcc1.paint.values[i] - fcc0.paint.values[i], 1);
272
3.69k
    pfs->vectorization = false; /* A stub for a while. Will use with pclwrite. */
273
3.69k
    pfs->maybe_self_intersecting = true;
274
3.69k
    pfs->monotonic_color = (pfs->Function == NULL);
275
3.69k
    pfs->function_arg_shift = 0;
276
3.69k
    pfs->linear_color = false;
277
3.69k
    pfs->inside = false;
278
3.69k
    pfs->n_color_args = 1;
279
#ifdef MAX_SHADING_RESOLUTION
280
    pfs->decomposition_limit = float2fixed(min(pfs->dev->HWResolution[0],
281
                                               pfs->dev->HWResolution[1]) / MAX_SHADING_RESOLUTION);
282
    pfs->decomposition_limit = max(pfs->decomposition_limit, fixed_1);
283
#else
284
3.69k
    pfs->decomposition_limit = fixed_1;
285
3.69k
#endif
286
3.69k
    pfs->fixed_flat = float2fixed(pfs->pgs->flatness);
287
    /* Restrict the pfs->smoothness with 1/min_linear_grades, because cs_is_linear
288
       can't provide a better precision due to the color
289
       representation with integers.
290
     */
291
3.69k
    pfs->smoothness = max(pfs->pgs->smoothness, 1.0 / min_linear_grades);
292
3.69k
    pfs->color_stack_size = 0;
293
3.69k
    pfs->color_stack_step = 0;
294
3.69k
    pfs->color_stack_ptr = NULL;
295
3.69k
    pfs->color_stack = NULL;
296
3.69k
    pfs->color_stack_limit = NULL;
297
3.69k
    pfs->unlinear = !is_linear_color_applicable(pfs);
298
3.69k
    pfs->pcic = NULL;
299
3.69k
    return alloc_patch_fill_memory(pfs, pfs->pgs->memory, pcs);
300
3.69k
}
301
302
bool
303
term_patch_fill_state(patch_fill_state_t *pfs)
304
3.69k
{
305
3.69k
    bool b = (pfs->color_stack_ptr != pfs->color_stack);
306
3.69k
#   if LAZY_WEDGES
307
3.69k
        wedge_vertex_list_elem_buffer_free(pfs);
308
3.69k
#   endif
309
3.69k
    if (pfs->color_stack)
310
3.69k
        gs_free_object(pfs->memory, pfs->color_stack, "term_patch_fill_state");
311
3.69k
    if (pfs->pcic != NULL)
312
3.69k
        gs_color_index_cache_destroy(pfs->pcic);
313
3.69k
    return b;
314
3.69k
}
315
316
/* Resolve a patch color using the Function if necessary. */
317
static inline void
318
patch_resolve_color_inline(patch_color_t * ppcr, const patch_fill_state_t *pfs)
319
4.06M
{
320
4.06M
    if (pfs->Function) {
321
3.95M
        const gs_color_space *pcs = pfs->direct_space;
322
323
3.95M
        gs_function_evaluate(pfs->Function, ppcr->t, ppcr->cc.paint.values);
324
3.95M
        pcs->type->restrict_color(&ppcr->cc, pcs);
325
3.95M
    }
326
4.06M
}
327
328
void
329
patch_resolve_color(patch_color_t * ppcr, const patch_fill_state_t *pfs)
330
0
{
331
0
    patch_resolve_color_inline(ppcr, pfs);
332
0
}
333
334
/*
335
 * Calculate the interpolated color at a given point.
336
 * Note that we must do this twice for bilinear interpolation.
337
 * We use the name ppcr rather than ppc because an Apple compiler defines
338
 * ppc when compiling on PowerPC systems (!).
339
 */
340
static void
341
patch_interpolate_color(patch_color_t * ppcr, const patch_color_t * ppc0,
342
       const patch_color_t * ppc1, const patch_fill_state_t *pfs, double t)
343
6.61M
{
344
    /* The old code gives -IND on Intel. */
345
6.61M
    if (pfs->Function) {
346
1.05M
        ppcr->t[0] = ppc0->t[0] * (1 - t) + t * ppc1->t[0];
347
1.05M
        ppcr->t[1] = ppc0->t[1] * (1 - t) + t * ppc1->t[1];
348
1.05M
        patch_resolve_color_inline(ppcr, pfs);
349
5.55M
    } else {
350
5.55M
        int ci;
351
352
27.3M
        for (ci = pfs->num_components - 1; ci >= 0; --ci)
353
21.7M
            ppcr->cc.paint.values[ci] =
354
21.7M
                ppc0->cc.paint.values[ci] * (1 - t) + t * ppc1->cc.paint.values[ci];
355
5.55M
    }
356
6.61M
}
357
358
/* ================ Specific shadings ================ */
359
360
/*
361
 * The curves are stored in a clockwise or counter-clockwise order that maps
362
 * to the patch definition in a non-intuitive way.  The documentation
363
 * (pp. 277-281 of the PostScript Language Reference Manual, Third Edition)
364
 * says that the curves are in the order D1, C2, D2, C1.
365
 */
366
/* The starting points of the curves: */
367
0
#define D1START 0
368
0
#define C2START 1
369
0
#define D2START 3
370
0
#define C1START 0
371
/* The control points of the curves (x means reversed order): */
372
0
#define D1CTRL 0
373
0
#define C2CTRL 1
374
0
#define D2XCTRL 2
375
0
#define C1XCTRL 3
376
/* The end points of the curves: */
377
0
#define D1END 1
378
0
#define C2END 2
379
0
#define D2END 2
380
0
#define C1END 3
381
382
/* ---------------- Common code ---------------- */
383
384
/* Evaluate a curve at a given point. */
385
static void
386
curve_eval(gs_fixed_point * pt, const gs_fixed_point * p0,
387
           const gs_fixed_point * p1, const gs_fixed_point * p2,
388
           const gs_fixed_point * p3, double t)
389
0
{
390
0
    fixed a, b, c, d;
391
0
    fixed t01, t12;
392
393
0
    d = p0->x;
394
0
    curve_points_to_coefficients(d, p1->x, p2->x, p3->x,
395
0
                                 a, b, c, t01, t12);
396
0
    pt->x = (fixed) (((a * t + b) * t + c) * t + d);
397
0
    d = p0->y;
398
0
    curve_points_to_coefficients(d, p1->y, p2->y, p3->y,
399
0
                                 a, b, c, t01, t12);
400
0
    pt->y = (fixed) (((a * t + b) * t + c) * t + d);
401
0
    if_debug3('2', "[2]t=%g => (%g,%g)\n", t, fixed2float(pt->x),
402
0
              fixed2float(pt->y));
403
0
}
404
405
/* ---------------- Coons patch shading ---------------- */
406
407
/* Calculate the device-space coordinate corresponding to (u,v). */
408
static void
409
Cp_transform(gs_fixed_point * pt, const patch_curve_t curve[4],
410
             const gs_fixed_point ignore_interior[4], double u, double v)
411
0
{
412
0
    double co_u = 1.0 - u, co_v = 1.0 - v;
413
0
    gs_fixed_point c1u, d1v, c2u, d2v;
414
415
0
    curve_eval(&c1u, &curve[C1START].vertex.p,
416
0
               &curve[C1XCTRL].control[1], &curve[C1XCTRL].control[0],
417
0
               &curve[C1END].vertex.p, u);
418
0
    curve_eval(&d1v, &curve[D1START].vertex.p,
419
0
               &curve[D1CTRL].control[0], &curve[D1CTRL].control[1],
420
0
               &curve[D1END].vertex.p, v);
421
0
    curve_eval(&c2u, &curve[C2START].vertex.p,
422
0
               &curve[C2CTRL].control[0], &curve[C2CTRL].control[1],
423
0
               &curve[C2END].vertex.p, u);
424
0
    curve_eval(&d2v, &curve[D2START].vertex.p,
425
0
               &curve[D2XCTRL].control[1], &curve[D2XCTRL].control[0],
426
0
               &curve[D2END].vertex.p, v);
427
0
#define COMPUTE_COORD(xy)\
428
0
    pt->xy = (fixed)\
429
0
        ((co_v * c1u.xy + v * c2u.xy) + (co_u * d1v.xy + u * d2v.xy) -\
430
0
         (co_v * (co_u * curve[C1START].vertex.p.xy +\
431
0
                  u * curve[C1END].vertex.p.xy) +\
432
0
          v * (co_u * curve[C2START].vertex.p.xy +\
433
0
               u * curve[C2END].vertex.p.xy)))
434
0
    COMPUTE_COORD(x);
435
0
    COMPUTE_COORD(y);
436
0
#undef COMPUTE_COORD
437
0
    if_debug4('2', "[2](u=%g,v=%g) => (%g,%g)\n",
438
0
              u, v, fixed2float(pt->x), fixed2float(pt->y));
439
0
}
440
441
int
442
gs_shading_Cp_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
443
                             const gs_fixed_rect * rect_clip,
444
                             gx_device * dev, gs_gstate * pgs)
445
2
{
446
2
    const gs_shading_Cp_t * const psh = (const gs_shading_Cp_t *)psh0;
447
2
    patch_fill_state_t state;
448
2
    shade_coord_stream_t cs;
449
2
    patch_curve_t curve[4];
450
2
    int code;
451
452
2
    code = mesh_init_fill_state((mesh_fill_state_t *) &state,
453
2
                         (const gs_shading_mesh_t *)psh0, rect_clip, dev, pgs);
454
2
    if (code < 0) {
455
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
456
0
        return code;
457
0
    }
458
2
    state.Function = psh->params.Function;
459
2
    code = init_patch_fill_state(&state);
460
2
    if(code < 0) {
461
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
462
0
        return code;
463
0
    }
464
465
2
    curve[0].straight = curve[1].straight = curve[2].straight = curve[3].straight = false;
466
2
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params, pgs);
467
6
    while ((code = shade_next_patch(&cs, psh->params.BitsPerFlag,
468
6
                                    curve, NULL)) == 0 &&
469
6
           (code = patch_fill(&state, curve, NULL, Cp_transform)) >= 0
470
4
        ) {
471
4
        DO_NOTHING;
472
4
    }
473
2
    if (term_patch_fill_state(&state))
474
0
        return_error(gs_error_unregistered); /* Must not happen. */
475
2
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
476
2
    return min(code, 0);
477
2
}
478
479
/* ---------------- Tensor product patch shading ---------------- */
480
481
/* Calculate the device-space coordinate corresponding to (u,v). */
482
static void
483
Tpp_transform(gs_fixed_point * pt, const patch_curve_t curve[4],
484
              const gs_fixed_point interior[4], double u, double v)
485
0
{
486
0
    double Bu[4], Bv[4];
487
0
    gs_fixed_point pts[4][4];
488
0
    int i, j;
489
0
    double x = 0, y = 0;
490
491
    /* Compute the Bernstein polynomials of u and v. */
492
0
    {
493
0
        double u2 = u * u, co_u = 1.0 - u, co_u2 = co_u * co_u;
494
0
        double v2 = v * v, co_v = 1.0 - v, co_v2 = co_v * co_v;
495
496
0
        Bu[0] = co_u * co_u2, Bu[1] = 3 * u * co_u2,
497
0
            Bu[2] = 3 * u2 * co_u, Bu[3] = u * u2;
498
0
        Bv[0] = co_v * co_v2, Bv[1] = 3 * v * co_v2,
499
0
            Bv[2] = 3 * v2 * co_v, Bv[3] = v * v2;
500
0
    }
501
502
    /* Arrange the points into an indexable order. */
503
0
    pts[0][0] = curve[0].vertex.p;
504
0
    pts[0][1] = curve[0].control[0];
505
0
    pts[0][2] = curve[0].control[1];
506
0
    pts[0][3] = curve[1].vertex.p;
507
0
    pts[1][3] = curve[1].control[0];
508
0
    pts[2][3] = curve[1].control[1];
509
0
    pts[3][3] = curve[2].vertex.p;
510
0
    pts[3][2] = curve[2].control[0];
511
0
    pts[3][1] = curve[2].control[1];
512
0
    pts[3][0] = curve[3].vertex.p;
513
0
    pts[2][0] = curve[3].control[0];
514
0
    pts[1][0] = curve[3].control[1];
515
0
    pts[1][1] = interior[0];
516
0
    pts[2][1] = interior[1];
517
0
    pts[2][2] = interior[2];
518
0
    pts[1][2] = interior[3];
519
520
    /* Now compute the actual point. */
521
0
    for (i = 0; i < 4; ++i)
522
0
        for (j = 0; j < 4; ++j) {
523
0
            double coeff = Bu[i] * Bv[j];
524
525
0
            x += pts[i][j].x * coeff, y += pts[i][j].y * coeff;
526
0
        }
527
0
    pt->x = (fixed)x, pt->y = (fixed)y;
528
0
}
529
530
int
531
gs_shading_Tpp_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
532
                             const gs_fixed_rect * rect_clip,
533
                              gx_device * dev, gs_gstate * pgs)
534
125
{
535
125
    const gs_shading_Tpp_t * const psh = (const gs_shading_Tpp_t *)psh0;
536
125
    patch_fill_state_t state;
537
125
    shade_coord_stream_t cs;
538
125
    patch_curve_t curve[4];
539
125
    gs_fixed_point interior[4];
540
125
    int code;
541
542
125
    code = mesh_init_fill_state((mesh_fill_state_t *) & state,
543
125
                         (const gs_shading_mesh_t *)psh0, rect_clip, dev, pgs);
544
125
    if (code < 0) {
545
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
546
0
        return code;
547
0
    }
548
125
    state.Function = psh->params.Function;
549
125
    code = init_patch_fill_state(&state);
550
125
    if(code < 0)
551
0
        return code;
552
125
    curve[0].straight = curve[1].straight = curve[2].straight = curve[3].straight = false;
553
125
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params, pgs);
554
27.9k
    while ((code = shade_next_patch(&cs, psh->params.BitsPerFlag,
555
27.9k
                                    curve, interior)) == 0) {
556
        /*
557
         * The order of points appears to be consistent with that for Coons
558
         * patches, which is different from that documented in Red Book 3.
559
         */
560
27.7k
        gs_fixed_point swapped_interior[4];
561
562
27.7k
        swapped_interior[0] = interior[0];
563
27.7k
        swapped_interior[1] = interior[3];
564
27.7k
        swapped_interior[2] = interior[2];
565
27.7k
        swapped_interior[3] = interior[1];
566
27.7k
        code = patch_fill(&state, curve, swapped_interior, Tpp_transform);
567
27.7k
        if (code < 0)
568
0
            break;
569
27.7k
    }
570
125
    if (term_patch_fill_state(&state))
571
0
        return_error(gs_error_unregistered); /* Must not happen. */
572
125
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
573
125
    return min(code, 0);
574
125
}
575
576
/*
577
    This algorithm performs a decomposition of the shading area
578
    into a set of constant color trapezoids, some of which
579
    may use the transpozed coordinate system.
580
581
    The target device assumes semi-open intrvals by X to be painted
582
    (See PLRM3, 7.5. Scan conversion details), i.e.
583
    it doesn't paint pixels which falls exactly to the right side.
584
    Note that with raster devices the algorithm doesn't paint pixels,
585
    whigh are partially covered by the shading area,
586
    but which's centers are outside the area.
587
588
    Pixels inside a monotonic part of the shading area are painted
589
    at once, but some exceptions may happen :
590
591
        - While flattening boundaries of a subpatch,
592
        to keep the plane coverage contiguity we insert wedges
593
        between neighbor subpatches, which use a different
594
        flattening factor. With non-monotonic curves
595
        those wedges may overlap or be self-overlapping, and a pixel
596
        is painted so many times as many wedges cover it. Fortunately
597
        the area of most wedges is zero or extremily small.
598
599
        - Since quazi-horizontal wedges may have a non-constant color,
600
        they can't decompose into constant color trapezoids with
601
        keeping the coverage contiguity. To represent them we
602
        apply the XY plane transposition. But with the transposition
603
        a semiopen interval can met a non-transposed one,
604
        so that some lines are not covered. Therefore we emulate
605
        closed intervals with expanding the transposed trapesoids in
606
        fixed_epsilon, and pixels at that boundary may be painted twice.
607
608
        - A boundary of a monotonic area can't compute in XY
609
        preciselly due to high order polynomial equations.
610
        Therefore the subdivision near the monotonity boundary
611
        may paint some pixels twice within same monotonic part.
612
613
    Non-monotonic areas slow down due to a tinny subdivision required.
614
615
    The target device may be either raster or vector.
616
    Vector devices should preciselly pass trapezoids to the output.
617
    Note that ends of sides of a trapesoid are not necessary
618
    the trapezoid's vertices. Converting this thing into
619
    an exact quadrangle may cause an arithmetic error,
620
    and the rounding must be done so that the coverage
621
    contiguity is not lost.
622
623
    When a device passes a trapezoid to it's output,
624
    a regular rounding would keep the coverage contiguity,
625
    except for the transposed trapesoids.
626
    If a transposed trapezoid is being transposed back,
627
    it doesn't become a canonic trapezoid, and a further
628
    decomposition is neccessary. But rounding errors here
629
    would break the coverage contiguity at boundaries
630
    of the tansposed part of the area.
631
632
    Devices, which have no transposed trapezoids and represent
633
    trapezoids only with 8 coordinates of vertices of the quadrangle
634
    (pclwrite is an example) may apply the backward transposition,
635
    and a clipping instead the further decomposition.
636
    Note that many clip regions may appear for all wedges.
637
    Note that in some cases the adjustment of the right side to be
638
    withdrown before the backward transposition.
639
 */
640
 /* We believe that a multiplication of 32-bit integers with a
641
    64-bit result is performed by modern platforms performs
642
    in hardware level. Therefore we widely use it here,
643
    but we minimize the usage of a multiplication of longer integers.
644
645
    Unfortunately we do need a multiplication of long integers
646
    in intersection_of_small_bars, because solving the linear system
647
    requires tripple multiples of 'fixed'. Therefore we retain
648
    of it's usage in the algorithm of the main branch.
649
    Configuration macro QUADRANGLES prevents it.
650
  */
651
652
typedef struct {
653
    gs_fixed_point pole[4][4]; /* [v][u] */
654
    patch_color_t *c[2][2];     /* [v][u] */
655
} tensor_patch;
656
657
typedef enum {
658
    interpatch_padding = 1, /* A Padding between patches for poorly designed documents. */
659
    inpatch_wedge = 2  /* Wedges while a patch decomposition. */
660
} wedge_type_t;
661
662
int
663
wedge_vertex_list_elem_buffer_alloc(patch_fill_state_t *pfs)
664
3.69k
{
665
3.69k
    const int max_level = LAZY_WEDGES_MAX_LEVEL;
666
3.69k
    gs_memory_t *memory = pfs->memory;
667
668
    /* We have 'max_level' levels, each of which divides 1 or 3 sides.
669
       LAZY_WEDGES stores all 2^level divisions until
670
       the other area of same bnoundary is processed.
671
       Thus the upper estimation of the buffer size is :
672
       max_level * (1 << max_level) * 3.
673
       Likely this estimation to be decreased to
674
       max_level * (1 << max_level) * 2.
675
       because 1 side of a triangle is always outside the division path.
676
       For now we set the smaller estimation for obtaining an experimental data
677
       from the wild. */
678
3.69k
    pfs->wedge_vertex_list_elem_count_max = max_level * (1 << max_level) * 2;
679
3.69k
    pfs->wedge_vertex_list_elem_buffer = (wedge_vertex_list_elem_t *)gs_alloc_bytes(memory,
680
3.69k
            sizeof(wedge_vertex_list_elem_t) * pfs->wedge_vertex_list_elem_count_max,
681
3.69k
            "alloc_wedge_vertex_list_elem_buffer");
682
3.69k
    if (pfs->wedge_vertex_list_elem_buffer == NULL)
683
0
        return_error(gs_error_VMerror);
684
3.69k
    pfs->free_wedge_vertex = NULL;
685
3.69k
    pfs->wedge_vertex_list_elem_count = 0;
686
3.69k
    return 0;
687
3.69k
}
688
689
void
690
wedge_vertex_list_elem_buffer_free(patch_fill_state_t *pfs)
691
3.69k
{
692
3.69k
    gs_memory_t *memory = pfs->memory;
693
694
3.69k
    gs_free_object(memory, pfs->wedge_vertex_list_elem_buffer,
695
3.69k
                "wedge_vertex_list_elem_buffer_free");
696
3.69k
    pfs->wedge_vertex_list_elem_buffer = NULL;
697
3.69k
    pfs->free_wedge_vertex = NULL;
698
3.69k
}
699
700
static inline wedge_vertex_list_elem_t *
701
wedge_vertex_list_elem_reserve(patch_fill_state_t *pfs)
702
146k
{
703
146k
    wedge_vertex_list_elem_t *e = pfs->free_wedge_vertex;
704
705
146k
    if (e != NULL) {
706
100k
        pfs->free_wedge_vertex = e->next;
707
100k
        return e;
708
100k
    }
709
46.7k
    if (pfs->wedge_vertex_list_elem_count < pfs->wedge_vertex_list_elem_count_max)
710
46.7k
        return pfs->wedge_vertex_list_elem_buffer + pfs->wedge_vertex_list_elem_count++;
711
0
    return NULL;
712
46.7k
}
713
714
static inline void
715
wedge_vertex_list_elem_release(patch_fill_state_t *pfs, wedge_vertex_list_elem_t *e)
716
146k
{
717
146k
    e->next = pfs->free_wedge_vertex;
718
146k
    pfs->free_wedge_vertex = e;
719
146k
}
720
721
static inline void
722
release_wedge_vertex_list_interval(patch_fill_state_t *pfs,
723
    wedge_vertex_list_elem_t *beg, wedge_vertex_list_elem_t *end)
724
60.0k
{
725
60.0k
    wedge_vertex_list_elem_t *e = beg->next, *ee;
726
727
60.0k
    beg->next = end;
728
60.0k
    end->prev = beg;
729
136k
    for (; e != end; e = ee) {
730
76.6k
        ee = e->next;
731
76.6k
        wedge_vertex_list_elem_release(pfs, e);
732
76.6k
    }
733
60.0k
}
734
735
static inline int
736
release_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *ll, int n)
737
35.1k
{
738
35.1k
    int i;
739
740
70.2k
    for (i = 0; i < n; i++) {
741
35.1k
        wedge_vertex_list_t *l = ll + i;
742
743
35.1k
        if (l->beg != NULL) {
744
35.1k
            if (l->end == NULL)
745
0
                return_error(gs_error_unregistered); /* Must not happen. */
746
35.1k
            release_wedge_vertex_list_interval(pfs, l->beg, l->end);
747
35.1k
            wedge_vertex_list_elem_release(pfs, l->beg);
748
35.1k
            wedge_vertex_list_elem_release(pfs, l->end);
749
35.1k
            l->beg = l->end = NULL;
750
35.1k
        } else if (l->end != NULL)
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
35.1k
    }
753
35.1k
    return 0;
754
35.1k
}
755
756
static inline wedge_vertex_list_elem_t *
757
wedge_vertex_list_find(wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
758
            int level)
759
41.6k
{
760
41.6k
    wedge_vertex_list_elem_t *e = beg;
761
762
41.6k
    if (beg == NULL || end == NULL)
763
0
        return NULL; /* Must not happen. */
764
134k
    for (; e != end; e = e->next)
765
134k
        if (e->level == level)
766
41.6k
            return e;
767
0
    return NULL;
768
41.6k
}
769
770
static inline void
771
init_wedge_vertex_list(wedge_vertex_list_t *l, int n)
772
2.67M
{
773
2.67M
    memset(l, 0, sizeof(*l) * n);
774
2.67M
}
775
776
/* For a given set of poles in the tensor patch (for instance
777
 * [0][0], [0][1], [0][2], [0][3] or [0][2], [1][2], [2][2], [3][2])
778
 * return the number of subdivisions required to flatten the bezier
779
 * given by those poles to the required flatness.
780
 */
781
static inline int
782
curve_samples(patch_fill_state_t *pfs,
783
                const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
784
1.17M
{
785
1.17M
    curve_segment s;
786
1.17M
    int k;
787
788
1.17M
    s.p1.x = pole[pole_step].x;
789
1.17M
    s.p1.y = pole[pole_step].y;
790
1.17M
    s.p2.x = pole[pole_step * 2].x;
791
1.17M
    s.p2.y = pole[pole_step * 2].y;
792
1.17M
    s.pt.x = pole[pole_step * 3].x;
793
1.17M
    s.pt.y = pole[pole_step * 3].y;
794
1.17M
    k = gx_curve_log2_samples(pole[0].x, pole[0].y, &s, fixed_flat);
795
1.17M
    {
796
1.17M
#       if LAZY_WEDGES || QUADRANGLES
797
1.17M
            int k1;
798
1.17M
            fixed L = any_abs(pole[pole_step * 1].x - pole[pole_step * 0].x) + any_abs(pole[pole_step * 1].y - pole[pole_step * 0].y) +
799
1.17M
                      any_abs(pole[pole_step * 2].x - pole[pole_step * 1].x) + any_abs(pole[pole_step * 2].y - pole[pole_step * 1].y) +
800
1.17M
                      any_abs(pole[pole_step * 3].x - pole[pole_step * 2].x) + any_abs(pole[pole_step * 3].y - pole[pole_step * 2].y);
801
1.17M
#       endif
802
803
1.17M
#       if LAZY_WEDGES
804
            /* Restrict lengths for a reasonable memory consumption : */
805
1.17M
            k1 = ilog2(L / fixed_1 / (1 << (LAZY_WEDGES_MAX_LEVEL - 1)));
806
1.17M
            k = max(k, k1);
807
1.17M
#       endif
808
#       if QUADRANGLES
809
            /* Restrict lengths for intersection_of_small_bars : */
810
            k = max(k, ilog2(L) - ilog2(pfs->max_small_coord));
811
#       endif
812
1.17M
    }
813
1.17M
    return 1 << k;
814
1.17M
}
815
816
static inline bool
817
intersection_of_small_bars(const gs_fixed_point q[4], int i0, int i1, int i2, int i3, fixed *ry, fixed *ey)
818
0
{
819
    /* This function is only used with QUADRANGLES. */
820
0
    return gx_intersect_small_bars(q[i0].x, q[i0].y, q[i1].x, q[i1].y, q[i2].x, q[i2].y, q[i3].x, q[i3].y, ry, ey);
821
0
}
822
823
static inline void
824
adjust_swapped_boundary(fixed *b, bool swap_axes)
825
4.34M
{
826
4.34M
    if (swap_axes) {
827
        /*  Sinse the rasterizer algorithm assumes semi-open interval
828
            when computing pixel coverage, we should expand
829
            the right side of the area. Otherwise a dropout can happen :
830
            if the left neighbour is painted with !swap_axes,
831
            the left side of this area appears to be the left side
832
            of the neighbour area, and the side is not included
833
            into both areas.
834
         */
835
2.00M
        *b += fixed_epsilon;
836
2.00M
    }
837
4.34M
}
838
839
static inline void
840
make_trapezoid(const gs_fixed_point q[4],
841
        int vi0, int vi1, int vi2, int vi3, fixed ybot, fixed ytop,
842
        bool swap_axes, bool orient, gs_fixed_edge *le, gs_fixed_edge *re)
843
912k
{
844
912k
    if (!orient) {
845
625k
        le->start = q[vi0];
846
625k
        le->end = q[vi1];
847
625k
        re->start = q[vi2];
848
625k
        re->end = q[vi3];
849
625k
    } else {
850
287k
        le->start = q[vi2];
851
287k
        le->end = q[vi3];
852
287k
        re->start = q[vi0];
853
287k
        re->end = q[vi1];
854
287k
    }
855
912k
    adjust_swapped_boundary(&re->start.x, swap_axes);
856
912k
    adjust_swapped_boundary(&re->end.x, swap_axes);
857
912k
}
858
859
static inline int
860
gx_shade_trapezoid(patch_fill_state_t *pfs, const gs_fixed_point q[4],
861
        int vi0, int vi1, int vi2, int vi3, fixed ybot0, fixed ytop0,
862
        bool swap_axes, const gx_device_color *pdevc, bool orient)
863
43.1k
{
864
43.1k
    gs_fixed_edge le, re;
865
43.1k
    int code;
866
43.1k
    fixed ybot = max(ybot0, swap_axes ? pfs->rect.p.x : pfs->rect.p.y);
867
43.1k
    fixed ytop = min(ytop0, swap_axes ? pfs->rect.q.x : pfs->rect.q.y);
868
43.1k
    fixed xleft  = (swap_axes ? pfs->rect.p.y : pfs->rect.p.x);
869
43.1k
    fixed xright = (swap_axes ? pfs->rect.q.y : pfs->rect.q.x);
870
871
43.1k
    if (ybot >= ytop)
872
14.3k
        return 0;
873
#   if NOFILL_TEST
874
        if (dbg_nofill)
875
            return 0;
876
#   endif
877
28.7k
    make_trapezoid(q, vi0, vi1, vi2, vi3, ybot, ytop, swap_axes, orient, &le, &re);
878
28.7k
    if (!pfs->inside) {
879
13.4k
        bool clip = false;
880
881
        /* We are asked to clip a trapezoid to a rectangle. If the rectangle
882
         * is entirely contained within the rectangle, then no clipping is
883
         * actually required. If the left edge is entirely to the right of
884
         * the rectangle, or the right edge is entirely to the left, we
885
         * clip away to nothing. If the left edge is entirely to the left of
886
         * the rectangle, then we can simplify it to a vertical edge along
887
         * the edge of the rectangle. Likewise with the right edge if it's
888
         * entirely to the right of the rectangle.*/
889
13.4k
        if (le.start.x > xright) {
890
2.45k
            if (le.end.x > xright) {
891
2
                return 0;
892
2
            }
893
2.45k
            clip = true;
894
10.9k
        } else if (le.end.x > xright) {
895
1.35k
            clip = true;
896
1.35k
        }
897
13.4k
        if (le.start.x < xleft) {
898
3.77k
            if (le.end.x < xleft) {
899
2.36k
                le.start.x = xleft;
900
2.36k
                le.end.x   = xleft;
901
2.36k
                le.start.y = ybot;
902
2.36k
                le.end.y   = ytop;
903
2.36k
            } else {
904
1.41k
                clip = true;
905
1.41k
            }
906
9.66k
        } else if (le.end.x < xleft) {
907
2.23k
            clip = true;
908
2.23k
        }
909
13.4k
        if (re.start.x < xleft) {
910
1.83k
            if (re.end.x < xleft) {
911
1
                return 0;
912
1
            }
913
1.83k
            clip = true;
914
11.6k
        } else if (re.end.x < xleft) {
915
2.35k
            clip = true;
916
2.35k
        }
917
13.4k
        if (re.start.x > xright) {
918
4.45k
            if (re.end.x > xright) {
919
2.12k
                re.start.x = xright;
920
2.12k
                re.end.x   = xright;
921
2.12k
                re.start.y = ybot;
922
2.12k
                re.end.y   = ytop;
923
2.33k
            } else {
924
2.33k
                clip = true;
925
2.33k
            }
926
8.97k
        } else if (re.end.x > xright) {
927
1.26k
            clip = true;
928
1.26k
        }
929
13.4k
        if (clip)
930
8.55k
        {
931
            /* Some form of clipping seems to be required. A certain amount
932
             * of horridness goes on here to ensure that we round 'outwards'
933
             * in all cases. */
934
8.55k
            gs_fixed_edge lenew, renew;
935
8.55k
            fixed ybl, ybr, ytl, ytr, ymid;
936
937
            /* Reduce the clipping region horizontally if possible. */
938
8.55k
            if (re.start.x > re.end.x) {
939
3.41k
                if (re.start.x < xright)
940
1.08k
                    xright = re.start.x;
941
5.14k
            } else if (re.end.x < xright)
942
1.81k
                xright = re.end.x;
943
8.55k
            if (le.start.x > le.end.x) {
944
3.49k
                if (le.end.x > xleft)
945
1.25k
                    xleft = le.end.x;
946
5.06k
            } else if (le.start.x > xleft)
947
1.36k
                xleft = le.start.x;
948
949
8.55k
            ybot = max(ybot, min(le.start.y, re.start.y));
950
8.55k
            ytop = min(ytop, max(le.end.y, re.end.y));
951
#if 0
952
            /* RJW: I've disabled this code a) because it doesn't make any
953
             * difference in the cluster tests, and b) because I think it's wrong.
954
             * Taking the first case as an example; just because the le.start.x
955
             * is > xright, does not mean that we can simply truncate the edge at
956
             * xright, as this may throw away part of the trap between ybot and
957
             * the new le.start.y. */
958
            /* Reduce the edges to the left/right of the clipping region. */
959
            /* Only in the 4 cases which can bring ytop/ybot closer */
960
            if (le.start.x > xright) {
961
                le.start.y += (fixed)((int64_t)(le.end.y-le.start.y)*
962
                                      (int64_t)(le.start.x-xright)/
963
                                      (int64_t)(le.start.x-le.end.x));
964
                le.start.x = xright;
965
            }
966
            if (re.start.x < xleft) {
967
                re.start.y += (fixed)((int64_t)(re.end.y-re.start.y)*
968
                                      (int64_t)(xleft-re.start.x)/
969
                                      (int64_t)(re.end.x-re.start.x));
970
                re.start.x = xleft;
971
            }
972
            if (le.end.x > xright) {
973
                le.end.y -= (fixed)((int64_t)(le.end.y-le.start.y)*
974
                                    (int64_t)(le.end.x-xright)/
975
                                    (int64_t)(le.end.x-le.start.x));
976
                le.end.x = xright;
977
            }
978
            if (re.end.x < xleft) {
979
                re.end.y -= (fixed)((int64_t)(re.end.y-re.start.y)*
980
                                    (int64_t)(xleft-re.end.x)/
981
                                    (int64_t)(re.start.x-re.end.x));
982
                re.end.x = xleft;
983
            }
984
#endif
985
986
8.55k
            if (ybot >= ytop)
987
0
                return 0;
988
            /* Follow the edges in, so that le.start.y == ybot etc. */
989
8.55k
            if (le.start.y < ybot) {
990
3.55k
                int round = ((le.end.x < le.start.x) ?
991
2.06k
                             (le.end.y-le.start.y-1) : 0);
992
3.55k
                le.start.x += (fixed)(((int64_t)(ybot-le.start.y)*
993
3.55k
                                       (int64_t)(le.end.x-le.start.x)-round)/
994
3.55k
                                      (int64_t)(le.end.y-le.start.y));
995
3.55k
                le.start.y = ybot;
996
3.55k
            }
997
8.55k
            if (le.end.y > ytop) {
998
3.80k
                int round = ((le.end.x > le.start.x) ?
999
1.96k
                             (le.end.y-le.start.y-1) : 0);
1000
3.80k
                le.end.x += (fixed)(((int64_t)(le.end.y-ytop)*
1001
3.80k
                                     (int64_t)(le.start.x-le.end.x)-round)/
1002
3.80k
                                    (int64_t)(le.end.y-le.start.y));
1003
3.80k
                le.end.y = ytop;
1004
3.80k
            }
1005
8.55k
            if ((le.start.x < xleft) && (le.end.x < xleft)) {
1006
551
                le.start.x = xleft;
1007
551
                le.end.x   = xleft;
1008
551
                le.start.y = ybot;
1009
551
                le.end.y   = ytop;
1010
551
            }
1011
8.55k
            if (re.start.y < ybot) {
1012
3.73k
                int round = ((re.end.x > re.start.x) ?
1013
2.01k
                             (re.end.y-re.start.y-1) : 0);
1014
3.73k
                re.start.x += (fixed)(((int64_t)(ybot-re.start.y)*
1015
3.73k
                                       (int64_t)(re.end.x-re.start.x)+round)/
1016
3.73k
                                      (int64_t)(re.end.y-re.start.y));
1017
3.73k
                re.start.y = ybot;
1018
3.73k
            }
1019
8.55k
            if (re.end.y > ytop) {
1020
4.04k
                int round = ((re.end.x < re.start.x) ?
1021
2.03k
                             (re.end.y-re.start.y-1) : 0);
1022
4.04k
                re.end.x += (fixed)(((int64_t)(re.end.y-ytop)*
1023
4.04k
                                     (int64_t)(re.start.x-re.end.x)+round)/
1024
4.04k
                                    (int64_t)(re.end.y-re.start.y));
1025
4.04k
                re.end.y = ytop;
1026
4.04k
            }
1027
8.55k
            if ((re.start.x > xright) && (re.end.x > xright)) {
1028
216
                re.start.x = xright;
1029
216
                re.end.x   = xright;
1030
216
                re.start.y = ybot;
1031
216
                re.end.y   = ytop;
1032
216
            }
1033
            /* Now, check whether the left and right edges cross. Previously
1034
             * this comment said: "This can only happen (for well formed
1035
             * input) in the case where one of the edges was completely out
1036
             * of range and has now been pulled in to the edge of the clip
1037
             * region." I now do not believe this to be true. */
1038
8.55k
            if (le.start.x > re.start.x) {
1039
2.93k
                if (le.start.x == le.end.x) {
1040
1.48k
                    if (re.start.x == re.end.x)
1041
0
                        return 0;
1042
1.48k
                    ybot += (fixed)((int64_t)(re.end.y-re.start.y)*
1043
1.48k
                                    (int64_t)(le.start.x-re.start.x)/
1044
1.48k
                                    (int64_t)(re.end.x-re.start.x));
1045
1.48k
                    re.start.x = le.start.x;
1046
1.48k
                } else {
1047
1.45k
                    ybot += (fixed)((int64_t)(le.end.y-le.start.y)*
1048
1.45k
                                    (int64_t)(le.start.x-re.start.x)/
1049
1.45k
                                    (int64_t)(le.start.x-le.end.x));
1050
1.45k
                    le.start.x = re.start.x;
1051
1.45k
                }
1052
2.93k
                if (ybot >= ytop)
1053
921
                    return 0;
1054
2.01k
                le.start.y = ybot;
1055
2.01k
                re.start.y = ybot;
1056
2.01k
            }
1057
7.63k
            if (le.end.x > re.end.x) {
1058
1.95k
                if (le.start.x == le.end.x) {
1059
1.25k
                    if (re.start.x == re.end.x)
1060
0
                        return 0;
1061
1.25k
                    ytop -= (fixed)((int64_t)(re.end.y-re.start.y)*
1062
1.25k
                                    (int64_t)(le.end.x-re.end.x)/
1063
1.25k
                                    (int64_t)(re.start.x-re.end.x));
1064
1.25k
                    re.end.x = le.end.x;
1065
1.25k
                } else {
1066
697
                    ytop -= (fixed)((int64_t)(le.end.y-le.start.y)*
1067
697
                                    (int64_t)(le.end.x-re.end.x)/
1068
697
                                    (int64_t)(le.end.x-le.start.x));
1069
697
                    le.end.x = re.end.x;
1070
697
                }
1071
1.95k
                if (ybot >= ytop)
1072
709
                    return 0;
1073
1.24k
                le.end.y = ytop;
1074
1.24k
                re.end.y = ytop;
1075
1.24k
            }
1076
            /* At this point we are guaranteed that le and re are constrained
1077
             * as tightly as possible to the ybot/ytop range, and that the
1078
             * entire ybot/ytop range will be marked at least somewhere. All
1079
             * we need to do now is to actually fill the region.
1080
             */
1081
6.92k
            lenew.start.x = xleft;
1082
6.92k
            lenew.start.y = ybot;
1083
6.92k
            lenew.end.x   = xleft;
1084
6.92k
            lenew.end.y   = ytop;
1085
6.92k
            renew.start.x = xright;
1086
6.92k
            renew.start.y = ybot;
1087
6.92k
            renew.end.x   = xright;
1088
6.92k
            renew.end.y   = ytop;
1089
            /* Figure out where the left edge intersects with the left at
1090
             * the bottom */
1091
6.92k
            ybl = ybot;
1092
6.92k
            if (le.start.x > le.end.x) {
1093
2.59k
                ybl += (fixed)((int64_t)(le.start.x-xleft) *
1094
2.59k
                               (int64_t)(le.end.y-le.start.y) /
1095
2.59k
                               (int64_t)(le.start.x-le.end.x));
1096
2.59k
                if (ybl > ytop)
1097
1.25k
                    ybl = ytop;
1098
2.59k
            }
1099
            /* Figure out where the right edge intersects with the right at
1100
             * the bottom */
1101
6.92k
            ybr = ybot;
1102
6.92k
            if (re.start.x < re.end.x) {
1103
2.56k
                ybr += (fixed)((int64_t)(xright-re.start.x) *
1104
2.56k
                               (int64_t)(re.end.y-re.start.y) /
1105
2.56k
                               (int64_t)(re.end.x-re.start.x));
1106
2.56k
                if (ybr > ytop)
1107
1.52k
                    ybr = ytop;
1108
2.56k
            }
1109
            /* Figure out where the left edge intersects with the left at
1110
             * the top */
1111
6.92k
            ytl = ytop;
1112
6.92k
            if (le.end.x > le.start.x) {
1113
2.39k
                ytl -= (fixed)((int64_t)(le.end.x-xleft) *
1114
2.39k
                               (int64_t)(le.end.y-le.start.y) /
1115
2.39k
                               (int64_t)(le.end.x-le.start.x));
1116
2.39k
                if (ytl < ybot)
1117
1.24k
                    ytl = ybot;
1118
2.39k
            }
1119
            /* Figure out where the right edge intersects with the right at
1120
             * the bottom */
1121
6.92k
            ytr = ytop;
1122
6.92k
            if (re.end.x < re.start.x) {
1123
2.79k
                ytr -= (fixed)((int64_t)(xright-re.end.x) *
1124
2.79k
                               (int64_t)(re.end.y-re.start.y) /
1125
2.79k
                               (int64_t)(re.start.x-re.end.x));
1126
2.79k
                if (ytr < ybot)
1127
1.11k
                    ytr = ybot;
1128
2.79k
            }
1129
            /* Check for the 2 cases where top and bottom diagonal extents
1130
             * overlap, and deal with them explicitly. */
1131
6.92k
            if (ytl < ybr) {
1132
                /*     |     |
1133
                 *  ---+-----+---
1134
                 *     | /222|
1135
                 *     |/111/|
1136
                 *     |000/ |
1137
                 *  ---+-----+---
1138
                 *     |     |
1139
                 */
1140
1.07k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1141
1.07k
                                        &lenew, &re, ybot, ytl,
1142
1.07k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1143
1.07k
                if (code < 0)
1144
0
                    return code;
1145
1.07k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1146
1.07k
                                        &le, &re, ytl, ybr,
1147
1.07k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1148
1.07k
                if (code < 0)
1149
0
                    return code;
1150
1.07k
                ybot = ybr;
1151
1.07k
                return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1152
1.07k
                                        &le, &renew, ybr, ytop,
1153
1.07k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1154
5.84k
            } else if (ytr < ybl) {
1155
                /*     |     |
1156
                 *  ---+-----+----
1157
                 *     |555\ |
1158
                 *     |\444\|
1159
                 *     | \333|
1160
                 *  ---+-----+---
1161
                 *     |     |
1162
                 */
1163
1.15k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1164
1.15k
                                        &le, &renew, ybot, ytr,
1165
1.15k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1166
1.15k
                if (code < 0)
1167
0
                    return code;
1168
1.15k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1169
1.15k
                                        &le, &re, ytr, ybl,
1170
1.15k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1171
1.15k
                if (code < 0)
1172
0
                    return code;
1173
1.15k
                return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1174
1.15k
                                        &le, &re, ybl, ytop,
1175
1.15k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1176
1.15k
            }
1177
            /* Fill in any section where both left and right edges are
1178
             * diagonal at the bottom */
1179
4.68k
            ymid = ybl;
1180
4.68k
            if (ymid > ybr)
1181
1.11k
                ymid = ybr;
1182
4.68k
            if (ymid > ybot) {
1183
                /*     |\   |          |   /|
1184
                 *     | \6/|    or    |\6/ |
1185
                 *  ---+----+---    ---+----+---
1186
                 *     |    |          |    |
1187
                 */
1188
168
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1189
168
                                        &le, &re, ybot, ymid,
1190
168
                                        swap_axes, pdevc, pfs->pgs->log_op);
1191
168
                if (code < 0)
1192
0
                    return code;
1193
168
                ybot = ymid;
1194
168
            }
1195
            /* Fill in any section where both left and right edges are
1196
             * diagonal at the top */
1197
4.68k
            ymid = ytl;
1198
4.68k
            if (ymid < ytr)
1199
921
                ymid = ytr;
1200
4.68k
            if (ymid < ytop) {
1201
                /*     |    |          |    |
1202
                 *  ---+----+---    ---+----+---
1203
                 *     |/7\ |    or    | /7\|
1204
                 *     |   \|          |/   |
1205
                 */
1206
198
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1207
198
                                        &le, &re, ymid, ytop,
1208
198
                                        swap_axes, pdevc, pfs->pgs->log_op);
1209
198
                if (code < 0)
1210
0
                    return code;
1211
198
                ytop = ymid;
1212
198
            }
1213
            /* Now do the single diagonal cases at the bottom */
1214
4.68k
            if (ybl > ybot) {
1215
                /*     |    |
1216
                 *     |\666|
1217
                 *  ---+----+---
1218
                 *     |    |
1219
                 */
1220
1.11k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1221
1.11k
                                        &le, &renew, ybot, ybl,
1222
1.11k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1223
1.11k
                if (code < 0)
1224
0
                    return code;
1225
1.11k
                ybot = ybl;
1226
3.57k
            } else if (ybr > ybot) {
1227
                /*     |    |
1228
                 *     |777/|
1229
                 *  ---+----+---
1230
                 *     |    |
1231
                 */
1232
1.07k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1233
1.07k
                                        &lenew, &re, ybot, ybr,
1234
1.07k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1235
1.07k
                if (code < 0)
1236
0
                    return code;
1237
1.07k
                ybot = ybr;
1238
1.07k
            }
1239
            /* Now do the single diagonal cases at the top */
1240
4.68k
            if (ytl < ytop) {
1241
                /*     |    |
1242
                 *  ---+----+---
1243
                 *     |/888|
1244
                 *     |    |
1245
                 */
1246
921
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1247
921
                                        &le, &renew, ytl, ytop,
1248
921
                                        swap_axes, pdevc, pfs->pgs->log_op);
1249
921
                if (code < 0)
1250
0
                    return code;
1251
921
                ytop = ytl;
1252
3.76k
            } else if (ytr < ytop) {
1253
                /*     |    |
1254
                 *  ---+----+---
1255
                 *     |999\|
1256
                 *     |    |
1257
                 */
1258
1.22k
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1259
1.22k
                                        &lenew, &re, ytr, ytop,
1260
1.22k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1261
1.22k
                if (code < 0)
1262
0
                    return code;
1263
1.22k
                ytop = ytr;
1264
1.22k
            }
1265
            /* And finally just whatever rectangular section is left over in
1266
             * the middle */
1267
4.68k
            if (ybot > ytop)
1268
0
                return 0;
1269
4.68k
            return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1270
4.68k
                                        &lenew, &renew, ybot, ytop,
1271
4.68k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1272
4.68k
        }
1273
13.4k
    }
1274
20.1k
    return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1275
20.1k
            &le, &re, ybot, ytop, swap_axes, pdevc, pfs->pgs->log_op);
1276
28.7k
}
1277
1278
static inline void
1279
dc2fc31(const patch_fill_state_t *pfs, gx_device_color *pdevc,
1280
            frac31 fc[GX_DEVICE_COLOR_MAX_COMPONENTS])
1281
0
{
1282
0
    int j;
1283
0
    const gx_device_color_info *cinfo = &pfs->trans_device->color_info;
1284
    /* Note trans device is actually either the transparency parent
1285
       device if transparency is present or the target device.  Basically
1286
       the device from which we want to get the color information from
1287
       for this */
1288
1289
0
    if (pdevc->type == &gx_dc_type_data_pure) {
1290
0
        for (j = 0; j < cinfo->num_components; j++) {
1291
0
                int shift = cinfo->comp_shift[j];
1292
0
                int bits = cinfo->comp_bits[j];
1293
1294
0
                fc[j] = ((pdevc->colors.pure >> shift) & ((1 << bits) - 1)) <<
1295
0
                        (sizeof(frac31) * 8 - 1 - bits);
1296
0
        }
1297
0
    } else {
1298
0
        for (j = 0; j < cinfo->num_components; j++) {
1299
0
                fc[j] = cv2frac31(pdevc->colors.devn.values[j]);
1300
0
        }
1301
0
    }
1302
0
}
1303
1304
37.3M
#define DEBUG_COLOR_INDEX_CACHE 0
1305
1306
static inline int
1307
patch_color_to_device_color_inline(const patch_fill_state_t *pfs,
1308
                                   const patch_color_t *c, gx_device_color *pdevc,
1309
                                   frac31 *frac_values)
1310
9.33M
{
1311
    /* Must return 2 if the color is not pure.
1312
       See try_device_linear_color.
1313
     */
1314
9.33M
    int code;
1315
9.33M
    gx_device_color devc;
1316
1317
9.33M
#ifdef PACIFY_VALGRIND
1318
    /* This is a hack to get us around some valgrind warnings seen
1319
     * when transparency is in use with the clist. We run through
1320
     * the shading code dealing with pfs->num_components components.
1321
     * I believe this is intended to match the source space of the
1322
     * shading, as we have to perform all shadings in the source
1323
     * space initially, and only convert after decomposition.
1324
     * When this reaches down to the clist writing phase, the
1325
     * clist writes pfs->dev->color_info.num_components color
1326
     * components to the clist. In the example I am using
1327
     *  pfs->num_components = 1
1328
     *  pfs->dev->color_info.num_components=3
1329
     * So valgrind complains that 2 of the 3 color components
1330
     * it is writing are uninitialised. Magically, it appears
1331
     * not to actually use them when read back though, so
1332
     * it suffices to blank them to kill the warnings now.
1333
     * If pfs->num_components > pfs->dev->color_info.num_components
1334
     * then we'll not be writing enough information to the clist
1335
     * and so hopefully we'll see bad rendering!
1336
     *
1337
     * An example that shows why this is required:
1338
     *  make gsdebugvg
1339
     *  valgrind --track-origins=yes debugbin/gs -sOutputFile=test.ps
1340
     *    -dMaxBitmap=1000 -sDEVICE=ps2write  -r300  -Z: -dNOPAUSE
1341
     *    -dBATCH -K2000000 -dClusterJob Bug693480.pdf
1342
     * (though ps2write is not implicated here).
1343
     */
1344
9.33M
     if (frac_values) {
1345
9.22M
        int i;
1346
9.22M
  int n = pfs->dev->color_info.num_components;
1347
10.1M
  for (i = pfs->num_components; i < n; i++) {
1348
958k
            frac_values[i] = 0;
1349
958k
  }
1350
9.22M
    }
1351
9.33M
#endif
1352
1353
9.33M
    if (DEBUG_COLOR_INDEX_CACHE && pdevc == NULL)
1354
0
        pdevc = &devc;
1355
9.33M
    if (pfs->pcic) {
1356
9.33M
        code = gs_cached_color_index(pfs->pcic, c->cc.paint.values, pdevc, frac_values);
1357
9.33M
        if (code < 0)
1358
0
            return code;
1359
9.33M
    }
1360
9.33M
    if (DEBUG_COLOR_INDEX_CACHE || pfs->pcic == NULL) {
1361
#       if DEBUG_COLOR_INDEX_CACHE
1362
        gx_color_index cindex = pdevc->colors.pure;
1363
#       endif
1364
0
        gs_client_color fcc;
1365
0
        const gs_color_space *pcs = pfs->direct_space;
1366
1367
0
        if (pcs != NULL) {
1368
1369
0
            if (pdevc == NULL)
1370
0
                pdevc = &devc;
1371
0
            memcpy(fcc.paint.values, c->cc.paint.values,
1372
0
                        sizeof(fcc.paint.values[0]) * pfs->num_components);
1373
0
            code = pcs->type->remap_color(&fcc, pcs, pdevc, pfs->pgs,
1374
0
                                      pfs->trans_device, gs_color_select_texture);
1375
0
            if (code < 0)
1376
0
                return code;
1377
0
            if (frac_values != NULL) {
1378
0
                if (!(pdevc->type == &gx_dc_type_data_devn ||
1379
0
                      pdevc->type == &gx_dc_type_data_pure))
1380
0
                    return 2;
1381
0
                dc2fc31(pfs, pdevc, frac_values);
1382
0
            }
1383
#           if DEBUG_COLOR_INDEX_CACHE
1384
            if (cindex != pdevc->colors.pure)
1385
                return_error(gs_error_unregistered);
1386
#           endif
1387
0
        } else {
1388
            /* This is reserved for future extension,
1389
            when a linear color triangle with frac31 colors is being decomposed
1390
            during a clist rasterization. In this case frac31 colors are written into
1391
            the patch color, and pcs==NULL means an identity color mapping.
1392
            For a while we assume here pfs->pcic is also NULL. */
1393
0
            int j;
1394
0
            const gx_device_color_info *cinfo = &pfs->dev->color_info;
1395
1396
0
            for (j = 0; j < cinfo->num_components; j++)
1397
0
                frac_values[j] = (frac31)c->cc.paint.values[j];
1398
0
            pdevc->type = &gx_dc_type_data_pure;
1399
0
        }
1400
0
    }
1401
9.33M
    return 0;
1402
9.33M
}
1403
1404
int
1405
patch_color_to_device_color(const patch_fill_state_t *pfs, const patch_color_t *c, gx_device_color *pdevc)
1406
0
{
1407
0
    return patch_color_to_device_color_inline(pfs, c, pdevc, NULL);
1408
0
}
1409
1410
static inline double
1411
color_span(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1412
11.7M
{
1413
11.7M
    int n = pfs->num_components, i;
1414
11.7M
    double m;
1415
1416
    /* Dont want to copy colors, which are big things. */
1417
11.7M
    m = any_abs(c1->cc.paint.values[0] - c0->cc.paint.values[0]) / pfs->color_domain.paint.values[0];
1418
45.6M
    for (i = 1; i < n; i++)
1419
33.8M
        m = max(m, any_abs(c1->cc.paint.values[i] - c0->cc.paint.values[i]) / pfs->color_domain.paint.values[i]);
1420
11.7M
    return m;
1421
11.7M
}
1422
1423
static inline void
1424
color_diff(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1, patch_color_t *d)
1425
3.30M
{
1426
3.30M
    int n = pfs->num_components, i;
1427
1428
15.9M
    for (i = 0; i < n; i++)
1429
12.6M
        d->cc.paint.values[i] = c1->cc.paint.values[i] - c0->cc.paint.values[i];
1430
3.30M
}
1431
1432
static inline double
1433
color_norm(const patch_fill_state_t *pfs, const patch_color_t *c)
1434
2.26M
{
1435
2.26M
    int n = pfs->num_components, i;
1436
2.26M
    double m;
1437
1438
2.26M
    m = any_abs(c->cc.paint.values[0]) / pfs->color_domain.paint.values[0];
1439
8.65M
    for (i = 1; i < n; i++)
1440
6.39M
        m = max(m, any_abs(c->cc.paint.values[i]) / pfs->color_domain.paint.values[i]);
1441
2.26M
    return m;
1442
2.26M
}
1443
1444
static inline int
1445
isnt_color_monotonic(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1446
468k
{   /* checks whether the color is monotonic in the n-dimensional interval,
1447
       where n is the number of parameters in c0->t, c1->t.
1448
       returns : 0 = monotonic,
1449
       bit 0 = not or don't know by t0,
1450
       bit 1 = not or don't know by t1,
1451
       <0 = error. */
1452
    /* When pfs->Function is not set, the color is monotonic.
1453
       In this case do not call this function because
1454
       it doesn't check whether pfs->Function is set.
1455
       Actually pfs->monotonic_color prevents that.
1456
     */
1457
    /* This assumes that the color space is always monotonic.
1458
       Non-monotonic color spaces are not recommended by PLRM,
1459
       and the result with them may be imprecise.
1460
     */
1461
468k
    uint mask;
1462
468k
    int code = gs_function_is_monotonic(pfs->Function, c0->t, c1->t, &mask);
1463
1464
468k
    if (code >= 0)
1465
468k
        return mask;
1466
1
    return code;
1467
468k
}
1468
1469
static inline bool
1470
covers_pixel_centers(fixed ybot, fixed ytop)
1471
1.30M
{
1472
1.30M
    return fixed_pixround(ybot) < fixed_pixround(ytop);
1473
1.30M
}
1474
1475
static inline int
1476
constant_color_trapezoid(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re,
1477
        fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c)
1478
75.2k
{
1479
75.2k
    gx_device_color dc;
1480
75.2k
    int code;
1481
1482
#   if NOFILL_TEST
1483
        /* if (dbg_nofill)
1484
                return 0; */
1485
#   endif
1486
1487
75.2k
    code = patch_color_to_device_color_inline(pfs, c, &dc, NULL);
1488
75.2k
    if (code < 0)
1489
0
        return code;
1490
1491
75.2k
    dc.tag = device_current_tag(pfs->dev);
1492
1493
75.2k
    return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1494
75.2k
        le, re, ybot, ytop, swap_axes, &dc, pfs->pgs->log_op);
1495
75.2k
}
1496
1497
static inline float
1498
function_linearity(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1499
11.0M
{
1500
11.0M
    float s = 0;
1501
1502
11.0M
    if (pfs->Function != NULL) {
1503
1.45M
        patch_color_t c;
1504
        /* Solaris 9 (Sun C 5.5) compiler cannot initialize a 'const' */
1505
        /* unless it is 'static const' */
1506
1.45M
        static const float q[2] = {(float)0.3, (float)0.7};
1507
1.45M
        int i, j;
1508
1509
4.25M
        for (j = 0; j < count_of(q); j++) {
1510
2.86M
            c.t[0] = c0->t[0] * (1 - q[j]) + c1->t[0] * q[j];
1511
2.86M
            c.t[1] = c0->t[1] * (1 - q[j]) + c1->t[1] * q[j];
1512
2.86M
            patch_resolve_color_inline(&c, pfs);
1513
10.9M
            for (i = 0; i < pfs->num_components; i++) {
1514
8.10M
                float v = c0->cc.paint.values[i] * (1 - q[j]) + c1->cc.paint.values[i] * q[j];
1515
8.10M
                float d = v - c.cc.paint.values[i];
1516
8.10M
                float s1 = any_abs(d) / pfs->color_domain.paint.values[i];
1517
1518
8.10M
                if (s1 > pfs->smoothness)
1519
60.1k
                    return s1;
1520
8.04M
                if (s < s1)
1521
745k
                    s = s1;
1522
8.04M
            }
1523
2.86M
        }
1524
1.45M
    }
1525
10.9M
    return s;
1526
11.0M
}
1527
1528
static inline int
1529
is_color_linear(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1530
2.89M
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
1531
2.89M
    if (pfs->unlinear)
1532
0
        return 1; /* Disable this check. */
1533
2.89M
    else {
1534
2.89M
        const gs_color_space *cs = pfs->direct_space;
1535
2.89M
        int code;
1536
2.89M
        float s = function_linearity(pfs, c0, c1);
1537
1538
2.89M
        if (s > pfs->smoothness)
1539
34.7k
            return 0;
1540
2.86M
        if (pfs->cs_always_linear)
1541
592k
            return 1;
1542
2.26M
        code = cs_is_linear(cs, pfs->pgs, pfs->trans_device,
1543
2.26M
                &c0->cc, &c1->cc, NULL, NULL, pfs->smoothness - s, pfs->icclink);
1544
2.26M
        if (code <= 0)
1545
3.06k
            return code;
1546
2.26M
        return 1;
1547
2.26M
    }
1548
2.89M
}
1549
1550
static int
1551
decompose_linear_color(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re,
1552
        fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c0,
1553
        const patch_color_t *c1)
1554
2.39M
{
1555
    /* Assuming a very narrow trapezoid - ignore the transversal color variation. */
1556
    /* Assuming the XY span is restricted with curve_samples.
1557
       It is important for intersection_of_small_bars to compute faster. */
1558
2.39M
    int code;
1559
2.39M
    patch_color_t *c;
1560
2.39M
    byte *color_stack_ptr;
1561
2.39M
    bool save_inside = pfs->inside;
1562
1563
2.39M
    if (!pfs->inside) {
1564
2.29M
        gs_fixed_rect r, r1;
1565
1566
2.29M
        if(swap_axes) {
1567
1.03M
            r.p.y = min(le->start.x, le->end.x);
1568
1.03M
            r.p.x = min(le->start.y, le->end.y);
1569
1.03M
            r.q.y = max(re->start.x, re->end.x);
1570
1.03M
            r.q.x = max(re->start.y, re->end.y);
1571
1.26M
        } else {
1572
1.26M
            r.p.x = min(le->start.x, le->end.x);
1573
1.26M
            r.p.y = min(le->start.y, le->end.y);
1574
1.26M
            r.q.x = max(re->start.x, re->end.x);
1575
1.26M
            r.q.y = max(re->start.y, re->end.y);
1576
1.26M
        }
1577
2.29M
        r1 = r;
1578
2.29M
        rect_intersect(r, pfs->rect);
1579
2.29M
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
1580
1.64M
            return 0;
1581
654k
        if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
1582
654k
            r1.q.x == r.q.x && r1.q.y == r.q.y)
1583
337k
            pfs->inside = true;
1584
654k
    }
1585
756k
    color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
1586
756k
    if (color_stack_ptr == NULL)
1587
0
        return_error(gs_error_unregistered); /* Must not happen. */
1588
    /* Use the recursive decomposition due to isnt_color_monotonic
1589
       based on fn_is_monotonic_proc_t is_monotonic,
1590
       which applies to intervals. */
1591
756k
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
1592
756k
    if (ytop - ybot < pfs->decomposition_limit) /* Prevent an infinite color decomposition. */
1593
75.2k
        code = constant_color_trapezoid(pfs, le, re, ybot, ytop, swap_axes, c);
1594
681k
    else {
1595
681k
        bool monotonic_color_save = pfs->monotonic_color;
1596
681k
        bool linear_color_save = pfs->linear_color;
1597
1598
681k
        if (!pfs->monotonic_color) {
1599
346k
            code = isnt_color_monotonic(pfs, c0, c1);
1600
346k
            if (code < 0)
1601
1
                goto out;
1602
346k
            if (!code)
1603
243k
                pfs->monotonic_color = true;
1604
346k
        }
1605
681k
        if (pfs->monotonic_color && !pfs->linear_color) {
1606
575k
            code = is_color_linear(pfs, c0, c1);
1607
575k
            if (code < 0)
1608
0
                goto out;
1609
575k
            if (code > 0)
1610
551k
                pfs->linear_color =  true;
1611
575k
        }
1612
681k
        if (!pfs->unlinear && pfs->linear_color) {
1613
553k
            gx_device *pdev = pfs->dev;
1614
553k
            frac31 fc[2][GX_DEVICE_COLOR_MAX_COMPONENTS];
1615
553k
            gs_fill_attributes fa;
1616
553k
            gs_fixed_rect clip;
1617
1618
553k
            memset(fc, 0x99, sizeof(fc));
1619
1620
553k
            clip = pfs->rect;
1621
553k
            if (swap_axes) {
1622
216k
                fixed v;
1623
1624
216k
                v = clip.p.x; clip.p.x = clip.p.y; clip.p.y = v;
1625
216k
                v = clip.q.x; clip.q.x = clip.q.y; clip.q.y = v;
1626
                /* Don't need adjust_swapped_boundary here. */
1627
216k
            }
1628
553k
            clip.p.y = max(clip.p.y, ybot);
1629
553k
            clip.q.y = min(clip.q.y, ytop);
1630
553k
            fa.clip = &clip;
1631
553k
            fa.ht = NULL;
1632
553k
            fa.swap_axes = swap_axes;
1633
553k
            fa.lop = 0;
1634
553k
            fa.ystart = ybot;
1635
553k
            fa.yend = ytop;
1636
553k
            code = patch_color_to_device_color_inline(pfs, c0, NULL, fc[0]);
1637
553k
            if (code < 0)
1638
0
                goto out;
1639
553k
            if (code == 2) {
1640
                /* Must not happen. */
1641
0
                code=gs_note_error(gs_error_unregistered);
1642
0
                goto out;
1643
0
            }
1644
553k
            code = patch_color_to_device_color_inline(pfs, c1, NULL, fc[1]);
1645
553k
            if (code < 0)
1646
0
                goto out;
1647
553k
            code = dev_proc(pdev, fill_linear_color_trapezoid)(pdev, &fa,
1648
553k
                            &le->start, &le->end, &re->start, &re->end,
1649
553k
                            fc[0], fc[1], NULL, NULL);
1650
553k
            if (code == 1) {
1651
553k
                pfs->monotonic_color = monotonic_color_save;
1652
553k
                pfs->linear_color = linear_color_save;
1653
553k
                code = 0; /* The area is filled. */
1654
553k
                goto out;
1655
553k
            }
1656
0
            if (code < 0)
1657
0
                goto out;
1658
0
            else {      /* code == 0, the device requested to decompose the area. */
1659
0
                code = gs_note_error(gs_error_unregistered); /* Must not happen. */
1660
0
                goto out;
1661
0
            }
1662
0
        }
1663
128k
        if (!pfs->unlinear || !pfs->linear_color ||
1664
128k
                color_span(pfs, c0, c1) > pfs->smoothness) {
1665
128k
            fixed y = (ybot + ytop) / 2;
1666
1667
128k
            code = decompose_linear_color(pfs, le, re, ybot, y, swap_axes, c0, c);
1668
128k
            if (code >= 0)
1669
128k
                code = decompose_linear_color(pfs, le, re, y, ytop, swap_axes, c, c1);
1670
128k
        } else
1671
0
            code = constant_color_trapezoid(pfs, le, re, ybot, ytop, swap_axes, c);
1672
128k
        pfs->monotonic_color = monotonic_color_save;
1673
128k
        pfs->linear_color = linear_color_save;
1674
128k
    }
1675
756k
out:
1676
756k
    pfs->inside = save_inside;
1677
756k
    release_colors_inline(pfs, color_stack_ptr, 1);
1678
756k
    return code;
1679
756k
}
1680
1681
static inline int
1682
linear_color_trapezoid(patch_fill_state_t *pfs, gs_fixed_point q[4], int i0, int i1, int i2, int i3,
1683
                fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c0, const patch_color_t *c1,
1684
                bool orient)
1685
884k
{
1686
    /* Assuming a very narrow trapezoid - ignore the transversal color change. */
1687
884k
    gs_fixed_edge le, re;
1688
1689
884k
    make_trapezoid(q, i0, i1, i2, i3, ybot, ytop, swap_axes, orient, &le, &re);
1690
884k
    return decompose_linear_color(pfs, &le, &re, ybot, ytop, swap_axes, c0, c1);
1691
884k
}
1692
1693
static int
1694
wedge_trap_decompose(patch_fill_state_t *pfs, gs_fixed_point q[4],
1695
        fixed ybot, fixed ytop, const patch_color_t *c0, const patch_color_t *c1,
1696
        bool swap_axes, bool self_intersecting)
1697
1.30M
{
1698
    /* Assuming a very narrow trapezoid - ignore the transversal color change. */
1699
1.30M
    fixed dx1, dy1, dx2, dy2;
1700
1.30M
    bool orient;
1701
1702
1.30M
    if (!pfs->vectorization && !covers_pixel_centers(ybot, ytop))
1703
425k
        return 0;
1704
884k
    if (ybot == ytop)
1705
0
        return 0;
1706
884k
    dx1 = q[1].x - q[0].x, dy1 = q[1].y - q[0].y;
1707
884k
    dx2 = q[2].x - q[0].x, dy2 = q[2].y - q[0].y;
1708
884k
    if ((int64_t)dx1 * dy2 != (int64_t)dy1 * dx2) {
1709
440k
        orient = ((int64_t)dx1 * dy2 > (int64_t)dy1 * dx2);
1710
440k
        return linear_color_trapezoid(pfs, q, 0, 1, 2, 3, ybot, ytop, swap_axes, c0, c1, orient);
1711
443k
    } else {
1712
443k
        fixed dx3 = q[3].x - q[0].x, dy3 = q[3].y - q[0].y;
1713
1714
443k
        orient = ((int64_t)dx1 * dy3 > (int64_t)dy1 * dx3);
1715
443k
        return linear_color_trapezoid(pfs, q, 0, 1, 2, 3, ybot, ytop, swap_axes, c0, c1, orient);
1716
443k
    }
1717
884k
}
1718
1719
static inline int
1720
fill_wedge_trap(patch_fill_state_t *pfs, const gs_fixed_point *p0, const gs_fixed_point *p1,
1721
            const gs_fixed_point *q0, const gs_fixed_point *q1, const patch_color_t *c0, const patch_color_t *c1,
1722
            bool swap_axes, bool self_intersecting)
1723
1.30M
{
1724
    /* We assume that the width of the wedge is close to zero,
1725
       so we can ignore the slope when computing transversal distances. */
1726
1.30M
    gs_fixed_point p[4];
1727
1.30M
    const patch_color_t *cc0, *cc1;
1728
1729
1.30M
    if (p0->y < p1->y) {
1730
648k
        p[2] = *p0;
1731
648k
        p[3] = *p1;
1732
648k
        cc0 = c0;
1733
648k
        cc1 = c1;
1734
661k
    } else {
1735
661k
        p[2] = *p1;
1736
661k
        p[3] = *p0;
1737
661k
        cc0 = c1;
1738
661k
        cc1 = c0;
1739
661k
    }
1740
1.30M
    p[0] = *q0;
1741
1.30M
    p[1] = *q1;
1742
1.30M
    return wedge_trap_decompose(pfs, p, p[2].y, p[3].y, cc0, cc1, swap_axes, self_intersecting);
1743
1.30M
}
1744
1745
static void
1746
split_curve_s(const gs_fixed_point *pole, gs_fixed_point *q0, gs_fixed_point *q1, int pole_step)
1747
9.44M
{
1748
    /*  This copies a code fragment from split_curve_midpoint,
1749
        substituting another data type.
1750
     */
1751
    /*
1752
     * We have to define midpoint carefully to avoid overflow.
1753
     * (If it overflows, something really pathological is going
1754
     * on, but we could get infinite recursion that way....)
1755
     */
1756
9.44M
#define midpoint(a,b)\
1757
113M
  (arith_rshift_1(a) + arith_rshift_1(b) + (((a) | (b)) & 1))
1758
9.44M
    fixed x12 = midpoint(pole[1 * pole_step].x, pole[2 * pole_step].x);
1759
9.44M
    fixed y12 = midpoint(pole[1 * pole_step].y, pole[2 * pole_step].y);
1760
1761
    /* q[0] and q[1] must not be the same as pole. */
1762
9.44M
    q0[1 * pole_step].x = midpoint(pole[0 * pole_step].x, pole[1 * pole_step].x);
1763
9.44M
    q0[1 * pole_step].y = midpoint(pole[0 * pole_step].y, pole[1 * pole_step].y);
1764
9.44M
    q1[2 * pole_step].x = midpoint(pole[2 * pole_step].x, pole[3 * pole_step].x);
1765
9.44M
    q1[2 * pole_step].y = midpoint(pole[2 * pole_step].y, pole[3 * pole_step].y);
1766
9.44M
    q0[2 * pole_step].x = midpoint(q0[1 * pole_step].x, x12);
1767
9.44M
    q0[2 * pole_step].y = midpoint(q0[1 * pole_step].y, y12);
1768
9.44M
    q1[1 * pole_step].x = midpoint(x12, q1[2 * pole_step].x);
1769
9.44M
    q1[1 * pole_step].y = midpoint(y12, q1[2 * pole_step].y);
1770
9.44M
    q0[0 * pole_step].x = pole[0 * pole_step].x;
1771
9.44M
    q0[0 * pole_step].y = pole[0 * pole_step].y;
1772
9.44M
    q0[3 * pole_step].x = q1[0 * pole_step].x = midpoint(q0[2 * pole_step].x, q1[1 * pole_step].x);
1773
9.44M
    q0[3 * pole_step].y = q1[0 * pole_step].y = midpoint(q0[2 * pole_step].y, q1[1 * pole_step].y);
1774
9.44M
    q1[3 * pole_step].x = pole[3 * pole_step].x;
1775
9.44M
    q1[3 * pole_step].y = pole[3 * pole_step].y;
1776
9.44M
#undef midpoint
1777
9.44M
}
1778
1779
static void
1780
split_curve(const gs_fixed_point pole[4], gs_fixed_point q0[4], gs_fixed_point q1[4])
1781
116k
{
1782
116k
    split_curve_s(pole, q0, q1, 1);
1783
116k
}
1784
1785
#ifdef SHADING_SWAP_AXES_FOR_PRECISION
1786
static inline void
1787
do_swap_axes(gs_fixed_point *p, int k)
1788
{
1789
    int i;
1790
1791
    for (i = 0; i < k; i++) {
1792
        p[i].x ^= p[i].y; p[i].y ^= p[i].x; p[i].x ^= p[i].y;
1793
    }
1794
}
1795
1796
static inline fixed
1797
span_x(const gs_fixed_point *p, int k)
1798
{
1799
    int i;
1800
    fixed xmin = p[0].x, xmax = p[0].x;
1801
1802
    for (i = 1; i < k; i++) {
1803
        xmin = min(xmin, p[i].x);
1804
        xmax = max(xmax, p[i].x);
1805
    }
1806
    return xmax - xmin;
1807
}
1808
1809
static inline fixed
1810
span_y(const gs_fixed_point *p, int k)
1811
{
1812
    int i;
1813
    fixed ymin = p[0].y, ymax = p[0].y;
1814
1815
    for (i = 1; i < k; i++) {
1816
        ymin = min(ymin, p[i].y);
1817
        ymax = max(ymax, p[i].y);
1818
    }
1819
    return ymax - ymin;
1820
}
1821
#endif
1822
1823
static inline fixed
1824
manhattan_dist(const gs_fixed_point *p0, const gs_fixed_point *p1)
1825
979k
{
1826
979k
    fixed dx = any_abs(p1->x - p0->x), dy = any_abs(p1->y - p0->y);
1827
1828
979k
    return max(dx, dy);
1829
979k
}
1830
1831
static inline int
1832
create_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1833
        const gs_fixed_point *p0, const gs_fixed_point *p1)
1834
35.1k
{
1835
35.1k
    if (l->end != NULL)
1836
0
        return_error(gs_error_unregistered); /* Must not happen. */
1837
35.1k
    l->beg = wedge_vertex_list_elem_reserve(pfs);
1838
35.1k
    l->end = wedge_vertex_list_elem_reserve(pfs);
1839
35.1k
    if (l->beg == NULL)
1840
0
        return_error(gs_error_unregistered); /* Must not happen. */
1841
35.1k
    if (l->end == NULL)
1842
0
        return_error(gs_error_unregistered); /* Must not happen. */
1843
35.1k
    l->beg->prev = l->end->next = NULL;
1844
35.1k
    l->beg->next = l->end;
1845
35.1k
    l->end->prev = l->beg;
1846
35.1k
    l->beg->p = *p0;
1847
35.1k
    l->end->p = *p1;
1848
35.1k
    l->beg->level = l->end->level = 0;
1849
35.1k
    return 0;
1850
35.1k
}
1851
1852
static inline int
1853
insert_wedge_vertex_list_elem(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1854
                              const gs_fixed_point *p, wedge_vertex_list_elem_t **r)
1855
76.6k
{
1856
76.6k
    wedge_vertex_list_elem_t *e = wedge_vertex_list_elem_reserve(pfs);
1857
1858
    /* We have got enough free elements due to the preliminary decomposition
1859
       of curves to LAZY_WEDGES_MAX_LEVEL, see curve_samples. */
1860
76.6k
    if (e == NULL)
1861
0
        return_error(gs_error_unregistered); /* Must not happen. */
1862
76.6k
    if (l->beg->next != l->end)
1863
0
        return_error(gs_error_unregistered); /* Must not happen. */
1864
76.6k
    if (l->end->prev != l->beg)
1865
0
        return_error(gs_error_unregistered); /* Must not happen. */
1866
76.6k
    e->next = l->end;
1867
76.6k
    e->prev = l->beg;
1868
76.6k
    e->p = *p;
1869
76.6k
    e->level = max(l->beg->level, l->end->level) + 1;
1870
76.6k
    e->divide_count = 0;
1871
76.6k
    l->beg->next = l->end->prev = e;
1872
76.6k
    {   int sx = l->beg->p.x < l->end->p.x ? 1 : -1;
1873
76.6k
        int sy = l->beg->p.y < l->end->p.y ? 1 : -1;
1874
1875
76.6k
        if ((p->x - l->beg->p.x) * sx < 0)
1876
0
            return_error(gs_error_unregistered); /* Must not happen. */
1877
76.6k
        if ((p->y - l->beg->p.y) * sy < 0)
1878
0
            return_error(gs_error_unregistered); /* Must not happen. */
1879
76.6k
        if ((l->end->p.x - p->x) * sx < 0)
1880
0
            return_error(gs_error_unregistered); /* Must not happen. */
1881
76.6k
        if ((l->end->p.y - p->y) * sy < 0)
1882
0
            return_error(gs_error_unregistered); /* Must not happen. */
1883
76.6k
    }
1884
76.6k
    *r = e;
1885
76.6k
    return 0;
1886
76.6k
}
1887
1888
static inline int
1889
open_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1890
        const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *pm,
1891
        wedge_vertex_list_elem_t **r)
1892
94.9k
{
1893
94.9k
    wedge_vertex_list_elem_t *e;
1894
94.9k
    int code;
1895
1896
94.9k
    if (!l->last_side) {
1897
69.9k
        if (l->beg == NULL) {
1898
31.5k
            code = create_wedge_vertex_list(pfs, l, p0, p1);
1899
31.5k
            if (code < 0)
1900
0
                return code;
1901
31.5k
        }
1902
69.9k
        if (l->beg->p.x != p0->x)
1903
0
            return_error(gs_error_unregistered); /* Must not happen. */
1904
69.9k
        if (l->beg->p.y != p0->y)
1905
0
            return_error(gs_error_unregistered); /* Must not happen. */
1906
69.9k
        if (l->end->p.x != p1->x)
1907
0
            return_error(gs_error_unregistered); /* Must not happen. */
1908
69.9k
        if (l->end->p.y != p1->y)
1909
0
            return_error(gs_error_unregistered); /* Must not happen. */
1910
69.9k
        code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1911
69.9k
        if (code < 0)
1912
0
            return code;
1913
69.9k
        e->divide_count++;
1914
69.9k
    } else if (l->beg == NULL) {
1915
3.57k
        code = create_wedge_vertex_list(pfs, l, p1, p0);
1916
3.57k
        if (code < 0)
1917
0
            return code;
1918
3.57k
        code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1919
3.57k
        if (code < 0)
1920
0
            return code;
1921
3.57k
        e->divide_count++;
1922
21.3k
    } else {
1923
21.3k
        if (l->beg->p.x != p1->x)
1924
0
            return_error(gs_error_unregistered); /* Must not happen. */
1925
21.3k
        if (l->beg->p.y != p1->y)
1926
0
            return_error(gs_error_unregistered); /* Must not happen. */
1927
21.3k
        if (l->end->p.x != p0->x)
1928
0
            return_error(gs_error_unregistered); /* Must not happen. */
1929
21.3k
        if (l->end->p.y != p0->y)
1930
0
            return_error(gs_error_unregistered); /* Must not happen. */
1931
21.3k
        if (l->beg->next == l->end) {
1932
3.10k
            code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1933
3.10k
            if (code < 0)
1934
0
                return code;
1935
3.10k
            e->divide_count++;
1936
18.2k
        } else {
1937
18.2k
            e = wedge_vertex_list_find(l->beg, l->end,
1938
18.2k
                        max(l->beg->level, l->end->level) + 1);
1939
18.2k
            if (e == NULL)
1940
0
                return_error(gs_error_unregistered); /* Must not happen. */
1941
18.2k
            if (e->p.x != pm->x || e->p.y != pm->y)
1942
0
                return_error(gs_error_unregistered); /* Must not happen. */
1943
18.2k
            e->divide_count++;
1944
18.2k
        }
1945
21.3k
    }
1946
94.9k
    *r = e;
1947
94.9k
    return 0;
1948
94.9k
}
1949
1950
static inline int
1951
make_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1952
        wedge_vertex_list_t *l0, bool forth,
1953
        const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *pm)
1954
94.9k
{
1955
94.9k
    int code;
1956
1957
94.9k
    l->last_side = l0->last_side;
1958
94.9k
    if (!l->last_side ^ !forth) {
1959
54.4k
        code = open_wedge_median(pfs, l0, p0, p1, pm, &l->end);
1960
54.4k
        l->beg = l0->beg;
1961
54.4k
    } else {
1962
40.4k
        code = open_wedge_median(pfs, l0, p0, p1, pm, &l->beg);
1963
40.4k
        l->end = l0->end;
1964
40.4k
    }
1965
94.9k
    return code;
1966
94.9k
}
1967
1968
static int fill_wedge_from_list(patch_fill_state_t *pfs, const wedge_vertex_list_t *l,
1969
            const patch_color_t *c0, const patch_color_t *c1);
1970
1971
static inline int
1972
close_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1973
        const patch_color_t *c0, const patch_color_t *c1)
1974
94.9k
{
1975
94.9k
    int code;
1976
1977
94.9k
    if (!l->last_side)
1978
69.9k
        return 0;
1979
24.9k
    code = fill_wedge_from_list(pfs, l, c1, c0);
1980
24.9k
    if (code < 0)
1981
0
        return code;
1982
24.9k
    release_wedge_vertex_list_interval(pfs, l->beg, l->end);
1983
24.9k
    return 0;
1984
24.9k
}
1985
1986
static inline void
1987
move_wedge(wedge_vertex_list_t *l, const wedge_vertex_list_t *l0, bool forth)
1988
94.9k
{
1989
94.9k
    if (!l->last_side ^ !forth) {
1990
54.4k
        l->beg = l->end;
1991
54.4k
        l->end = l0->end;
1992
54.4k
    } else {
1993
40.4k
        l->end = l->beg;
1994
40.4k
        l->beg = l0->beg;
1995
40.4k
    }
1996
94.9k
}
1997
1998
static inline int
1999
fill_triangle_wedge_aux(patch_fill_state_t *pfs,
2000
            const shading_vertex_t *q0, const shading_vertex_t *q1, const shading_vertex_t *q2)
2001
654k
{   int code;
2002
654k
    const gs_fixed_point *p0, *p1, *p2;
2003
654k
    gs_fixed_point qq0, qq1, qq2;
2004
654k
    fixed dx = any_abs(q0->p.x - q1->p.x), dy = any_abs(q0->p.y - q1->p.y);
2005
654k
    bool swap_axes;
2006
2007
#   if SKIP_TEST
2008
        dbg_wedge_triangle_cnt++;
2009
#   endif
2010
654k
    if (dx > dy) {
2011
363k
        swap_axes = true;
2012
363k
        qq0.x = q0->p.y;
2013
363k
        qq0.y = q0->p.x;
2014
363k
        qq1.x = q1->p.y;
2015
363k
        qq1.y = q1->p.x;
2016
363k
        qq2.x = q2->p.y;
2017
363k
        qq2.y = q2->p.x;
2018
363k
        p0 = &qq0;
2019
363k
        p1 = &qq1;
2020
363k
        p2 = &qq2;
2021
363k
    } else {
2022
291k
        swap_axes = false;
2023
291k
        p0 = &q0->p;
2024
291k
        p1 = &q1->p;
2025
291k
        p2 = &q2->p;
2026
291k
    }
2027
    /* We decompose the thin triangle into 2 thin trapezoids.
2028
       An optimization with decomposing into 2 triangles
2029
       appears low useful, because the self_intersecting argument
2030
       with inline expansion does that job perfectly. */
2031
654k
    if (p0->y < p1->y) {
2032
325k
        code = fill_wedge_trap(pfs, p0, p2, p0, p1, q0->c, q2->c, swap_axes, false);
2033
325k
        if (code < 0)
2034
0
            return code;
2035
325k
        return fill_wedge_trap(pfs, p2, p1, p0, p1, q2->c, q1->c, swap_axes, false);
2036
329k
    } else {
2037
329k
        code = fill_wedge_trap(pfs, p0, p2, p1, p0, q0->c, q2->c, swap_axes, false);
2038
329k
        if (code < 0)
2039
1
            return code;
2040
329k
        return fill_wedge_trap(pfs, p2, p1, p1, p0, q2->c, q1->c, swap_axes, false);
2041
329k
    }
2042
654k
}
2043
2044
static inline int
2045
try_device_linear_color(patch_fill_state_t *pfs, bool wedge,
2046
        const shading_vertex_t *p0, const shading_vertex_t *p1,
2047
        const shading_vertex_t *p2)
2048
2.73M
{
2049
    /*  Returns :
2050
        <0 - error;
2051
        0 - success;
2052
        1 - decompose to linear color areas;
2053
        2 - decompose to constant color areas;
2054
     */
2055
2.73M
    int code;
2056
2057
2.73M
    if (pfs->unlinear)
2058
0
        return 2;
2059
2.73M
    if (!wedge) {
2060
2.73M
        const gs_color_space *cs = pfs->direct_space;
2061
2062
2.73M
        if (cs != NULL) {
2063
2.73M
            float s0, s1, s2, s01, s012;
2064
2065
2.73M
            s0 = function_linearity(pfs, p0->c, p1->c);
2066
2.73M
            if (s0 > pfs->smoothness)
2067
14.8k
                return 1;
2068
2.71M
            s1 = function_linearity(pfs, p1->c, p2->c);
2069
2.71M
            if (s1 > pfs->smoothness)
2070
10.4k
                return 1;
2071
2.70M
            s2 = function_linearity(pfs, p2->c, p0->c);
2072
2.70M
            if (s2 > pfs->smoothness)
2073
71
                return 1;
2074
            /* fixme: check an inner color ? */
2075
2.70M
            s01 = max(s0, s1);
2076
2.70M
            s012 = max(s01, s2);
2077
2.70M
            if (pfs->cs_always_linear)
2078
526k
                code = 1;
2079
2.18M
            else
2080
2.18M
                code = cs_is_linear(cs, pfs->pgs, pfs->trans_device,
2081
2.70M
                                  &p0->c->cc, &p1->c->cc, &p2->c->cc, NULL,
2082
2.70M
                                  pfs->smoothness - s012, pfs->icclink);
2083
2.70M
            if (code < 0)
2084
0
                return code;
2085
2.70M
            if (code == 0)
2086
860
                return 1;
2087
2.70M
        }
2088
2.73M
    }
2089
2.70M
    {   gx_device *pdev = pfs->dev;
2090
2.70M
        frac31 fc[3][GX_DEVICE_COLOR_MAX_COMPONENTS];
2091
2.70M
        gs_fill_attributes fa;
2092
2.70M
        gx_device_color dc[3];
2093
2094
2.70M
        fa.clip = &pfs->rect;
2095
2.70M
        fa.ht = NULL;
2096
2.70M
        fa.swap_axes = false;
2097
2.70M
        fa.lop = 0;
2098
2.70M
        code = patch_color_to_device_color_inline(pfs, p0->c, &dc[0], fc[0]);
2099
2.70M
        if (code != 0)
2100
0
            return code;
2101
2.70M
        if (!(dc[0].type == &gx_dc_type_data_pure ||
2102
2.70M
            dc[0].type == &gx_dc_type_data_devn))
2103
0
            return 2;
2104
2.70M
        if (!wedge) {
2105
2.70M
            code = patch_color_to_device_color_inline(pfs, p1->c, &dc[1], fc[1]);
2106
2.70M
            if (code != 0)
2107
0
                return code;
2108
2.70M
        }
2109
2.70M
        code = patch_color_to_device_color_inline(pfs, p2->c, &dc[2], fc[2]);
2110
2.70M
        if (code != 0)
2111
0
            return code;
2112
2.70M
        code = dev_proc(pdev, fill_linear_color_triangle)(pdev, &fa,
2113
2.70M
                        &p0->p, &p1->p, &p2->p,
2114
2.70M
                        fc[0], (wedge ? NULL : fc[1]), fc[2]);
2115
2.70M
        if (code == 1)
2116
2.70M
            return 0; /* The area is filled. */
2117
0
        if (code < 0)
2118
0
            return code;
2119
0
        else /* code == 0, the device requested to decompose the area. */
2120
0
            return 1;
2121
0
    }
2122
0
}
2123
2124
static inline int
2125
fill_triangle_wedge(patch_fill_state_t *pfs,
2126
            const shading_vertex_t *q0, const shading_vertex_t *q1, const shading_vertex_t *q2)
2127
1.15M
{
2128
1.15M
    if ((int64_t)(q1->p.x - q0->p.x) * (q2->p.y - q0->p.y) ==
2129
1.15M
        (int64_t)(q1->p.y - q0->p.y) * (q2->p.x - q0->p.x))
2130
503k
        return 0; /* Zero area. */
2131
    /*
2132
        Can't apply try_device_linear_color here
2133
        because didn't check is_color_linear.
2134
        Maybe need a decomposition.
2135
        Do same as for 'unlinear', and branch later.
2136
     */
2137
654k
    return fill_triangle_wedge_aux(pfs, q0, q1, q2);
2138
1.15M
}
2139
2140
static inline int
2141
fill_triangle_wedge_from_list(patch_fill_state_t *pfs,
2142
    const wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
2143
    const wedge_vertex_list_elem_t *mid,
2144
    const patch_color_t *c0, const patch_color_t *c1)
2145
58.3k
{
2146
58.3k
    shading_vertex_t p[3];
2147
58.3k
    patch_color_t *c;
2148
58.3k
    byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2149
58.3k
    int code;
2150
2151
58.3k
    if (color_stack_ptr == NULL)
2152
0
        return_error(gs_error_unregistered); /* Must not happen. */
2153
58.3k
    p[2].c = c;
2154
58.3k
    p[0].p = beg->p;
2155
58.3k
    p[0].c = c0;
2156
58.3k
    p[1].p = end->p;
2157
58.3k
    p[1].c = c1;
2158
58.3k
    p[2].p = mid->p;
2159
58.3k
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
2160
58.3k
    code = fill_triangle_wedge(pfs, &p[0], &p[1], &p[2]);
2161
58.3k
    release_colors_inline(pfs, color_stack_ptr, 1);
2162
58.3k
    return code;
2163
58.3k
}
2164
2165
static int
2166
fill_wedge_from_list_rec(patch_fill_state_t *pfs,
2167
            wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
2168
            int level, const patch_color_t *c0, const patch_color_t *c1)
2169
106k
{
2170
106k
    if (beg->next == end)
2171
30.1k
        return 0;
2172
76.6k
    else if (beg->next->next == end) {
2173
53.2k
        if (beg->next->divide_count != 1 && beg->next->divide_count != 2)
2174
0
            return_error(gs_error_unregistered); /* Must not happen. */
2175
53.2k
        if (beg->next->divide_count != 1)
2176
18.1k
            return 0;
2177
35.1k
        return fill_triangle_wedge_from_list(pfs, beg, end, beg->next, c0, c1);
2178
53.2k
    } else {
2179
23.3k
        gs_fixed_point p;
2180
23.3k
        wedge_vertex_list_elem_t *e;
2181
23.3k
        patch_color_t *c;
2182
23.3k
        int code;
2183
23.3k
        byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2184
2185
23.3k
        if (color_stack_ptr == NULL)
2186
0
            return_error(gs_error_unregistered); /* Must not happen. */
2187
23.3k
        p.x = (beg->p.x + end->p.x) / 2;
2188
23.3k
        p.y = (beg->p.y + end->p.y) / 2;
2189
23.3k
        e = wedge_vertex_list_find(beg, end, level + 1);
2190
23.3k
        if (e == NULL)
2191
0
            return_error(gs_error_unregistered); /* Must not happen. */
2192
23.3k
        if (e->p.x != p.x || e->p.y != p.y)
2193
0
            return_error(gs_error_unregistered); /* Must not happen. */
2194
23.3k
        patch_interpolate_color(c, c0, c1, pfs, 0.5);
2195
23.3k
        code = fill_wedge_from_list_rec(pfs, beg, e, level + 1, c0, c);
2196
23.3k
        if (code >= 0)
2197
23.3k
            code = fill_wedge_from_list_rec(pfs, e, end, level + 1, c, c1);
2198
23.3k
        if (code >= 0) {
2199
23.3k
            if (e->divide_count != 1 && e->divide_count != 2)
2200
0
                return_error(gs_error_unregistered); /* Must not happen. */
2201
23.3k
            if (e->divide_count == 1)
2202
23.2k
                code = fill_triangle_wedge_from_list(pfs, beg, end, e, c0, c1);
2203
23.3k
        }
2204
23.3k
        release_colors_inline(pfs, color_stack_ptr, 1);
2205
23.3k
        return code;
2206
23.3k
    }
2207
106k
}
2208
2209
static int
2210
fill_wedge_from_list(patch_fill_state_t *pfs, const wedge_vertex_list_t *l,
2211
            const patch_color_t *c0, const patch_color_t *c1)
2212
60.0k
{
2213
60.0k
    return fill_wedge_from_list_rec(pfs, l->beg, l->end,
2214
60.0k
                    max(l->beg->level, l->end->level), c0, c1);
2215
60.0k
}
2216
2217
static inline int
2218
terminate_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
2219
        const patch_color_t *c0, const patch_color_t *c1)
2220
7.58M
{
2221
7.58M
    if (l->beg != NULL) {
2222
35.1k
        int code = fill_wedge_from_list(pfs, l, c0, c1);
2223
2224
35.1k
        if (code < 0)
2225
0
            return code;
2226
35.1k
        return release_wedge_vertex_list(pfs, l, 1);
2227
35.1k
    }
2228
7.55M
    return 0;
2229
7.58M
}
2230
2231
static int
2232
wedge_by_triangles(patch_fill_state_t *pfs, int ka,
2233
        const gs_fixed_point pole[4], const patch_color_t *c0, const patch_color_t *c1)
2234
103k
{   /* Assuming ka >= 2, see fill_wedges. */
2235
103k
    gs_fixed_point q[2][4];
2236
103k
    patch_color_t *c;
2237
103k
    shading_vertex_t p[3];
2238
103k
    int code;
2239
103k
    byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2240
2241
103k
    if (color_stack_ptr == NULL)
2242
0
        return_error(gs_error_unregistered); /* Must not happen. */
2243
103k
    p[2].c = c;
2244
103k
    split_curve(pole, q[0], q[1]);
2245
103k
    p[0].p = pole[0];
2246
103k
    p[0].c = c0;
2247
103k
    p[1].p = pole[3];
2248
103k
    p[1].c = c1;
2249
103k
    p[2].p = q[0][3];
2250
103k
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
2251
103k
    code = fill_triangle_wedge(pfs, &p[0], &p[1], &p[2]);
2252
103k
    if (code >= 0) {
2253
103k
        if (ka == 2)
2254
54.3k
            goto out;
2255
48.8k
        code = wedge_by_triangles(pfs, ka / 2, q[0], c0, p[2].c);
2256
48.8k
    }
2257
48.8k
    if (code >= 0)
2258
48.8k
        code = wedge_by_triangles(pfs, ka / 2, q[1], p[2].c, c1);
2259
103k
out:
2260
103k
    release_colors_inline(pfs, color_stack_ptr, 1);
2261
103k
    return code;
2262
48.8k
}
2263
2264
int
2265
mesh_padding(patch_fill_state_t *pfs, const gs_fixed_point *p0, const gs_fixed_point *p1,
2266
            const patch_color_t *c0, const patch_color_t *c1)
2267
1.25M
{
2268
1.25M
    gs_fixed_point q0, q1;
2269
1.25M
    const patch_color_t *cc0, *cc1;
2270
1.25M
    fixed dx = p1->x - p0->x;
2271
1.25M
    fixed dy = p1->y - p0->y;
2272
1.25M
    bool swap_axes = (any_abs(dx) > any_abs(dy));
2273
1.25M
    gs_fixed_edge le, re;
2274
1.25M
    const fixed adjust = INTERPATCH_PADDING;
2275
2276
1.25M
    if (swap_axes) {
2277
532k
        if (p0->x < p1->x) {
2278
263k
            q0.x = p0->y;
2279
263k
            q0.y = p0->x;
2280
263k
            q1.x = p1->y;
2281
263k
            q1.y = p1->x;
2282
263k
            cc0 = c0;
2283
263k
            cc1 = c1;
2284
268k
        } else {
2285
268k
            q0.x = p1->y;
2286
268k
            q0.y = p1->x;
2287
268k
            q1.x = p0->y;
2288
268k
            q1.y = p0->x;
2289
268k
            cc0 = c1;
2290
268k
            cc1 = c0;
2291
268k
        }
2292
725k
    } else if (p0->y < p1->y) {
2293
141k
        q0 = *p0;
2294
141k
        q1 = *p1;
2295
141k
        cc0 = c0;
2296
141k
        cc1 = c1;
2297
584k
    } else {
2298
584k
        q0 = *p1;
2299
584k
        q1 = *p0;
2300
584k
        cc0 = c1;
2301
584k
        cc1 = c0;
2302
584k
    }
2303
1.25M
    le.start.x = q0.x - adjust;
2304
1.25M
    re.start.x = q0.x + adjust;
2305
1.25M
    le.start.y = re.start.y = q0.y - adjust;
2306
1.25M
    le.end.x = q1.x - adjust;
2307
1.25M
    re.end.x = q1.x + adjust;
2308
1.25M
    le.end.y = re.end.y = q1.y + adjust;
2309
1.25M
    adjust_swapped_boundary(&re.start.x, swap_axes);
2310
1.25M
    adjust_swapped_boundary(&re.end.x, swap_axes);
2311
1.25M
    return decompose_linear_color(pfs, &le, &re, le.start.y, le.end.y, swap_axes, cc0, cc1);
2312
    /* fixme : for a better performance and quality, we would like to
2313
       consider the bar as an oriented one and to know at what side of it the spot resides.
2314
       If we know that, we could expand only to outside the spot.
2315
       Note that if the boundary has a self-intersection,
2316
       we still need to expand to both directions.
2317
     */
2318
1.25M
}
2319
2320
static inline void
2321
bbox_of_points(gs_fixed_rect *r,
2322
        const gs_fixed_point *p0, const gs_fixed_point *p1,
2323
        const gs_fixed_point *p2, const gs_fixed_point *p3)
2324
1.21M
{
2325
1.21M
    r->p.x = r->q.x = p0->x;
2326
1.21M
    r->p.y = r->q.y = p0->y;
2327
2328
1.21M
    if (r->p.x > p1->x)
2329
454k
        r->p.x = p1->x;
2330
1.21M
    if (r->q.x < p1->x)
2331
573k
        r->q.x = p1->x;
2332
1.21M
    if (r->p.y > p1->y)
2333
567k
        r->p.y = p1->y;
2334
1.21M
    if (r->q.y < p1->y)
2335
468k
        r->q.y = p1->y;
2336
2337
1.21M
    if (r->p.x > p2->x)
2338
286k
        r->p.x = p2->x;
2339
1.21M
    if (r->q.x < p2->x)
2340
261k
        r->q.x = p2->x;
2341
1.21M
    if (r->p.y > p2->y)
2342
247k
        r->p.y = p2->y;
2343
1.21M
    if (r->q.y < p2->y)
2344
280k
        r->q.y = p2->y;
2345
2346
1.21M
    if (p3 == NULL)
2347
849k
        return;
2348
2349
368k
    if (r->p.x > p3->x)
2350
64.2k
        r->p.x = p3->x;
2351
368k
    if (r->q.x < p3->x)
2352
112k
        r->q.x = p3->x;
2353
368k
    if (r->p.y > p3->y)
2354
87.2k
        r->p.y = p3->y;
2355
368k
    if (r->q.y < p3->y)
2356
61.1k
        r->q.y = p3->y;
2357
368k
}
2358
2359
static int
2360
fill_wedges_aux(patch_fill_state_t *pfs, int k, int ka,
2361
        const gs_fixed_point pole[4], const patch_color_t *c0, const patch_color_t *c1,
2362
        int wedge_type)
2363
102k
{
2364
102k
    int code;
2365
2366
102k
    if (k > 1) {
2367
35.6k
        gs_fixed_point q[2][4];
2368
35.6k
        patch_color_t *c;
2369
35.6k
        bool save_inside = pfs->inside;
2370
35.6k
        byte *color_stack_ptr;
2371
2372
35.6k
        if (!pfs->inside) {
2373
31.7k
            gs_fixed_rect r, r1;
2374
2375
31.7k
            bbox_of_points(&r, &pole[0], &pole[1], &pole[2], &pole[3]);
2376
31.7k
            r.p.x -= INTERPATCH_PADDING;
2377
31.7k
            r.p.y -= INTERPATCH_PADDING;
2378
31.7k
            r.q.x += INTERPATCH_PADDING;
2379
31.7k
            r.q.y += INTERPATCH_PADDING;
2380
31.7k
            r1 = r;
2381
31.7k
            rect_intersect(r, pfs->rect);
2382
31.7k
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
2383
22.5k
                return 0;
2384
9.24k
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
2385
9.24k
                r1.q.x == r.q.x && r1.q.y == r.q.y)
2386
4.07k
                pfs->inside = true;
2387
9.24k
        }
2388
13.0k
        color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2389
13.0k
        if (color_stack_ptr == NULL)
2390
0
            return_error(gs_error_unregistered); /* Must not happen. */
2391
13.0k
        patch_interpolate_color(c, c0, c1, pfs, 0.5);
2392
13.0k
        split_curve(pole, q[0], q[1]);
2393
13.0k
        code = fill_wedges_aux(pfs, k / 2, ka, q[0], c0, c, wedge_type);
2394
13.0k
        if (code >= 0)
2395
13.0k
            code = fill_wedges_aux(pfs, k / 2, ka, q[1], c, c1, wedge_type);
2396
13.0k
        release_colors_inline(pfs, color_stack_ptr, 1);
2397
13.0k
        pfs->inside = save_inside;
2398
13.0k
        return code;
2399
66.4k
    } else {
2400
66.4k
        if ((INTERPATCH_PADDING != 0) && (wedge_type & interpatch_padding)) {
2401
63.3k
            code = mesh_padding(pfs, &pole[0], &pole[3], c0, c1);
2402
63.3k
            if (code < 0)
2403
0
                return code;
2404
63.3k
        }
2405
66.4k
        if (ka >= 2 && (wedge_type & inpatch_wedge))
2406
5.45k
            return wedge_by_triangles(pfs, ka, pole, c0, c1);
2407
60.9k
        return 0;
2408
66.4k
    }
2409
102k
}
2410
2411
static int
2412
fill_wedges(patch_fill_state_t *pfs, int k0, int k1,
2413
        const gs_fixed_point *pole, int pole_step,
2414
        const patch_color_t *c0, const patch_color_t *c1,
2415
        int wedge_type)
2416
955k
{
2417
    /* Generate wedges between 2 variants of a curve flattening. */
2418
    /* k0, k1 is a power of 2. */
2419
955k
    gs_fixed_point p[4];
2420
2421
955k
    if (!(wedge_type & interpatch_padding) && k0 == k1)
2422
879k
        return 0; /* Wedges are zero area. */
2423
75.9k
    if (k0 > k1) { /* Swap if required, so that k0 <= k1 */
2424
0
        k0 ^= k1; k1 ^= k0; k0 ^= k1;
2425
0
    }
2426
75.9k
    p[0] = pole[0];
2427
75.9k
    p[1] = pole[pole_step];
2428
75.9k
    p[2] = pole[pole_step * 2];
2429
75.9k
    p[3] = pole[pole_step * 3];
2430
75.9k
    return fill_wedges_aux(pfs, k0, k1 / k0, p, c0, c1, wedge_type);
2431
955k
}
2432
2433
static inline void
2434
make_vertices(gs_fixed_point q[4], const quadrangle_patch *p)
2435
14.3k
{
2436
14.3k
    q[0] = p->p[0][0]->p;
2437
14.3k
    q[1] = p->p[0][1]->p;
2438
14.3k
    q[2] = p->p[1][1]->p;
2439
14.3k
    q[3] = p->p[1][0]->p;
2440
14.3k
}
2441
2442
static inline void
2443
wrap_vertices_by_y(gs_fixed_point q[4], const gs_fixed_point s[4])
2444
14.3k
{
2445
14.3k
    fixed y = s[0].y;
2446
14.3k
    int i = 0;
2447
2448
14.3k
    if (y > s[1].y)
2449
8.79k
        i = 1, y = s[1].y;
2450
14.3k
    if (y > s[2].y)
2451
5.24k
        i = 2, y = s[2].y;
2452
14.3k
    if (y > s[3].y)
2453
223
        i = 3, y = s[3].y;
2454
14.3k
    q[0] = s[(i + 0) % 4];
2455
14.3k
    q[1] = s[(i + 1) % 4];
2456
14.3k
    q[2] = s[(i + 2) % 4];
2457
14.3k
    q[3] = s[(i + 3) % 4];
2458
14.3k
}
2459
2460
static int
2461
ordered_triangle(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re, patch_color_t *c)
2462
14.1k
{
2463
14.1k
    gs_fixed_edge ue;
2464
14.1k
    int code;
2465
14.1k
    gx_device_color dc;
2466
2467
#   if NOFILL_TEST
2468
        if (dbg_nofill)
2469
            return 0;
2470
#   endif
2471
14.1k
    code = patch_color_to_device_color_inline(pfs, c, &dc, NULL);
2472
14.1k
    if (code < 0)
2473
0
        return code;
2474
14.1k
    if (le->end.y < re->end.y) {
2475
5.31k
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2476
5.31k
            le, re, le->start.y, le->end.y, false, &dc, pfs->pgs->log_op);
2477
5.31k
        if (code >= 0) {
2478
5.31k
            ue.start = le->end;
2479
5.31k
            ue.end = re->end;
2480
5.31k
            code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2481
5.31k
                &ue, re, le->end.y, re->end.y, false, &dc, pfs->pgs->log_op);
2482
5.31k
        }
2483
8.88k
    } else if (le->end.y > re->end.y) {
2484
5.27k
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2485
5.27k
            le, re, le->start.y, re->end.y, false, &dc, pfs->pgs->log_op);
2486
5.27k
        if (code >= 0) {
2487
5.27k
            ue.start = re->end;
2488
5.27k
            ue.end = le->end;
2489
5.27k
            code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2490
5.27k
                le, &ue, re->end.y, le->end.y, false, &dc, pfs->pgs->log_op);
2491
5.27k
        }
2492
5.27k
    } else
2493
3.60k
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2494
3.60k
            le, re, le->start.y, le->end.y, false, &dc, pfs->pgs->log_op);
2495
14.1k
    return code;
2496
14.1k
}
2497
2498
static int
2499
constant_color_triangle(patch_fill_state_t *pfs,
2500
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
2501
10.5k
{
2502
10.5k
    patch_color_t *c[2];
2503
10.5k
    gs_fixed_edge le, re;
2504
10.5k
    fixed dx0, dy0, dx1, dy1;
2505
10.5k
    const shading_vertex_t *pp;
2506
10.5k
    int i, code = 0;
2507
10.5k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
2508
2509
10.5k
    if (color_stack_ptr == NULL)
2510
0
        return_error(gs_error_unregistered); /* Must not happen. */
2511
10.5k
    patch_interpolate_color(c[0], p0->c, p1->c, pfs, 0.5);
2512
10.5k
    patch_interpolate_color(c[1], p2->c, c[0], pfs, 0.5);
2513
42.3k
    for (i = 0; i < 3; i++) {
2514
        /* fixme : does optimizer compiler expand this cycle ? */
2515
31.7k
        if (p0->p.y <= p1->p.y && p0->p.y <= p2->p.y) {
2516
14.1k
            le.start = re.start = p0->p;
2517
14.1k
            le.end = p1->p;
2518
14.1k
            re.end = p2->p;
2519
2520
14.1k
            dx0 = le.end.x - le.start.x;
2521
14.1k
            dy0 = le.end.y - le.start.y;
2522
14.1k
            dx1 = re.end.x - re.start.x;
2523
14.1k
            dy1 = re.end.y - re.start.y;
2524
14.1k
            if ((int64_t)dx0 * dy1 < (int64_t)dy0 * dx1)
2525
3.37k
                code = ordered_triangle(pfs, &le, &re, c[1]);
2526
10.8k
            else
2527
10.8k
                code = ordered_triangle(pfs, &re, &le, c[1]);
2528
14.1k
            if (code < 0)
2529
0
                break;
2530
14.1k
        }
2531
31.7k
        pp = p0; p0 = p1; p1 = p2; p2 = pp;
2532
31.7k
    }
2533
10.5k
    release_colors_inline(pfs, color_stack_ptr, 2);
2534
10.5k
    return code;
2535
10.5k
}
2536
2537
static inline int
2538
constant_color_quadrangle_aux(patch_fill_state_t *pfs, const quadrangle_patch *p, bool self_intersecting,
2539
        patch_color_t *c[3])
2540
14.3k
{
2541
    /* Assuming the XY span is restricted with curve_samples.
2542
       It is important for intersection_of_small_bars to compute faster. */
2543
14.3k
    gs_fixed_point q[4];
2544
14.3k
    fixed ry, ey;
2545
14.3k
    int code;
2546
14.3k
    bool swap_axes = false;
2547
14.3k
    gx_device_color dc;
2548
14.3k
    bool orient;
2549
2550
14.3k
    dc.tag = device_current_tag(pfs->dev);
2551
2552
14.3k
    patch_interpolate_color(c[1], p->p[0][0]->c, p->p[0][1]->c, pfs, 0.5);
2553
14.3k
    patch_interpolate_color(c[2], p->p[1][0]->c, p->p[1][1]->c, pfs, 0.5);
2554
14.3k
    patch_interpolate_color(c[0], c[1], c[2], pfs, 0.5);
2555
14.3k
    code = patch_color_to_device_color_inline(pfs, c[0], &dc, NULL);
2556
14.3k
    if (code < 0)
2557
0
        return code;
2558
14.3k
    {   gs_fixed_point qq[4];
2559
2560
14.3k
        make_vertices(qq, p);
2561
#ifdef SHADING_SWAP_AXES_FOR_PRECISION
2562
             /* Swapping axes may improve the precision,
2563
                but slows down due to the area expansion needed
2564
                in gx_shade_trapezoid. */
2565
            dx = span_x(qq, 4);
2566
            dy = span_y(qq, 4);
2567
            if (dy < dx) {
2568
                do_swap_axes(qq, 4);
2569
                swap_axes = true;
2570
            }
2571
#endif
2572
14.3k
        wrap_vertices_by_y(q, qq);
2573
14.3k
    }
2574
14.3k
    {   fixed dx1 = q[1].x - q[0].x, dy1 = q[1].y - q[0].y;
2575
14.3k
        fixed dx3 = q[3].x - q[0].x, dy3 = q[3].y - q[0].y;
2576
14.3k
        int64_t g13 = (int64_t)dx1 * dy3, h13 = (int64_t)dy1 * dx3;
2577
2578
14.3k
        if (g13 == h13) {
2579
16
            fixed dx2 = q[2].x - q[0].x, dy2 = q[2].y - q[0].y;
2580
16
            int64_t g23 = (int64_t)dx2 * dy3, h23 = (int64_t)dy2 * dx3;
2581
2582
16
            if (dx1 == 0 && dy1 == 0 && g23 == h23)
2583
0
                return 0;
2584
16
            if (g23 != h23) {
2585
16
                orient = (g23 > h23);
2586
16
                if (q[2].y <= q[3].y) {
2587
0
                    if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[2].y, swap_axes, &dc, orient)) < 0)
2588
0
                        return code;
2589
0
                    return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2590
16
                } else {
2591
16
                    if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient)) < 0)
2592
0
                        return code;
2593
16
                    return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2594
16
                }
2595
16
            } else {
2596
0
                int64_t g12 = (int64_t)dx1 * dy2, h12 = (int64_t)dy1 * dx2;
2597
2598
0
                if (dx3 == 0 && dy3 == 0 && g12 == h12)
2599
0
                    return 0;
2600
0
                orient = (g12 > h12);
2601
0
                if (q[1].y <= q[2].y) {
2602
0
                    if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2603
0
                        return code;
2604
0
                    return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2605
0
                } else {
2606
0
                    if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[0].y, q[2].y, swap_axes, &dc, orient)) < 0)
2607
0
                        return code;
2608
0
                    return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2609
0
                }
2610
0
            }
2611
16
        }
2612
14.3k
        orient = ((int64_t)dx1 * dy3 > (int64_t)dy1 * dx3);
2613
14.3k
    }
2614
14.3k
    if (q[1].y <= q[2].y && q[2].y <= q[3].y) {
2615
5.18k
        if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2616
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2617
0
                return code;
2618
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 3, 1, 2, q[1].y, ry + ey, swap_axes, &dc, orient)) < 0)
2619
0
                return code;
2620
0
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, ry, q[2].y, swap_axes, &dc, orient)) < 0)
2621
0
                return code;
2622
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2623
5.18k
        } else {
2624
5.18k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2625
0
                return code;
2626
5.18k
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[2].y, swap_axes, &dc, orient)) < 0)
2627
0
                return code;
2628
5.18k
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2629
5.18k
        }
2630
9.17k
    } else if (q[1].y <= q[3].y && q[3].y <= q[2].y) {
2631
6.27k
        if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2632
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2633
0
                return code;
2634
0
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, ry + ey, swap_axes, &dc, orient)) < 0)
2635
0
                return code;
2636
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 3, 1, 2, ry, q[3].y, swap_axes, &dc, orient)) < 0)
2637
0
                return code;
2638
0
            return gx_shade_trapezoid(pfs, q, 3, 2, 1, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2639
6.27k
        } else {
2640
6.27k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2641
0
                return code;
2642
6.27k
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient)) < 0)
2643
0
                return code;
2644
6.27k
            return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2645
6.27k
        }
2646
6.27k
    } else if (q[2].y <= q[1].y && q[1].y <= q[3].y) {
2647
0
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2648
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2649
0
                return code;
2650
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2651
0
                return code;
2652
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2653
0
                return code;
2654
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, ry, q[3].y, swap_axes, &dc, orient);
2655
0
        } else if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2656
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2657
0
                return code;
2658
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2659
0
                return code;
2660
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2661
0
                return code;
2662
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, ry, q[3].y, swap_axes, &dc, orient);
2663
0
        } else {
2664
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2665
0
                return code;
2666
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 3, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient)) < 0)
2667
0
                return code;
2668
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient);
2669
0
        }
2670
2.90k
    } else if (q[2].y <= q[3].y && q[3].y <= q[1].y) {
2671
0
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2672
            /* Same code as someone above. */
2673
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2674
0
                return code;
2675
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2676
0
                return code;
2677
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2678
0
                return code;
2679
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, ry, q[3].y, swap_axes, &dc, orient);
2680
0
        } else if (self_intersecting && intersection_of_small_bars(q, 0, 3, 2, 1, &ry, &ey)) {
2681
            /* Same code as someone above. */
2682
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2683
0
                return code;
2684
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2685
0
                return code;
2686
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2687
0
                return code;
2688
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, ry, q[3].y, swap_axes, &dc, orient);
2689
0
        } else {
2690
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[2].y, swap_axes, &dc, orient)) < 0)
2691
0
                return code;
2692
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient)) < 0)
2693
0
                return code;
2694
0
            return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2695
0
        }
2696
2.90k
    } else if (q[3].y <= q[1].y && q[1].y <= q[2].y) {
2697
2.90k
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 3, 2, &ry, &ey)) {
2698
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2699
0
                return code;
2700
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, ry + ey, swap_axes, &dc, orient)) < 0)
2701
0
                return code;
2702
0
            if ((code = gx_shade_trapezoid(pfs, q, 3, 2, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2703
0
                return code;
2704
0
            return gx_shade_trapezoid(pfs, q, 3, 2, 1, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2705
2.90k
        } else {
2706
2.90k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2707
0
                return code;
2708
2.90k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, q[1].y, swap_axes, &dc, orient)) < 0)
2709
0
                return code;
2710
2.90k
            return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2711
2.90k
        }
2712
2.90k
    } else if (q[3].y <= q[2].y && q[2].y <= q[1].y) {
2713
0
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2714
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2715
0
                return code;
2716
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, ry + ey, swap_axes, &dc, orient)) < 0)
2717
0
                return code;
2718
0
            if ((code = gx_shade_trapezoid(pfs, q, 3, 2, 0, 1, ry, q[2].y, swap_axes, &dc, orient)) < 0)
2719
0
                return code;
2720
0
            return gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2721
0
        } else {
2722
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2723
0
                return code;
2724
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient)) < 0)
2725
0
                return code;
2726
0
            return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2727
0
        }
2728
0
    } else {
2729
        /* Impossible. */
2730
0
        return_error(gs_error_unregistered);
2731
0
    }
2732
14.3k
}
2733
2734
int
2735
constant_color_quadrangle(patch_fill_state_t *pfs, const quadrangle_patch *p, bool self_intersecting)
2736
14.3k
{
2737
14.3k
    patch_color_t *c[3];
2738
14.3k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
2739
14.3k
    int code;
2740
2741
14.3k
    if (color_stack_ptr == NULL)
2742
0
        return_error(gs_error_unregistered); /* Must not happen. */
2743
14.3k
    code = constant_color_quadrangle_aux(pfs, p, self_intersecting, c);
2744
14.3k
    release_colors_inline(pfs, color_stack_ptr, 3);
2745
14.3k
    return code;
2746
14.3k
}
2747
2748
static inline void
2749
divide_quadrangle_by_v(patch_fill_state_t *pfs, quadrangle_patch *s0, quadrangle_patch *s1,
2750
            shading_vertex_t q[2], const quadrangle_patch *p, patch_color_t *c[2])
2751
16.8k
{
2752
16.8k
    q[0].c = c[0];
2753
16.8k
    q[1].c = c[1];
2754
16.8k
    q[0].p.x = (p->p[0][0]->p.x + p->p[1][0]->p.x) / 2;
2755
16.8k
    q[1].p.x = (p->p[0][1]->p.x + p->p[1][1]->p.x) / 2;
2756
16.8k
    q[0].p.y = (p->p[0][0]->p.y + p->p[1][0]->p.y) / 2;
2757
16.8k
    q[1].p.y = (p->p[0][1]->p.y + p->p[1][1]->p.y) / 2;
2758
16.8k
    patch_interpolate_color(c[0], p->p[0][0]->c, p->p[1][0]->c, pfs, 0.5);
2759
16.8k
    patch_interpolate_color(c[1], p->p[0][1]->c, p->p[1][1]->c, pfs, 0.5);
2760
16.8k
    s0->p[0][0] = p->p[0][0];
2761
16.8k
    s0->p[0][1] = p->p[0][1];
2762
16.8k
    s0->p[1][0] = s1->p[0][0] = &q[0];
2763
16.8k
    s0->p[1][1] = s1->p[0][1] = &q[1];
2764
16.8k
    s1->p[1][0] = p->p[1][0];
2765
16.8k
    s1->p[1][1] = p->p[1][1];
2766
16.8k
}
2767
2768
static inline void
2769
divide_quadrangle_by_u(patch_fill_state_t *pfs, quadrangle_patch *s0, quadrangle_patch *s1,
2770
            shading_vertex_t q[2], const quadrangle_patch *p, patch_color_t *c[2])
2771
7.12k
{
2772
7.12k
    q[0].c = c[0];
2773
7.12k
    q[1].c = c[1];
2774
7.12k
    q[0].p.x = (p->p[0][0]->p.x + p->p[0][1]->p.x) / 2;
2775
7.12k
    q[1].p.x = (p->p[1][0]->p.x + p->p[1][1]->p.x) / 2;
2776
7.12k
    q[0].p.y = (p->p[0][0]->p.y + p->p[0][1]->p.y) / 2;
2777
7.12k
    q[1].p.y = (p->p[1][0]->p.y + p->p[1][1]->p.y) / 2;
2778
7.12k
    patch_interpolate_color(c[0], p->p[0][0]->c, p->p[0][1]->c, pfs, 0.5);
2779
7.12k
    patch_interpolate_color(c[1], p->p[1][0]->c, p->p[1][1]->c, pfs, 0.5);
2780
7.12k
    s0->p[0][0] = p->p[0][0];
2781
7.12k
    s0->p[1][0] = p->p[1][0];
2782
7.12k
    s0->p[0][1] = s1->p[0][0] = &q[0];
2783
7.12k
    s0->p[1][1] = s1->p[1][0] = &q[1];
2784
7.12k
    s1->p[0][1] = p->p[0][1];
2785
7.12k
    s1->p[1][1] = p->p[1][1];
2786
7.12k
}
2787
2788
static inline int
2789
is_quadrangle_color_monotonic(const patch_fill_state_t *pfs, const quadrangle_patch *p,
2790
                              bool *not_monotonic_by_u, bool *not_monotonic_by_v)
2791
121k
{   /* returns : 1 = monotonic, 0 = don't know, <0 = error. */
2792
121k
    int code, r;
2793
2794
121k
    code = isnt_color_monotonic(pfs, p->p[0][0]->c, p->p[1][1]->c);
2795
121k
    if (code <= 0)
2796
109k
        return code;
2797
12.7k
    r = code << pfs->function_arg_shift;
2798
12.7k
    if (r & 1)
2799
0
        *not_monotonic_by_u = true;
2800
12.7k
    if (r & 2)
2801
12.7k
        *not_monotonic_by_v = true;
2802
12.7k
    return !code;
2803
121k
}
2804
2805
static inline void
2806
divide_bar(patch_fill_state_t *pfs,
2807
        const shading_vertex_t *p0, const shading_vertex_t *p1, int radix, shading_vertex_t *p,
2808
        patch_color_t *c)
2809
879k
{
2810
    /* Assuming p.c == c for providing a non-const access. */
2811
879k
    p->p.x = (fixed)((int64_t)p0->p.x * (radix - 1) + p1->p.x) / radix;
2812
879k
    p->p.y = (fixed)((int64_t)p0->p.y * (radix - 1) + p1->p.y) / radix;
2813
879k
    patch_interpolate_color(c, p0->c, p1->c, pfs, (double)(radix - 1) / radix);
2814
879k
}
2815
2816
static int
2817
triangle_by_4(patch_fill_state_t *pfs,
2818
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2,
2819
        wedge_vertex_list_t *l01, wedge_vertex_list_t *l12, wedge_vertex_list_t *l20,
2820
        double cd, fixed sd)
2821
3.03M
{
2822
3.03M
    shading_vertex_t p01, p12, p20;
2823
3.03M
    patch_color_t *c[3];
2824
3.03M
    wedge_vertex_list_t L01, L12, L20, L[3];
2825
3.03M
    bool inside_save = pfs->inside;
2826
3.03M
    gs_fixed_rect r = {{0,0},{0,0}}, r1 =  {{0,0},{0,0}};
2827
3.03M
    int code = 0;
2828
3.03M
    byte *color_stack_ptr;
2829
3.03M
    const bool inside = pfs->inside; /* 'const' should help compiler to analyze initializations. */
2830
2831
3.03M
    if (!inside) {
2832
849k
        bbox_of_points(&r, &p0->p, &p1->p, &p2->p, NULL);
2833
849k
        r1 = r;
2834
849k
        rect_intersect(r, pfs->rect);
2835
849k
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
2836
297k
            return 0;
2837
849k
    }
2838
2.73M
    color_stack_ptr = reserve_colors_inline(pfs, c, 3);
2839
2.73M
    if(color_stack_ptr == NULL)
2840
0
        return_error(gs_error_unregistered);
2841
2.73M
    p01.c = c[0];
2842
2.73M
    p12.c = c[1];
2843
2.73M
    p20.c = c[2];
2844
2.73M
    code = try_device_linear_color(pfs, false, p0, p1, p2);
2845
2.73M
    switch(code) {
2846
2.70M
        case 0: /* The area is filled. */
2847
2.70M
            goto out;
2848
0
        case 2: /* decompose to constant color areas */
2849
            /* Halftoned devices may do with some bigger areas
2850
               due to imprecise representation of a contone color.
2851
               So we multiply the decomposition limit by 4 for a faster rendering. */
2852
0
            if (sd < pfs->decomposition_limit * 4) {
2853
0
                code = constant_color_triangle(pfs, p2, p0, p1);
2854
0
                goto out;
2855
0
            }
2856
0
            if (pfs->Function != NULL) {
2857
0
                double d01 = color_span(pfs, p1->c, p0->c);
2858
0
                double d12 = color_span(pfs, p2->c, p1->c);
2859
0
                double d20 = color_span(pfs, p0->c, p2->c);
2860
2861
0
                if (d01 <= pfs->smoothness / COLOR_CONTIGUITY &&
2862
0
                    d12 <= pfs->smoothness / COLOR_CONTIGUITY &&
2863
0
                    d20 <= pfs->smoothness / COLOR_CONTIGUITY) {
2864
0
                    code = constant_color_triangle(pfs, p2, p0, p1);
2865
0
                    goto out;
2866
0
                }
2867
0
            } else if (cd <= pfs->smoothness / COLOR_CONTIGUITY) {
2868
0
                code = constant_color_triangle(pfs, p2, p0, p1);
2869
0
                goto out;
2870
0
            }
2871
0
            break;
2872
26.2k
        case 1: /* decompose to linear color areas */
2873
26.2k
            if (sd < pfs->decomposition_limit) {
2874
10.5k
                code = constant_color_triangle(pfs, p2, p0, p1);
2875
10.5k
                goto out;
2876
10.5k
            }
2877
15.6k
            break;
2878
15.6k
        default: /* Error. */
2879
0
            goto out;
2880
2.73M
    }
2881
15.6k
    if (!inside) {
2882
6.52k
        if (r.p.x == r1.p.x && r.p.y == r1.p.y &&
2883
6.52k
            r.q.x == r1.q.x && r.q.y == r1.q.y)
2884
1.00k
            pfs->inside = true;
2885
6.52k
    }
2886
15.6k
    divide_bar(pfs, p0, p1, 2, &p01, c[0]);
2887
15.6k
    divide_bar(pfs, p1, p2, 2, &p12, c[1]);
2888
15.6k
    divide_bar(pfs, p2, p0, 2, &p20, c[2]);
2889
15.6k
    if (LAZY_WEDGES) {
2890
15.6k
        init_wedge_vertex_list(L, count_of(L));
2891
15.6k
        code = make_wedge_median(pfs, &L01, l01, true,  &p0->p, &p1->p, &p01.p);
2892
15.6k
        if (code >= 0)
2893
15.6k
            code = make_wedge_median(pfs, &L12, l12, true,  &p1->p, &p2->p, &p12.p);
2894
15.6k
        if (code >= 0)
2895
15.6k
            code = make_wedge_median(pfs, &L20, l20, false, &p2->p, &p0->p, &p20.p);
2896
15.6k
    } else {
2897
0
        code = fill_triangle_wedge(pfs, p0, p1, &p01);
2898
0
        if (code >= 0)
2899
0
            code = fill_triangle_wedge(pfs, p1, p2, &p12);
2900
0
        if (code >= 0)
2901
0
            code = fill_triangle_wedge(pfs, p2, p0, &p20);
2902
0
    }
2903
15.6k
    if (code >= 0)
2904
15.6k
        code = triangle_by_4(pfs, p0, &p01, &p20, &L01, &L[0], &L20, cd / 2, sd / 2);
2905
15.6k
    if (code >= 0) {
2906
15.6k
        if (LAZY_WEDGES) {
2907
15.6k
            move_wedge(&L01, l01, true);
2908
15.6k
            move_wedge(&L20, l20, false);
2909
15.6k
        }
2910
15.6k
        code = triangle_by_4(pfs, p1, &p12, &p01, &L12, &L[1], &L01, cd / 2, sd / 2);
2911
15.6k
    }
2912
15.6k
    if (code >= 0) {
2913
15.6k
        if (LAZY_WEDGES)
2914
15.6k
            move_wedge(&L12, l12, true);
2915
15.6k
        code = triangle_by_4(pfs, p2, &p20, &p12, &L20, &L[2], &L12, cd / 2, sd / 2);
2916
15.6k
    }
2917
15.6k
    if (code >= 0) {
2918
15.6k
        L[0].last_side = L[1].last_side = L[2].last_side = true;
2919
15.6k
        code = triangle_by_4(pfs, &p01, &p12, &p20, &L[1], &L[2], &L[0], cd / 2, sd / 2);
2920
15.6k
    }
2921
15.6k
    if (LAZY_WEDGES) {
2922
15.6k
        if (code >= 0)
2923
15.6k
            code = close_wedge_median(pfs, l01, p0->c, p1->c);
2924
15.6k
        if (code >= 0)
2925
15.6k
            code = close_wedge_median(pfs, l12, p1->c, p2->c);
2926
15.6k
        if (code >= 0)
2927
15.6k
            code = close_wedge_median(pfs, l20, p2->c, p0->c);
2928
15.6k
        if (code >= 0)
2929
15.6k
            code = terminate_wedge_vertex_list(pfs, &L[0], p01.c, p20.c);
2930
15.6k
        if (code >= 0)
2931
15.6k
            code = terminate_wedge_vertex_list(pfs, &L[1], p12.c, p01.c);
2932
15.6k
        if (code >= 0)
2933
15.6k
            code = terminate_wedge_vertex_list(pfs, &L[2], p20.c, p12.c);
2934
15.6k
    }
2935
15.6k
    pfs->inside = inside_save;
2936
2.73M
out:
2937
2.73M
    release_colors_inline(pfs, color_stack_ptr, 3);
2938
2.73M
    return code;
2939
15.6k
}
2940
2941
static inline int
2942
fill_triangle(patch_fill_state_t *pfs,
2943
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2,
2944
        wedge_vertex_list_t *l01, wedge_vertex_list_t *l12, wedge_vertex_list_t *l20)
2945
2.96M
{
2946
2.96M
    fixed sd01 = max(any_abs(p1->p.x - p0->p.x), any_abs(p1->p.y - p0->p.y));
2947
2.96M
    fixed sd12 = max(any_abs(p2->p.x - p1->p.x), any_abs(p2->p.y - p1->p.y));
2948
2.96M
    fixed sd20 = max(any_abs(p0->p.x - p2->p.x), any_abs(p0->p.y - p2->p.y));
2949
2.96M
    fixed sd1 = max(sd01, sd12);
2950
2.96M
    fixed sd = max(sd1, sd20);
2951
2.96M
    double cd = 0;
2952
2953
#   if SKIP_TEST
2954
        dbg_triangle_cnt++;
2955
#   endif
2956
2.96M
    if (pfs->Function == NULL) {
2957
2.44M
        double d01 = color_span(pfs, p1->c, p0->c);
2958
2.44M
        double d12 = color_span(pfs, p2->c, p1->c);
2959
2.44M
        double d20 = color_span(pfs, p0->c, p2->c);
2960
2.44M
        double cd1 = max(d01, d12);
2961
2962
2.44M
        cd = max(cd1, d20);
2963
2.44M
    }
2964
2.96M
    return triangle_by_4(pfs, p0, p1, p2, l01, l12, l20, cd, sd);
2965
2.96M
}
2966
2967
static int
2968
small_mesh_triangle(patch_fill_state_t *pfs,
2969
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
2970
295k
{
2971
295k
    int code;
2972
295k
    wedge_vertex_list_t l[3];
2973
2974
295k
    init_wedge_vertex_list(l, count_of(l));
2975
295k
    code = fill_triangle(pfs, p0, p1, p2, &l[0], &l[1], &l[2]);
2976
295k
    if (code < 0)
2977
0
        return code;
2978
295k
    code = terminate_wedge_vertex_list(pfs, &l[0], p0->c, p1->c);
2979
295k
    if (code < 0)
2980
0
        return code;
2981
295k
    code = terminate_wedge_vertex_list(pfs, &l[1], p1->c, p2->c);
2982
295k
    if (code < 0)
2983
0
        return code;
2984
295k
    return terminate_wedge_vertex_list(pfs, &l[2], p2->c, p0->c);
2985
295k
}
2986
2987
int
2988
gx_init_patch_fill_state_for_clist(gx_device *dev, patch_fill_state_t *pfs, gs_memory_t *memory)
2989
0
{
2990
0
    int i;
2991
2992
0
    pfs->dev = dev;
2993
0
    pfs->pgs = NULL;
2994
0
    pfs->direct_space = NULL;
2995
0
    pfs->num_components = dev->color_info.num_components;
2996
    /* pfs->cc_max_error[GS_CLIENT_COLOR_MAX_COMPONENTS] unused */
2997
0
    pfs->pshm = NULL;
2998
0
    pfs->Function = NULL;
2999
0
    pfs->function_arg_shift = 0;
3000
0
    pfs->vectorization = false; /* A stub for a while. Will use with pclwrite. */
3001
0
    pfs->n_color_args = 1; /* unused. */
3002
0
    pfs->max_small_coord = 0; /* unused. */
3003
0
    pfs->wedge_vertex_list_elem_buffer = NULL; /* fixme */
3004
0
    pfs->free_wedge_vertex = NULL; /* fixme */
3005
0
    pfs->wedge_vertex_list_elem_count = 0; /* fixme */
3006
0
    pfs->wedge_vertex_list_elem_count_max = 0; /* fixme */
3007
0
    for (i = 0; i < pfs->num_components; i++)
3008
0
        pfs->color_domain.paint.values[i] = (float)0x7fffffff;
3009
    /* decomposition_limit must be same as one in init_patch_fill_state */
3010
#ifdef MAX_SHADING_RESOLUTION
3011
    pfs->decomposition_limit = float2fixed(min(pfs->dev->HWResolution[0],
3012
                                               pfs->dev->HWResolution[1]) / MAX_SHADING_RESOLUTION);
3013
    pfs->decomposition_limit = max(pfs->decomposition_limit, fixed_1);
3014
#else
3015
0
    pfs->decomposition_limit = fixed_1;
3016
0
#endif
3017
0
    pfs->fixed_flat = 0; /* unused */
3018
0
    pfs->smoothness = 0; /* unused */
3019
0
    pfs->maybe_self_intersecting = false; /* unused */
3020
0
    pfs->monotonic_color = true;
3021
0
    pfs->linear_color = true;
3022
0
    pfs->unlinear = false; /* Because it is used when fill_linear_color_triangle was called. */
3023
0
    pfs->inside = false;
3024
0
    pfs->color_stack_size = 0;
3025
0
    pfs->color_stack_step = dev->color_info.num_components;
3026
0
    pfs->color_stack_ptr = NULL; /* fixme */
3027
0
    pfs->color_stack = NULL; /* fixme */
3028
0
    pfs->color_stack_limit = NULL; /* fixme */
3029
0
    pfs->pcic = NULL; /* Will do someday. */
3030
0
    pfs->trans_device = NULL;
3031
0
    pfs->icclink = NULL;
3032
0
    return alloc_patch_fill_memory(pfs, memory, NULL);
3033
0
}
3034
3035
/* A method for filling a small triangle that the device can't handle.
3036
   Used by clist playback. */
3037
int
3038
gx_fill_triangle_small(gx_device *dev, const gs_fill_attributes *fa,
3039
        const gs_fixed_point *p0, const gs_fixed_point *p1,
3040
        const gs_fixed_point *p2,
3041
        const frac31 *c0, const frac31 *c1, const frac31 *c2)
3042
0
{
3043
0
    patch_fill_state_t *pfs = fa->pfs;
3044
0
    patch_color_t c[3];
3045
0
    shading_vertex_t p[3];
3046
0
    uchar i;
3047
3048
    /* pfs->rect = *fa->clip; unused ? */
3049
0
    p[0].p = *p0;
3050
0
    p[1].p = *p1;
3051
0
    p[2].p = *p2;
3052
0
    p[0].c = &c[0];
3053
0
    p[1].c = &c[1];
3054
0
    p[2].c = &c[2];
3055
0
    c[0].t[0] = c[0].t[1] = c[1].t[0] = c[1].t[1] = c[2].t[0] = c[2].t[1] = 0; /* Dummy - not used. */
3056
0
    for (i = 0; i < dev->color_info.num_components; i++) {
3057
0
        c[0].cc.paint.values[i] = (float)c0[i];
3058
0
        c[1].cc.paint.values[i] = (float)c1[i];
3059
0
        c[2].cc.paint.values[i] = (float)c2[i];
3060
0
    }
3061
    /* fixme: the cycle above converts frac31 values into floats.
3062
       We don't like this because (1) it misses lower bits,
3063
       and (2) fixed point values can be faster on some platforms.
3064
       We could fix it with coding a template for small_mesh_triangle
3065
       and its callees until patch_color_to_device_color_inline.
3066
    */
3067
    /* fixme : this function is called from gxclrast.c
3068
       after dev->procs.fill_linear_color_triangle returns 0 - "subdivide".
3069
       After few moments small_mesh_triangle indirectly calls
3070
       same function with same arguments as a part of
3071
       try_device_linear_color in triangle_by_4.
3072
       Obviusly it will return zero again.
3073
       Actually we don't need the second call,
3074
       so optimize with skipping the second call.
3075
     */
3076
0
    return small_mesh_triangle(pfs, &p[0], &p[1], &p[2]);
3077
0
}
3078
3079
static int
3080
mesh_triangle_rec(patch_fill_state_t *pfs,
3081
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
3082
358k
{
3083
358k
    pfs->unlinear = !is_linear_color_applicable(pfs);
3084
358k
    if (manhattan_dist(&p0->p, &p1->p) < pfs->max_small_coord &&
3085
358k
        manhattan_dist(&p1->p, &p2->p) < pfs->max_small_coord &&
3086
358k
        manhattan_dist(&p2->p, &p0->p) < pfs->max_small_coord)
3087
295k
        return small_mesh_triangle(pfs, p0, p1, p2);
3088
63.4k
    else {
3089
        /* Subdivide into 4 triangles with 3 triangle non-lazy wedges.
3090
           Doing so against the wedge_vertex_list_elem_buffer overflow.
3091
           We could apply a smarter method, dividing long sides
3092
           with no wedges and short sides with lazy wedges.
3093
           This needs to start wedges dynamically when
3094
           a side becomes short. We don't do so because the
3095
           number of checks per call significantly increases
3096
           and the logics is complicated, but the performance
3097
           advantage appears small due to big meshes are rare.
3098
         */
3099
63.4k
        shading_vertex_t p01, p12, p20;
3100
63.4k
        patch_color_t *c[3];
3101
63.4k
        int code;
3102
63.4k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
3103
3104
63.4k
        if (color_stack_ptr == NULL)
3105
0
            return_error(gs_error_unregistered); /* Must not happen. */
3106
63.4k
        p01.c = c[0];
3107
63.4k
        p12.c = c[1];
3108
63.4k
        p20.c = c[2];
3109
63.4k
        divide_bar(pfs, p0, p1, 2, &p01, c[0]);
3110
63.4k
        divide_bar(pfs, p1, p2, 2, &p12, c[1]);
3111
63.4k
        divide_bar(pfs, p2, p0, 2, &p20, c[2]);
3112
63.4k
        code = fill_triangle_wedge(pfs, p0, p1, &p01);
3113
63.4k
        if (code >= 0)
3114
63.4k
            code = fill_triangle_wedge(pfs, p1, p2, &p12);
3115
63.4k
        if (code >= 0)
3116
63.4k
            code = fill_triangle_wedge(pfs, p2, p0, &p20);
3117
63.4k
        if (code >= 0)
3118
63.4k
            code = mesh_triangle_rec(pfs, p0, &p01, &p20);
3119
63.4k
        if (code >= 0)
3120
63.4k
            code = mesh_triangle_rec(pfs, p1, &p12, &p01);
3121
63.4k
        if (code >= 0)
3122
63.4k
            code = mesh_triangle_rec(pfs, p2, &p20, &p12);
3123
63.4k
        if (code >= 0)
3124
63.4k
            code = mesh_triangle_rec(pfs, &p01, &p12, &p20);
3125
63.4k
        release_colors_inline(pfs, color_stack_ptr, 3);
3126
63.4k
        return code;
3127
63.4k
    }
3128
358k
}
3129
3130
int
3131
mesh_triangle(patch_fill_state_t *pfs,
3132
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
3133
104k
{
3134
104k
    if ((*dev_proc(pfs->dev, dev_spec_op))(pfs->dev,
3135
104k
            gxdso_pattern_shading_area, NULL, 0) > 0) {
3136
        /* Inform the device with the shading coverage area.
3137
           First compute the sign of the area, because
3138
           all areas to be clipped in same direction. */
3139
0
        gx_device *pdev = pfs->dev;
3140
0
        gx_path path;
3141
0
        int code;
3142
0
        fixed d01x = p1->p.x - p0->p.x, d01y = p1->p.y - p0->p.y;
3143
0
        fixed d12x = p2->p.x - p1->p.x, d12y = p2->p.y - p1->p.y;
3144
0
        int64_t s1 = (int64_t)d01x * d12y - (int64_t)d01y * d12x;
3145
3146
0
        gx_path_init_local(&path, pdev->memory);
3147
0
        code = gx_path_add_point(&path, p0->p.x, p0->p.y);
3148
0
        if (code >= 0 && s1 >= 0)
3149
0
            code = gx_path_add_line(&path, p1->p.x, p1->p.y);
3150
0
        if (code >= 0)
3151
0
            code = gx_path_add_line(&path, p2->p.x, p2->p.y);
3152
0
        if (code >= 0 && s1 < 0)
3153
0
            code = gx_path_add_line(&path, p1->p.x, p1->p.y);
3154
0
        if (code >= 0)
3155
0
            code = gx_path_close_subpath(&path);
3156
0
        if (code >= 0)
3157
0
            code = (*dev_proc(pfs->dev, fill_path))(pdev, NULL, &path, NULL, NULL, NULL);
3158
0
        gx_path_free(&path, "mesh_triangle");
3159
0
        if (code < 0)
3160
0
            return code;
3161
0
    }
3162
104k
    return mesh_triangle_rec(pfs, p0, p1, p2);
3163
104k
}
3164
3165
static inline int
3166
triangles4(patch_fill_state_t *pfs, const quadrangle_patch *p, bool dummy_argument)
3167
214k
{
3168
214k
    shading_vertex_t p0001, p1011, q;
3169
214k
    patch_color_t *c[3];
3170
214k
    wedge_vertex_list_t l[4];
3171
214k
    int code;
3172
214k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
3173
3174
214k
    if(color_stack_ptr == NULL)
3175
0
        return_error(gs_error_unregistered); /* Must not happen. */
3176
214k
    p0001.c = c[0];
3177
214k
    p1011.c = c[1];
3178
214k
    q.c = c[2];
3179
214k
    init_wedge_vertex_list(l, count_of(l));
3180
214k
    divide_bar(pfs, p->p[0][0], p->p[0][1], 2, &p0001, c[0]);
3181
214k
    divide_bar(pfs, p->p[1][0], p->p[1][1], 2, &p1011, c[1]);
3182
214k
    divide_bar(pfs, &p0001, &p1011, 2, &q, c[2]);
3183
214k
    code = fill_triangle(pfs, p->p[0][0], p->p[0][1], &q, p->l0001, &l[0], &l[3]);
3184
214k
    if (code >= 0) {
3185
214k
        l[0].last_side = true;
3186
214k
        l[3].last_side = true;
3187
214k
        code = fill_triangle(pfs, p->p[0][1], p->p[1][1], &q, p->l0111, &l[1], &l[0]);
3188
214k
    }
3189
214k
    if (code >= 0) {
3190
214k
        l[1].last_side = true;
3191
214k
        code = fill_triangle(pfs, p->p[1][1], p->p[1][0], &q, p->l1110, &l[2], &l[1]);
3192
214k
    }
3193
214k
    if (code >= 0) {
3194
214k
        l[2].last_side = true;
3195
214k
        code = fill_triangle(pfs, p->p[1][0], p->p[0][0], &q, p->l1000, &l[3], &l[2]);
3196
214k
    }
3197
214k
    if (code >= 0)
3198
214k
        code = terminate_wedge_vertex_list(pfs, &l[0], p->p[0][1]->c, q.c);
3199
214k
    if (code >= 0)
3200
214k
        code = terminate_wedge_vertex_list(pfs, &l[1], p->p[1][1]->c, q.c);
3201
214k
    if (code >= 0)
3202
214k
        code = terminate_wedge_vertex_list(pfs, &l[2], p->p[1][0]->c, q.c);
3203
214k
    if (code >= 0)
3204
214k
        code = terminate_wedge_vertex_list(pfs, &l[3], q.c, p->p[0][0]->c);
3205
214k
    release_colors_inline(pfs, color_stack_ptr, 3);
3206
214k
    return code;
3207
214k
}
3208
3209
static inline int
3210
triangles2(patch_fill_state_t *pfs, const quadrangle_patch *p, bool dummy_argument)
3211
907k
{
3212
907k
    wedge_vertex_list_t l;
3213
907k
    int code;
3214
3215
907k
    init_wedge_vertex_list(&l, 1);
3216
907k
    code = fill_triangle(pfs, p->p[0][0], p->p[0][1], p->p[1][1], p->l0001, p->l0111, &l);
3217
907k
    if (code < 0)
3218
0
        return code;
3219
907k
    l.last_side = true;
3220
907k
    code = fill_triangle(pfs, p->p[1][1], p->p[1][0], p->p[0][0], p->l1110, p->l1000, &l);
3221
907k
    if (code < 0)
3222
0
        return code;
3223
907k
    code = terminate_wedge_vertex_list(pfs, &l, p->p[1][1]->c, p->p[0][0]->c);
3224
907k
    if (code < 0)
3225
0
        return code;
3226
907k
    return 0;
3227
907k
}
3228
3229
static inline void
3230
make_quadrangle(const tensor_patch *p, shading_vertex_t qq[2][2],
3231
        wedge_vertex_list_t l[4], quadrangle_patch *q)
3232
1.21M
{
3233
1.21M
    qq[0][0].p = p->pole[0][0];
3234
1.21M
    qq[0][1].p = p->pole[0][3];
3235
1.21M
    qq[1][0].p = p->pole[3][0];
3236
1.21M
    qq[1][1].p = p->pole[3][3];
3237
1.21M
    qq[0][0].c = p->c[0][0];
3238
1.21M
    qq[0][1].c = p->c[0][1];
3239
1.21M
    qq[1][0].c = p->c[1][0];
3240
1.21M
    qq[1][1].c = p->c[1][1];
3241
1.21M
    q->p[0][0] = &qq[0][0];
3242
1.21M
    q->p[0][1] = &qq[0][1];
3243
1.21M
    q->p[1][0] = &qq[1][0];
3244
1.21M
    q->p[1][1] = &qq[1][1];
3245
1.21M
    q->l0001 = &l[0];
3246
1.21M
    q->l0111 = &l[1];
3247
1.21M
    q->l1110 = &l[2];
3248
1.21M
    q->l1000 = &l[3];
3249
1.21M
}
3250
3251
static inline int
3252
is_quadrangle_color_linear_by_u(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3253
1.07M
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3254
1.07M
    int code;
3255
3256
1.07M
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[0][1]->c);
3257
1.07M
    if (code <= 0)
3258
0
        return code;
3259
1.07M
    return is_color_linear(pfs, p->p[1][0]->c, p->p[1][1]->c);
3260
1.07M
}
3261
3262
static inline int
3263
is_quadrangle_color_linear_by_v(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3264
51.3k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3265
51.3k
    int code;
3266
3267
51.3k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[1][0]->c);
3268
51.3k
    if (code <= 0)
3269
7.57k
        return code;
3270
43.7k
    return is_color_linear(pfs, p->p[0][1]->c, p->p[1][1]->c);
3271
51.3k
}
3272
3273
static inline int
3274
is_quadrangle_color_linear_by_diagonals(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3275
44.8k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3276
44.8k
    int code;
3277
3278
44.8k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[1][1]->c);
3279
44.8k
    if (code <= 0)
3280
5.50k
        return code;
3281
39.3k
    return is_color_linear(pfs, p->p[0][1]->c, p->p[1][0]->c);
3282
44.8k
}
3283
3284
typedef enum {
3285
    color_change_small,
3286
    color_change_gradient,
3287
    color_change_linear,
3288
    color_change_bilinear,
3289
    color_change_general
3290
} color_change_type_t;
3291
3292
static inline color_change_type_t
3293
quadrangle_color_change(const patch_fill_state_t *pfs, const quadrangle_patch *p,
3294
                        bool is_big_u, bool is_big_v, double size_u, double size_v,
3295
                        bool *divide_u, bool *divide_v)
3296
1.10M
{
3297
1.10M
    patch_color_t d0001, d1011, d;
3298
1.10M
    double D, D0001, D1011, D0010, D0111, D0011, D0110;
3299
1.10M
    double Du, Dv;
3300
3301
1.10M
    color_diff(pfs, p->p[0][0]->c, p->p[0][1]->c, &d0001);
3302
1.10M
    color_diff(pfs, p->p[1][0]->c, p->p[1][1]->c, &d1011);
3303
1.10M
    D0001 = color_norm(pfs, &d0001);
3304
1.10M
    D1011 = color_norm(pfs, &d1011);
3305
1.10M
    D0010 = color_span(pfs, p->p[0][0]->c, p->p[1][0]->c);
3306
1.10M
    D0111 = color_span(pfs, p->p[0][1]->c, p->p[1][1]->c);
3307
1.10M
    D0011 = color_span(pfs, p->p[0][0]->c, p->p[1][1]->c);
3308
1.10M
    D0110 = color_span(pfs, p->p[0][1]->c, p->p[1][0]->c);
3309
1.10M
    if (pfs->unlinear) {
3310
0
        if (D0001 <= pfs->smoothness && D1011 <= pfs->smoothness &&
3311
0
            D0010 <= pfs->smoothness && D0111 <= pfs->smoothness &&
3312
0
            D0011 <= pfs->smoothness && D0110 <= pfs->smoothness)
3313
0
            return color_change_small;
3314
0
        if (D0001 <= pfs->smoothness && D1011 <= pfs->smoothness) {
3315
0
            if (!is_big_v) {
3316
                /* The color function looks uncontiguous. */
3317
0
                return color_change_small;
3318
0
            }
3319
0
            *divide_v = true;
3320
0
            return color_change_gradient;
3321
0
        }
3322
0
        if (D0010 <= pfs->smoothness && D0111 <= pfs->smoothness) {
3323
0
            if (!is_big_u) {
3324
                /* The color function looks uncontiguous. */
3325
0
                return color_change_small;
3326
0
            }
3327
0
            *divide_u = true;
3328
0
            return color_change_gradient;
3329
0
        }
3330
0
    }
3331
1.10M
    color_diff(pfs, &d0001, &d1011, &d);
3332
1.10M
    Du = max(D0001, D1011);
3333
1.10M
    Dv = max(D0010, D0111);
3334
1.10M
    if (Du <= pfs->smoothness / 8 && Dv <= pfs->smoothness / 8)
3335
135k
        return color_change_small;
3336
967k
    if (Du <= pfs->smoothness / 8)
3337
13.0k
        return color_change_linear;
3338
954k
    if (Dv <= pfs->smoothness / 8)
3339
894k
        return color_change_linear;
3340
59.2k
    D = color_norm(pfs, &d);
3341
59.2k
    if (D <= pfs->smoothness)
3342
51.4k
        return color_change_bilinear;
3343
7.74k
#if 1
3344
7.74k
    if (Du > Dv && is_big_u)
3345
3.92k
        *divide_u = true;
3346
3.82k
    else if (Du < Dv && is_big_v)
3347
2.73k
        *divide_v = true;
3348
1.08k
    else if (is_big_u && size_u > size_v)
3349
454
        *divide_u = true;
3350
631
    else if (is_big_v && size_v > size_u)
3351
631
        *divide_v = true;
3352
0
    else if (is_big_u)
3353
0
        *divide_u = true;
3354
0
    else if (is_big_v)
3355
0
        *divide_v = true;
3356
0
    else {
3357
        /* The color function looks uncontiguous. */
3358
0
        return color_change_small;
3359
0
    }
3360
#else /* Disabled due to infinite recursion with -r200 09-57.PS
3361
         (Standard Test 6.4  - Range 6) (Test05). */
3362
    if (Du > Dv)
3363
        *divide_u = true;
3364
    else
3365
        *divide_v = true;
3366
#endif
3367
7.74k
    return color_change_general;
3368
7.74k
}
3369
3370
static int
3371
fill_quadrangle(patch_fill_state_t *pfs, const quadrangle_patch *p, bool big)
3372
1.26M
{
3373
    /* The quadrangle is flattened enough by V and U, so ignore inner poles. */
3374
    /* Assuming the XY span is restricted with curve_samples.
3375
       It is important for intersection_of_small_bars to compute faster. */
3376
1.26M
    quadrangle_patch s0, s1;
3377
1.26M
    wedge_vertex_list_t l0, l1, l2;
3378
1.26M
    int code;
3379
1.26M
    bool divide_u = false, divide_v = false, big1 = big;
3380
1.26M
    shading_vertex_t q[2];
3381
1.26M
    bool monotonic_color_save = pfs->monotonic_color;
3382
1.26M
    bool linear_color_save = pfs->linear_color;
3383
1.26M
    bool inside_save = pfs->inside;
3384
1.26M
    const bool inside = pfs->inside; /* 'const' should help compiler to analyze initializations. */
3385
1.26M
    gs_fixed_rect r = {{0,0},{0,0}}, r1 = {{0,0},{0,0}};
3386
    /* Warning : pfs->monotonic_color is not restored on error. */
3387
3388
1.26M
    if (!inside) {
3389
336k
        bbox_of_points(&r, &p->p[0][0]->p, &p->p[0][1]->p, &p->p[1][0]->p, &p->p[1][1]->p);
3390
336k
        r1 = r;
3391
336k
        rect_intersect(r, pfs->rect);
3392
336k
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3393
104k
            return 0; /* Outside. */
3394
336k
    }
3395
1.16M
    if (big) {
3396
        /* Likely 'big' is an unuseful rudiment due to curve_samples
3397
           restricts lengthes. We keep it for a while because its implementation
3398
           isn't obvious and its time consumption is invisibly small.
3399
         */
3400
1.11M
        fixed size_u = max(max(any_abs(p->p[0][0]->p.x - p->p[0][1]->p.x),
3401
1.11M
                               any_abs(p->p[1][0]->p.x - p->p[1][1]->p.x)),
3402
1.11M
                           max(any_abs(p->p[0][0]->p.y - p->p[0][1]->p.y),
3403
1.11M
                               any_abs(p->p[1][0]->p.y - p->p[1][1]->p.y)));
3404
1.11M
        fixed size_v = max(max(any_abs(p->p[0][0]->p.x - p->p[1][0]->p.x),
3405
1.11M
                               any_abs(p->p[0][1]->p.x - p->p[1][1]->p.x)),
3406
1.11M
                           max(any_abs(p->p[0][0]->p.y - p->p[1][0]->p.y),
3407
1.11M
                               any_abs(p->p[0][1]->p.y - p->p[1][1]->p.y)));
3408
3409
1.11M
        if (QUADRANGLES && pfs->maybe_self_intersecting) {
3410
0
            if (size_v > pfs->max_small_coord) {
3411
                /* constant_color_quadrangle can't handle big self-intersecting areas
3412
                   because we don't want int64_t in it. */
3413
0
                divide_v = true;
3414
0
            } else if (size_u > pfs->max_small_coord) {
3415
                /* constant_color_quadrangle can't handle big self-intersecting areas,
3416
                   because we don't want int64_t in it. */
3417
0
                divide_u = true;
3418
0
            } else
3419
0
                big1 = false;
3420
0
        } else
3421
1.11M
            big1 = false;
3422
1.11M
    }
3423
1.16M
    if (!big1) {
3424
1.16M
        bool is_big_u = false, is_big_v = false;
3425
1.16M
        double d0001x = any_abs(p->p[0][0]->p.x - p->p[0][1]->p.x);
3426
1.16M
        double d1011x = any_abs(p->p[1][0]->p.x - p->p[1][1]->p.x);
3427
1.16M
        double d0001y = any_abs(p->p[0][0]->p.y - p->p[0][1]->p.y);
3428
1.16M
        double d1011y = any_abs(p->p[1][0]->p.y - p->p[1][1]->p.y);
3429
1.16M
        double d0010x = any_abs(p->p[0][0]->p.x - p->p[1][0]->p.x);
3430
1.16M
        double d0111x = any_abs(p->p[0][1]->p.x - p->p[1][1]->p.x);
3431
1.16M
        double d0010y = any_abs(p->p[0][0]->p.y - p->p[1][0]->p.y);
3432
1.16M
        double d0111y = any_abs(p->p[0][1]->p.y - p->p[1][1]->p.y);
3433
1.16M
        double size_u = max(max(d0001x, d1011x), max(d0001y, d1011y));
3434
1.16M
        double size_v = max(max(d0010x, d0111x), max(d0010y, d0111y));
3435
3436
1.16M
        if (size_u > pfs->decomposition_limit)
3437
1.11M
            is_big_u = true;
3438
1.16M
        if (size_v > pfs->decomposition_limit)
3439
73.8k
            is_big_v = true;
3440
1.08M
        else if (!is_big_u)
3441
41.5k
            return (QUADRANGLES || !pfs->maybe_self_intersecting ?
3442
36.5k
                        constant_color_quadrangle : triangles4)(pfs, p,
3443
41.5k
                            pfs->maybe_self_intersecting);
3444
1.11M
        if (!pfs->monotonic_color) {
3445
121k
            bool not_monotonic_by_u = false, not_monotonic_by_v = false;
3446
3447
121k
            code = is_quadrangle_color_monotonic(pfs, p, &not_monotonic_by_u, &not_monotonic_by_v);
3448
121k
            if (code < 0)
3449
0
                return code;
3450
121k
            if (is_big_u)
3451
121k
                divide_u = not_monotonic_by_u;
3452
121k
            if (is_big_v)
3453
17.6k
                divide_v = not_monotonic_by_v;
3454
121k
            if (!divide_u && !divide_v)
3455
113k
                pfs->monotonic_color = true;
3456
121k
        }
3457
1.11M
        if (pfs->monotonic_color && !pfs->linear_color) {
3458
1.09M
            if (divide_v && divide_u) {
3459
0
                if (size_u > size_v)
3460
0
                    divide_v = false;
3461
0
                else
3462
0
                    divide_u = false;
3463
1.09M
            } else if (!divide_u && !divide_v && !pfs->unlinear) {
3464
1.09M
                if (d0001x + d1011x + d0001y + d1011y > d0010x + d0111x + d0010y + d0111y) { /* fixme: use size_u, size_v */
3465
1.07M
                    code = is_quadrangle_color_linear_by_u(pfs, p);
3466
1.07M
                    if (code < 0)
3467
0
                        return code;
3468
1.07M
                    divide_u = !code;
3469
1.07M
                }
3470
1.09M
                if (is_big_v) {
3471
51.3k
                    code = is_quadrangle_color_linear_by_v(pfs, p);
3472
51.3k
                    if (code < 0)
3473
0
                        return code;
3474
51.3k
                    divide_v = !code;
3475
51.3k
                }
3476
1.09M
                if (is_big_u && is_big_v) {
3477
44.8k
                    code = is_quadrangle_color_linear_by_diagonals(pfs, p);
3478
44.8k
                    if (code < 0)
3479
0
                        return code;
3480
44.8k
                    if (!code) {
3481
5.50k
                        if (d0001x + d1011x + d0001y + d1011y > d0010x + d0111x + d0010y + d0111y) { /* fixme: use size_u, size_v */
3482
2.74k
                            divide_u = true;
3483
2.74k
                            divide_v = false;
3484
2.75k
                        } else {
3485
2.75k
                            divide_v = true;
3486
2.75k
                            divide_u = false;
3487
2.75k
                        }
3488
5.50k
                    }
3489
44.8k
                }
3490
1.09M
            }
3491
1.09M
            if (!divide_u && !divide_v)
3492
1.08M
                pfs->linear_color = true;
3493
1.09M
        }
3494
1.11M
        if (!pfs->linear_color) {
3495
            /* go to divide. */
3496
1.10M
        } else switch(quadrangle_color_change(pfs, p, is_big_u, is_big_v, size_u, size_v, &divide_u, &divide_v)) {
3497
135k
            case color_change_small:
3498
135k
                code = (QUADRANGLES || !pfs->maybe_self_intersecting ?
3499
126k
                            constant_color_quadrangle : triangles4)(pfs, p,
3500
135k
                                pfs->maybe_self_intersecting);
3501
135k
                pfs->monotonic_color = monotonic_color_save;
3502
135k
                pfs->linear_color = linear_color_save;
3503
135k
                return code;
3504
51.4k
            case color_change_bilinear:
3505
51.4k
                if (!QUADRANGLES) {
3506
51.4k
                    code = triangles4(pfs, p, true);
3507
51.4k
                    pfs->monotonic_color = monotonic_color_save;
3508
51.4k
                    pfs->linear_color = linear_color_save;
3509
51.4k
                    return code;
3510
51.4k
                }
3511
907k
            case color_change_linear:
3512
907k
                if (!QUADRANGLES) {
3513
907k
                    code = triangles2(pfs, p, true);
3514
907k
                    pfs->monotonic_color = monotonic_color_save;
3515
907k
                    pfs->linear_color = linear_color_save;
3516
907k
                    return code;
3517
907k
                }
3518
0
            case color_change_gradient:
3519
7.74k
            case color_change_general:
3520
7.74k
                ; /* goto divide. */
3521
1.10M
        }
3522
1.11M
    }
3523
23.9k
    if (!inside) {
3524
7.63k
        if (r.p.x == r1.p.x && r.p.y == r1.p.y &&
3525
7.63k
            r.q.x == r1.q.x && r.q.y == r1.q.y)
3526
2.31k
            pfs->inside = true;
3527
7.63k
    }
3528
23.9k
    if (LAZY_WEDGES)
3529
23.9k
        init_wedge_vertex_list(&l0, 1);
3530
23.9k
    if (divide_v) {
3531
16.8k
        patch_color_t *c[2];
3532
16.8k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3533
3534
16.8k
        if(color_stack_ptr == NULL)
3535
0
            return_error(gs_error_unregistered); /* Must not happen. */
3536
16.8k
        q[0].c = c[0];
3537
16.8k
        q[1].c = c[1];
3538
16.8k
        divide_quadrangle_by_v(pfs, &s0, &s1, q, p, c);
3539
16.8k
        if (LAZY_WEDGES) {
3540
16.8k
            code = make_wedge_median(pfs, &l1, p->l0111, true,  &p->p[0][1]->p, &p->p[1][1]->p, &s0.p[1][1]->p);
3541
16.8k
            if (code >= 0)
3542
16.8k
                code = make_wedge_median(pfs, &l2, p->l1000, false, &p->p[1][0]->p, &p->p[0][0]->p, &s0.p[1][0]->p);
3543
16.8k
            if (code >= 0) {
3544
16.8k
                s0.l1110 = s1.l0001 = &l0;
3545
16.8k
                s0.l0111 = s1.l0111 = &l1;
3546
16.8k
                s0.l1000 = s1.l1000 = &l2;
3547
16.8k
                s0.l0001 = p->l0001;
3548
16.8k
                s1.l1110 = p->l1110;
3549
16.8k
            }
3550
16.8k
        } else {
3551
0
            code = fill_triangle_wedge(pfs, s0.p[0][0], s1.p[1][0], s0.p[1][0]);
3552
0
            if (code >= 0)
3553
0
                code = fill_triangle_wedge(pfs, s0.p[0][1], s1.p[1][1], s0.p[1][1]);
3554
0
        }
3555
16.8k
        if (code >= 0)
3556
16.8k
            code = fill_quadrangle(pfs, &s0, big1);
3557
16.8k
        if (code >= 0) {
3558
16.8k
            if (LAZY_WEDGES) {
3559
16.8k
                l0.last_side = true;
3560
16.8k
                move_wedge(&l1, p->l0111, true);
3561
16.8k
                move_wedge(&l2, p->l1000, false);
3562
16.8k
            }
3563
16.8k
            code = fill_quadrangle(pfs, &s1, big1);
3564
16.8k
        }
3565
16.8k
        if (LAZY_WEDGES) {
3566
16.8k
            if (code >= 0)
3567
16.8k
                code = close_wedge_median(pfs, p->l0111, p->p[0][1]->c, p->p[1][1]->c);
3568
16.8k
            if (code >= 0)
3569
16.8k
                code = close_wedge_median(pfs, p->l1000, p->p[1][0]->c, p->p[0][0]->c);
3570
16.8k
            if (code >= 0)
3571
16.8k
                code = terminate_wedge_vertex_list(pfs, &l0, s0.p[1][0]->c, s0.p[1][1]->c);
3572
16.8k
            release_colors_inline(pfs, color_stack_ptr, 2);
3573
16.8k
        }
3574
16.8k
    } else if (divide_u) {
3575
7.12k
        patch_color_t *c[2];
3576
7.12k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3577
3578
7.12k
        if(color_stack_ptr == NULL)
3579
0
            return_error(gs_error_unregistered); /* Must not happen. */
3580
7.12k
        q[0].c = c[0];
3581
7.12k
        q[1].c = c[1];
3582
7.12k
        divide_quadrangle_by_u(pfs, &s0, &s1, q, p, c);
3583
7.12k
        if (LAZY_WEDGES) {
3584
7.12k
            code = make_wedge_median(pfs, &l1, p->l0001, true,  &p->p[0][0]->p, &p->p[0][1]->p, &s0.p[0][1]->p);
3585
7.12k
            if (code >= 0)
3586
7.12k
                code = make_wedge_median(pfs, &l2, p->l1110, false, &p->p[1][1]->p, &p->p[1][0]->p, &s0.p[1][1]->p);
3587
7.12k
            if (code >= 0) {
3588
7.12k
                s0.l0111 = s1.l1000 = &l0;
3589
7.12k
                s0.l0001 = s1.l0001 = &l1;
3590
7.12k
                s0.l1110 = s1.l1110 = &l2;
3591
7.12k
                s0.l1000 = p->l1000;
3592
7.12k
                s1.l0111 = p->l0111;
3593
7.12k
            }
3594
7.12k
        } else {
3595
0
            code = fill_triangle_wedge(pfs, s0.p[0][0], s1.p[0][1], s0.p[0][1]);
3596
0
            if (code >= 0)
3597
0
                code = fill_triangle_wedge(pfs, s0.p[1][0], s1.p[1][1], s0.p[1][1]);
3598
0
        }
3599
7.12k
        if (code >= 0)
3600
7.12k
            code = fill_quadrangle(pfs, &s0, big1);
3601
7.12k
        if (code >= 0) {
3602
7.12k
            if (LAZY_WEDGES) {
3603
7.12k
                l0.last_side = true;
3604
7.12k
                move_wedge(&l1, p->l0001, true);
3605
7.12k
                move_wedge(&l2, p->l1110, false);
3606
7.12k
            }
3607
7.12k
            code = fill_quadrangle(pfs, &s1, big1);
3608
7.12k
        }
3609
7.12k
        if (LAZY_WEDGES) {
3610
7.12k
            if (code >= 0)
3611
7.12k
                code = close_wedge_median(pfs, p->l0001, p->p[0][0]->c, p->p[0][1]->c);
3612
7.12k
            if (code >= 0)
3613
7.12k
                code = close_wedge_median(pfs, p->l1110, p->p[1][1]->c, p->p[1][0]->c);
3614
7.12k
            if (code >= 0)
3615
7.12k
                code = terminate_wedge_vertex_list(pfs, &l0, s0.p[0][1]->c, s0.p[1][1]->c);
3616
7.12k
            release_colors_inline(pfs, color_stack_ptr, 2);
3617
7.12k
        }
3618
7.12k
    } else
3619
0
        code = (QUADRANGLES || !pfs->maybe_self_intersecting ?
3620
0
                    constant_color_quadrangle : triangles4)(pfs, p,
3621
0
                        pfs->maybe_self_intersecting);
3622
23.9k
    pfs->monotonic_color = monotonic_color_save;
3623
23.9k
    pfs->linear_color = linear_color_save;
3624
23.9k
    pfs->inside = inside_save;
3625
23.9k
    return code;
3626
23.9k
}
3627
3628
/* This splits tensor patch p->pole[v][u] on u to give s0->pole[v][u] and s1->pole[v][u] */
3629
static inline void
3630
split_stripe(patch_fill_state_t *pfs, tensor_patch *s0, tensor_patch *s1, const tensor_patch *p, patch_color_t *c[2])
3631
1.91M
{
3632
1.91M
    s0->c[0][1] = c[0];
3633
1.91M
    s0->c[1][1] = c[1];
3634
1.91M
    split_curve_s(p->pole[0], s0->pole[0], s1->pole[0], 1);
3635
1.91M
    split_curve_s(p->pole[1], s0->pole[1], s1->pole[1], 1);
3636
1.91M
    split_curve_s(p->pole[2], s0->pole[2], s1->pole[2], 1);
3637
1.91M
    split_curve_s(p->pole[3], s0->pole[3], s1->pole[3], 1);
3638
1.91M
    s0->c[0][0] = p->c[0][0];
3639
1.91M
    s0->c[1][0] = p->c[1][0];
3640
1.91M
    s1->c[0][0] = s0->c[0][1];
3641
1.91M
    s1->c[1][0] = s0->c[1][1];
3642
1.91M
    patch_interpolate_color(s0->c[0][1], p->c[0][0], p->c[0][1], pfs, 0.5);
3643
1.91M
    patch_interpolate_color(s0->c[1][1], p->c[1][0], p->c[1][1], pfs, 0.5);
3644
1.91M
    s1->c[0][1] = p->c[0][1];
3645
1.91M
    s1->c[1][1] = p->c[1][1];
3646
1.91M
}
3647
3648
/* This splits tensor patch p->pole[v][u] on v to give s0->pole[v][u] and s1->pole[v][u] */
3649
static inline void
3650
split_patch(patch_fill_state_t *pfs, tensor_patch *s0, tensor_patch *s1, const tensor_patch *p, patch_color_t *c[2])
3651
418k
{
3652
418k
    s0->c[1][0] = c[0];
3653
418k
    s0->c[1][1] = c[1];
3654
418k
    split_curve_s(&p->pole[0][0], &s0->pole[0][0], &s1->pole[0][0], 4);
3655
418k
    split_curve_s(&p->pole[0][1], &s0->pole[0][1], &s1->pole[0][1], 4);
3656
418k
    split_curve_s(&p->pole[0][2], &s0->pole[0][2], &s1->pole[0][2], 4);
3657
418k
    split_curve_s(&p->pole[0][3], &s0->pole[0][3], &s1->pole[0][3], 4);
3658
418k
    s0->c[0][0] = p->c[0][0];
3659
418k
    s0->c[0][1] = p->c[0][1];
3660
418k
    s1->c[0][0] = s0->c[1][0];
3661
418k
    s1->c[0][1] = s0->c[1][1];
3662
418k
    patch_interpolate_color(s0->c[1][0], p->c[0][0], p->c[1][0], pfs, 0.5);
3663
418k
    patch_interpolate_color(s0->c[1][1], p->c[0][1], p->c[1][1], pfs, 0.5);
3664
418k
    s1->c[1][0] = p->c[1][0];
3665
418k
    s1->c[1][1] = p->c[1][1];
3666
418k
}
3667
3668
static inline void
3669
tensor_patch_bbox(gs_fixed_rect *r, const tensor_patch *p)
3670
2.86M
{
3671
2.86M
    int i, j;
3672
3673
2.86M
    r->p.x = r->q.x = p->pole[0][0].x;
3674
2.86M
    r->p.y = r->q.y = p->pole[0][0].y;
3675
14.3M
    for (i = 0; i < 4; i++) {
3676
57.2M
        for (j = 0; j < 4; j++) {
3677
45.7M
            const gs_fixed_point *q = &p->pole[i][j];
3678
3679
45.7M
            if (r->p.x > q->x)
3680
6.53M
                r->p.x = q->x;
3681
45.7M
            if (r->p.y > q->y)
3682
7.52M
                r->p.y = q->y;
3683
45.7M
            if (r->q.x < q->x)
3684
9.46M
                r->q.x = q->x;
3685
45.7M
            if (r->q.y < q->y)
3686
5.34M
                r->q.y = q->y;
3687
45.7M
        }
3688
11.4M
    }
3689
2.86M
}
3690
3691
static int
3692
decompose_stripe(patch_fill_state_t *pfs, const tensor_patch *p, int ku)
3693
4.26M
{
3694
4.26M
    if (ku > 1) {
3695
3.05M
        tensor_patch s0, s1;
3696
3.05M
        patch_color_t *c[2];
3697
3.05M
        int code;
3698
3.05M
        byte *color_stack_ptr;
3699
3.05M
        bool save_inside = pfs->inside;
3700
3701
3.05M
        if (!pfs->inside) {
3702
2.43M
            gs_fixed_rect r, r1;
3703
3704
2.43M
            tensor_patch_bbox(&r, p);
3705
2.43M
            r1 = r;
3706
2.43M
            rect_intersect(r, pfs->rect);
3707
2.43M
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3708
1.13M
                return 0;
3709
1.29M
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
3710
1.29M
                r1.q.x == r.q.x && r1.q.y == r.q.y)
3711
128k
                pfs->inside = true;
3712
1.29M
        }
3713
1.91M
        color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3714
1.91M
        if(color_stack_ptr == NULL)
3715
0
            return_error(gs_error_unregistered); /* Must not happen. */
3716
1.91M
        split_stripe(pfs, &s0, &s1, p, c);
3717
1.91M
        code = decompose_stripe(pfs, &s0, ku / 2);
3718
1.91M
        if (code >= 0)
3719
1.91M
            code = decompose_stripe(pfs, &s1, ku / 2);
3720
1.91M
        release_colors_inline(pfs, color_stack_ptr, 2);
3721
1.91M
        pfs->inside = save_inside;
3722
1.91M
        return code;
3723
1.91M
    } else {
3724
1.21M
        quadrangle_patch q;
3725
1.21M
        shading_vertex_t qq[2][2];
3726
1.21M
        wedge_vertex_list_t l[4];
3727
1.21M
        int code;
3728
3729
1.21M
        init_wedge_vertex_list(l, count_of(l));
3730
1.21M
        make_quadrangle(p, qq, l, &q);
3731
#       if SKIP_TEST
3732
            dbg_quad_cnt++;
3733
#       endif
3734
1.21M
        code = fill_quadrangle(pfs, &q, true);
3735
1.21M
        if (code < 0)
3736
0
            return code;
3737
1.21M
        if (LAZY_WEDGES) {
3738
1.21M
            code = terminate_wedge_vertex_list(pfs, &l[0], q.p[0][0]->c, q.p[0][1]->c);
3739
1.21M
            if (code < 0)
3740
0
                return code;
3741
1.21M
            code = terminate_wedge_vertex_list(pfs, &l[1], q.p[0][1]->c, q.p[1][1]->c);
3742
1.21M
            if (code < 0)
3743
0
                return code;
3744
1.21M
            code = terminate_wedge_vertex_list(pfs, &l[2], q.p[1][1]->c, q.p[1][0]->c);
3745
1.21M
            if (code < 0)
3746
0
                return code;
3747
1.21M
            code = terminate_wedge_vertex_list(pfs, &l[3], q.p[1][0]->c, q.p[0][1]->c);
3748
1.21M
            if (code < 0)
3749
0
                return code;
3750
1.21M
        }
3751
1.21M
        return code;
3752
1.21M
    }
3753
4.26M
}
3754
3755
static int
3756
fill_stripe(patch_fill_state_t *pfs, const tensor_patch *p)
3757
440k
{
3758
    /* The stripe is flattened enough by V, so ignore inner poles. */
3759
440k
    int ku[4], kum, code;
3760
3761
    /* We would like to apply iterations for enumerating the kum curve parts,
3762
       but the roundinmg errors would be too complicated due to
3763
       the dependence on the direction. Note that neigbour
3764
       patches may use the opposite direction for same bounding curve.
3765
       We apply the recursive dichotomy, in which
3766
       the rounding errors do not depend on the direction. */
3767
440k
    ku[0] = curve_samples(pfs, p->pole[0], 1, pfs->fixed_flat);
3768
440k
    ku[3] = curve_samples(pfs, p->pole[3], 1, pfs->fixed_flat);
3769
440k
    kum = max(ku[0], ku[3]);
3770
440k
    code = fill_wedges(pfs, ku[0], kum, p->pole[0], 1, p->c[0][0], p->c[0][1], inpatch_wedge);
3771
440k
    if (code < 0)
3772
0
        return code;
3773
440k
    if (INTERPATCH_PADDING) {
3774
440k
        code = mesh_padding(pfs, &p->pole[0][0], &p->pole[3][0], p->c[0][0], p->c[1][0]);
3775
440k
        if (code < 0)
3776
0
            return code;
3777
440k
        code = mesh_padding(pfs, &p->pole[0][3], &p->pole[3][3], p->c[0][1], p->c[1][1]);
3778
440k
        if (code < 0)
3779
0
            return code;
3780
440k
    }
3781
440k
    code = decompose_stripe(pfs, p, kum);
3782
440k
    if (code < 0)
3783
0
        return code;
3784
440k
    return fill_wedges(pfs, ku[3], kum, p->pole[3], 1, p->c[1][0], p->c[1][1], inpatch_wedge);
3785
440k
}
3786
3787
static inline bool neqs(int *a, int b)
3788
1.30M
{   /* Unequal signs. Assuming -1, 0, 1 only. */
3789
1.30M
    if (*a * b < 0)
3790
399k
        return true;
3791
901k
    if (!*a)
3792
27.7k
        *a = b;
3793
901k
    return false;
3794
1.30M
}
3795
3796
static inline int
3797
vector_pair_orientation(const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *p2)
3798
1.74M
{   fixed dx1 = p1->x - p0->x, dy1 = p1->y - p0->y;
3799
1.74M
    fixed dx2 = p2->x - p0->x, dy2 = p2->y - p0->y;
3800
1.74M
    int64_t vp = (int64_t)dx1 * dy2 - (int64_t)dy1 * dx2;
3801
3802
1.74M
    return (vp > 0 ? 1 : vp < 0 ? -1 : 0);
3803
1.74M
}
3804
3805
static inline bool
3806
is_x_bended(const tensor_patch *p)
3807
447k
{
3808
447k
    int sign = vector_pair_orientation(&p->pole[0][0], &p->pole[0][1], &p->pole[1][0]);
3809
3810
447k
    if (neqs(&sign, vector_pair_orientation(&p->pole[0][1], &p->pole[0][2], &p->pole[1][1])))
3811
265k
        return true;
3812
181k
    if (neqs(&sign, vector_pair_orientation(&p->pole[0][2], &p->pole[0][3], &p->pole[1][2])))
3813
90.4k
        return true;
3814
91.3k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[0][3], &p->pole[0][2], &p->pole[1][3])))
3815
42.3k
        return true;
3816
3817
48.9k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[1][2], &p->pole[2][1])))
3818
168
        return true;
3819
48.7k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[1][2], &p->pole[2][1])))
3820
0
        return true;
3821
48.7k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[1][3], &p->pole[2][2])))
3822
76
        return true;
3823
48.6k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[1][2], &p->pole[2][3])))
3824
159
        return true;
3825
3826
48.5k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[2][2], &p->pole[3][1])))
3827
120
        return true;
3828
48.3k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[2][2], &p->pole[3][1])))
3829
0
        return true;
3830
48.3k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][2], &p->pole[2][3], &p->pole[3][2])))
3831
167
        return true;
3832
48.2k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[2][3], &p->pole[2][2], &p->pole[3][3])))
3833
151
        return true;
3834
3835
48.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[3][2], &p->pole[2][1])))
3836
20
        return true;
3837
48.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[3][2], &p->pole[2][1])))
3838
0
        return true;
3839
48.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][2], &p->pole[3][3], &p->pole[2][2])))
3840
48
        return true;
3841
48.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[3][3], &p->pole[3][2], &p->pole[2][3])))
3842
24
        return true;
3843
47.9k
    return false;
3844
48.0k
}
3845
3846
static inline bool
3847
is_y_bended(const tensor_patch *p)
3848
0
{
3849
0
    int sign = vector_pair_orientation(&p->pole[0][0], &p->pole[1][0], &p->pole[0][1]);
3850
3851
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][0], &p->pole[2][0], &p->pole[1][1])))
3852
0
        return true;
3853
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][0], &p->pole[3][0], &p->pole[2][1])))
3854
0
        return true;
3855
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][0], &p->pole[2][0], &p->pole[3][1])))
3856
0
        return true;
3857
3858
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[2][1], &p->pole[1][2])))
3859
0
        return true;
3860
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[2][1], &p->pole[1][2])))
3861
0
        return true;
3862
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[3][1], &p->pole[2][2])))
3863
0
        return true;
3864
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[2][1], &p->pole[3][2])))
3865
0
        return true;
3866
3867
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[2][2], &p->pole[1][3])))
3868
0
        return true;
3869
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[2][2], &p->pole[1][3])))
3870
0
        return true;
3871
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][2], &p->pole[3][2], &p->pole[2][3])))
3872
0
        return true;
3873
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][2], &p->pole[2][2], &p->pole[3][3])))
3874
0
        return true;
3875
3876
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[2][3], &p->pole[1][2])))
3877
0
        return true;
3878
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[2][3], &p->pole[1][2])))
3879
0
        return true;
3880
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[2][3], &p->pole[3][3], &p->pole[2][2])))
3881
0
        return true;
3882
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[3][3], &p->pole[2][3], &p->pole[3][2])))
3883
0
        return true;
3884
0
    return false;
3885
0
}
3886
3887
static inline bool
3888
is_curve_x_small(const patch_fill_state_t *pfs, const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
3889
2.52M
{   /* Is curve within a single pixel, or smaller than half pixel ? */
3890
2.52M
    fixed xmin0 = min(pole[0 * pole_step].x, pole[1 * pole_step].x);
3891
2.52M
    fixed xmin1 = min(pole[2 * pole_step].x, pole[3 * pole_step].x);
3892
2.52M
    fixed xmin =  min(xmin0, xmin1);
3893
2.52M
    fixed xmax0 = max(pole[0 * pole_step].x, pole[1 * pole_step].x);
3894
2.52M
    fixed xmax1 = max(pole[2 * pole_step].x, pole[3 * pole_step].x);
3895
2.52M
    fixed xmax =  max(xmax0, xmax1);
3896
3897
2.52M
    if(xmax - xmin <= pfs->decomposition_limit)
3898
2.13M
        return true;
3899
387k
    return false;
3900
2.52M
}
3901
3902
static inline bool
3903
is_curve_y_small(const patch_fill_state_t *pfs, const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
3904
1.69M
{   /* Is curve within a single pixel, or smaller than half pixel ? */
3905
1.69M
    fixed ymin0 = min(pole[0 * pole_step].y, pole[1 * pole_step].y);
3906
1.69M
    fixed ymin1 = min(pole[2 * pole_step].y, pole[3 * pole_step].y);
3907
1.69M
    fixed ymin =  min(ymin0, ymin1);
3908
1.69M
    fixed ymax0 = max(pole[0 * pole_step].y, pole[1 * pole_step].y);
3909
1.69M
    fixed ymax1 = max(pole[2 * pole_step].y, pole[3 * pole_step].y);
3910
1.69M
    fixed ymax =  max(ymax0, ymax1);
3911
3912
1.69M
    if (ymax - ymin <= pfs->decomposition_limit)
3913
1.63M
        return true;
3914
59.8k
    return false;
3915
1.69M
}
3916
3917
static inline bool
3918
is_patch_narrow(const patch_fill_state_t *pfs, const tensor_patch *p)
3919
839k
{
3920
839k
    if (!is_curve_x_small(pfs, &p->pole[0][0], 4, pfs->fixed_flat))
3921
159k
        return false;
3922
679k
    if (!is_curve_x_small(pfs, &p->pole[0][1], 4, pfs->fixed_flat))
3923
142k
        return false;
3924
537k
    if (!is_curve_x_small(pfs, &p->pole[0][2], 4, pfs->fixed_flat))
3925
68.7k
        return false;
3926
468k
    if (!is_curve_x_small(pfs, &p->pole[0][3], 4, pfs->fixed_flat))
3927
16.6k
        return false;
3928
452k
    if (!is_curve_y_small(pfs, &p->pole[0][0], 4, pfs->fixed_flat))
3929
21.0k
        return false;
3930
431k
    if (!is_curve_y_small(pfs, &p->pole[0][1], 4, pfs->fixed_flat))
3931
18.2k
        return false;
3932
412k
    if (!is_curve_y_small(pfs, &p->pole[0][2], 4, pfs->fixed_flat))
3933
11.2k
        return false;
3934
401k
    if (!is_curve_y_small(pfs, &p->pole[0][3], 4, pfs->fixed_flat))
3935
9.27k
        return false;
3936
392k
    return true;
3937
401k
}
3938
3939
static int
3940
fill_patch(patch_fill_state_t *pfs, const tensor_patch *p, int kv, int kv0, int kv1)
3941
874k
{
3942
874k
    if (kv <= 1) {
3943
839k
        if (is_patch_narrow(pfs, p))
3944
392k
            return fill_stripe(pfs, p);
3945
447k
        if (!is_x_bended(p))
3946
47.9k
            return fill_stripe(pfs, p);
3947
447k
    }
3948
434k
    {   tensor_patch s0, s1;
3949
434k
        patch_color_t *c[2];
3950
434k
        shading_vertex_t q0, q1, q2;
3951
434k
        int code = 0;
3952
434k
        byte *color_stack_ptr;
3953
434k
        bool save_inside = pfs->inside;
3954
3955
434k
        if (!pfs->inside) {
3956
423k
            gs_fixed_rect r, r1;
3957
3958
423k
            tensor_patch_bbox(&r, p);
3959
423k
            r.p.x -= INTERPATCH_PADDING;
3960
423k
            r.p.y -= INTERPATCH_PADDING;
3961
423k
            r.q.x += INTERPATCH_PADDING;
3962
423k
            r.q.y += INTERPATCH_PADDING;
3963
423k
            r1 = r;
3964
423k
            rect_intersect(r, pfs->rect);
3965
423k
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3966
15.8k
                return 0;
3967
407k
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
3968
407k
                r1.q.x == r.q.x && r1.q.y == r.q.y)
3969
4.22k
                pfs->inside = true;
3970
407k
        }
3971
418k
        color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3972
418k
        if(color_stack_ptr == NULL)
3973
0
            return_error(gs_error_unregistered); /* Must not happen. */
3974
418k
        split_patch(pfs, &s0, &s1, p, c);
3975
418k
        if (kv0 <= 1) {
3976
402k
            q0.p = s0.pole[0][0];
3977
402k
            q0.c = s0.c[0][0];
3978
402k
            q1.p = s1.pole[3][0];
3979
402k
            q1.c = s1.c[1][0];
3980
402k
            q2.p = s0.pole[3][0];
3981
402k
            q2.c = s0.c[1][0];
3982
402k
            code = fill_triangle_wedge(pfs, &q0, &q1, &q2);
3983
402k
        }
3984
418k
        if (kv1 <= 1 && code >= 0) {
3985
403k
            q0.p = s0.pole[0][3];
3986
403k
            q0.c = s0.c[0][1];
3987
403k
            q1.p = s1.pole[3][3];
3988
403k
            q1.c = s1.c[1][1];
3989
403k
            q2.p = s0.pole[3][3];
3990
403k
            q2.c = s0.c[1][1];
3991
403k
            code = fill_triangle_wedge(pfs, &q0, &q1, &q2);
3992
403k
        }
3993
418k
        if (code >= 0)
3994
418k
            code = fill_patch(pfs, &s0, kv / 2, kv0 / 2, kv1 / 2);
3995
418k
        if (code >= 0)
3996
418k
            code = fill_patch(pfs, &s1, kv / 2, kv0 / 2, kv1 / 2);
3997
        /* fixme : To provide the precise filling order, we must
3998
           decompose left and right wedges into pieces by intersections
3999
           with stripes, and fill each piece with its stripe.
4000
           A lazy wedge list would be fine for storing
4001
           the necessary information.
4002
4003
           If the patch is created from a radial shading,
4004
           the wedge color appears a constant, so the filling order
4005
           isn't important. The order is important for other
4006
           self-overlapping patches, but the visible effect is
4007
           just a slight narrowing of the patch (as its lower layer appears
4008
           visible through the upper layer near the side).
4009
           This kind of dropout isn't harmful, because
4010
           contacting self-overlapping patches are painted
4011
           one after one by definition, so that a side coverage break
4012
           appears unavoidable by definition.
4013
4014
           Delaying this improvement because it is low importance.
4015
         */
4016
418k
        release_colors_inline(pfs, color_stack_ptr, 2);
4017
418k
        pfs->inside = save_inside;
4018
418k
        return code;
4019
418k
    }
4020
418k
}
4021
4022
static inline int64_t
4023
lcp1(int64_t p0, int64_t p3)
4024
190k
{   /* Computing the 1st pole of a 3d order besier, which appears a line. */
4025
190k
    return (p0 + p0 + p3);
4026
190k
}
4027
static inline int64_t
4028
lcp2(int64_t p0, int64_t p3)
4029
190k
{   /* Computing the 2nd pole of a 3d order besier, which appears a line. */
4030
190k
    return (p0 + p3 + p3);
4031
190k
}
4032
4033
static void
4034
patch_set_color(const patch_fill_state_t *pfs, patch_color_t *c, const float *cc)
4035
149k
{
4036
149k
    if (pfs->Function) {
4037
38.1k
        c->t[0] = cc[0];
4038
38.1k
        c->t[1] = cc[1];
4039
38.1k
    } else
4040
111k
        memcpy(c->cc.paint.values, cc, sizeof(c->cc.paint.values[0]) * pfs->num_components);
4041
149k
}
4042
4043
static void
4044
make_tensor_patch(const patch_fill_state_t *pfs, tensor_patch *p, const patch_curve_t curve[4],
4045
           const gs_fixed_point interior[4])
4046
37.3k
{
4047
37.3k
    const gs_color_space *pcs = pfs->direct_space;
4048
4049
37.3k
    p->pole[0][0] = curve[0].vertex.p;
4050
37.3k
    p->pole[1][0] = curve[0].control[0];
4051
37.3k
    p->pole[2][0] = curve[0].control[1];
4052
37.3k
    p->pole[3][0] = curve[1].vertex.p;
4053
37.3k
    p->pole[3][1] = curve[1].control[0];
4054
37.3k
    p->pole[3][2] = curve[1].control[1];
4055
37.3k
    p->pole[3][3] = curve[2].vertex.p;
4056
37.3k
    p->pole[2][3] = curve[2].control[0];
4057
37.3k
    p->pole[1][3] = curve[2].control[1];
4058
37.3k
    p->pole[0][3] = curve[3].vertex.p;
4059
37.3k
    p->pole[0][2] = curve[3].control[0];
4060
37.3k
    p->pole[0][1] = curve[3].control[1];
4061
37.3k
    if (interior != NULL) {
4062
27.7k
        p->pole[1][1] = interior[0];
4063
27.7k
        p->pole[1][2] = interior[1];
4064
27.7k
        p->pole[2][2] = interior[2];
4065
27.7k
        p->pole[2][1] = interior[3];
4066
27.7k
    } else {
4067
9.54k
        p->pole[1][1].x = (fixed)((3*(lcp1(p->pole[0][1].x, p->pole[3][1].x) +
4068
9.54k
                                      lcp1(p->pole[1][0].x, p->pole[1][3].x)) -
4069
9.54k
                                   lcp1(lcp1(p->pole[0][0].x, p->pole[0][3].x),
4070
9.54k
                                        lcp1(p->pole[3][0].x, p->pole[3][3].x)))/9);
4071
9.54k
        p->pole[1][2].x = (fixed)((3*(lcp1(p->pole[0][2].x, p->pole[3][2].x) +
4072
9.54k
                                      lcp2(p->pole[1][0].x, p->pole[1][3].x)) -
4073
9.54k
                                   lcp1(lcp2(p->pole[0][0].x, p->pole[0][3].x),
4074
9.54k
                                        lcp2(p->pole[3][0].x, p->pole[3][3].x)))/9);
4075
9.54k
        p->pole[2][1].x = (fixed)((3*(lcp2(p->pole[0][1].x, p->pole[3][1].x) +
4076
9.54k
                                      lcp1(p->pole[2][0].x, p->pole[2][3].x)) -
4077
9.54k
                                   lcp2(lcp1(p->pole[0][0].x, p->pole[0][3].x),
4078
9.54k
                                        lcp1(p->pole[3][0].x, p->pole[3][3].x)))/9);
4079
9.54k
        p->pole[2][2].x = (fixed)((3*(lcp2(p->pole[0][2].x, p->pole[3][2].x) +
4080
9.54k
                                      lcp2(p->pole[2][0].x, p->pole[2][3].x)) -
4081
9.54k
                                   lcp2(lcp2(p->pole[0][0].x, p->pole[0][3].x),
4082
9.54k
                                        lcp2(p->pole[3][0].x, p->pole[3][3].x)))/9);
4083
4084
9.54k
        p->pole[1][1].y = (fixed)((3*(lcp1(p->pole[0][1].y, p->pole[3][1].y) +
4085
9.54k
                                      lcp1(p->pole[1][0].y, p->pole[1][3].y)) -
4086
9.54k
                                   lcp1(lcp1(p->pole[0][0].y, p->pole[0][3].y),
4087
9.54k
                                        lcp1(p->pole[3][0].y, p->pole[3][3].y)))/9);
4088
9.54k
        p->pole[1][2].y = (fixed)((3*(lcp1(p->pole[0][2].y, p->pole[3][2].y) +
4089
9.54k
                                      lcp2(p->pole[1][0].y, p->pole[1][3].y)) -
4090
9.54k
                                   lcp1(lcp2(p->pole[0][0].y, p->pole[0][3].y),
4091
9.54k
                                        lcp2(p->pole[3][0].y, p->pole[3][3].y)))/9);
4092
9.54k
        p->pole[2][1].y = (fixed)((3*(lcp2(p->pole[0][1].y, p->pole[3][1].y) +
4093
9.54k
                                      lcp1(p->pole[2][0].y, p->pole[2][3].y)) -
4094
9.54k
                                   lcp2(lcp1(p->pole[0][0].y, p->pole[0][3].y),
4095
9.54k
                                        lcp1(p->pole[3][0].y, p->pole[3][3].y)))/9);
4096
9.54k
        p->pole[2][2].y = (fixed)((3*(lcp2(p->pole[0][2].y, p->pole[3][2].y) +
4097
9.54k
                                      lcp2(p->pole[2][0].y, p->pole[2][3].y)) -
4098
9.54k
                                   lcp2(lcp2(p->pole[0][0].y, p->pole[0][3].y),
4099
9.54k
                                        lcp2(p->pole[3][0].y, p->pole[3][3].y)))/9);
4100
9.54k
    }
4101
37.3k
    patch_set_color(pfs, p->c[0][0], curve[0].vertex.cc);
4102
37.3k
    patch_set_color(pfs, p->c[1][0], curve[1].vertex.cc);
4103
37.3k
    patch_set_color(pfs, p->c[1][1], curve[2].vertex.cc);
4104
37.3k
    patch_set_color(pfs, p->c[0][1], curve[3].vertex.cc);
4105
37.3k
    patch_resolve_color_inline(p->c[0][0], pfs);
4106
37.3k
    patch_resolve_color_inline(p->c[0][1], pfs);
4107
37.3k
    patch_resolve_color_inline(p->c[1][0], pfs);
4108
37.3k
    patch_resolve_color_inline(p->c[1][1], pfs);
4109
37.3k
    if (!pfs->Function) {
4110
27.7k
        pcs->type->restrict_color(&p->c[0][0]->cc, pcs);
4111
27.7k
        pcs->type->restrict_color(&p->c[0][1]->cc, pcs);
4112
27.7k
        pcs->type->restrict_color(&p->c[1][0]->cc, pcs);
4113
27.7k
        pcs->type->restrict_color(&p->c[1][1]->cc, pcs);
4114
27.7k
    }
4115
37.3k
}
4116
4117
int
4118
gx_shade_background(gx_device *pdev, const gs_fixed_rect *rect,
4119
        const gx_device_color *pdevc, gs_logical_operation_t log_op)
4120
2
{
4121
2
    gs_fixed_edge le, re;
4122
4123
2
    le.start.x = rect->p.x - INTERPATCH_PADDING;
4124
2
    le.start.y = rect->p.y - INTERPATCH_PADDING;
4125
2
    le.end.x = rect->p.x - INTERPATCH_PADDING;
4126
2
    le.end.y = rect->q.y + INTERPATCH_PADDING;
4127
2
    re.start.x = rect->q.x + INTERPATCH_PADDING;
4128
2
    re.start.y = rect->p.y - INTERPATCH_PADDING;
4129
2
    re.end.x = rect->q.x + INTERPATCH_PADDING;
4130
2
    re.end.y = rect->q.y + INTERPATCH_PADDING;
4131
2
    return dev_proc(pdev, fill_trapezoid)(pdev,
4132
2
            &le, &re, le.start.y, le.end.y, false, pdevc, log_op);
4133
2
}
4134
4135
int
4136
patch_fill(patch_fill_state_t *pfs, const patch_curve_t curve[4],
4137
           const gs_fixed_point interior[4],
4138
           void (*transform) (gs_fixed_point *, const patch_curve_t[4],
4139
                              const gs_fixed_point[4], double, double))
4140
37.3k
{
4141
37.3k
    tensor_patch p;
4142
37.3k
    patch_color_t *c[4];
4143
37.3k
    int kv[4], kvm, ku[4], kum;
4144
37.3k
    int code = 0;
4145
37.3k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 4); /* Can't fail */
4146
4147
37.3k
    p.c[0][0] = c[0];
4148
37.3k
    p.c[0][1] = c[1];
4149
37.3k
    p.c[1][0] = c[2];
4150
37.3k
    p.c[1][1] = c[3];
4151
#if SKIP_TEST
4152
    dbg_patch_cnt++;
4153
    /*if (dbg_patch_cnt != 67 && dbg_patch_cnt != 78)
4154
        return 0;*/
4155
#endif
4156
    /* We decompose the patch into tiny quadrangles,
4157
       possibly inserting wedges between them against a dropout. */
4158
37.3k
    make_tensor_patch(pfs, &p, curve, interior);
4159
37.3k
    pfs->unlinear = !is_linear_color_applicable(pfs);
4160
37.3k
    pfs->linear_color = false;
4161
37.3k
    if ((*dev_proc(pfs->dev, dev_spec_op))(pfs->dev,
4162
37.3k
            gxdso_pattern_shading_area, NULL, 0) > 0) {
4163
        /* Inform the device with the shading coverage area.
4164
           First compute the sign of the area, because
4165
           all areas to be clipped in same direction. */
4166
0
        gx_device *pdev = pfs->dev;
4167
0
        gx_path path;
4168
0
        fixed d01x = (curve[1].vertex.p.x - curve[0].vertex.p.x) >> 1;
4169
0
        fixed d01y = (curve[1].vertex.p.y - curve[0].vertex.p.y) >> 1;
4170
0
        fixed d12x = (curve[2].vertex.p.x - curve[1].vertex.p.x) >> 1;
4171
0
        fixed d12y = (curve[2].vertex.p.y - curve[1].vertex.p.y) >> 1;
4172
0
        fixed d23x = (curve[3].vertex.p.x - curve[2].vertex.p.x) >> 1;
4173
0
        fixed d23y = (curve[3].vertex.p.y - curve[2].vertex.p.y) >> 1;
4174
0
        fixed d30x = (curve[0].vertex.p.x - curve[3].vertex.p.x) >> 1;
4175
0
        fixed d30y = (curve[0].vertex.p.y - curve[3].vertex.p.y) >> 1;
4176
0
        int64_t s1 = (int64_t)d01x * d12y - (int64_t)d01y * d12x;
4177
0
        int64_t s2 = (int64_t)d23x * d30y - (int64_t)d23y * d30x;
4178
0
        int s = (s1 + s2 > 0 ? 1 : 3), i, j, k, jj, l = (s == 1 ? 0 : 1);
4179
4180
0
        gx_path_init_local(&path, pdev->memory);
4181
0
        if (is_x_bended(&p) || is_y_bended(&p)) {
4182
            /* The patch possibly is self-overlapping,
4183
               so the patch coverage may fall outside the patch outline.
4184
               In this case we pass an empty path,
4185
               and the device must use a bitmap mask instead clipping. */
4186
0
        } else {
4187
0
            code = gx_path_add_point(&path, curve[0].vertex.p.x, curve[0].vertex.p.y);
4188
0
            for (i = k = 0; k < 4 && code >= 0; i = j, k++) {
4189
0
                j = (i + s) % 4, jj = (s == 1 ? i : j);
4190
0
                if (curve[jj].straight)
4191
0
                    code = gx_path_add_line(&path, curve[j].vertex.p.x,
4192
0
                                                curve[j].vertex.p.y);
4193
0
                else
4194
0
                    code = gx_path_add_curve(&path, curve[jj].control[l].x, curve[jj].control[l].y,
4195
0
                                                    curve[jj].control[(l + 1) & 1].x, curve[jj].control[(l + 1) & 1].y,
4196
0
                                                    curve[j].vertex.p.x,
4197
0
                                                    curve[j].vertex.p.y);
4198
0
            }
4199
0
            if (code >= 0)
4200
0
                code = gx_path_close_subpath(&path);
4201
0
        }
4202
0
        if (code >= 0)
4203
0
            code = (*dev_proc(pfs->dev, fill_path))(pdev, NULL, &path, NULL, NULL, NULL);
4204
0
        gx_path_free(&path, "patch_fill");
4205
0
        if (code < 0)
4206
0
            goto out;
4207
0
    }
4208
    /* How many subdivisions of the patch in the u and v direction? */
4209
37.3k
    kv[0] = curve_samples(pfs, &p.pole[0][0], 4, pfs->fixed_flat);
4210
37.3k
    kv[1] = curve_samples(pfs, &p.pole[0][1], 4, pfs->fixed_flat);
4211
37.3k
    kv[2] = curve_samples(pfs, &p.pole[0][2], 4, pfs->fixed_flat);
4212
37.3k
    kv[3] = curve_samples(pfs, &p.pole[0][3], 4, pfs->fixed_flat);
4213
37.3k
    kvm = max(max(kv[0], kv[1]), max(kv[2], kv[3]));
4214
37.3k
    ku[0] = curve_samples(pfs, p.pole[0], 1, pfs->fixed_flat);
4215
37.3k
    ku[1] = curve_samples(pfs, p.pole[1], 1, pfs->fixed_flat);
4216
37.3k
    ku[2] = curve_samples(pfs, p.pole[2], 1, pfs->fixed_flat);
4217
37.3k
    ku[3] = curve_samples(pfs, p.pole[3], 1, pfs->fixed_flat);
4218
37.3k
    kum = max(max(ku[0], ku[1]), max(ku[2], ku[3]));
4219
#   if NOFILL_TEST
4220
    dbg_nofill = false;
4221
#   endif
4222
37.3k
    code = fill_wedges(pfs, ku[0], kum, p.pole[0], 1, p.c[0][0], p.c[0][1],
4223
37.3k
        interpatch_padding | inpatch_wedge);
4224
37.3k
    if (code >= 0) {
4225
        /* We would like to apply iterations for enumerating the kvm curve parts,
4226
           but the roundinmg errors would be too complicated due to
4227
           the dependence on the direction. Note that neigbour
4228
           patches may use the opposite direction for same bounding curve.
4229
           We apply the recursive dichotomy, in which
4230
           the rounding errors do not depend on the direction. */
4231
#       if NOFILL_TEST
4232
            dbg_nofill = false;
4233
            code = fill_patch(pfs, &p, kvm, kv[0], kv[3]);
4234
            dbg_nofill = true;
4235
#       endif
4236
37.3k
            code = fill_patch(pfs, &p, kvm, kv[0], kv[3]);
4237
37.3k
    }
4238
37.3k
    if (code >= 0)
4239
37.3k
        code = fill_wedges(pfs, ku[3], kum, p.pole[3], 1, p.c[1][0], p.c[1][1],
4240
37.3k
                interpatch_padding | inpatch_wedge);
4241
37.3k
out:
4242
37.3k
    release_colors_inline(pfs, color_stack_ptr, 4);
4243
37.3k
    return code;
4244
37.3k
}