Coverage Report

Created: 2025-06-10 06:59

/src/ghostpdl/obj/jdcoefct.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdcoefct.c
3
 *
4
 * Copyright (C) 1994-1997, Thomas G. Lane.
5
 * Modified 2002-2020 by Guido Vollbeding.
6
 * This file is part of the Independent JPEG Group's software.
7
 * For conditions of distribution and use, see the accompanying README file.
8
 *
9
 * This file contains the coefficient buffer controller for decompression.
10
 * This controller is the top level of the JPEG decompressor proper.
11
 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
12
 *
13
 * In buffered-image mode, this controller is the interface between
14
 * input-oriented processing and output-oriented processing.
15
 * Also, the input side (only) is used when reading a file for transcoding.
16
 */
17
18
#define JPEG_INTERNALS
19
#include "jinclude.h"
20
#include "jpeglib.h"
21
22
23
/* Block smoothing is only applicable for progressive JPEG, so: */
24
#ifndef D_PROGRESSIVE_SUPPORTED
25
#undef BLOCK_SMOOTHING_SUPPORTED
26
#endif
27
28
29
/* Private buffer controller object */
30
31
typedef struct {
32
  struct jpeg_d_coef_controller pub; /* public fields */
33
34
  /* These variables keep track of the current location of the input side. */
35
  /* cinfo->input_iMCU_row is also used for this. */
36
  JDIMENSION MCU_ctr;   /* counts MCUs processed in current row */
37
  int MCU_vert_offset;    /* counts MCU rows within iMCU row */
38
  int MCU_rows_per_iMCU_row;  /* number of such rows needed */
39
40
  /* The output side's location is represented by cinfo->output_iMCU_row. */
41
42
  /* In single-pass modes, it's sufficient to buffer just one MCU.
43
   * We append a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
44
   * and let the entropy decoder write into that workspace each time.
45
   * In multi-pass modes, this array points to the current MCU's blocks
46
   * within the virtual arrays; it is used only by the input side.
47
   */
48
  JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
49
50
#ifdef D_MULTISCAN_FILES_SUPPORTED
51
  /* In multi-pass modes, we need a virtual block array for each component. */
52
  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
53
#endif
54
55
#ifdef BLOCK_SMOOTHING_SUPPORTED
56
  /* When doing block smoothing, we latch coefficient Al values here */
57
  int * coef_bits_latch;
58
#define SAVED_COEFS  6    /* we save coef_bits[0..5] */
59
#endif
60
61
  /* Workspace for single-pass modes (omitted otherwise). */
62
  JBLOCK blk_buffer[D_MAX_BLOCKS_IN_MCU];
63
} my_coef_controller;
64
65
typedef my_coef_controller * my_coef_ptr;
66
67
68
/* Forward declarations */
69
METHODDEF(int) decompress_onepass
70
  JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
71
#ifdef D_MULTISCAN_FILES_SUPPORTED
72
METHODDEF(int) decompress_data
73
  JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
74
#endif
75
#ifdef BLOCK_SMOOTHING_SUPPORTED
76
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
77
METHODDEF(int) decompress_smooth_data
78
  JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
79
#endif
80
81
82
LOCAL(void)
83
start_iMCU_row (j_decompress_ptr cinfo)
84
/* Reset within-iMCU-row counters for a new row (input side) */
85
11.4k
{
86
11.4k
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
87
88
  /* In an interleaved scan, an MCU row is the same as an iMCU row.
89
   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
90
   * But at the bottom of the image, process only what's left.
91
   */
92
11.4k
  if (cinfo->comps_in_scan > 1) {
93
9.14k
    coef->MCU_rows_per_iMCU_row = 1;
94
9.14k
  } else {
95
2.29k
    if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
96
2.11k
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
97
172
    else
98
172
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
99
2.29k
  }
100
101
11.4k
  coef->MCU_ctr = 0;
102
11.4k
  coef->MCU_vert_offset = 0;
103
11.4k
}
104
105
106
/*
107
 * Initialize for an input processing pass.
108
 */
109
110
METHODDEF(void)
111
start_input_pass (j_decompress_ptr cinfo)
112
546
{
113
546
  cinfo->input_iMCU_row = 0;
114
546
  start_iMCU_row(cinfo);
115
546
}
116
117
118
/*
119
 * Initialize for an output processing pass.
120
 */
121
122
METHODDEF(void)
123
start_output_pass (j_decompress_ptr cinfo)
124
386
{
125
#ifdef BLOCK_SMOOTHING_SUPPORTED
126
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
127
128
  /* If multipass, check to see whether to use block smoothing on this pass */
129
  if (coef->pub.coef_arrays != NULL) {
130
    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
131
      coef->pub.decompress_data = decompress_smooth_data;
132
    else
133
      coef->pub.decompress_data = decompress_data;
134
  }
135
#endif
136
386
  cinfo->output_iMCU_row = 0;
137
386
}
138
139
140
/*
141
 * Decompress and return some data in the single-pass case.
142
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
143
 * Input and output must run in lockstep since we have only a one-MCU buffer.
144
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
145
 *
146
 * NB: output_buf contains a plane for each component in image,
147
 * which we index according to the component's SOF position.
148
 */
149
150
METHODDEF(int)
151
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
152
14.8k
{
153
14.8k
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
154
14.8k
  JDIMENSION MCU_col_num; /* index of current MCU within row */
155
14.8k
  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
156
14.8k
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
157
14.8k
  int ci, xindex, yindex, yoffset, useful_width;
158
14.8k
  JBLOCKROW blkp;
159
14.8k
  JSAMPARRAY output_ptr;
160
14.8k
  JDIMENSION start_col, output_col;
161
14.8k
  jpeg_component_info *compptr;
162
14.8k
  inverse_DCT_method_ptr inverse_DCT;
163
164
  /* Loop to process as much as one whole iMCU row */
165
24.4k
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
166
14.8k
       yoffset++) {
167
809k
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
168
800k
   MCU_col_num++) {
169
800k
      blkp = coef->blk_buffer;  /* pointer to current DCT block within MCU */
170
      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
171
800k
      if (cinfo->lim_Se) /* can bypass in DC only case */
172
800k
  MEMZERO(blkp, cinfo->blocks_in_MCU * SIZEOF(JBLOCK));
173
800k
      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
174
  /* Suspension forced; update state counters and exit */
175
5.15k
  coef->MCU_vert_offset = yoffset;
176
5.15k
  coef->MCU_ctr = MCU_col_num;
177
5.15k
  return JPEG_SUSPENDED;
178
5.15k
      }
179
      /* Determine where data should go in output_buf and do the IDCT thing.
180
       * We skip dummy blocks at the right and bottom edges (but blkp gets
181
       * incremented past them!).
182
       */
183
3.12M
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
184
2.33M
  compptr = cinfo->cur_comp_info[ci];
185
  /* Don't bother to IDCT an uninteresting component. */
186
2.33M
  if (! compptr->component_needed) {
187
0
    blkp += compptr->MCU_blocks;
188
0
    continue;
189
0
  }
190
2.33M
  inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
191
2.33M
  output_ptr = output_buf[compptr->component_index] +
192
2.33M
    yoffset * compptr->DCT_v_scaled_size;
193
2.33M
  useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
194
2.33M
                : compptr->last_col_width;
195
2.33M
  start_col = MCU_col_num * compptr->MCU_sample_width;
196
5.23M
  for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
197
2.90M
    if (cinfo->input_iMCU_row < last_iMCU_row ||
198
2.90M
        yoffset + yindex < compptr->last_row_height) {
199
2.90M
      output_col = start_col;
200
6.93M
      for (xindex = 0; xindex < useful_width; xindex++) {
201
4.03M
        (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) (blkp + xindex),
202
4.03M
            output_ptr, output_col);
203
4.03M
        output_col += compptr->DCT_h_scaled_size;
204
4.03M
      }
205
2.90M
      output_ptr += compptr->DCT_v_scaled_size;
206
2.90M
    }
207
2.90M
    blkp += compptr->MCU_width;
208
2.90M
  }
209
2.33M
      }
210
795k
    }
211
    /* Completed an MCU row, but perhaps not an iMCU row */
212
9.65k
    coef->MCU_ctr = 0;
213
9.65k
  }
214
  /* Completed the iMCU row, advance counters for next one */
215
9.65k
  cinfo->output_iMCU_row++;
216
9.65k
  if (++(cinfo->input_iMCU_row) <= last_iMCU_row) {
217
9.28k
    start_iMCU_row(cinfo);
218
9.28k
    return JPEG_ROW_COMPLETED;
219
9.28k
  }
220
  /* Completed the scan */
221
365
  (*cinfo->inputctl->finish_input_pass) (cinfo);
222
365
  return JPEG_SCAN_COMPLETED;
223
9.65k
}
224
225
226
/*
227
 * Dummy consume-input routine for single-pass operation.
228
 */
229
230
METHODDEF(int)
231
dummy_consume_data (j_decompress_ptr cinfo)
232
0
{
233
0
  return JPEG_SUSPENDED; /* Always indicate nothing was done */
234
0
}
235
236
237
#ifdef D_MULTISCAN_FILES_SUPPORTED
238
239
/*
240
 * Consume input data and store it in the full-image coefficient buffer.
241
 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
242
 * ie, v_samp_factor block rows for each component in the scan.
243
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
244
 */
245
246
METHODDEF(int)
247
consume_data (j_decompress_ptr cinfo)
248
1.86k
{
249
1.86k
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
250
1.86k
  JDIMENSION MCU_col_num; /* index of current MCU within row */
251
1.86k
  int ci, xindex, yindex, yoffset;
252
1.86k
  JDIMENSION start_col;
253
1.86k
  JBLOCKARRAY blkp;
254
1.86k
  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
255
1.86k
  JBLOCKROW buffer_ptr;
256
1.86k
  jpeg_component_info *compptr;
257
258
  /* Align the virtual buffers for the components used in this scan. */
259
4.33k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
260
2.47k
    compptr = cinfo->cur_comp_info[ci];
261
2.47k
    buffer[ci] = (*cinfo->mem->access_virt_barray)
262
2.47k
      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
263
2.47k
       cinfo->input_iMCU_row * compptr->v_samp_factor,
264
2.47k
       (JDIMENSION) compptr->v_samp_factor, TRUE);
265
    /* Note: entropy decoder expects buffer to be zeroed,
266
     * but this is handled automatically by the memory manager
267
     * because we requested a pre-zeroed array.
268
     */
269
2.47k
  }
270
271
  /* Loop to process one whole iMCU row */
272
3.84k
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
273
2.05k
       yoffset++) {
274
213k
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
275
211k
   MCU_col_num++) {
276
      /* Construct list of pointers to DCT blocks belonging to this MCU */
277
211k
      blkp = coef->MCU_buffer;  /* pointer to current DCT block within MCU */
278
553k
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
279
341k
  compptr = cinfo->cur_comp_info[ci];
280
341k
  start_col = MCU_col_num * compptr->MCU_width;
281
867k
  for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
282
525k
    buffer_ptr = buffer[ci][yoffset + yindex] + start_col;
283
525k
    xindex = compptr->MCU_width;
284
526k
    do {
285
526k
      *blkp++ = buffer_ptr++;
286
526k
    } while (--xindex);
287
525k
  }
288
341k
      }
289
      /* Try to fetch the MCU. */
290
211k
      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
291
  /* Suspension forced; update state counters and exit */
292
80
  coef->MCU_vert_offset = yoffset;
293
80
  coef->MCU_ctr = MCU_col_num;
294
80
  return JPEG_SUSPENDED;
295
80
      }
296
211k
    }
297
    /* Completed an MCU row, but perhaps not an iMCU row */
298
1.97k
    coef->MCU_ctr = 0;
299
1.97k
  }
300
  /* Completed the iMCU row, advance counters for next one */
301
1.78k
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
302
1.60k
    start_iMCU_row(cinfo);
303
1.60k
    return JPEG_ROW_COMPLETED;
304
1.60k
  }
305
  /* Completed the scan */
306
181
  (*cinfo->inputctl->finish_input_pass) (cinfo);
307
181
  return JPEG_SCAN_COMPLETED;
308
1.78k
}
309
310
311
/*
312
 * Decompress and return some data in the multi-pass case.
313
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
314
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
315
 *
316
 * NB: output_buf contains a plane for each component in image.
317
 */
318
319
METHODDEF(int)
320
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
321
180
{
322
180
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
323
180
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
324
180
  JDIMENSION block_num;
325
180
  int ci, block_row, block_rows;
326
180
  JBLOCKARRAY buffer;
327
180
  JBLOCKROW buffer_ptr;
328
180
  JSAMPARRAY output_ptr;
329
180
  JDIMENSION output_col;
330
180
  jpeg_component_info *compptr;
331
180
  inverse_DCT_method_ptr inverse_DCT;
332
333
  /* Force some input to be done if we are getting ahead of the input. */
334
180
  while (cinfo->input_scan_number < cinfo->output_scan_number ||
335
180
   (cinfo->input_scan_number == cinfo->output_scan_number &&
336
180
    cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
337
0
    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
338
0
      return JPEG_SUSPENDED;
339
0
  }
340
341
  /* OK, output from the virtual arrays. */
342
720
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
343
540
       ci++, compptr++) {
344
    /* Don't bother to IDCT an uninteresting component. */
345
540
    if (! compptr->component_needed)
346
0
      continue;
347
    /* Align the virtual buffer for this component. */
348
540
    buffer = (*cinfo->mem->access_virt_barray)
349
540
      ((j_common_ptr) cinfo, coef->whole_image[ci],
350
540
       cinfo->output_iMCU_row * compptr->v_samp_factor,
351
540
       (JDIMENSION) compptr->v_samp_factor, FALSE);
352
    /* Count non-dummy DCT block rows in this iMCU row. */
353
540
    if (cinfo->output_iMCU_row < last_iMCU_row)
354
492
      block_rows = compptr->v_samp_factor;
355
48
    else {
356
      /* NB: can't use last_row_height here; it is input-side-dependent! */
357
48
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
358
48
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
359
48
    }
360
540
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
361
540
    output_ptr = output_buf[ci];
362
    /* Loop over all DCT blocks to be processed. */
363
1.14k
    for (block_row = 0; block_row < block_rows; block_row++) {
364
600
      buffer_ptr = buffer[block_row];
365
600
      output_col = 0;
366
101k
      for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
367
100k
  (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
368
100k
      output_ptr, output_col);
369
100k
  buffer_ptr++;
370
100k
  output_col += compptr->DCT_h_scaled_size;
371
100k
      }
372
600
      output_ptr += compptr->DCT_v_scaled_size;
373
600
    }
374
540
  }
375
376
180
  if (++(cinfo->output_iMCU_row) <= last_iMCU_row)
377
164
    return JPEG_ROW_COMPLETED;
378
16
  return JPEG_SCAN_COMPLETED;
379
180
}
380
381
#endif /* D_MULTISCAN_FILES_SUPPORTED */
382
383
384
#ifdef BLOCK_SMOOTHING_SUPPORTED
385
386
/*
387
 * This code applies interblock smoothing as described by section K.8
388
 * of the JPEG standard: the first 5 AC coefficients are estimated from
389
 * the DC values of a DCT block and its 8 neighboring blocks.
390
 * We apply smoothing only for progressive JPEG decoding, and only if
391
 * the coefficients it can estimate are not yet known to full precision.
392
 */
393
394
/* Natural-order array positions of the first 5 zigzag-order coefficients */
395
#define Q01_POS  1
396
#define Q10_POS  8
397
#define Q20_POS  16
398
#define Q11_POS  9
399
#define Q02_POS  2
400
401
/*
402
 * Determine whether block smoothing is applicable and safe.
403
 * We also latch the current states of the coef_bits[] entries for the
404
 * AC coefficients; otherwise, if the input side of the decompressor
405
 * advances into a new scan, we might think the coefficients are known
406
 * more accurately than they really are.
407
 */
408
409
LOCAL(boolean)
410
smoothing_ok (j_decompress_ptr cinfo)
411
{
412
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
413
  boolean smoothing_useful = FALSE;
414
  int ci, coefi;
415
  jpeg_component_info *compptr;
416
  JQUANT_TBL * qtable;
417
  int * coef_bits;
418
  int * coef_bits_latch;
419
420
  if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
421
    return FALSE;
422
423
  /* Allocate latch area if not already done */
424
  if (coef->coef_bits_latch == NULL)
425
    coef->coef_bits_latch = (int *) (*cinfo->mem->alloc_small)
426
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
427
       cinfo->num_components * (SAVED_COEFS * SIZEOF(int)));
428
  coef_bits_latch = coef->coef_bits_latch;
429
430
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
431
       ci++, compptr++) {
432
    /* All components' quantization values must already be latched. */
433
    if ((qtable = compptr->quant_table) == NULL)
434
      return FALSE;
435
    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
436
    if (qtable->quantval[0] == 0 ||
437
  qtable->quantval[Q01_POS] == 0 ||
438
  qtable->quantval[Q10_POS] == 0 ||
439
  qtable->quantval[Q20_POS] == 0 ||
440
  qtable->quantval[Q11_POS] == 0 ||
441
  qtable->quantval[Q02_POS] == 0)
442
      return FALSE;
443
    /* DC values must be at least partly known for all components. */
444
    coef_bits = cinfo->coef_bits[ci];
445
    if (coef_bits[0] < 0)
446
      return FALSE;
447
    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
448
    for (coefi = 1; coefi <= 5; coefi++) {
449
      coef_bits_latch[coefi] = coef_bits[coefi];
450
      if (coef_bits[coefi] != 0)
451
  smoothing_useful = TRUE;
452
    }
453
    coef_bits_latch += SAVED_COEFS;
454
  }
455
456
  return smoothing_useful;
457
}
458
459
460
/*
461
 * Variant of decompress_data for use when doing block smoothing.
462
 */
463
464
METHODDEF(int)
465
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
466
{
467
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
468
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
469
  JDIMENSION block_num, last_block_column;
470
  int ci, block_row, block_rows, access_rows;
471
  JBLOCKARRAY buffer;
472
  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
473
  JSAMPARRAY output_ptr;
474
  JDIMENSION output_col;
475
  jpeg_component_info *compptr;
476
  inverse_DCT_method_ptr inverse_DCT;
477
  boolean first_row, last_row;
478
  JBLOCK workspace;
479
  int *coef_bits;
480
  JQUANT_TBL *quanttbl;
481
  INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
482
  int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
483
  int Al, pred;
484
485
  /* Force some input to be done if we are getting ahead of the input. */
486
  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
487
   ! cinfo->inputctl->eoi_reached) {
488
    if (cinfo->input_scan_number == cinfo->output_scan_number) {
489
      /* If input is working on current scan, we ordinarily want it to
490
       * have completed the current row.  But if input scan is DC,
491
       * we want it to keep one row ahead so that next block row's DC
492
       * values are up to date.
493
       */
494
      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
495
      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
496
  break;
497
    }
498
    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
499
      return JPEG_SUSPENDED;
500
  }
501
502
  /* OK, output from the virtual arrays. */
503
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
504
       ci++, compptr++) {
505
    /* Don't bother to IDCT an uninteresting component. */
506
    if (! compptr->component_needed)
507
      continue;
508
    /* Count non-dummy DCT block rows in this iMCU row. */
509
    if (cinfo->output_iMCU_row < last_iMCU_row) {
510
      block_rows = compptr->v_samp_factor;
511
      access_rows = block_rows * 2; /* this and next iMCU row */
512
      last_row = FALSE;
513
    } else {
514
      /* NB: can't use last_row_height here; it is input-side-dependent! */
515
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
516
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
517
      access_rows = block_rows; /* this iMCU row only */
518
      last_row = TRUE;
519
    }
520
    /* Align the virtual buffer for this component. */
521
    if (cinfo->output_iMCU_row > 0) {
522
      access_rows += compptr->v_samp_factor; /* prior iMCU row too */
523
      buffer = (*cinfo->mem->access_virt_barray)
524
  ((j_common_ptr) cinfo, coef->whole_image[ci],
525
   (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
526
   (JDIMENSION) access_rows, FALSE);
527
      buffer += compptr->v_samp_factor; /* point to current iMCU row */
528
      first_row = FALSE;
529
    } else {
530
      buffer = (*cinfo->mem->access_virt_barray)
531
  ((j_common_ptr) cinfo, coef->whole_image[ci],
532
   (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
533
      first_row = TRUE;
534
    }
535
    /* Fetch component-dependent info */
536
    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
537
    quanttbl = compptr->quant_table;
538
    Q00 = quanttbl->quantval[0];
539
    Q01 = quanttbl->quantval[Q01_POS];
540
    Q10 = quanttbl->quantval[Q10_POS];
541
    Q20 = quanttbl->quantval[Q20_POS];
542
    Q11 = quanttbl->quantval[Q11_POS];
543
    Q02 = quanttbl->quantval[Q02_POS];
544
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
545
    output_ptr = output_buf[ci];
546
    /* Loop over all DCT blocks to be processed. */
547
    for (block_row = 0; block_row < block_rows; block_row++) {
548
      buffer_ptr = buffer[block_row];
549
      if (first_row && block_row == 0)
550
  prev_block_row = buffer_ptr;
551
      else
552
  prev_block_row = buffer[block_row-1];
553
      if (last_row && block_row == block_rows-1)
554
  next_block_row = buffer_ptr;
555
      else
556
  next_block_row = buffer[block_row+1];
557
      /* We fetch the surrounding DC values using a sliding-register approach.
558
       * Initialize all nine here so as to do the right thing on narrow pics.
559
       */
560
      DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
561
      DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
562
      DC7 = DC8 = DC9 = (int) next_block_row[0][0];
563
      output_col = 0;
564
      last_block_column = compptr->width_in_blocks - 1;
565
      for (block_num = 0; block_num <= last_block_column; block_num++) {
566
  /* Fetch current DCT block into workspace so we can modify it. */
567
  jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
568
  /* Update DC values */
569
  if (block_num < last_block_column) {
570
    DC3 = (int) prev_block_row[1][0];
571
    DC6 = (int) buffer_ptr[1][0];
572
    DC9 = (int) next_block_row[1][0];
573
  }
574
  /* Compute coefficient estimates per K.8.
575
   * An estimate is applied only if coefficient is still zero,
576
   * and is not known to be fully accurate.
577
   */
578
  /* AC01 */
579
  if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
580
    num = 36 * Q00 * (DC4 - DC6);
581
    if (num >= 0) {
582
      pred = (int) (((Q01<<7) + num) / (Q01<<8));
583
      if (Al > 0 && pred >= (1<<Al))
584
        pred = (1<<Al)-1;
585
    } else {
586
      pred = (int) (((Q01<<7) - num) / (Q01<<8));
587
      if (Al > 0 && pred >= (1<<Al))
588
        pred = (1<<Al)-1;
589
      pred = -pred;
590
    }
591
    workspace[1] = (JCOEF) pred;
592
  }
593
  /* AC10 */
594
  if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
595
    num = 36 * Q00 * (DC2 - DC8);
596
    if (num >= 0) {
597
      pred = (int) (((Q10<<7) + num) / (Q10<<8));
598
      if (Al > 0 && pred >= (1<<Al))
599
        pred = (1<<Al)-1;
600
    } else {
601
      pred = (int) (((Q10<<7) - num) / (Q10<<8));
602
      if (Al > 0 && pred >= (1<<Al))
603
        pred = (1<<Al)-1;
604
      pred = -pred;
605
    }
606
    workspace[8] = (JCOEF) pred;
607
  }
608
  /* AC20 */
609
  if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
610
    num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
611
    if (num >= 0) {
612
      pred = (int) (((Q20<<7) + num) / (Q20<<8));
613
      if (Al > 0 && pred >= (1<<Al))
614
        pred = (1<<Al)-1;
615
    } else {
616
      pred = (int) (((Q20<<7) - num) / (Q20<<8));
617
      if (Al > 0 && pred >= (1<<Al))
618
        pred = (1<<Al)-1;
619
      pred = -pred;
620
    }
621
    workspace[16] = (JCOEF) pred;
622
  }
623
  /* AC11 */
624
  if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
625
    num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
626
    if (num >= 0) {
627
      pred = (int) (((Q11<<7) + num) / (Q11<<8));
628
      if (Al > 0 && pred >= (1<<Al))
629
        pred = (1<<Al)-1;
630
    } else {
631
      pred = (int) (((Q11<<7) - num) / (Q11<<8));
632
      if (Al > 0 && pred >= (1<<Al))
633
        pred = (1<<Al)-1;
634
      pred = -pred;
635
    }
636
    workspace[9] = (JCOEF) pred;
637
  }
638
  /* AC02 */
639
  if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
640
    num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
641
    if (num >= 0) {
642
      pred = (int) (((Q02<<7) + num) / (Q02<<8));
643
      if (Al > 0 && pred >= (1<<Al))
644
        pred = (1<<Al)-1;
645
    } else {
646
      pred = (int) (((Q02<<7) - num) / (Q02<<8));
647
      if (Al > 0 && pred >= (1<<Al))
648
        pred = (1<<Al)-1;
649
      pred = -pred;
650
    }
651
    workspace[2] = (JCOEF) pred;
652
  }
653
  /* OK, do the IDCT */
654
  (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
655
      output_ptr, output_col);
656
  /* Advance for next column */
657
  DC1 = DC2; DC2 = DC3;
658
  DC4 = DC5; DC5 = DC6;
659
  DC7 = DC8; DC8 = DC9;
660
  buffer_ptr++, prev_block_row++, next_block_row++;
661
  output_col += compptr->DCT_h_scaled_size;
662
      }
663
      output_ptr += compptr->DCT_v_scaled_size;
664
    }
665
  }
666
667
  if (++(cinfo->output_iMCU_row) <= last_iMCU_row)
668
    return JPEG_ROW_COMPLETED;
669
  return JPEG_SCAN_COMPLETED;
670
}
671
672
#endif /* BLOCK_SMOOTHING_SUPPORTED */
673
674
675
/*
676
 * Initialize coefficient buffer controller.
677
 */
678
679
GLOBAL(void)
680
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
681
390
{
682
390
  my_coef_ptr coef;
683
684
390
  if (need_full_buffer) {
685
25
#ifdef D_MULTISCAN_FILES_SUPPORTED
686
    /* Allocate a full-image virtual array for each component, */
687
    /* padded to a multiple of samp_factor DCT blocks in each direction. */
688
    /* Note we ask for a pre-zeroed array. */
689
25
    int ci, access_rows;
690
25
    jpeg_component_info *compptr;
691
692
25
    coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
693
25
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
694
25
       SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer));
695
100
    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
696
75
   ci++, compptr++) {
697
75
      access_rows = compptr->v_samp_factor;
698
#ifdef BLOCK_SMOOTHING_SUPPORTED
699
      /* If block smoothing could be used, need a bigger window */
700
      if (cinfo->progressive_mode)
701
  access_rows *= 3;
702
#endif
703
75
      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
704
75
  ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
705
75
   (JDIMENSION) jround_up((long) compptr->width_in_blocks,
706
75
        (long) compptr->h_samp_factor),
707
75
   (JDIMENSION) jround_up((long) compptr->height_in_blocks,
708
75
        (long) compptr->v_samp_factor),
709
75
   (JDIMENSION) access_rows);
710
75
    }
711
25
    coef->pub.consume_data = consume_data;
712
25
    coef->pub.decompress_data = decompress_data;
713
25
    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
714
#else
715
    ERREXIT(cinfo, JERR_NOT_COMPILED);
716
#endif
717
365
  } else {
718
    /* We only need a single-MCU buffer. */
719
365
    JBLOCKARRAY blkp;
720
365
    JBLOCKROW buffer_ptr;
721
365
    int bi;
722
723
365
    coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
724
365
      ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller));
725
365
    buffer_ptr = coef->blk_buffer;
726
365
    if (cinfo->lim_Se == 0)  /* DC only case: want to bypass later */
727
0
      MEMZERO(buffer_ptr, SIZEOF(coef->blk_buffer));
728
365
    blkp = coef->MCU_buffer;
729
365
    bi = D_MAX_BLOCKS_IN_MCU;
730
23.3k
    do {
731
23.3k
      *blkp++ = buffer_ptr++;
732
23.3k
    } while (--bi);
733
365
    coef->pub.consume_data = dummy_consume_data;
734
365
    coef->pub.decompress_data = decompress_onepass;
735
365
    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
736
365
  }
737
738
390
  coef->pub.start_input_pass = start_input_pass;
739
390
  coef->pub.start_output_pass = start_output_pass;
740
#ifdef BLOCK_SMOOTHING_SUPPORTED
741
  coef->coef_bits_latch = NULL;
742
#endif
743
390
  cinfo->coef = &coef->pub;
744
390
}