Coverage Report

Created: 2025-06-10 07:06

/src/ghostpdl/base/gsfunc0.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Implementation of FunctionType 0 (Sampled) Functions */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsfunc0.h"
22
#include "gsparam.h"
23
#include "gxfarith.h"
24
#include "gxfunc.h"
25
#include "stream.h"
26
#include "gsccolor.h"           /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */
27
28
#define POLE_CACHE_DEBUG 0      /* A temporary development technology need.
29
                                   Remove after the beta testing. */
30
0
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
31
                                   Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
32
0
#define POLE_CACHE_IGNORE 0     /* A temporary development technology need.
33
                                   Remove after the beta testing. */
34
35
2.02k
#define MAX_FAST_COMPS 8
36
37
typedef struct gs_function_Sd_s {
38
    gs_function_head_t head;
39
    gs_function_Sd_params_t params;
40
} gs_function_Sd_t;
41
42
/* GC descriptor */
43
private_st_function_Sd();
44
static
45
0
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
46
0
{
47
0
    index -= 6;
48
0
    if (index < st_data_source_max_ptrs)
49
0
        return ENUM_USING(st_data_source, &pfn->params.DataSource,
50
0
                          sizeof(pfn->params.DataSource), index);
51
0
    return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
52
0
}
53
0
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
54
0
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
55
0
ENUM_PTRS_END
56
static
57
0
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
58
0
{
59
0
    RELOC_PREFIX(st_function);
60
0
    RELOC_USING(st_data_source, &pfn->params.DataSource,
61
0
                sizeof(pfn->params.DataSource));
62
0
    RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
63
0
    RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
64
0
}
65
0
RELOC_PTRS_END
66
67
/* Define the maximum plausible number of inputs and outputs */
68
/* for a Sampled function. */
69
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS   /* Allow override with XCFLAGS */
70
712
#  define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
71
#  define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
72
#else
73
#  define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
74
#  define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
75
#endif
76
77
/* Get one set of sample values. */
78
#define SETUP_SAMPLES(bps, nbytes)\
79
263k
        int n = pfn->params.n;\
80
263k
        byte buf[max_Sd_n * ((bps + 7) >> 3)];\
81
263k
        const byte *p;\
82
263k
        int i;\
83
263k
\
84
263k
        data_source_access(&pfn->params.DataSource, offset >> 3,\
85
263k
                           nbytes, buf, &p)
86
87
static int
88
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
89
0
{
90
0
    SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
91
0
    for (i = 0; i < n; ++i) {
92
0
        samples[i] = (*p >> (~offset & 7)) & 1;
93
0
        if (!(++offset & 7))
94
0
            p++;
95
0
    }
96
0
    return 0;
97
0
}
98
static int
99
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
100
0
{
101
0
    SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
102
0
    for (i = 0; i < n; ++i) {
103
0
        samples[i] = (*p >> (6 - (offset & 7))) & 3;
104
0
        if (!((offset += 2) & 7))
105
0
            p++;
106
0
    }
107
0
    return 0;
108
0
}
109
static int
110
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
111
0
{
112
0
    SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
113
0
    for (i = 0; i < n; ++i) {
114
0
        samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
115
0
    }
116
0
    return 0;
117
0
}
118
static int
119
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
120
259k
{
121
259k
    SETUP_SAMPLES(8, n);
122
666k
    for (i = 0; i < n; ++i) {
123
407k
        samples[i] = *p++;
124
407k
    }
125
259k
    return 0;
126
259k
}
127
static int
128
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
129
0
{
130
0
    SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
131
0
    for (i = 0; i < n; ++i) {
132
0
        if (offset & 4)
133
0
            samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
134
0
        else
135
0
            samples[i] = (*p << 4) + (p[1] >> 4), p++;
136
0
        offset ^= 4;
137
0
    }
138
0
    return 0;
139
0
}
140
static int
141
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
142
4.20k
{
143
4.20k
    SETUP_SAMPLES(16, n * 2);
144
8.40k
    for (i = 0; i < n; ++i) {
145
4.20k
        samples[i] = (*p << 8) + p[1];
146
4.20k
        p += 2;
147
4.20k
    }
148
4.20k
    return 0;
149
4.20k
}
150
static int
151
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
152
0
{
153
0
    SETUP_SAMPLES(24, n * 3);
154
0
    for (i = 0; i < n; ++i) {
155
0
        samples[i] = (*p << 16) + (p[1] << 8) + p[2];
156
0
        p += 3;
157
0
    }
158
0
    return 0;
159
0
}
160
static int
161
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
162
0
{
163
0
    SETUP_SAMPLES(32, n * 4);
164
0
    for (i = 0; i < n; ++i) {
165
0
        samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
166
0
        p += 4;
167
0
    }
168
0
    return 0;
169
0
}
170
171
static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
172
                                       ulong offset, uint * samples) =
173
{
174
    0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
175
        fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
176
        fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
177
        fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
178
        fn_gets_32
179
};
180
181
/*
182
 * Compute a value by cubic interpolation.
183
 * f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
184
 * The formula is derived from those presented in
185
 * http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
186
 * (thanks to Raph Levien for the reference).
187
 */
188
static double
189
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
190
0
{
191
    /*
192
     * The parameter 'a' affects the contribution of the high-frequency
193
     * components.  The abovementioned source suggests a = -0.5.
194
     */
195
0
#define a (-0.5)
196
0
#define SQR(v) ((v) * (v))
197
0
#define CUBE(v) ((v) * (v) * (v))
198
0
    const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
199
0
    const double c =
200
0
        (a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
201
0
        ((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
202
0
        ((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
203
0
        (a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
204
205
0
    if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
206
0
              f0, f1, f2, f3, x, c);
207
0
    return c;
208
0
#undef a
209
0
#undef SQR
210
0
#undef CUBE
211
0
}
212
213
/*
214
 * Compute a value by quadratic interpolation.
215
 * f[] = f(0), f(1), f(2); 0 < x < 1.
216
 *
217
 * We used to use a quadratic formula for this, derived from
218
 * f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
219
 * match what we believe is Acrobat Reader's behavior.
220
 */
221
static inline double
222
interpolate_quadratic(double x, double f0, double f1, double f2)
223
0
{
224
0
    return interpolate_cubic(x + 1, f0, f0, f1, f2);
225
0
}
226
227
/* Calculate a result by multicubic interpolation. */
228
static void
229
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
230
                     const int *iparts, const ulong *factors,
231
                     float *samples, ulong offset, int m)
232
0
{
233
0
    int j;
234
235
0
top:
236
0
    if (m == 0) {
237
0
        uint sdata[max_Sd_n];
238
239
0
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
240
0
        for (j = pfn->params.n - 1; j >= 0; --j)
241
0
            samples[j] = (float)sdata[j];
242
0
    } else {
243
0
        float fpart = *fparts++;
244
0
        int ipart = *iparts++;
245
0
        ulong delta = *factors++;
246
0
        int size = pfn->params.Size[pfn->params.m - m];
247
0
        float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
248
249
0
        --m;
250
0
        if (is_fzero(fpart))
251
0
            goto top;
252
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
253
0
                             offset, m);
254
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
255
0
                             offset + delta, m);
256
        /* Ensure we don't try to access out of bounds. */
257
        /*
258
         * If size == 1, the only possible value for ipart and fpart is
259
         * 0, so we've already handled this case.
260
         */
261
0
        if (size == 2) { /* ipart = 0 */
262
            /* Use linear interpolation. */
263
0
            for (j = pfn->params.n - 1; j >= 0; --j)
264
0
                samples[j] += (samples1[j] - samples[j]) * fpart;
265
0
            return;
266
0
        }
267
0
        if (ipart == 0) {
268
            /* Use quadratic interpolation. */
269
0
            fn_interpolate_cubic(pfn, fparts, iparts, factors,
270
0
                                 samples2, offset + delta * 2, m);
271
0
            for (j = pfn->params.n - 1; j >= 0; --j)
272
0
                samples[j] =
273
0
                    interpolate_quadratic(fpart, samples[j],
274
0
                                          samples1[j], samples2[j]);
275
0
            return;
276
0
        }
277
        /* At this point we know ipart > 0, size >= 3. */
278
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
279
0
                             offset - delta, m);
280
0
        if (ipart == size - 2) {
281
            /* Use quadratic interpolation. */
282
0
            for (j = pfn->params.n - 1; j >= 0; --j)
283
0
                samples[j] =
284
0
                    interpolate_quadratic(1 - fpart, samples1[j],
285
0
                                          samples[j], samplesm1[j]);
286
0
            return;
287
0
        }
288
        /* Now we know 0 < ipart < size - 2, size > 3. */
289
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors,
290
0
                             samples2, offset + delta * 2, m);
291
0
        for (j = pfn->params.n - 1; j >= 0; --j)
292
0
            samples[j] =
293
0
                interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
294
0
                                  samples1[j], samples2[j]);
295
0
    }
296
0
}
297
298
/* Calculate a result by multilinear interpolation. */
299
static void
300
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
301
                 const ulong *factors, float *samples, ulong offset, int m)
302
244k
{
303
244k
    int j;
304
305
255k
top:
306
255k
    if (m == 0) {
307
166k
        uint sdata[max_Sd_n];
308
309
166k
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
310
475k
        for (j = pfn->params.n - 1; j >= 0; --j)
311
308k
            samples[j] = (float)sdata[j];
312
166k
    } else {
313
88.4k
        float fpart = *fparts++;
314
88.4k
        float samples1[max_Sd_n];
315
316
88.4k
        if (is_fzero(fpart)) {
317
10.2k
            ++factors;
318
10.2k
            --m;
319
10.2k
            goto top;
320
10.2k
        }
321
78.2k
        fn_interpolate_linear(pfn, fparts, factors + 1, samples,
322
78.2k
                              offset, m - 1);
323
78.2k
        fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
324
78.2k
                              offset + *factors, m - 1);
325
225k
        for (j = pfn->params.n - 1; j >= 0; --j)
326
146k
            samples[j] += (samples1[j] - samples[j]) * fpart;
327
78.2k
    }
328
255k
}
329
330
static inline double
331
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
332
264k
{
333
264k
    float d0, d1, r0, r1;
334
264k
    double value;
335
264k
    int bps = pfn->params.BitsPerSample;
336
    /* x86 machines have problems with shifts if bps >= 32 */
337
264k
    uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;
338
339
264k
    if (pfn->params.Range)
340
264k
        r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
341
0
    else
342
0
        r0 = 0, r1 = (float)max_samp;
343
264k
    if (pfn->params.Decode)
344
116k
        d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
345
148k
    else
346
148k
        d0 = r0, d1 = r1;
347
348
264k
    value = sample * (d1 - d0) / max_samp + d0;
349
264k
    if (value < r0)
350
0
        value = r0;
351
264k
    else if (value > r1)
352
0
        value = r1;
353
264k
    return value;
354
264k
}
355
356
/* Evaluate a Sampled function. */
357
/* A generic algorithm with a recursion by dimentions. */
358
static int
359
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
360
88.4k
{
361
88.4k
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
362
88.4k
    int bps = pfn->params.BitsPerSample;
363
88.4k
    ulong offset = 0;
364
88.4k
    int i;
365
88.4k
    float encoded[max_Sd_m];
366
88.4k
    int iparts[max_Sd_m]; /* only needed for cubic interpolation */
367
88.4k
    ulong factors[max_Sd_m];
368
88.4k
    float samples[max_Sd_n];
369
370
    /* Encode the input values. */
371
372
176k
    for (i = 0; i < pfn->params.m; ++i) {
373
88.4k
        float d0 = pfn->params.Domain[2 * i],
374
88.4k
            d1 = pfn->params.Domain[2 * i + 1];
375
88.4k
        float arg = in[i], enc;
376
377
88.4k
        if (arg < d0)
378
6
            arg = d0;
379
88.4k
        else if (arg > d1)
380
0
            arg = d1;
381
88.4k
        if (pfn->params.Encode) {
382
35.5k
            float e0 = pfn->params.Encode[2 * i];
383
35.5k
            float e1 = pfn->params.Encode[2 * i + 1];
384
385
35.5k
            enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
386
35.5k
            if (enc < 0)
387
0
                encoded[i] = 0;
388
35.5k
            else if (enc >= pfn->params.Size[i] - 1)
389
236
                encoded[i] = (float)pfn->params.Size[i] - 1;
390
35.3k
            else
391
35.3k
                encoded[i] = enc;
392
52.8k
        } else {
393
            /* arg is guaranteed to be in bounds, ergo so is enc */
394
                /* TODO: possible issue here.  if (pfn->params.Size[i] == 1 */
395
52.8k
            encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
396
52.8k
        }
397
88.4k
    }
398
399
    /* Look up and interpolate the output values. */
400
401
88.4k
    {
402
88.4k
        ulong factor = (ulong)bps * pfn->params.n;
403
404
176k
        for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
405
88.4k
            int ipart = (int)encoded[i];
406
407
88.4k
            offset += (factors[i] = factor) * ipart;
408
88.4k
            iparts[i] = ipart;  /* only needed for cubic interpolation */
409
88.4k
            encoded[i] -= ipart;
410
88.4k
        }
411
88.4k
    }
412
88.4k
    if (pfn->params.Order == 3)
413
0
        fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
414
0
                             offset, pfn->params.m);
415
88.4k
    else
416
88.4k
        fn_interpolate_linear(pfn, encoded, factors, samples, offset,
417
88.4k
                              pfn->params.m);
418
419
    /* Encode the output values. */
420
421
250k
    for (i = 0; i < pfn->params.n; ++i)
422
161k
        out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);
423
424
88.4k
    return 0;
425
88.4k
}
426
427
static const double double_stub = 1e90;
428
429
static inline void
430
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
431
            const int pole_step_minor)
432
0
{   /* The following is poles of the polinomial,
433
       which represents interpolate_cubic in [1,2]. */
434
0
    const double a = -0.5;
435
436
0
    p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
437
0
    p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
438
0
}
439
440
static void
441
fn_make_poles(double *p, const int pole_step, int power, int bias)
442
0
{
443
0
    const int pole_step_minor = pole_step / 3;
444
0
    switch(power) {
445
0
        case 1: /* A linear 3d power curve. */
446
            /* bias must be 0. */
447
0
            p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
448
0
            p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
449
0
            break;
450
0
        case 2:
451
            /* bias may be be 0 or 1. */
452
            /* Duplicate the beginning or the ending pole (the old code compatible). */
453
0
            fn_make_cubic_poles(p + pole_step * bias,
454
0
                    p[pole_step * 0], p[pole_step * bias],
455
0
                    p[pole_step * (1 + bias)], p[pole_step * 2],
456
0
                    pole_step_minor);
457
0
            break;
458
0
        case 3:
459
            /* bias must be 1. */
460
0
            fn_make_cubic_poles(p + pole_step * bias,
461
0
                    p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
462
0
                    pole_step_minor);
463
0
            break;
464
0
        default: /* Must not happen. */
465
0
           DO_NOTHING;
466
0
    }
467
0
}
468
469
/* Evaluate a Sampled function.
470
   A cubic interpolation with a pole cache.
471
   Allows a fast check for extreme suspection. */
472
/* This implementation is a particular case of 1 dimension.
473
   maybe we'll use as an optimisation of the generic case,
474
   so keep it for a while. */
475
static int
476
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
477
0
{
478
0
    float d0 = pfn->params.Domain[2 * 0];
479
0
    float d1 = pfn->params.Domain[2 * 0 + 1];
480
0
    const int pole_step_minor = pfn->params.n;
481
0
    const int pole_step = 3 * pole_step_minor;
482
0
    int i0; /* A cell index. */
483
0
    int ib, ie, i, k;
484
0
    double *p, t0, t1, tt;
485
0
486
0
    tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
487
0
    i0 = (int)floor(tt);
488
0
    ib = max(i0 - 1, 0);
489
0
    ie = min(pfn->params.Size[0], i0 + 3);
490
0
    for (i = ib; i < ie; i++) {
491
0
        if (pfn->params.pole[i * pole_step] == double_stub) {
492
0
            uint sdata[max_Sd_n];
493
0
            int bps = pfn->params.BitsPerSample;
494
0
495
0
            p = &pfn->params.pole[i * pole_step];
496
0
            fn_get_samples[pfn->params.BitsPerSample](pfn, (ulong)i * bps * pfn->params.n, sdata);
497
0
            for (k = 0; k < pfn->params.n; k++, p++)
498
0
                *p = fn_Sd_encode(pfn, k, (double)sdata[k]);
499
0
        }
500
0
    }
501
0
    p = &pfn->params.pole[i0 * pole_step];
502
0
    t0 = tt - i0;
503
0
    if (t0 == 0) {
504
0
        for (k = 0; k < pfn->params.n; k++, p++)
505
0
            out[k] = *p;
506
0
    } else {
507
0
        if (p[1 * pole_step_minor] == double_stub) {
508
0
            for (k = 0; k < pfn->params.n; k++)
509
0
                fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
510
0
                        ie - ib - 1, i0 - ib);
511
0
        }
512
0
        t1 = 1 - t0;
513
0
        for (k = 0; k < pfn->params.n; k++, p++) {
514
0
            double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
515
0
                       p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
516
0
                       p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
517
0
                       p[3 * pole_step_minor] * t0 * t0 * t0;
518
0
            if (y < pfn->params.Range[0])
519
0
                y = pfn->params.Range[0];
520
0
            if (y > pfn->params.Range[1])
521
0
                y = pfn->params.Range[1];
522
0
            out[k] = y;
523
0
        }
524
0
    }
525
0
    return 0;
526
0
}
527
528
static inline void
529
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
530
0
{
531
0
    int i;
532
533
0
    for (i = 0; i < pfn->params.m; i++) {
534
0
        float xi = in[i];
535
0
        float d0 = pfn->params.Domain[2 * i + 0];
536
0
        float d1 = pfn->params.Domain[2 * i + 1];
537
0
        double t;
538
539
0
        if (xi < d0)
540
0
            xi = d0;
541
0
        if (xi > d1)
542
0
            xi = d1;
543
0
        t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
544
0
        I[i] = (int)floor(t);
545
0
        T[i] = t - I[i];
546
0
    }
547
0
}
548
549
static inline void
550
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
551
0
{
552
0
    *Ii = I[ii];
553
0
    if (T[ii] != 0) {
554
0
        *ib = max(*Ii - 1, 0);
555
0
        *ie = min(pfn->params.Size[ii], *Ii + 3);
556
0
    } else {
557
0
        *ib = *Ii;
558
0
        *ie = *Ii + 1;
559
0
    }
560
0
}
561
562
static inline int
563
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
564
96.7k
{
565
96.7k
    uint sdata[max_Sd_n];
566
96.7k
    int k, code;
567
568
96.7k
    code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
569
96.7k
    if (code < 0)
570
0
        return code;
571
199k
    for (k = 0; k < pfn->params.n; k++)
572
102k
        V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
573
96.7k
    return 0;
574
96.7k
}
575
576
static inline int
577
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
578
0
{
579
0
    if (*(pfn->params.pole + a_offset) == double_stub) {
580
0
        uint sdata[max_Sd_n];
581
0
        int k, code;
582
583
0
        code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
584
0
        if (code < 0)
585
0
            return code;
586
0
        for (k = 0; k < pfn->params.n; k++)
587
0
            *(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
588
0
    }
589
0
    return 0;
590
0
}
591
592
static inline void
593
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
594
0
{
595
0
    int k;
596
597
0
    for (k = 0; k < pfn->params.n; k++)
598
0
        fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
599
0
}
600
601
static inline void
602
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
603
        int offset, int pole_step, int power, int bias, int ii)
604
0
{
605
0
    if (ii < 0)
606
0
        interpolate_vector(pfn, offset, pole_step, power, bias);
607
0
    else {
608
0
        int s = pfn->params.array_step[ii];
609
0
        int Ii = I[ii];
610
611
0
        if (T[ii] == 0) {
612
0
            interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
613
0
        } else {
614
0
            int l;
615
616
0
            for (l = 0; l < 4; l++)
617
0
                interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
618
0
        }
619
0
    }
620
0
}
621
622
static inline bool
623
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
624
0
{
625
    /* Check an inner pole of the cell. */
626
0
    int i, o = 0;
627
628
0
    for (i = ii; i >= 0; i--) {
629
0
        o += I[i] * pfn->params.array_step[i];
630
0
        if (T[i] != 0)
631
0
            o += pfn->params.array_step[i] / 3;
632
0
    }
633
0
    if (*(pfn->params.pole + a_offset + o) != double_stub)
634
0
        return true;
635
0
    return false;
636
0
}
637
638
/* Creates a tensor of Bezier coefficients by node interpolation. */
639
static inline int
640
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
641
                            int a_offset, int s_offset, int ii)
642
0
{
643
    /* Well, this function isn't obvious. Trying to explain what it does.
644
645
       Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
646
       a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
647
       We represent the multicubic function with a tensor of Besier poles,
648
       and the size of the tensor is 4x4x....x4. Note that the corners
649
       of the tensor are equal to the corners of the 2x2x...x2 hypercube.
650
651
       We organize the 'pole' array so that a tensor of a cell
652
       occupies the cell, and tensors for neighbour cells have a common hyperplane.
653
654
       For a 1-dimentional case let the nodes are n0, n1, n2, n3.
655
       It defines 3 cells n0...n1, n1...n2, n2...n3.
656
       For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
657
       We choose a cubic approximation, in which tangents at nodes n1, n2
658
       are parallel to (n2 - n0) and (n3 - n1) correspondingly.
659
       (Well, this doesn't give a the minimal curvity, but likely it is
660
       what Adobe implementations do, see the bug 687352,
661
       and we agree that it's some reasonable).
662
663
       Then we have :
664
665
       q11 = n0
666
       q12 = (n0/2 + 3*n1 - n2/2)/3;
667
       q11 = (n1/2 + 3*n2 - n3/2)/3;
668
       q13 = n2
669
670
       When the source node array have an insufficient nomber of nodes
671
       along a dimension to determine tangents a cell
672
       (this happens near the array boundaries),
673
       we simply duplicate ending nodes. This solution is done
674
       for the compatibility to the old code, and definitely
675
       there exists a better one. Likely Adobe does the same.
676
677
       For a 2-dimensional case we apply the 1-dimentional case through
678
       the first dimension, and then construct a surface by varying the
679
       second coordinate as a parameter. It gives a bicubic surface,
680
       and the result doesn't depend on the order of coordinates
681
       (I proved the latter with Matematica 3.0).
682
       Then we know that an interpolation by one coordinate and
683
       a differentiation by another coordinate are interchangeble operators.
684
       Due to that poles of the interpolated function are same as
685
       interpolated poles of the function (well, we didn't spend time
686
       for a strong proof, but this fact was confirmed with testing the
687
       implementation with POLE_CACHE_DEBUG).
688
689
       Then we apply the 2-dimentional considerations recursively
690
       to all dimensions. This is exactly what the function does.
691
692
     */
693
0
    int code;
694
695
0
    if (ii < 0) {
696
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
697
0
            code = load_vector(pfn, a_offset, s_offset);
698
0
            if (code < 0)
699
0
                return code;
700
0
        }
701
0
    } else {
702
0
        int Ii, ib, ie, i;
703
0
        int sa = pfn->params.array_step[ii];
704
0
        int ss = pfn->params.stream_step[ii];
705
706
0
        index_span(pfn, I, T, ii, &Ii, &ib, &ie);
707
0
        if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
708
0
            for (i = ib; i < ie; i++) {
709
0
                code = make_interpolation_tensor(pfn, I, T,
710
0
                                a_offset + i * sa, s_offset + i * ss, ii - 1);
711
0
                if (code < 0)
712
0
                    return code;
713
0
            }
714
0
            if (T[ii] != 0)
715
0
                interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
716
0
                                Ii - ib, ii - 1);
717
0
        }
718
0
    }
719
0
    return 0;
720
0
}
721
722
/* Creates a subarray of samples. */
723
static inline int
724
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
725
                            int *I, double *T,
726
                            int a_offset, int s_offset, int ii)
727
0
{
728
0
    int code;
729
730
0
    if (ii < 0) {
731
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
732
0
            code = load_vector(pfn, a_offset, s_offset);
733
0
            if (code < 0)
734
0
                return code;
735
0
        }
736
0
        if (pfn->params.Order == 3) {
737
0
            code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
738
0
            if (code < 0)
739
0
                return code;
740
0
        }
741
0
    } else {
742
0
        int i;
743
0
        int i0 = (int)floor(T0[ii]);
744
0
        int i1 = (int)ceil(T1[ii]);
745
0
        int sa = pfn->params.array_step[ii];
746
0
        int ss = pfn->params.stream_step[ii];
747
748
0
        if (i0 < 0 || i0 >= pfn->params.Size[ii])
749
0
            return_error(gs_error_unregistered); /* Must not happen. */
750
0
        if (i1 < 0 || i1 >= pfn->params.Size[ii])
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
0
        I[ii] = i0;
753
0
        T[ii] = (i1 > i0 ? 1 : 0);
754
0
        for (i = i0; i <= i1; i++) {
755
0
            code = make_interpolation_nodes(pfn, T0, T1, I, T,
756
0
                            a_offset + i * sa, s_offset + i * ss, ii - 1);
757
0
            if (code < 0)
758
0
                return code;
759
0
        }
760
0
    }
761
0
    return 0;
762
0
}
763
764
static inline int
765
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
766
0
{
767
0
    int s = pfn->params.array_step[ii], k, l, code;
768
769
0
    if (ii < 0) {
770
0
        for (k = 0; k < pfn->params.n; k++)
771
0
            y[k] = *(pfn->params.pole + offset + k);
772
0
    } else if (T[ii] == 0) {
773
0
        return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
774
0
    } else {
775
0
        double t0 = T[ii], t1 = 1 - t0;
776
0
        double p[4][max_Sd_n];
777
778
0
        for (l = 0; l < 4; l++) {
779
0
            code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
780
0
            if (code < 0)
781
0
                return code;
782
0
        }
783
0
        for (k = 0; k < pfn->params.n; k++)
784
0
            y[k] = p[0][k] * t1 * t1 * t1 +
785
0
                   p[1][k] * t1 * t1 * t0 * 3 +
786
0
                   p[2][k] * t1 * t0 * t0 * 3 +
787
0
           p[3][k] * t0 * t0 * t0;
788
0
    }
789
0
    return 0;
790
0
}
791
792
/* Evaluate a Sampled function. */
793
/* A cubic interpolation with pole cache. */
794
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
795
static int
796
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
797
0
{
798
0
    double T[max_Sd_m], y[max_Sd_n];
799
0
    int I[max_Sd_m], k, code;
800
801
0
    decode_argument(pfn, in, T, I);
802
0
    code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
803
0
    if (code < 0)
804
0
        return code;
805
0
    evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
806
0
    for (k = 0; k < pfn->params.n; k++) {
807
0
        double yk = y[k];
808
809
0
        if (yk < pfn->params.Range[k * 2 + 0])
810
0
            yk = pfn->params.Range[k * 2 + 0];
811
0
        if (yk > pfn->params.Range[k * 2 + 1])
812
0
            yk = pfn->params.Range[k * 2 + 1];
813
0
        out[k] = yk;
814
0
    }
815
0
    return 0;
816
0
}
817
818
/* Evaluate a Sampled function. */
819
static int
820
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
821
88.4k
{
822
88.4k
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
823
88.4k
    int code;
824
825
88.4k
    if (pfn->params.Order == 3) {
826
0
        if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
827
0
            code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
828
0
        else
829
0
            code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
830
# if POLE_CACHE_DEBUG
831
        {   float y[max_Sd_n];
832
            int k, code1;
833
834
            code1 = fn_Sd_evaluate_general(pfn_common, in, y);
835
            if (code != code1)
836
                return_error(gs_error_unregistered); /* Must not happen. */
837
            for (k = 0; k < pfn->params.n; k++) {
838
                if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
839
                    return_error(gs_error_unregistered); /* Must not happen. */
840
            }
841
        }
842
# endif
843
0
    } else
844
88.4k
        code = fn_Sd_evaluate_general(pfn_common, in, out);
845
88.4k
    return code;
846
88.4k
}
847
848
/* Map a function subdomain to the sample index subdomain. */
849
static inline int
850
get_scaled_range(const gs_function_Sd_t *const pfn,
851
                   const float *lower, const float *upper,
852
                   int i, float *pw0, float *pw1)
853
611
{
854
611
    float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
855
611
    float v0 = lower[i], v1 = upper[i];
856
611
    float e0, e1, w0, w1, w;
857
611
    const float small_noise = (float)1e-6;
858
859
611
    if (v0 < d0 || v0 > d1)
860
2
        return_error(gs_error_rangecheck);
861
609
    if (pfn->params.Encode)
862
283
        e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
863
326
    else
864
326
        e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
865
609
    w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
866
609
    if (w0 < 0)
867
0
        w0 = 0;
868
609
    else if (w0 >= pfn->params.Size[i] - 1)
869
71
        w0 = (float)pfn->params.Size[i] - 1;
870
609
    w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
871
609
    if (w1 < 0)
872
0
        w1 = 0;
873
609
    else if (w1 >= pfn->params.Size[i] - 1)
874
95
        w1 = (float)pfn->params.Size[i] - 1;
875
609
    if (w0 > w1) {
876
67
        w = w0; w0 = w1; w1 = w;
877
67
    }
878
609
    if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
879
0
        w0 = (floor(w0) + 1);
880
609
    if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
881
281
        w1 = floor(w1);
882
609
    if (w0 > w1)
883
0
        w0 = w1;
884
609
    *pw0 = w0;
885
609
    *pw1 = w1;
886
609
    return 0;
887
611
}
888
889
/* Copy a tensor to a differently indexed pole array. */
890
static int
891
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
892
                int ii, double *pole, int p_offset, int pole_step)
893
0
{
894
0
    int i, ei, sa, code;
895
0
    int order = pfn->params.Order;
896
897
0
    if (pole_step <= 0)
898
0
        return_error(gs_error_limitcheck); /* Too small buffer. */
899
0
    ei = (T0[ii] == T1[ii] ? 1 : order + 1);
900
0
    sa = pfn->params.array_step[ii];
901
0
    if (ii == 0) {
902
0
        for (i = 0; i < ei; i++)
903
0
            *(pole + p_offset + i * pole_step) =
904
0
                    *(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
905
0
    } else {
906
0
        for (i = 0; i < ei; i++) {
907
0
            code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
908
0
                            pole, p_offset + i * pole_step, pole_step / 4);
909
0
            if (code < 0)
910
0
                return code;
911
0
        }
912
0
    }
913
0
    return 0;
914
0
}
915
916
static inline void
917
subcurve(double *pole, int pole_step, double t0, double t1)
918
0
{
919
    /* Generated with subcurve.nb using Mathematica 3.0. */
920
0
    double q0 = pole[pole_step * 0];
921
0
    double q1 = pole[pole_step * 1];
922
0
    double q2 = pole[pole_step * 2];
923
0
    double q3 = pole[pole_step * 3];
924
0
    double t01 = t0 - 1, t11 = t1 - 1;
925
0
    double small = 1e-13;
926
927
0
#define Power2(a) (a) * (a)
928
0
#define Power3(a) (a) * (a) * (a)
929
0
    pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
930
0
    pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
931
0
                            3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
932
0
    pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
933
0
                            q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
934
0
    pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
935
0
                            3*q1*Power2(t11)) - q0*Power3(t11);
936
0
#undef Power2
937
0
#undef Power3
938
0
    if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
939
0
        pole[pole_step * 1] = pole[pole_step * 0];
940
0
    if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
941
0
        pole[pole_step * 2] = pole[pole_step * 3];
942
0
}
943
944
static inline void
945
subline(double *pole, int pole_step, double t0, double t1)
946
0
{
947
0
    double q0 = pole[pole_step * 0];
948
0
    double q1 = pole[pole_step * 1];
949
950
0
    pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
951
0
    pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
952
0
}
953
954
static void
955
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
956
                int p_offset, int pole_step, int pole_step_i, int order)
957
0
{
958
0
    if (ii < 0) {
959
0
        if (order == 3)
960
0
            subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
961
0
        else
962
0
            subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
963
0
    } else if (i == ii) {
964
0
        clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
965
0
    } else {
966
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);
967
968
0
        for (j = 0; j < ei; j++)
969
0
            clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
970
0
                            pole_step / 4, pole_step_i, order);
971
0
    }
972
0
}
973
974
static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
975
curve_monotonity(double *pole, int pole_step)
976
0
{
977
0
    double p0 = pole[pole_step * 0];
978
0
    double p1 = pole[pole_step * 1];
979
0
    double p2 = pole[pole_step * 2];
980
0
    double p3 = pole[pole_step * 3];
981
982
0
    if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
983
0
        return 0;
984
0
    if (p0 <= p1 && p1 <= p2 && p2 <= p3)
985
0
        return 1;
986
0
    if (p0 >= p1 && p1 >= p2 && p2 >= p3)
987
0
        return 2;
988
    /* Maybe not monotonic.
989
       Don't want to solve quadratic equations, so return "don't know".
990
       This case should be rare.
991
     */
992
0
    return 3;
993
0
}
994
995
static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
996
line_monotonity(double *pole, int pole_step)
997
0
{
998
0
    double p0 = pole[pole_step * 0];
999
0
    double p1 = pole[pole_step * 1];
1000
1001
0
    if (p1 - p0 > 1e-13)
1002
0
        return 1;
1003
0
    if (p0 - p1 > 1e-13)
1004
0
        return 2;
1005
0
    return 0;
1006
0
}
1007
1008
static int /* 3 bits per guide : 3 - non-monotonic or don't know,
1009
                    2 - decreesing, 0 - constant, 1 - increasing.
1010
                    The number of guides is order+1. */
1011
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
1012
                int p_offset, int pole_step, int pole_step_i, int order)
1013
0
{
1014
0
    if (ii < 0) {
1015
0
        if (order == 3)
1016
0
            return curve_monotonity(pole + p_offset, pole_step_i);
1017
0
        else
1018
0
            return line_monotonity(pole + p_offset, pole_step_i);
1019
0
    } else if (i0 == ii) {
1020
        /* Delay the dimension till the end, and adjust pole_step. */
1021
0
        return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
1022
0
                            pole_step / 4, pole_step, order);
1023
0
    } else {
1024
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;
1025
1026
0
        for (j = 0; j < ei; j++) {
1027
0
            mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
1028
0
                            pole_step/ 4, pole_step_i, order);
1029
0
            m |= mm << (j * 3);
1030
0
            if (mm == 3) {
1031
                /* If one guide is not monotonic, the dimension is not monotonic.
1032
                   Can return early. */
1033
0
                break;
1034
0
            }
1035
0
        }
1036
0
        return m;
1037
0
    }
1038
0
}
1039
1040
static inline int
1041
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
1042
                    uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
1043
                    2 - decreesing, 0 - constant, 1 - increasing.
1044
                    The number of guides is order+1. */)
1045
0
{
1046
0
    double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
1047
                 More arguments need a bigger buffer, but the rest of code is same. */
1048
0
    int i, code, ii = pfn->params.m - 1;
1049
0
    double TT0[3], TT1[3];
1050
1051
0
    *mask = 0;
1052
0
    if (ii >= 3) {
1053
         /* Unimplemented. We don't know practical cases,
1054
            because currently it is only called while decomposing a shading.  */
1055
0
        return_error(gs_error_limitcheck);
1056
0
    }
1057
0
    code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
1058
0
    if (code < 0)
1059
0
        return code;
1060
0
    for (i = ii; i >= 0; i--) {
1061
0
        TT0[i] = 0;
1062
0
        if (T0[i] != T1[i]) {
1063
0
            if (T0[i] != 0 || T1[i] != 1)
1064
0
                clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
1065
0
            TT1[i] = 1;
1066
0
        } else
1067
0
            TT1[i] = 0;
1068
0
    }
1069
0
    *mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
1070
0
                        count_of(pole) / 4, 1, pfn->params.Order);
1071
0
    return 0;
1072
0
}
1073
1074
static int /* error code */
1075
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1076
        int *I, double *S0, double *S1, int ii, int i0, int k,
1077
        uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
1078
                      The number of guides is order+1. */)
1079
0
{
1080
0
    if (ii == -1) {
1081
        /* fixme : could cache the cell monotonity against redundant evaluation. */
1082
0
        return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
1083
0
    } else {
1084
0
        int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
1085
0
        int j, code;
1086
0
        int bi = (int)floor(T0[i1]);
1087
0
        int ei = (int)floor(T1[i1]);
1088
0
        uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);
1089
1090
0
        if (floor(T1[i1]) == T1[i1])
1091
0
            ei --;
1092
0
        m = 0;
1093
0
        for (j = bi; j <= ei; j++) {
1094
            /* fixme : A better performance may be obtained with comparing central nodes with side ones. */
1095
0
            I[i1] = j;
1096
0
            S0[i1] = max(T0[i1] - j, 0);
1097
0
            S1[i1] = min(T1[i1] - j, 1);
1098
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
1099
0
            if (code < 0)
1100
0
                return code;
1101
0
            m |= mm;
1102
0
            if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
1103
0
                break;
1104
0
        }
1105
0
        if (ii == 0) {
1106
            /* Detect non-monotonic guides. */
1107
0
            m = m & (m >> 1);
1108
0
        }
1109
0
        *mask = m;
1110
0
        return 0;
1111
0
    }
1112
0
}
1113
1114
static inline int /* error code */
1115
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1116
         int *I, double *S0, double *S1,
1117
         int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1118
                      0 - monotonic. */)
1119
0
{
1120
0
    uint m, mm = 0;
1121
0
    int i, code;
1122
1123
0
    for (i = 0; i < pfn->params.m; i++) {
1124
0
        if (T0[i] != T1[i]) {
1125
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
1126
0
            if (code < 0)
1127
0
                return code;
1128
0
            if (m)
1129
0
                mm |= 1 << i;
1130
0
        }
1131
0
    }
1132
0
    *mask = mm;
1133
0
    return 0;
1134
0
}
1135
1136
static int /* 3 bits per result : 3 - non-monotonic or don't know,
1137
               2 - decreesing, 0 - constant, 1 - increasing,
1138
               <0 - error. */
1139
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
1140
                                const double *V0, const double *V1)
1141
192k
{
1142
192k
    if (i1 - i0 <= 1) {
1143
96.4k
        int code = 0, i;
1144
1145
198k
        for (i = 0; i < pfn->params.n; i++) {
1146
102k
            if (V0[i] < V1[i])
1147
10.8k
                code |= 1 << (i * 3);
1148
91.2k
            else if (V0[i] > V1[i])
1149
1.37k
                code |= 2 << (i * 3);
1150
102k
        }
1151
96.4k
        return code;
1152
96.4k
    } else {
1153
96.1k
        double VV[MAX_FAST_COMPS];
1154
96.1k
        int ii = (i0 + i1) / 2, code, cod1;
1155
1156
96.1k
        code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
1157
96.1k
        if (code < 0)
1158
0
            return code;
1159
96.1k
        if (code & (code >> 1))
1160
0
            return code; /* Not monotonic by some component of the result. */
1161
96.1k
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
1162
96.1k
        if (code < 0)
1163
0
            return code;
1164
96.1k
        cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
1165
96.1k
        if (cod1 < 0)
1166
0
            return cod1;
1167
96.1k
        return code | cod1;
1168
96.1k
    }
1169
192k
}
1170
1171
static int
1172
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
1173
                            uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
1174
609
{
1175
609
    int i0 = (int)floor(T0);
1176
609
    int i1 = (int)ceil(T1), code;
1177
609
    double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];
1178
1179
609
    if (i1 - i0 > 1) {
1180
294
        code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
1181
294
        if (code < 0)
1182
0
            return code;
1183
294
        code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
1184
294
        if (code < 0)
1185
0
            return code;
1186
294
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
1187
294
        if (code < 0)
1188
0
            return code;
1189
294
        if (code & (code >> 1)) {
1190
0
            *mask = 1;
1191
0
            return 0;
1192
0
        }
1193
294
    }
1194
609
    *mask = 0;
1195
609
    return 1;
1196
609
}
1197
1198
0
#define DEBUG_Sd_1arg 0
1199
1200
/* Test whether a Sampled function is monotonic. */
1201
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
1202
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
1203
                   const float *lower, const float *upper,
1204
                   uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1205
                      0 - monotonic. */)
1206
611
{
1207
611
    int i, code, ii = pfn->params.m - 1;
1208
611
    int I[4];
1209
611
    double T0[count_of(I)], T1[count_of(I)];
1210
611
    double S0[count_of(I)], S1[count_of(I)];
1211
611
    uint m, mm, m1;
1212
#   if DEBUG_Sd_1arg
1213
    int code1, mask1;
1214
#   endif
1215
1216
611
    if (ii >= count_of(T0)) {
1217
         /* Unimplemented. We don't know practical cases,
1218
            because currently it is only called while decomposing a shading.  */
1219
0
        return_error(gs_error_limitcheck);
1220
0
    }
1221
1.22k
    for (i = 0; i <= ii; i++) {
1222
611
        float w0, w1;
1223
1224
611
        code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
1225
611
        if (code < 0)
1226
2
            return code;
1227
609
        T0[i] = w0;
1228
609
        T1[i] = w1;
1229
609
    }
1230
609
    if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
1231
609
        code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
1232
609
# if !DEBUG_Sd_1arg
1233
609
            return code;
1234
# else
1235
            mask1 = *mask;
1236
            code1 = code;
1237
# endif
1238
609
    }
1239
0
    m1 = (1 << pfn->params.m )- 1;
1240
0
    code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
1241
0
    if (code < 0)
1242
0
        return code;
1243
0
    mm = 0;
1244
0
    for (i = 0; i < pfn->params.n; i++) {
1245
0
        code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
1246
0
        if (code < 0)
1247
0
            return code;
1248
0
        mm |= m;
1249
0
        if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
1250
0
            break;
1251
0
    }
1252
#   if DEBUG_Sd_1arg
1253
        if (mask1 != mm)
1254
            return_error(gs_error_unregistered);
1255
        if (code1 != !mm)
1256
            return_error(gs_error_unregistered);
1257
#   endif
1258
0
    *mask = mm;
1259
0
    return !mm;
1260
0
}
1261
1262
/* Test whether a Sampled function is monotonic. */
1263
/* 1 = monotonic, 0 = don't know, <0 = error. */
1264
static int
1265
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
1266
                   const float *lower, const float *upper, uint *mask)
1267
611
{
1268
611
    const gs_function_Sd_t *const pfn =
1269
611
        (const gs_function_Sd_t *)pfn_common;
1270
1271
611
    return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
1272
611
}
1273
1274
/* Return Sampled function information. */
1275
static void
1276
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
1277
0
{
1278
0
    const gs_function_Sd_t *const pfn =
1279
0
        (const gs_function_Sd_t *)pfn_common;
1280
0
    long size;
1281
0
    int i;
1282
1283
0
    gs_function_get_info_default(pfn_common, pfi);
1284
0
    pfi->DataSource = &pfn->params.DataSource;
1285
0
    for (i = 0, size = 1; i < pfn->params.m; ++i)
1286
0
        size *= pfn->params.Size[i];
1287
0
    pfi->data_size =
1288
0
        (size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
1289
0
}
1290
1291
/* Write Sampled function parameters on a parameter list. */
1292
static int
1293
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
1294
0
{
1295
0
    const gs_function_Sd_t *const pfn =
1296
0
        (const gs_function_Sd_t *)pfn_common;
1297
0
    int ecode = fn_common_get_params(pfn_common, plist);
1298
0
    int code;
1299
1300
0
    if (pfn->params.Order != 1) {
1301
0
        if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
1302
0
            ecode = code;
1303
0
    }
1304
0
    if ((code = param_write_int(plist, "BitsPerSample",
1305
0
                                &pfn->params.BitsPerSample)) < 0)
1306
0
        ecode = code;
1307
0
    if (pfn->params.Encode) {
1308
0
        if ((code = param_write_float_values(plist, "Encode",
1309
0
                                             pfn->params.Encode,
1310
0
                                             2 * pfn->params.m, false)) < 0)
1311
0
            ecode = code;
1312
0
    }
1313
0
    if (pfn->params.Decode) {
1314
0
        if ((code = param_write_float_values(plist, "Decode",
1315
0
                                             pfn->params.Decode,
1316
0
                                             2 * pfn->params.n, false)) < 0)
1317
0
            ecode = code;
1318
0
    }
1319
0
    if (pfn->params.Size) {
1320
0
        if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
1321
0
                                           pfn->params.m, false)) < 0)
1322
0
            ecode = code;
1323
0
    }
1324
0
    return ecode;
1325
0
}
1326
1327
/* Make a scaled copy of a Sampled function. */
1328
static int
1329
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
1330
                  const gs_range_t *pranges, gs_memory_t *mem)
1331
0
{
1332
0
    gs_function_Sd_t *psfn =
1333
0
        gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1334
0
                        "fn_Sd_make_scaled");
1335
0
    int code;
1336
1337
0
    if (psfn == 0)
1338
0
        return_error(gs_error_VMerror);
1339
0
    psfn->params = pfn->params;
1340
0
    psfn->params.Encode = 0;    /* in case of failure */
1341
0
    psfn->params.Decode = 0;
1342
0
    psfn->params.Size =
1343
0
        fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
1344
0
    if ((code = (psfn->params.Size == 0 ?
1345
0
                 gs_note_error(gs_error_VMerror) : 0)) < 0 ||
1346
0
        (code = fn_common_scale((gs_function_t *)psfn,
1347
0
                                (const gs_function_t *)pfn,
1348
0
                                pranges, mem)) < 0 ||
1349
0
        (code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
1350
0
                               pfn->params.m, NULL, mem)) < 0 ||
1351
0
        (code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
1352
0
                               pfn->params.n, pranges, mem)) < 0) {
1353
0
        gs_function_free((gs_function_t *)psfn, true, mem);
1354
0
    } else
1355
0
        *ppsfn = psfn;
1356
0
    return code;
1357
0
}
1358
1359
/* Free the parameters of a Sampled function. */
1360
void
1361
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
1362
743
{
1363
743
    gs_free_const_object(mem, params->Size, "Size");
1364
743
    params->Size = NULL;
1365
743
    gs_free_const_object(mem, params->Decode, "Decode");
1366
743
    params->Decode = NULL;
1367
743
    gs_free_const_object(mem, params->Encode, "Encode");
1368
743
    params->Encode = NULL;
1369
743
    fn_common_free_params((gs_function_params_t *) params, mem);
1370
743
    if (params->DataSource.type == data_source_type_stream && params->DataSource.data.strm != NULL) {
1371
712
        s_close_filters(&params->DataSource.data.strm, params->DataSource.data.strm->strm);
1372
712
        params->DataSource.data.strm = NULL;
1373
712
    }
1374
743
    gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
1375
743
    params->pole = NULL;
1376
743
    gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
1377
743
    params->array_step = NULL;
1378
743
    gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
1379
743
    params->stream_step = NULL;
1380
743
}
1381
1382
/* aA helper for gs_function_Sd_serialize. */
1383
static int serialize_array(const float *a, int half_size, stream *s)
1384
0
{
1385
0
    uint n;
1386
0
    const float dummy[2] = {0, 0};
1387
0
    int i, code;
1388
1389
0
    if (a != NULL)
1390
0
        return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
1391
0
    for (i = 0; i < half_size; i++) {
1392
0
        code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
1393
0
        if (code < 0)
1394
0
            return code;
1395
0
    }
1396
0
    return 0;
1397
0
}
1398
1399
/* Serialize. */
1400
static int
1401
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
1402
0
{
1403
0
    uint n;
1404
0
    const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
1405
0
    gs_function_info_t info;
1406
0
    int code = fn_common_serialize(pfn, s);
1407
0
    ulong pos;
1408
0
    uint count;
1409
0
    byte buf[100];
1410
0
    const byte *ptr;
1411
1412
0
    if (code < 0)
1413
0
        return code;
1414
0
    code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
1415
0
    if (code < 0)
1416
0
        return code;
1417
0
    code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
1418
0
    if (code < 0)
1419
0
        return code;
1420
0
    code = serialize_array(p->Encode, p->m, s);
1421
0
    if (code < 0)
1422
0
        return code;
1423
0
    code = serialize_array(p->Decode, p->n, s);
1424
0
    if (code < 0)
1425
0
        return code;
1426
0
    gs_function_get_info(pfn, &info);
1427
0
    code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
1428
0
    if (code < 0)
1429
0
        return code;
1430
0
    for (pos = 0; pos < info.data_size; pos += count) {
1431
0
        count = min(sizeof(buf), info.data_size - pos);
1432
0
        data_source_access_only(info.DataSource, pos, count, buf, &ptr);
1433
0
        code = sputs(s, ptr, count, &n);
1434
0
        if (code < 0)
1435
0
            return code;
1436
0
    }
1437
0
    return 0;
1438
0
}
1439
1440
/* Allocate and initialize a Sampled function. */
1441
int
1442
gs_function_Sd_init(gs_function_t ** ppfn,
1443
                  const gs_function_Sd_params_t * params, gs_memory_t * mem)
1444
712
{
1445
712
    static const gs_function_head_t function_Sd_head = {
1446
712
        function_type_Sampled,
1447
712
        {
1448
712
            (fn_evaluate_proc_t) fn_Sd_evaluate,
1449
712
            (fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
1450
712
            (fn_get_info_proc_t) fn_Sd_get_info,
1451
712
            (fn_get_params_proc_t) fn_Sd_get_params,
1452
712
            (fn_make_scaled_proc_t) fn_Sd_make_scaled,
1453
712
            (fn_free_params_proc_t) gs_function_Sd_free_params,
1454
712
            fn_common_free,
1455
712
            (fn_serialize_proc_t) gs_function_Sd_serialize,
1456
712
        }
1457
712
    };
1458
712
    int code;
1459
712
    int i;
1460
1461
712
    *ppfn = 0;      /* in case of error */
1462
712
    code = fn_check_mnDR((const gs_function_params_t *)params,
1463
712
                         params->m, params->n);
1464
712
    if (code < 0)
1465
0
        return code;
1466
712
    if (params->m > max_Sd_m)
1467
0
        return_error(gs_error_limitcheck);
1468
712
    switch (params->Order) {
1469
0
        case 0:   /* use default */
1470
712
        case 1:
1471
712
        case 3:
1472
712
            break;
1473
0
        default:
1474
0
            return_error(gs_error_rangecheck);
1475
712
    }
1476
712
    switch (params->BitsPerSample) {
1477
0
        case 1:
1478
0
        case 2:
1479
0
        case 4:
1480
701
        case 8:
1481
701
        case 12:
1482
712
        case 16:
1483
712
        case 24:
1484
712
        case 32:
1485
712
            break;
1486
0
        default:
1487
0
            return_error(gs_error_rangecheck);
1488
712
    }
1489
1.44k
    for (i = 0; i < params->m; ++i)
1490
734
        if (params->Size[i] <= 0)
1491
0
            return_error(gs_error_rangecheck);
1492
712
    {
1493
712
        gs_function_Sd_t *pfn =
1494
712
            gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1495
712
                            "gs_function_Sd_init");
1496
712
        int bps, sa, ss, i, order, was;
1497
1498
712
        if (pfn == 0)
1499
0
            return_error(gs_error_VMerror);
1500
712
        pfn->params = *params;
1501
712
        if (params->Order == 0)
1502
0
            pfn->params.Order = 1; /* default */
1503
712
        pfn->params.pole = NULL;
1504
712
        pfn->params.array_step = NULL;
1505
712
        pfn->params.stream_step = NULL;
1506
712
        pfn->head = function_Sd_head;
1507
712
        pfn->params.array_size = 0;
1508
712
        if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
1509
            /* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
1510
701
        } else {
1511
11
            pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
1512
11
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1513
11
            pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
1514
11
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1515
11
            if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
1516
0
                return_error(gs_error_VMerror);
1517
11
            bps = pfn->params.BitsPerSample;
1518
11
            sa = pfn->params.n;
1519
11
            ss = pfn->params.n * bps;
1520
11
            order = pfn->params.Order;
1521
44
            for (i = 0; i < pfn->params.m; i++) {
1522
33
                pfn->params.array_step[i] = sa * order;
1523
33
                was = sa;
1524
33
                sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
1525
                /* If the calculation of sa went backwards then we overflowed! */
1526
33
                if (was > sa)
1527
0
                    return_error(gs_error_VMerror);
1528
33
                pfn->params.stream_step[i] = ss;
1529
33
                ss = pfn->params.Size[i] * ss;
1530
33
            }
1531
11
            pfn->params.pole = (double *)gs_alloc_byte_array(mem,
1532
11
                                    sa, sizeof(double), "gs_function_Sd_init");
1533
11
            if (pfn->params.pole == NULL)
1534
0
                return_error(gs_error_VMerror);
1535
72.5k
            for (i = 0; i < sa; i++)
1536
72.5k
                pfn->params.pole[i] = double_stub;
1537
11
            pfn->params.array_size = sa;
1538
11
        }
1539
712
        *ppfn = (gs_function_t *) pfn;
1540
712
    }
1541
0
    return 0;
1542
712
}