Coverage Report

Created: 2025-06-10 06:59

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
24.1M
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
1.20M
{
110
1.20M
    const subpath *psub;
111
1.20M
    const segment *pseg;
112
1.20M
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
1.20M
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
1.20M
    double expand = pgs->line_params.half_width;
115
1.20M
    int result = 1;
116
117
1.20M
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
1.20M
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
1.20M
    if (pgs->line_params.start_cap == gs_cap_square ||
124
1.20M
        pgs->line_params.end_cap == gs_cap_square)
125
56.9k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
1.20M
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
1.20M
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
1.20M
        ) {
131
1.10M
        bool must_be_closed =
132
1.10M
            !(pgs->line_params.start_cap == gs_cap_square ||
133
1.10M
              pgs->line_params.start_cap == gs_cap_round  ||
134
1.10M
              pgs->line_params.end_cap   == gs_cap_square ||
135
1.10M
              pgs->line_params.end_cap   == gs_cap_round  ||
136
1.10M
              pgs->line_params.dash_cap  == gs_cap_square ||
137
1.10M
              pgs->line_params.dash_cap  == gs_cap_round);
138
1.10M
        gs_fixed_point prev;
139
140
1.10M
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
2.93M
        for (pseg = (const segment *)psub; pseg;
142
1.83M
             prev = pseg->pt, pseg = pseg->next
143
1.10M
             )
144
2.37M
            switch (pseg->type) {
145
990k
            case s_start:
146
990k
                if (((const subpath *)pseg)->curve_count ||
147
990k
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
990k
                    )
149
144k
                    goto not_exact;
150
845k
                break;
151
1.20M
            case s_line:
152
1.20M
            case s_dash:
153
1.38M
            case s_line_close:
154
1.38M
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
394k
                    goto not_exact;
156
988k
                break;
157
988k
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
2.37M
            }
161
563k
        result = 0;             /* exact result */
162
563k
    }
163
1.20M
not_exact:
164
1.20M
    if (result) {
165
641k
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
641k
            (psub == 0 || (pseg = psub->next) == 0 ||
167
569k
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
641k
            DO_NOTHING;
169
113k
        else {
170
113k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
113k
            if (pgs->line_params.curve_join >= 0)
173
0
                factor = max(factor, join_expansion_factor(pgs,
174
113k
                                (gs_line_join)pgs->line_params.curve_join));
175
113k
            expand *= factor;
176
113k
        }
177
641k
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
1.20M
    {
181
1.20M
        float exx = expand * cx;
182
1.20M
        float exy = expand * cy;
183
1.20M
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
1.20M
        if (code < 0)
186
48.7k
            return code;
187
1.15M
        code = set_float2fixed_vars(ppt->y, exy);
188
1.15M
        if (code < 0)
189
14.9k
            return code;
190
1.15M
    }
191
192
1.14M
    return result;
193
1.15M
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
113k
{
197
113k
    switch (join) {
198
85.4k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
180
    case gs_join_triangle: return 2.0;
200
27.5k
    default: return 1.0;
201
113k
    }
202
113k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
28.7M
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
28.7M
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
15.4M
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
21
{
342
21
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
21
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
21
    gx_device_cpath_accum adev;
345
21
    gx_device_color devc;
346
21
    gx_clip_path stroke_as_clip_path;
347
21
    int code;
348
21
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
21
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
21
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
21
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
21
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
21
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
21
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
21
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
21
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
21
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
21
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
21
    gs_set_logical_op_inline(pgs, save_lop);
368
21
    if (code >= 0)
369
21
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
21
        gs_fixed_rect clip_box, shading_box;
373
21
        gs_int_rect cb;
374
21
        gx_device_clip cdev;
375
376
21
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
21
        if (gx_dc_is_pattern2_color(pdevc) &&
382
21
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
21
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
21
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
21
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
21
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
21
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
21
        code = pdevc->type->fill_rectangle(pdevc,
392
21
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
21
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
21
        gx_destroy_clip_device_on_stack(&cdev);
395
21
    }
396
21
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
21
    return code;
399
21
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
770k
{
408
770k
    if (gx_dc_is_pattern2_color(pdevc) ||
409
770k
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
770k
        (gx_dc_is_pattern1_color(pdevc) &&
411
770k
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
10
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
10
                                                         pdevc, pcpath);
414
770k
    else
415
770k
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
770k
                                   pdevc, pcpath);
417
770k
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
17.2M
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
17.2M
     (final || lop_is_idempotent(pgs->log_op))) {\
425
12.0M
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
12.0M
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
12.0M
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
12.0M
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
12.0M
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
12.0M
    if ( code < 0 ) goto exit;\
434
12.0M
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
12.0M
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
770k
{
509
770k
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
770k
    bool traditional = CPSI_mode | params->traditional;
511
770k
    stroke_line_proc_t line_proc =
512
770k
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
770k
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
770k
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
770k
    gs_fixed_rect ibox, cbox;
516
770k
    gx_device_clip cdev;
517
770k
    gx_device *dev = pdev;
518
770k
    int code = 0;
519
770k
    gx_fill_params fill_params;
520
770k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
770k
    int dash_count = pgs_lp->dash.pattern_size;
522
770k
    gx_path fpath, dpath;
523
770k
    gx_path stroke_path_body;
524
770k
    gx_path stroke_path_reverse;
525
770k
    gx_path *to_path_reverse = NULL;
526
770k
    const gx_path *spath;
527
770k
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
770k
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
770k
    int uniform;
535
770k
    bool reflected;
536
770k
    orientation orient =
537
770k
        (
538
770k
#ifdef OPTIMIZE_ORIENTATION
539
770k
         is_fzero2(xy, yx) ?
540
681k
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
681k
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
681k
          orient_portrait) :
543
770k
         is_fzero2(xx, yy) ?
544
1.86k
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
1.86k
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
1.86k
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
89.5k
#endif
550
89.5k
         (uniform = 0,
551
87.6k
          reflected = xy * yx > xx * yy,
552
87.6k
          orient_other));
553
770k
    const segment_notes not_first = sn_not_first;
554
770k
    gs_line_join curve_join =
555
770k
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
770k
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
408k
            gs_join_bevel : pgs_lp->join);
558
770k
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
770k
    bool always_thin;
560
770k
    double line_width_and_scale;
561
770k
    double device_line_width_scale = 0; /* Quiet compiler. */
562
770k
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
770k
    const subpath *psub;
564
770k
    gs_matrix initial_matrix;
565
770k
    bool initial_matrix_reflected, flattened_path = false;
566
770k
    note_flags flags;
567
568
770k
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
770k
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
770k
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
770k
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
770k
    {
595
770k
        gs_fixed_point expansion;
596
597
770k
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
60.8k
            ibox.p.x = ibox.p.y = min_fixed;
600
60.8k
            ibox.q.x = ibox.q.y = max_fixed;
601
709k
        } else {
602
709k
            expansion.x += pgs->fill_adjust.x;
603
709k
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
709k
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
709k
                        ibox.p.x - expansion.x);
610
709k
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
709k
                        ibox.p.y - expansion.y);
612
709k
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
709k
                        ibox.q.x + expansion.x);
614
709k
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
709k
                        ibox.q.y + expansion.y);
616
709k
        }
617
770k
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
770k
    if (pcpath)
620
150k
        gx_cpath_inner_box(pcpath, &cbox);
621
620k
    else if (pdevc)
622
620k
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
20
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
20
        cbox = ibox;
626
20
    }
627
770k
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
481k
        gs_fixed_rect bbox;
631
632
481k
        if (pcpath) {
633
141k
            gx_cpath_outer_box(pcpath, &bbox);
634
141k
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
141k
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
141k
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
141k
            rect_intersect(ibox, bbox);
638
141k
        } else
639
481k
            rect_intersect(ibox, cbox);
640
481k
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
115k
            return 0;
643
115k
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
365k
        if (pcpath && line_proc == stroke_fill) {
664
57.7k
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
57.7k
            cdev.max_fill_band = pdev->max_fill_band;
666
57.7k
            dev = (gx_device *)&cdev;
667
57.7k
        }
668
365k
    }
669
655k
    fill_params.rule = gx_rule_winding_number;
670
655k
    fill_params.flatness = pgs->flatness;
671
655k
    if (line_width < 0)
672
0
        line_width = -line_width;
673
655k
    line_width_and_scale = line_width * (double)int2fixed(1);
674
655k
    if (is_fzero(line_width))
675
4.86k
        always_thin = true;
676
650k
    else {
677
650k
        float xa, ya;
678
679
650k
        switch (orient) {
680
608k
            case orient_portrait:
681
608k
                xa = xx, ya = yy;
682
608k
                goto sat;
683
1.12k
            case orient_landscape:
684
1.12k
                xa = xy, ya = yx;
685
609k
              sat:
686
609k
                if (xa < 0)
687
13.8k
                    xa = -xa;
688
609k
                if (ya < 0)
689
302k
                    ya = -ya;
690
609k
                always_thin = (max(xa, ya) * line_width < 0.5);
691
609k
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
282k
                    device_line_width_scale = line_width_and_scale * xa;
693
282k
                }
694
609k
                break;
695
40.8k
            default:
696
40.8k
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
40.8k
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
40.8k
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
40.8k
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
40.8k
                                          )
712
40.8k
                                     )/2;
713
714
40.8k
                    always_thin = max_rr * line_width * line_width < 0.25;
715
40.8k
                }
716
650k
        }
717
650k
    }
718
655k
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
655k
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
655k
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
655k
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
622k
        if (!ppath->first_subpath) {
739
114k
            if (dev == (gx_device *)&cdev)
740
506
                gx_destroy_clip_device_on_stack(&cdev);
741
114k
            return 0;
742
114k
        }
743
508k
        spath = ppath;
744
508k
    } else {
745
32.8k
        gx_path_init_local(&fpath, ppath->memory);
746
32.8k
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
32.8k
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
32.8k
        spath = &fpath;
753
32.8k
        flattened_path = true;
754
32.8k
    }
755
540k
    if (dash_count) {
756
2.20k
        float max_dash_len = 0;
757
2.20k
        float expand_squared;
758
2.20k
        int i;
759
2.20k
        float adjust = (float)pgs->fill_adjust.x;
760
2.20k
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
6.41k
        for (i = 0; i < dash_count; i++) {
763
4.20k
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
2.59k
                max_dash_len = pgs_lp->dash.pattern[i];
765
4.20k
        }
766
2.20k
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
2.20k
        if (expand_squared < 0)
768
1.03k
            expand_squared = -expand_squared;
769
2.20k
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
2.20k
        if (pgs->line_params.half_width > 1)
773
106
            adjust /= pgs->line_params.half_width;
774
2.20k
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
2.20k
            gx_path_init_local(&dpath, ppath->memory);
776
2.20k
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
2.20k
            if (code < 0)
778
0
                goto exf;
779
2.20k
            spath = &dpath;
780
2.20k
        } else {
781
0
            dash_count = 0;
782
0
        }
783
2.20k
    }
784
540k
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
540k
        to_path = &stroke_path_body;
787
540k
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
540k
    }
789
540k
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
1.40M
    for (psub = spath->first_subpath; psub != 0;) {
794
859k
        int index = 0;
795
859k
        const segment *pseg = (const segment *)psub;
796
859k
        fixed x = pseg->pt.x;
797
859k
        fixed y = pseg->pt.y;
798
859k
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
859k
        partial_line pl, pl_prev, pl_first;
800
859k
        bool zero_length = true;
801
859k
        int pseg_notes = pseg->notes;
802
803
859k
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
17.6M
        while ((pseg = pseg->next) != 0 &&
810
17.6M
               pseg->type != s_start
811
16.7M
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
16.7M
            fixed sx, udx, sy, udy;
815
16.7M
            bool is_dash_segment;
816
817
16.7M
            pseg_notes = pseg->notes;
818
819
16.9M
         d2:is_dash_segment = false;
820
16.9M
         d1:if (pseg->type == s_dash) {
821
24.9k
                dash_segment *pd = (dash_segment *)pseg;
822
823
24.9k
                sx = pd->pt.x;
824
24.9k
                sy = pd->pt.y;
825
24.9k
                udx = pd->tangent.x;
826
24.9k
                udy = pd->tangent.y;
827
24.9k
                is_dash_segment = true;
828
16.9M
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
16.9M
            } else {
835
16.9M
                sx = pseg->pt.x;
836
16.9M
                sy = pseg->pt.y;
837
16.9M
                udx = sx - x;
838
16.9M
                udy = sy - y;
839
16.9M
            }
840
16.9M
            zero_length &= ((udx | udy) == 0);
841
16.9M
            pl.o.p.x = x, pl.o.p.y = y;
842
16.9M
          d:flags = (((pseg_notes & sn_not_first) ?
843
14.8M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
16.9M
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
16.9M
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
16.9M
                     (flags & ~nf_all_from_arc));
847
16.9M
            pl.e.p.x = sx, pl.e.p.y = sy;
848
16.9M
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
273k
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
197k
                {
856
197k
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
39.0k
                        continue;
858
158k
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
158k
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
146k
                                  (pseg->notes & ~sn_not_first) :
866
158k
                                  pseg->notes);
867
158k
                    goto d2;
868
197k
                }
869
                /* Check for a degenerate subpath. */
870
146k
                while ((pseg = pseg->next) != 0 &&
871
146k
                       pseg->type != s_start
872
76.9k
                    ) {
873
76.9k
                    if (is_dash_segment)
874
998
                        break;
875
75.9k
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
75.9k
                    sx = pseg->pt.x, udx = sx - x;
878
75.9k
                    sy = pseg->pt.y, udy = sy - y;
879
75.9k
                    if (udx | udy) {
880
5.91k
                        zero_length = false;
881
5.91k
                        goto d;
882
5.91k
                    }
883
75.9k
                }
884
70.7k
                if (pgs_lp->dot_length == 0 &&
885
70.7k
                    pgs_lp->start_cap != gs_cap_round &&
886
70.7k
                    pgs_lp->end_cap != gs_cap_round &&
887
70.7k
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
4.94k
                    break;
893
4.94k
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
65.8k
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
65.8k
                    const segment *end = psub->last;
906
907
65.8k
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
40.9k
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
65.8k
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
65.8k
                if ((udx | udy) == 0) {
917
40.9k
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
40.9k
                        udx = fixed_1;
920
40.9k
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
40.9k
                }
925
65.8k
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
62.7k
                    double scale = device_dot_length /
927
62.7k
                                hypot((double)udx, (double)udy);
928
62.7k
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
62.7k
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
56.7k
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
56.7k
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
62.7k
                    udx1 = (fixed) (udx * scale);
944
62.7k
                    udy1 = (fixed) (udy * scale);
945
62.7k
                    sx = x + udx1;
946
62.7k
                    sy = y + udy1;
947
62.7k
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
65.8k
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
65.8k
                if (!is_dash_segment)
953
40.9k
                    goto d;
954
24.9k
                pl.e.p.x = sx;
955
24.9k
                pl.e.p.y = sy;
956
24.9k
            }
957
16.7M
            pl.vector.x = udx;
958
16.7M
            pl.vector.y = udy;
959
16.7M
            if (always_thin) {
960
3.87M
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
3.87M
                pl.width.x = pl.width.y = 0;
962
3.87M
                pl.thin = true;
963
12.8M
            } else {
964
12.8M
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
3.56M
                    double dpx = udx, dpy = udy;
968
3.56M
                    double wl = device_line_width_scale /
969
3.56M
                    hypot(dpx, dpy);
970
971
3.56M
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
3.56M
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
3.56M
                    if (initial_matrix_reflected)
976
3.56M
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
814
                    else
978
814
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
3.56M
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
9.28M
                } else {
983
9.28M
                    gs_point dpt;       /* unscaled */
984
9.28M
                    float wl;
985
986
9.28M
                    code = gs_gstate_idtransform(pgs,
987
9.28M
                                                 (float)udx, (float)udy,
988
9.28M
                                                 &dpt);
989
9.28M
                    if (code < 0) {
990
143k
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
143k
                        code = 0;
993
9.14M
                    } else {
994
9.14M
                        wl = line_width_and_scale /
995
9.14M
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
9.14M
                        dpt.x *= wl;
999
9.14M
                        dpt.y *= wl;
1000
9.14M
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
9.28M
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
9.28M
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
9.28M
                    if (orient != orient_portrait)
1016
8.81M
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
8.81M
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
9.28M
                    if (!reflected ^ initial_matrix_reflected)
1019
8.94M
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
9.28M
                    pl.width.x = (fixed) (dpt.y * xx),
1021
9.28M
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
9.28M
                    if (orient != orient_portrait)
1023
8.81M
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
8.81M
                            pl.width.y += (fixed) (dpt.y * xy);
1025
9.28M
                    pl.thin = width_is_thin(&pl);
1026
9.28M
                }
1027
12.8M
                if (!pl.thin) {
1028
12.0M
                    if (index)
1029
11.5M
                        dev->sgr.stroke_stored = false;
1030
12.0M
                    adjust_stroke(dev, &pl, pgs, false,
1031
12.0M
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
12.0M
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
12.0M
                            (zero_length || !is_closed),
1034
12.0M
                            COMBINE_FLAGS(flags));
1035
12.0M
                    compute_caps(&pl);
1036
12.0M
                }
1037
12.8M
            }
1038
16.7M
            if (index++) {
1039
15.8M
                gs_line_join join =
1040
15.8M
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
15.8M
                int first;
1042
15.8M
                pl_ptr lptr;
1043
15.8M
                bool ensure_closed;
1044
1045
15.8M
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
0
                    first = 0;
1049
0
                    lptr = 0;
1050
0
                    index = 1;
1051
15.8M
                } else {
1052
15.8M
                    first = (is_closed ? 1 : index - 2);
1053
15.8M
                    lptr = &pl;
1054
15.8M
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
15.8M
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
15.8M
                ensure_closed = ((to_path == &stroke_path_body &&
1068
15.8M
                                  lop_is_idempotent(pgs->log_op)) ||
1069
15.8M
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
15.8M
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
15.8M
                                     first, &pl_prev, lptr,
1074
15.8M
                                     pdevc, dev, pgs, params, &cbox,
1075
15.8M
                                     uniform, join, initial_matrix_reflected,
1076
15.8M
                                     COMBINE_FLAGS(flags));
1077
15.8M
                if (code < 0)
1078
0
                    goto exit;
1079
15.8M
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
15.8M
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
854k
                pl_first = pl;
1086
16.7M
            pl_prev = pl;
1087
16.7M
            x = sx, y = sy;
1088
16.7M
            flags = (flags<<4) | nf_all_from_arc;
1089
16.7M
        }
1090
859k
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
854k
            segment_notes notes = (pseg == 0 ?
1093
536k
                                   (const segment *)spath->first_subpath :
1094
854k
                                   pseg)->notes;
1095
854k
            gs_line_join join = (notes & not_first ? curve_join :
1096
854k
                                 pgs_lp->join);
1097
854k
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
854k
            pl_ptr lptr =
1101
854k
                (!is_closed || join == gs_join_none || zero_length ?
1102
675k
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
854k
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
854k
            flags = (((notes & sn_not_first) ?
1113
854k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
854k
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
854k
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
854k
                     (flags & ~nf_all_from_arc));
1117
854k
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
854k
                                 index - 1, &pl_prev, lptr, pdevc,
1119
854k
                                 dev, pgs, params, &cbox, uniform, join,
1120
854k
                                 initial_matrix_reflected,
1121
854k
                                 COMBINE_FLAGS(flags));
1122
854k
            if (code < 0)
1123
0
                goto exit;
1124
854k
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
854k
            cap = ((flags & nf_prev_dash_head) ?
1126
758k
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
854k
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
317
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
317
                if (code < 0)
1131
0
                    goto exit;
1132
317
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
317
            }
1134
854k
        }
1135
859k
        psub = (const subpath *)pseg;
1136
859k
    }
1137
540k
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
540k
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
540k
  exit:
1141
540k
    if (dev == (gx_device *)&cdev)
1142
57.2k
        cdev.target->sgr = cdev.sgr;
1143
540k
    if (to_path == &stroke_path_body)
1144
540k
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
540k
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
540k
  exf:
1148
540k
    if (dash_count)
1149
2.20k
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
540k
    if(flattened_path)
1152
32.8k
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
540k
    if (dev == (gx_device *)&cdev)
1154
57.2k
        gx_destroy_clip_device_on_stack(&cdev);
1155
540k
    return code;
1156
540k
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
770k
{
1163
770k
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
770k
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
9.28M
{
1177
9.28M
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
9.28M
    if ((dy = plp->vector.y) == 0)
1181
854k
        return any_abs(wy) < fixed_half;
1182
8.43M
    if ((dx = plp->vector.x) == 0)
1183
166k
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
8.26M
    return false;
1249
8.43M
#endif
1250
8.43M
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
81.0k
{
1256
81.0k
    fixed *pw;
1257
81.0k
    fixed *pov;
1258
81.0k
    fixed *pev;
1259
81.0k
    fixed w, w2;
1260
81.0k
    fixed adj2;
1261
1262
81.0k
    if (horiz) {
1263
        /* More horizontal stroke */
1264
42.9k
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
42.9k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
42.9k
    } else {
1267
        /* More vertical stroke */
1268
38.1k
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
38.1k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
38.1k
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
81.0k
    w = *pw;
1276
81.0k
    if (w > 0)
1277
34.1k
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
46.8k
    else
1279
46.8k
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
81.0k
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
81.0k
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
50.2k
        if (w >= 0)
1290
15.8k
            w2 += adj2;
1291
34.3k
        else
1292
34.3k
            w2 = adj2 - w2;
1293
50.2k
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
14.2k
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
35.9k
        else                    /* even width, move to pixel */
1296
35.9k
            *pov = *pev = fixed_rounded(*pov);
1297
1298
50.2k
    }
1299
81.0k
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
22.8k
{
1306
1307
22.8k
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
22.8k
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
22.8k
    if (*pow == *pew) {
1313
14.8k
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
14.8k
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
14.8k
        fixed length = any_abs(*pov - *pev);
1316
14.8k
        fixed length_r, length_r_2;
1317
14.8k
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
14.8k
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
14.8k
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
14.8k
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
7.92k
            return;
1329
6.88k
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
0
            length_r = fixed_rounded(length);
1331
0
            if (length_r < fixed_1)
1332
0
                length_r = fixed_1;
1333
0
            length_r_2 = length_r / 2;
1334
6.88k
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
6.88k
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
6.88k
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
6.88k
            length_r_2 = fixed_rounded(length) / 2;
1340
6.88k
        }
1341
6.88k
        if (length_r & fixed_1)
1342
0
            mv_r = fixed_floor(mv) + fixed_half;
1343
6.88k
        else
1344
6.88k
            mv_r = fixed_floor(mv);
1345
6.88k
        if (*pov < *pev) {
1346
0
            *pov = mv_r - length_r_2;
1347
0
            *pev = mv_r + length_r_2;
1348
6.88k
        } else {
1349
6.88k
            *pov = mv_r + length_r_2;
1350
6.88k
            *pev = mv_r - length_r_2;
1351
6.88k
        }
1352
6.88k
    }
1353
22.8k
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
12.0M
{
1362
12.0M
    bool horiz, adjust = true;
1363
12.0M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
15.0k
                             pgs->line_params.dash_cap :
1365
12.0M
                             pgs->line_params.start_cap);
1366
12.0M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
15.2k
                             pgs->line_params.dash_cap :
1368
12.0M
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
12.0M
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
11.9M
        dev->sgr.stroke_stored = false;
1374
11.9M
        return;                 /* don't adjust */
1375
11.9M
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
81.0k
    if (dev->sgr.stroke_stored &&
1380
81.0k
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
81.0k
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
52
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
52
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
52
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
8
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
8
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
8
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
8
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
8
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
8
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
8
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
8
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
8
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
8
            }
1443
8
        }
1444
52
    }
1445
81.0k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
57.2k
        dev->sgr.stroke_stored = true;
1447
57.2k
        dev->sgr.orig[0] = plp->o.p;
1448
57.2k
        dev->sgr.orig[1] = plp->e.p;
1449
57.2k
        dev->sgr.orig[2] = plp->width;
1450
57.2k
        dev->sgr.orig[3] = plp->vector;
1451
57.2k
    } else
1452
23.8k
        dev->sgr.stroke_stored = false;
1453
81.0k
    if (adjust) {
1454
81.0k
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
81.0k
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
81.0k
        if (adjust_longitude)
1457
22.8k
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
81.0k
    }
1459
81.0k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
57.2k
        dev->sgr.adjusted[0] = plp->o.p;
1461
57.2k
        dev->sgr.adjusted[1] = plp->e.p;
1462
57.2k
        dev->sgr.adjusted[2] = plp->width;
1463
57.2k
        dev->sgr.adjusted[3] = plp->vector;
1464
57.2k
    }
1465
81.0k
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
5.64M
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
5.64M
    double u1 = pd1->x, v1 = pd1->y;
1482
5.64M
    double u2 = pd2->x, v2 = pd2->y;
1483
5.64M
    double denom = u1 * v2 - u2 * v1;
1484
5.64M
    double xdiff = pp2->x - pp1->x;
1485
5.64M
    double ydiff = pp2->y - pp1->y;
1486
5.64M
    double f1;
1487
5.64M
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
5.64M
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
106k
        if_debug0('O', "\tdegenerate!\n");
1506
106k
        return -1;
1507
106k
    }
1508
5.54M
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
5.54M
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
5.54M
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
5.54M
    if_debug2('O', "\t%f,%f\n",
1512
5.54M
              fixed2float(pi->x), fixed2float(pi->y));
1513
5.54M
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
5.64M
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
2.25k
{
1521
2.25k
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
2.25k
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
2.25k
    if (any_abs(dx) > any_abs(dy)) {
1525
1.14k
        plp->width.x = plp->e.cdelta.y = 0;
1526
1.14k
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
1.14k
    } else {
1528
1.10k
        plp->width.y = plp->e.cdelta.x = 0;
1529
1.10k
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
1.10k
    }
1531
2.25k
#undef TRSIGN
1532
2.25k
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
16.7M
{
1545
16.7M
    const fixed lix = plp->o.p.x;
1546
16.7M
    const fixed liy = plp->o.p.y;
1547
16.7M
    const fixed litox = plp->e.p.x;
1548
16.7M
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
16.7M
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
4.69M
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
4.69M
                                                pdevc, pgs->log_op,
1555
4.69M
                                                pgs->fill_adjust.x,
1556
4.69M
                                                pgs->fill_adjust.y);
1557
4.69M
    }
1558
    /* Check for being able to fill directly. */
1559
12.0M
    {
1560
12.0M
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
12.0M
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
11.9M
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
12.0M
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
11.9M
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
12.0M
        if (first != 0)
1567
11.6M
            start_cap = gs_cap_butt;
1568
12.0M
        if (nplp != 0)
1569
11.6M
            end_cap = gs_cap_butt;
1570
12.0M
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
12.0M
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
12.0M
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
12.0M
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
11.8M
                join == gs_join_none)
1575
12.0M
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
12.0M
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
12.0M
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
12.0M
 general:
1641
12.0M
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
12.0M
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
12.0M
                      flags);
1644
12.0M
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
12.0M
{
1655
12.0M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
12.0M
    gs_fixed_point points[8];
1657
12.0M
    int npoints;
1658
12.0M
    int code;
1659
12.0M
    bool moveto_first = true;
1660
12.0M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
11.9M
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
12.0M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
11.9M
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
12.0M
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
2.25k
        set_thin_widths(plp);
1669
2.25k
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
2.25k
        compute_caps(plp);
1671
2.25k
    }
1672
    /* Create an initial cap if desired. */
1673
12.0M
    if (first == 0 && start_cap == gs_cap_round) {
1674
163k
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
163k
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
163k
        npoints = 0;
1678
163k
        moveto_first = false;
1679
11.8M
    } else {
1680
11.8M
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
11.8M
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
11.8M
    }
1684
12.0M
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
322k
        if (end_cap == gs_cap_round) {
1687
163k
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
163k
            ++npoints;
1689
163k
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
163k
            code = add_pie_cap(ppath, &plp->e);
1692
163k
            goto done;
1693
163k
        }
1694
159k
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
11.7M
    } else if (nplp->thin) /* no join */
1696
2.55k
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
11.7M
    else if (join == gs_join_round) {
1698
142k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
142k
        ++npoints;
1700
142k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
142k
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
142k
        goto done;
1704
11.5M
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
10.5M
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
10.5M
        ++npoints;
1710
10.5M
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
10.5M
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
10.5M
        goto done;
1714
10.5M
    } else                      /* non-round join */
1715
971k
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
971k
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
971k
                                join, reflected);
1718
1.13M
    if (code < 0)
1719
0
        return code;
1720
1.13M
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
12.0M
  done:
1722
12.0M
    if (code < 0)
1723
0
        return code;
1724
12.0M
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
12.0M
        (nplp != NULL) && (!nplp->thin))
1726
10.9M
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
12.0M
    return gx_path_close_subpath(ppath);
1728
12.0M
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
929k
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
929k
    float check;
1794
929k
    double u1, v1, u2, v2;
1795
929k
    double num, denom;
1796
929k
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
929k
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
929k
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
235k
        return 1;
1806
1807
694k
    check = pgs_lp->miter_check;
1808
694k
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
694k
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
694k
    if (pmat) {
1812
71.1k
        gs_point pt;
1813
1814
71.1k
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
71.1k
        if (code < 0)
1816
0
        return code;
1817
71.1k
        v1 = pt.x, u1 = pt.y;
1818
71.1k
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
71.1k
        if (code < 0)
1820
0
            return code;
1821
71.1k
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
71.1k
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
71.1k
    }
1846
694k
    num = u1 * v2 - u2 * v1;
1847
694k
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
694k
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
207k
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
694k
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
694k
    if (denom < 0)
1881
228k
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
694k
    if (check > 0 ?
1884
694k
        (num < 0 || num >= denom * check) :
1885
694k
        (num < 0 && num >= denom * check)
1886
694k
        ) {
1887
        /* OK to use a miter join. */
1888
670k
        gs_fixed_point dirn1, dirn2;
1889
1890
670k
        dirn1.x = plp->e.cdelta.x;
1891
670k
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
670k
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
670k
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
50
        {
1898
50
            float scale = 65536.0;
1899
50
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
40
                scale /= abs(plp->vector.x);
1901
10
            else
1902
10
                scale /= abs(plp->vector.y);
1903
50
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
50
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
50
        }
1906
670k
        dirn2.x = nplp->o.cdelta.x;
1907
670k
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
670k
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
670k
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
50
        {
1914
50
            float scale = 65536.0;
1915
50
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
10
                scale /= abs(nplp->vector.x);
1917
40
            else
1918
40
                scale /= abs(nplp->vector.y);
1919
50
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
50
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
50
        }
1922
670k
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
670k
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
658k
            return 0;
1926
670k
    }
1927
35.9k
    return 1;
1928
694k
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
317
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
317
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
317
    gs_fixed_point points[6];
2286
317
    int npoints;
2287
317
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
317
    int code;
2289
2290
317
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
0
        set_thin_widths(plp);
2294
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
0
        compute_caps(plp);
2296
0
    }
2297
    /* The segment itself : */
2298
317
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
317
    ASSIGN_POINT(&points[1], plp->e.co);
2300
317
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
317
    ASSIGN_POINT(&points[3], plp->o.co);
2302
317
    code = add_points(ppath, points, 4, moveto_first);
2303
317
    if (code < 0)
2304
0
        return code;
2305
317
    code = gx_path_close_subpath(ppath);
2306
317
    if (code < 0)
2307
0
        return code;
2308
317
    npoints = 0;
2309
317
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
317
        if (pgs_lp->start_cap == gs_cap_butt)
2312
0
            return 0;
2313
317
        if (pgs_lp->start_cap == gs_cap_round) {
2314
317
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
317
            ++npoints;
2316
317
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
317
            return add_round_cap(ppath, &plp->e);
2319
317
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
0
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
0
    } else if (nplp->thin) {    /* no join */
2335
0
        npoints = 0;
2336
0
    } else {                    /* non-round join */
2337
0
        bool ccw =
2338
0
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
0
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
0
        if (ccw ^ reflected) {
2342
0
            ASSIGN_POINT(&points[0], plp->e.co);
2343
0
            ++npoints;
2344
0
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
0
                                    join, reflected);
2347
0
            if (code < 0)
2348
0
                return code;
2349
0
            code--; /* Drop the last point of the non-compatible mode. */
2350
0
            npoints += code;
2351
0
        } else {
2352
0
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
0
                                    join, reflected);
2355
0
            if (code < 0)
2356
0
                return code;
2357
0
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
0
            npoints = code;
2359
0
        }
2360
0
    }
2361
0
    code = add_points(ppath, points, npoints, moveto_first);
2362
0
    if (code < 0)
2363
0
        return code;
2364
0
    code = gx_path_close_subpath(ppath);
2365
0
    return code;
2366
0
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
317
{
2379
317
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
317
    gs_fixed_point points[5];
2381
317
    int npoints = 0;
2382
317
    int code;
2383
2384
317
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
317
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
0
        set_thin_widths(plp);
2390
0
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
0
        compute_caps(plp);
2392
0
    }
2393
    /* Create an initial cap if desired. */
2394
317
    if (pgs_lp->start_cap == gs_cap_round) {
2395
317
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
317
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
317
            )
2398
0
            return code;
2399
317
        return 0;
2400
317
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
317
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
12.0M
{
2420
12.0M
    int code;
2421
2422
12.0M
    if (moveto_first) {
2423
11.8M
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
11.8M
        if (code < 0)
2425
0
            return code;
2426
11.8M
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
11.8M
    } else {
2428
163k
        return gx_path_add_lines(ppath, points, npoints);
2429
163k
    }
2430
12.0M
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
971k
{
2443
971k
#define jp1 join_points[0]
2444
971k
#define np1 join_points[1]
2445
971k
#define np2 join_points[2]
2446
971k
#define jp2 join_points[3]
2447
971k
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
971k
    bool ccw =
2476
971k
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
971k
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
971k
    bool ccw0 = ccw;
2479
971k
    p_ptr outp, np;
2480
971k
    int   code;
2481
971k
    gs_fixed_point mpt;
2482
2483
971k
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
971k
    ASSIGN_POINT(&jp1, plp->e.co);
2487
971k
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
971k
    if (!ccw) {
2495
572k
        outp = &jp2;
2496
572k
        ASSIGN_POINT(&np2, nplp->o.co);
2497
572k
        ASSIGN_POINT(&np1, nplp->o.p);
2498
572k
        np = &np2;
2499
572k
    } else {
2500
398k
        outp = &jp1;
2501
398k
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
398k
        ASSIGN_POINT(&np2, nplp->o.p);
2503
398k
        np = &np1;
2504
398k
    }
2505
971k
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
971k
    if (join == gs_join_triangle) {
2509
308
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
308
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
308
        ASSIGN_POINT(&jpx, jp2);
2513
308
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
44
            jp2.x = tpx, jp2.y = tpy;
2516
264
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
264
            ASSIGN_POINT(&jp2, np2);
2519
264
            ASSIGN_POINT(&np2, np1);
2520
264
            np1.x = tpx, np1.y = tpy;
2521
264
        }
2522
308
        return 5;
2523
308
    }
2524
970k
    if (join == gs_join_miter &&
2525
970k
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
658k
        if (code < 0)
2527
0
            return code;
2528
658k
        ASSIGN_POINT(outp, mpt);
2529
658k
    }
2530
970k
    return 4;
2531
970k
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
12.0M
{
2594
12.0M
    fixed wx2 = plp->width.x;
2595
12.0M
    fixed wy2 = plp->width.y;
2596
2597
12.0M
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
12.0M
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
12.0M
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
12.0M
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
12.0M
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
12.0M
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
12.0M
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
634
{
2630
634
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
634
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
634
                                        xo + cdx, yo + cdy,
2638
634
                                        quarter_arc_fraction)) < 0 ||
2639
634
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
634
                                        quarter_arc_fraction)) < 0 ||
2641
634
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
634
                                        xe - cdx, ye - cdy,
2643
634
                                        quarter_arc_fraction)) < 0 ||
2644
634
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
634
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
634
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
634
        )
2649
0
        return code;
2650
634
    return 0;
2651
634
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
329k
{
2658
329k
    int code;
2659
2660
329k
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
329k
                                        xo + cdx, yo + cdy,
2662
329k
                                        quarter_arc_fraction)) < 0 ||
2663
329k
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
329k
                                        quarter_arc_fraction)) < 0 ||
2665
329k
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
329k
    return 0;
2668
329k
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
2.51M
{
2676
2.51M
    int code;
2677
2.51M
    double rad_squared, dist_squared, F;
2678
2.51M
    gs_fixed_point current, tangent, tangmeet;
2679
2680
2.51M
    tangent.x = current_tangent->x;
2681
2.51M
    tangent.y = current_tangent->y;
2682
2.51M
    current.x = current_orig->x;
2683
2.51M
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
2.51M
    if ((double)tangent.x * (double)final_tangent->x +
2687
2.51M
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
27.8k
        code = gx_path_add_partial_arc(ppath,
2690
27.8k
                                       centre->x + tangent.x,
2691
27.8k
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
27.8k
                                       current.x + tangent.x,
2694
27.8k
                                       current.y + tangent.y,
2695
27.8k
                                       quarter_arc_fraction);
2696
27.8k
        if (code < 0)
2697
0
            return code;
2698
27.8k
        current.x = centre->x + tangent.x;
2699
27.8k
        current.y = centre->y + tangent.y;
2700
27.8k
        if (ccw) {
2701
0
            int tmp = tangent.x;
2702
0
            tangent.x = -tangent.y;
2703
0
            tangent.y = tmp;
2704
27.8k
        } else {
2705
27.8k
            int tmp = tangent.x;
2706
27.8k
            tangent.x = tangent.y;
2707
27.8k
            tangent.y = -tmp;
2708
27.8k
        }
2709
27.8k
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
2.51M
    if (line_intersect(&current, &tangent,
2714
2.51M
                       final, final_tangent, &tangmeet) != 0) {
2715
1.01M
        return gx_path_add_line(ppath, final->x, final->y);
2716
1.01M
    }
2717
1.49M
    current.x -= tangmeet.x;
2718
1.49M
    current.y -= tangmeet.y;
2719
1.49M
    dist_squared = ((double)current.x) * current.x +
2720
1.49M
                   ((double)current.y) * current.y;
2721
1.49M
    rad_squared  = ((double)width->x) * width->x +
2722
1.49M
                   ((double)width->y) * width->y;
2723
1.49M
    dist_squared /= rad_squared;
2724
1.49M
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
1.49M
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
2.51M
                                   tangmeet.x, tangmeet.y, F);
2727
2.51M
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
10.7M
{
2735
10.7M
    int code;
2736
10.7M
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
10.7M
    double l, r;
2738
10.7M
    bool ccw;
2739
2740
10.7M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
10.7M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
10.7M
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
8.42M
        if (cap &&
2746
8.42M
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
2.42k
            return add_pie_cap(ppath, &plp->e);
2748
8.42M
        else
2749
8.42M
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
8.42M
    }
2751
2752
2.31M
    ccw = (l > r);
2753
2754
2.31M
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
2.31M
    if (ccw) {
2758
1.07M
        current       = & plp->e.co;
2759
1.07M
        final         = &nplp->o.ce;
2760
1.07M
        tangent       = & plp->e.cdelta;
2761
1.07M
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
1.07M
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
1.23M
    } else {
2767
1.23M
        current       = &nplp->o.co;
2768
1.23M
        final         = & plp->e.ce;
2769
1.23M
        tangent       = &nplp->o.cdelta;
2770
1.23M
        final_tangent = & plp->e.cdelta;
2771
1.23M
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
1.23M
        if (code < 0)
2773
0
            return code;
2774
1.23M
        code = gx_path_add_line(ppath, current->x, current->y);
2775
1.23M
        if (code < 0)
2776
0
            return code;
2777
1.23M
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
1.23M
    }
2780
2781
2.31M
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
2.31M
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
2.31M
    if (ccw &&
2785
2.31M
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
1.07M
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
2.31M
    return 0;
2790
2.31M
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
10.9M
{
2819
10.9M
    int code;
2820
10.9M
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
10.9M
    double l, r;
2822
10.9M
    bool ccw;
2823
2824
10.9M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
10.9M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
10.9M
    if (l == r)
2828
8.48M
        return 0;
2829
2830
2.46M
    ccw = (l > r);
2831
2832
2.46M
    ccw ^= reflected;
2833
2834
2.46M
    if (ccw) {
2835
1.16M
        dirn1.x = - plp->width.x;
2836
1.16M
        dirn1.y = - plp->width.y;
2837
1.16M
        dirn2.x = -nplp->width.x;
2838
1.16M
        dirn2.y = -nplp->width.y;
2839
1.16M
        if (line_intersect(& plp->o.co, &dirn1,
2840
1.16M
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
1.05M
            return 0;
2842
109k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
109k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
109k
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
109k
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
109k
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
109k
                                &plp->width)))
2848
0
            return code;
2849
1.29M
    } else {
2850
1.29M
        if (line_intersect(& plp->o.ce, & plp->width,
2851
1.29M
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
1.20M
            return 0;
2853
89.0k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
89.0k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
89.0k
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
89.0k
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
89.0k
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
89.0k
                                &plp->width)))
2859
0
            return code;
2860
89.0k
    }
2861
198k
    return 0;
2862
2.46M
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
12.0M
{
2869
12.0M
#define PUT_POINT(i, px, py)\
2870
24.0M
  pts[i].x = (px), pts[i].y = (py)
2871
12.0M
    switch (type) {
2872
12.0M
        case gs_cap_butt:
2873
12.0M
            PUT_POINT(0, xo, yo);
2874
12.0M
            PUT_POINT(1, xe, ye);
2875
12.0M
            return 2;
2876
18.5k
        case gs_cap_square:
2877
18.5k
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
18.5k
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
18.5k
            return 2;
2880
0
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
0
            PUT_POINT(0, xo, yo);
2882
0
            PUT_POINT(1, px + cdx, py + cdy);
2883
0
            PUT_POINT(2, xe, ye);
2884
0
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
12.0M
    }
2888
12.0M
#undef PUT_POINT
2889
12.0M
}