Coverage Report

Created: 2025-06-10 07:06

/src/ghostpdl/base/gxshade6.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2024 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Rendering for Coons and tensor patch shadings */
18
/*
19
   A contiguous non-overlapping decomposition
20
   of a tensor shading into linear color triangles.
21
 */
22
#include "memory_.h"
23
#include "gx.h"
24
#include "gserrors.h"
25
#include "gsmatrix.h"           /* for gscoord.h */
26
#include "gscoord.h"
27
#include "gscicach.h"
28
#include "gxcspace.h"
29
#include "gxdcolor.h"
30
#include "gxgstate.h"
31
#include "gxshade.h"
32
#include "gxdevcli.h"
33
#include "gxshade4.h"
34
#include "gxarith.h"
35
#include "gzpath.h"
36
#include "stdint_.h"
37
#include "math_.h"
38
#include "gsicc_cache.h"
39
#include "gxdevsop.h"
40
41
/* The original version of the shading code 'decompose's shadings into
42
 * smaller and smaller regions until they are smaller than 1 pixel, and then
43
 * fills them. (Either with a constant colour, or with a linear filled trap).
44
 *
45
 * Previous versions of the code (from svn revision 7936 until June 2011
46
 * (shortly after the switch to git)) changed this limit to be 1 point or 1
47
 * pixel (whichever is larger) (on the grounds that as resolution increases,
48
 * we are unlikely to be able to notice increasingly small inaccuracies in
49
 * the shading). Given how people abuse the resolution at which things are
50
 * rendered (especially when rendering to images that can subsequently be
51
 * zoomed), this seems a poor trade off. See bug 691152.
52
 *
53
 * The code has now been changed back to operate with the proper 1 pixel
54
 * decomposition, which will cost us performance in some cases. Should
55
 * people want to restore the previous operation, they should build with
56
 * MAX_SHADING_RESOLUTION predefined to 72. In general, this symbol can be
57
 * set to the maximum dpi that shading should ever be performed at. Leaving
58
 * it undefined will leave the default (1 pixel limit) in place.
59
 *
60
 * A possible future optimisation here may be to use different max shading
61
 * resolutions for linear and non-linear shadings; linear shadings appear to
62
 * result in calls to "fill linear traps", and non linear ones appear to
63
 * result in calls to "fill constant color". As such linear shadings are much
64
 * more forgiving of a higher decomposition threshold.
65
 */
66
67
#if NOFILL_TEST
68
static bool dbg_nofill = false;
69
#endif
70
#if SKIP_TEST
71
static int dbg_patch_cnt = 0;
72
static int dbg_quad_cnt = 0;
73
static int dbg_triangle_cnt = 0;
74
static int dbg_wedge_triangle_cnt = 0;
75
#endif
76
77
enum {
78
    min_linear_grades = 255 /* The minimal number of device color grades,
79
            required to apply linear color device functions. */
80
};
81
82
/* ================ Utilities ================ */
83
84
static int
85
allocate_color_stack(patch_fill_state_t *pfs, gs_memory_t *memory)
86
1.86k
{
87
1.86k
    if (pfs->color_stack != NULL)
88
0
        return 0;
89
1.86k
    pfs->color_stack_step = offset_of(patch_color_t, cc.paint.values[pfs->num_components]);
90
1.86k
    pfs->color_stack_step = (pfs->color_stack_step + sizeof(void *) - 1) / sizeof(void *) * sizeof(void *); /* Alignment */
91
92
1.86k
    pfs->color_stack_size = pfs->color_stack_step * SHADING_COLOR_STACK_SIZE;
93
1.86k
    pfs->color_stack = gs_alloc_bytes(memory, pfs->color_stack_size, "allocate_color_stack");
94
1.86k
    if (pfs->color_stack == NULL)
95
0
        return_error(gs_error_VMerror);
96
1.86k
    pfs->color_stack_limit = pfs->color_stack + pfs->color_stack_size;
97
1.86k
    pfs->color_stack_ptr = pfs->color_stack;
98
1.86k
    pfs->memory = memory;
99
1.86k
    return 0;
100
1.86k
}
101
102
static inline byte *
103
reserve_colors_inline(patch_fill_state_t *pfs, patch_color_t *c[], int n)
104
3.51M
{
105
3.51M
    int i;
106
3.51M
    byte *ptr0 = pfs->color_stack_ptr, *ptr = ptr0;
107
108
10.8M
    for (i = 0; i < n; i++, ptr += pfs->color_stack_step)
109
7.35M
        c[i] = (patch_color_t *)ptr;
110
3.51M
    if (ptr > pfs->color_stack_limit) {
111
0
        c[0] = NULL; /* safety. */
112
0
        return NULL;
113
0
    }
114
3.51M
    pfs->color_stack_ptr = ptr;
115
3.51M
    return ptr0;
116
3.51M
}
117
118
byte *
119
reserve_colors(patch_fill_state_t *pfs, patch_color_t *c[], int n)
120
24
{
121
24
    return reserve_colors_inline(pfs, c, n);
122
24
}
123
124
static inline void
125
release_colors_inline(patch_fill_state_t *pfs, byte *ptr, int n)
126
3.51M
{
127
#if 0 /* Saving the invariant for records. */
128
    pfs->color_stack_ptr = pfs->color_stack_step * n;
129
    assert((byte *)pfs->color_stack_ptr == ptr);
130
#else
131
3.51M
    pfs->color_stack_ptr = ptr;
132
3.51M
#endif
133
3.51M
}
134
void
135
release_colors(patch_fill_state_t *pfs, byte *ptr, int n)
136
24
{
137
24
    release_colors_inline(pfs, ptr, n);
138
24
}
139
140
/* Get colors for patch vertices. */
141
static int
142
shade_next_colors(shade_coord_stream_t * cs, patch_curve_t * curves,
143
                  int num_vertices)
144
68.2k
{
145
68.2k
    int i, code = 0;
146
147
284k
    for (i = 0; i < num_vertices && code >= 0; ++i) {
148
216k
        curves[i].vertex.cc[1] = 0; /* safety. (patch_fill may assume 2 arguments) */
149
216k
        code = shade_next_color(cs, curves[i].vertex.cc);
150
216k
    }
151
68.2k
    return code;
152
68.2k
}
153
154
/* Get a Bezier or tensor patch element. */
155
static int
156
shade_next_curve(shade_coord_stream_t * cs, patch_curve_t * curve)
157
176k
{
158
176k
    int code = shade_next_coords(cs, &curve->vertex.p, 1);
159
160
176k
    if (code >= 0)
161
176k
        code = shade_next_coords(cs, curve->control,
162
176k
                                 countof(curve->control));
163
176k
    return code;
164
176k
}
165
166
/*
167
 * Parse the next patch out of the input stream.  Return 1 if done,
168
 * 0 if patch, <0 on error.
169
 */
170
static int
171
shade_next_patch(shade_coord_stream_t * cs, int BitsPerFlag,
172
        patch_curve_t curve[4], gs_fixed_point interior[4] /* 0 for Coons patch */)
173
68.3k
{
174
68.3k
    int flag = shade_next_flag(cs, BitsPerFlag);
175
68.3k
    int num_colors, code;
176
177
68.3k
    if (flag < 0) {
178
42
        if (!cs->is_eod(cs))
179
0
            return_error(gs_error_rangecheck);
180
42
        return 1;               /* no more data */
181
42
    }
182
68.2k
    if (cs->first_patch && (flag & 3) != 0) {
183
0
        return_error(gs_error_rangecheck);
184
0
    }
185
68.2k
    cs->first_patch = 0;
186
68.2k
    switch (flag & 3) {
187
0
        default:
188
0
            return_error(gs_error_rangecheck);  /* not possible */
189
39.8k
        case 0:
190
39.8k
            if ((code = shade_next_curve(cs, &curve[0])) < 0 ||
191
39.8k
                (code = shade_next_coords(cs, &curve[1].vertex.p, 1)) < 0
192
39.8k
                )
193
0
                return code;
194
39.8k
            num_colors = 4;
195
39.8k
            goto vx;
196
7.24k
        case 1:
197
7.24k
            curve[0] = curve[1], curve[1].vertex = curve[2].vertex;
198
7.24k
            goto v3;
199
7.74k
        case 2:
200
7.74k
            curve[0] = curve[2], curve[1].vertex = curve[3].vertex;
201
7.74k
            goto v3;
202
13.3k
        case 3:
203
13.3k
            curve[1].vertex = curve[0].vertex, curve[0] = curve[3];
204
28.3k
v3:         num_colors = 2;
205
68.2k
vx:         if ((code = shade_next_coords(cs, curve[1].control, 2)) < 0 ||
206
68.2k
                (code = shade_next_curve(cs, &curve[2])) < 0 ||
207
68.2k
                (code = shade_next_curve(cs, &curve[3])) < 0 ||
208
68.2k
                (interior != 0 &&
209
68.2k
                 (code = shade_next_coords(cs, interior, 4)) < 0) ||
210
68.2k
                (code = shade_next_colors(cs, &curve[4 - num_colors],
211
68.2k
                                          num_colors)) < 0
212
68.2k
                )
213
36
                return code;
214
68.2k
            cs->align(cs, 8); /* See shade_next_vertex. */
215
68.2k
    }
216
68.2k
    return 0;
217
68.2k
}
218
219
static inline bool
220
is_linear_color_applicable(const patch_fill_state_t *pfs)
221
78.7k
{
222
78.7k
    if (!USE_LINEAR_COLOR_PROCS)
223
0
        return false;
224
78.7k
    if (!colors_are_separable_and_linear(&pfs->dev->color_info))
225
0
        return false;
226
78.7k
    if (gx_get_cmap_procs(pfs->pgs, pfs->dev)->is_halftoned(pfs->pgs, pfs->dev))
227
0
        return false;
228
78.7k
    return true;
229
78.7k
}
230
231
static int
232
alloc_patch_fill_memory(patch_fill_state_t *pfs, gs_memory_t *memory, const gs_color_space *pcs)
233
1.86k
{
234
1.86k
    int code;
235
236
1.86k
    pfs->memory = memory;
237
1.86k
#   if LAZY_WEDGES
238
1.86k
        code = wedge_vertex_list_elem_buffer_alloc(pfs);
239
1.86k
        if (code < 0)
240
0
            return code;
241
1.86k
#   endif
242
1.86k
    pfs->max_small_coord = 1 << ((sizeof(int64_t) * 8 - 1/*sign*/) / 3);
243
1.86k
    code = allocate_color_stack(pfs, memory);
244
1.86k
    if (code < 0)
245
0
        return code;
246
1.86k
    if (pfs->unlinear || pcs == NULL)
247
0
        pfs->pcic = NULL;
248
1.86k
    else {
249
1.86k
        pfs->pcic = gs_color_index_cache_create(memory, pcs, pfs->dev, pfs->pgs, true, pfs->trans_device);
250
1.86k
        if (pfs->pcic == NULL)
251
0
            return_error(gs_error_VMerror);
252
1.86k
    }
253
1.86k
    return 0;
254
1.86k
}
255
256
int
257
init_patch_fill_state(patch_fill_state_t *pfs)
258
1.86k
{
259
    /* Warning : pfs->Function must be set in advance. */
260
1.86k
    const gs_color_space *pcs = pfs->direct_space;
261
1.86k
    gs_client_color fcc0, fcc1;
262
1.86k
    int i;
263
264
6.97k
    for (i = 0; i < pfs->num_components; i++) {
265
5.10k
        fcc0.paint.values[i] = -1000000;
266
5.10k
        fcc1.paint.values[i] = 1000000;
267
5.10k
    }
268
1.86k
    pcs->type->restrict_color(&fcc0, pcs);
269
1.86k
    pcs->type->restrict_color(&fcc1, pcs);
270
6.97k
    for (i = 0; i < pfs->num_components; i++)
271
5.10k
        pfs->color_domain.paint.values[i] = max(fcc1.paint.values[i] - fcc0.paint.values[i], 1);
272
1.86k
    pfs->vectorization = false; /* A stub for a while. Will use with pclwrite. */
273
1.86k
    pfs->maybe_self_intersecting = true;
274
1.86k
    pfs->monotonic_color = (pfs->Function == NULL);
275
1.86k
    pfs->function_arg_shift = 0;
276
1.86k
    pfs->linear_color = false;
277
1.86k
    pfs->inside = false;
278
1.86k
    pfs->n_color_args = 1;
279
#ifdef MAX_SHADING_RESOLUTION
280
    pfs->decomposition_limit = float2fixed(min(pfs->dev->HWResolution[0],
281
                                               pfs->dev->HWResolution[1]) / MAX_SHADING_RESOLUTION);
282
    pfs->decomposition_limit = max(pfs->decomposition_limit, fixed_1);
283
#else
284
1.86k
    pfs->decomposition_limit = fixed_1;
285
1.86k
#endif
286
1.86k
    pfs->fixed_flat = float2fixed(pfs->pgs->flatness);
287
    /* Restrict the pfs->smoothness with 1/min_linear_grades, because cs_is_linear
288
       can't provide a better precision due to the color
289
       representation with integers.
290
     */
291
1.86k
    pfs->smoothness = max(pfs->pgs->smoothness, 1.0 / min_linear_grades);
292
1.86k
    pfs->color_stack_size = 0;
293
1.86k
    pfs->color_stack_step = 0;
294
1.86k
    pfs->color_stack_ptr = NULL;
295
1.86k
    pfs->color_stack = NULL;
296
1.86k
    pfs->color_stack_limit = NULL;
297
1.86k
    pfs->unlinear = !is_linear_color_applicable(pfs);
298
1.86k
    pfs->pcic = NULL;
299
1.86k
    return alloc_patch_fill_memory(pfs, pfs->pgs->memory, pcs);
300
1.86k
}
301
302
bool
303
term_patch_fill_state(patch_fill_state_t *pfs)
304
1.86k
{
305
1.86k
    bool b = (pfs->color_stack_ptr != pfs->color_stack);
306
1.86k
#   if LAZY_WEDGES
307
1.86k
        wedge_vertex_list_elem_buffer_free(pfs);
308
1.86k
#   endif
309
1.86k
    if (pfs->color_stack)
310
1.86k
        gs_free_object(pfs->memory, pfs->color_stack, "term_patch_fill_state");
311
1.86k
    if (pfs->pcic != NULL)
312
1.86k
        gs_color_index_cache_destroy(pfs->pcic);
313
1.86k
    return b;
314
1.86k
}
315
316
/* Resolve a patch color using the Function if necessary. */
317
static inline void
318
patch_resolve_color_inline(patch_color_t * ppcr, const patch_fill_state_t *pfs)
319
2.65M
{
320
2.65M
    if (pfs->Function) {
321
2.38M
        const gs_color_space *pcs = pfs->direct_space;
322
323
2.38M
        gs_function_evaluate(pfs->Function, ppcr->t, ppcr->cc.paint.values);
324
2.38M
        pcs->type->restrict_color(&ppcr->cc, pcs);
325
2.38M
    }
326
2.65M
}
327
328
void
329
patch_resolve_color(patch_color_t * ppcr, const patch_fill_state_t *pfs)
330
0
{
331
0
    patch_resolve_color_inline(ppcr, pfs);
332
0
}
333
334
/*
335
 * Calculate the interpolated color at a given point.
336
 * Note that we must do this twice for bilinear interpolation.
337
 * We use the name ppcr rather than ppc because an Apple compiler defines
338
 * ppc when compiling on PowerPC systems (!).
339
 */
340
static void
341
patch_interpolate_color(patch_color_t * ppcr, const patch_color_t * ppc0,
342
       const patch_color_t * ppc1, const patch_fill_state_t *pfs, double t)
343
4.20M
{
344
    /* The old code gives -IND on Intel. */
345
4.20M
    if (pfs->Function) {
346
384k
        ppcr->t[0] = ppc0->t[0] * (1 - t) + t * ppc1->t[0];
347
384k
        ppcr->t[1] = ppc0->t[1] * (1 - t) + t * ppc1->t[1];
348
384k
        patch_resolve_color_inline(ppcr, pfs);
349
3.82M
    } else {
350
3.82M
        int ci;
351
352
19.0M
        for (ci = pfs->num_components - 1; ci >= 0; --ci)
353
15.2M
            ppcr->cc.paint.values[ci] =
354
15.2M
                ppc0->cc.paint.values[ci] * (1 - t) + t * ppc1->cc.paint.values[ci];
355
3.82M
    }
356
4.20M
}
357
358
/* ================ Specific shadings ================ */
359
360
/*
361
 * The curves are stored in a clockwise or counter-clockwise order that maps
362
 * to the patch definition in a non-intuitive way.  The documentation
363
 * (pp. 277-281 of the PostScript Language Reference Manual, Third Edition)
364
 * says that the curves are in the order D1, C2, D2, C1.
365
 */
366
/* The starting points of the curves: */
367
0
#define D1START 0
368
0
#define C2START 1
369
0
#define D2START 3
370
0
#define C1START 0
371
/* The control points of the curves (x means reversed order): */
372
0
#define D1CTRL 0
373
0
#define C2CTRL 1
374
0
#define D2XCTRL 2
375
0
#define C1XCTRL 3
376
/* The end points of the curves: */
377
0
#define D1END 1
378
0
#define C2END 2
379
0
#define D2END 2
380
0
#define C1END 3
381
382
/* ---------------- Common code ---------------- */
383
384
/* Evaluate a curve at a given point. */
385
static void
386
curve_eval(gs_fixed_point * pt, const gs_fixed_point * p0,
387
           const gs_fixed_point * p1, const gs_fixed_point * p2,
388
           const gs_fixed_point * p3, double t)
389
0
{
390
0
    fixed a, b, c, d;
391
0
    fixed t01, t12;
392
393
0
    d = p0->x;
394
0
    curve_points_to_coefficients(d, p1->x, p2->x, p3->x,
395
0
                                 a, b, c, t01, t12);
396
0
    pt->x = (fixed) (((a * t + b) * t + c) * t + d);
397
0
    d = p0->y;
398
0
    curve_points_to_coefficients(d, p1->y, p2->y, p3->y,
399
0
                                 a, b, c, t01, t12);
400
0
    pt->y = (fixed) (((a * t + b) * t + c) * t + d);
401
0
    if_debug3('2', "[2]t=%g => (%g,%g)\n", t, fixed2float(pt->x),
402
0
              fixed2float(pt->y));
403
0
}
404
405
/* ---------------- Coons patch shading ---------------- */
406
407
/* Calculate the device-space coordinate corresponding to (u,v). */
408
static void
409
Cp_transform(gs_fixed_point * pt, const patch_curve_t curve[4],
410
             const gs_fixed_point ignore_interior[4], double u, double v)
411
0
{
412
0
    double co_u = 1.0 - u, co_v = 1.0 - v;
413
0
    gs_fixed_point c1u, d1v, c2u, d2v;
414
415
0
    curve_eval(&c1u, &curve[C1START].vertex.p,
416
0
               &curve[C1XCTRL].control[1], &curve[C1XCTRL].control[0],
417
0
               &curve[C1END].vertex.p, u);
418
0
    curve_eval(&d1v, &curve[D1START].vertex.p,
419
0
               &curve[D1CTRL].control[0], &curve[D1CTRL].control[1],
420
0
               &curve[D1END].vertex.p, v);
421
0
    curve_eval(&c2u, &curve[C2START].vertex.p,
422
0
               &curve[C2CTRL].control[0], &curve[C2CTRL].control[1],
423
0
               &curve[C2END].vertex.p, u);
424
0
    curve_eval(&d2v, &curve[D2START].vertex.p,
425
0
               &curve[D2XCTRL].control[1], &curve[D2XCTRL].control[0],
426
0
               &curve[D2END].vertex.p, v);
427
0
#define COMPUTE_COORD(xy)\
428
0
    pt->xy = (fixed)\
429
0
        ((co_v * c1u.xy + v * c2u.xy) + (co_u * d1v.xy + u * d2v.xy) -\
430
0
         (co_v * (co_u * curve[C1START].vertex.p.xy +\
431
0
                  u * curve[C1END].vertex.p.xy) +\
432
0
          v * (co_u * curve[C2START].vertex.p.xy +\
433
0
               u * curve[C2END].vertex.p.xy)))
434
0
    COMPUTE_COORD(x);
435
0
    COMPUTE_COORD(y);
436
0
#undef COMPUTE_COORD
437
0
    if_debug4('2', "[2](u=%g,v=%g) => (%g,%g)\n",
438
0
              u, v, fixed2float(pt->x), fixed2float(pt->y));
439
0
}
440
441
int
442
gs_shading_Cp_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
443
                             const gs_fixed_rect * rect_clip,
444
                             gx_device * dev, gs_gstate * pgs)
445
2
{
446
2
    const gs_shading_Cp_t * const psh = (const gs_shading_Cp_t *)psh0;
447
2
    patch_fill_state_t state;
448
2
    shade_coord_stream_t cs;
449
2
    patch_curve_t curve[4];
450
2
    int code;
451
452
2
    code = mesh_init_fill_state((mesh_fill_state_t *) &state,
453
2
                         (const gs_shading_mesh_t *)psh0, rect_clip, dev, pgs);
454
2
    if (code < 0) {
455
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
456
0
        return code;
457
0
    }
458
2
    state.Function = psh->params.Function;
459
2
    code = init_patch_fill_state(&state);
460
2
    if(code < 0) {
461
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
462
0
        return code;
463
0
    }
464
465
2
    curve[0].straight = curve[1].straight = curve[2].straight = curve[3].straight = false;
466
2
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params, pgs);
467
8
    while ((code = shade_next_patch(&cs, psh->params.BitsPerFlag,
468
8
                                    curve, NULL)) == 0 &&
469
8
           (code = patch_fill(&state, curve, NULL, Cp_transform)) >= 0
470
6
        ) {
471
6
        DO_NOTHING;
472
6
    }
473
2
    if (term_patch_fill_state(&state))
474
0
        return_error(gs_error_unregistered); /* Must not happen. */
475
2
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
476
2
    return min(code, 0);
477
2
}
478
479
/* ---------------- Tensor product patch shading ---------------- */
480
481
/* Calculate the device-space coordinate corresponding to (u,v). */
482
static void
483
Tpp_transform(gs_fixed_point * pt, const patch_curve_t curve[4],
484
              const gs_fixed_point interior[4], double u, double v)
485
0
{
486
0
    double Bu[4], Bv[4];
487
0
    gs_fixed_point pts[4][4];
488
0
    int i, j;
489
0
    double x = 0, y = 0;
490
491
    /* Compute the Bernstein polynomials of u and v. */
492
0
    {
493
0
        double u2 = u * u, co_u = 1.0 - u, co_u2 = co_u * co_u;
494
0
        double v2 = v * v, co_v = 1.0 - v, co_v2 = co_v * co_v;
495
496
0
        Bu[0] = co_u * co_u2, Bu[1] = 3 * u * co_u2,
497
0
            Bu[2] = 3 * u2 * co_u, Bu[3] = u * u2;
498
0
        Bv[0] = co_v * co_v2, Bv[1] = 3 * v * co_v2,
499
0
            Bv[2] = 3 * v2 * co_v, Bv[3] = v * v2;
500
0
    }
501
502
    /* Arrange the points into an indexable order. */
503
0
    pts[0][0] = curve[0].vertex.p;
504
0
    pts[0][1] = curve[0].control[0];
505
0
    pts[0][2] = curve[0].control[1];
506
0
    pts[0][3] = curve[1].vertex.p;
507
0
    pts[1][3] = curve[1].control[0];
508
0
    pts[2][3] = curve[1].control[1];
509
0
    pts[3][3] = curve[2].vertex.p;
510
0
    pts[3][2] = curve[2].control[0];
511
0
    pts[3][1] = curve[2].control[1];
512
0
    pts[3][0] = curve[3].vertex.p;
513
0
    pts[2][0] = curve[3].control[0];
514
0
    pts[1][0] = curve[3].control[1];
515
0
    pts[1][1] = interior[0];
516
0
    pts[2][1] = interior[1];
517
0
    pts[2][2] = interior[2];
518
0
    pts[1][2] = interior[3];
519
520
    /* Now compute the actual point. */
521
0
    for (i = 0; i < 4; ++i)
522
0
        for (j = 0; j < 4; ++j) {
523
0
            double coeff = Bu[i] * Bv[j];
524
525
0
            x += pts[i][j].x * coeff, y += pts[i][j].y * coeff;
526
0
        }
527
0
    pt->x = (fixed)x, pt->y = (fixed)y;
528
0
}
529
530
int
531
gs_shading_Tpp_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
532
                             const gs_fixed_rect * rect_clip,
533
                              gx_device * dev, gs_gstate * pgs)
534
76
{
535
76
    const gs_shading_Tpp_t * const psh = (const gs_shading_Tpp_t *)psh0;
536
76
    patch_fill_state_t state;
537
76
    shade_coord_stream_t cs;
538
76
    patch_curve_t curve[4];
539
76
    gs_fixed_point interior[4];
540
76
    int code;
541
542
76
    code = mesh_init_fill_state((mesh_fill_state_t *) & state,
543
76
                         (const gs_shading_mesh_t *)psh0, rect_clip, dev, pgs);
544
76
    if (code < 0) {
545
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
546
0
        return code;
547
0
    }
548
76
    state.Function = psh->params.Function;
549
76
    code = init_patch_fill_state(&state);
550
76
    if(code < 0)
551
0
        return code;
552
76
    curve[0].straight = curve[1].straight = curve[2].straight = curve[3].straight = false;
553
76
    shade_next_init(&cs, (const gs_shading_mesh_params_t *)&psh->params, pgs);
554
68.2k
    while ((code = shade_next_patch(&cs, psh->params.BitsPerFlag,
555
68.2k
                                    curve, interior)) == 0) {
556
        /*
557
         * The order of points appears to be consistent with that for Coons
558
         * patches, which is different from that documented in Red Book 3.
559
         */
560
68.2k
        gs_fixed_point swapped_interior[4];
561
562
68.2k
        swapped_interior[0] = interior[0];
563
68.2k
        swapped_interior[1] = interior[3];
564
68.2k
        swapped_interior[2] = interior[2];
565
68.2k
        swapped_interior[3] = interior[1];
566
68.2k
        code = patch_fill(&state, curve, swapped_interior, Tpp_transform);
567
68.2k
        if (code < 0)
568
0
            break;
569
68.2k
    }
570
76
    if (term_patch_fill_state(&state))
571
0
        return_error(gs_error_unregistered); /* Must not happen. */
572
76
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
573
76
    return min(code, 0);
574
76
}
575
576
/*
577
    This algorithm performs a decomposition of the shading area
578
    into a set of constant color trapezoids, some of which
579
    may use the transpozed coordinate system.
580
581
    The target device assumes semi-open intrvals by X to be painted
582
    (See PLRM3, 7.5. Scan conversion details), i.e.
583
    it doesn't paint pixels which falls exactly to the right side.
584
    Note that with raster devices the algorithm doesn't paint pixels,
585
    whigh are partially covered by the shading area,
586
    but which's centers are outside the area.
587
588
    Pixels inside a monotonic part of the shading area are painted
589
    at once, but some exceptions may happen :
590
591
        - While flattening boundaries of a subpatch,
592
        to keep the plane coverage contiguity we insert wedges
593
        between neighbor subpatches, which use a different
594
        flattening factor. With non-monotonic curves
595
        those wedges may overlap or be self-overlapping, and a pixel
596
        is painted so many times as many wedges cover it. Fortunately
597
        the area of most wedges is zero or extremily small.
598
599
        - Since quazi-horizontal wedges may have a non-constant color,
600
        they can't decompose into constant color trapezoids with
601
        keeping the coverage contiguity. To represent them we
602
        apply the XY plane transposition. But with the transposition
603
        a semiopen interval can met a non-transposed one,
604
        so that some lines are not covered. Therefore we emulate
605
        closed intervals with expanding the transposed trapesoids in
606
        fixed_epsilon, and pixels at that boundary may be painted twice.
607
608
        - A boundary of a monotonic area can't compute in XY
609
        preciselly due to high order polynomial equations.
610
        Therefore the subdivision near the monotonity boundary
611
        may paint some pixels twice within same monotonic part.
612
613
    Non-monotonic areas slow down due to a tinny subdivision required.
614
615
    The target device may be either raster or vector.
616
    Vector devices should preciselly pass trapezoids to the output.
617
    Note that ends of sides of a trapesoid are not necessary
618
    the trapezoid's vertices. Converting this thing into
619
    an exact quadrangle may cause an arithmetic error,
620
    and the rounding must be done so that the coverage
621
    contiguity is not lost.
622
623
    When a device passes a trapezoid to it's output,
624
    a regular rounding would keep the coverage contiguity,
625
    except for the transposed trapesoids.
626
    If a transposed trapezoid is being transposed back,
627
    it doesn't become a canonic trapezoid, and a further
628
    decomposition is neccessary. But rounding errors here
629
    would break the coverage contiguity at boundaries
630
    of the tansposed part of the area.
631
632
    Devices, which have no transposed trapezoids and represent
633
    trapezoids only with 8 coordinates of vertices of the quadrangle
634
    (pclwrite is an example) may apply the backward transposition,
635
    and a clipping instead the further decomposition.
636
    Note that many clip regions may appear for all wedges.
637
    Note that in some cases the adjustment of the right side to be
638
    withdrown before the backward transposition.
639
 */
640
 /* We believe that a multiplication of 32-bit integers with a
641
    64-bit result is performed by modern platforms performs
642
    in hardware level. Therefore we widely use it here,
643
    but we minimize the usage of a multiplication of longer integers.
644
645
    Unfortunately we do need a multiplication of long integers
646
    in intersection_of_small_bars, because solving the linear system
647
    requires tripple multiples of 'fixed'. Therefore we retain
648
    of it's usage in the algorithm of the main branch.
649
    Configuration macro QUADRANGLES prevents it.
650
  */
651
652
typedef struct {
653
    gs_fixed_point pole[4][4]; /* [v][u] */
654
    patch_color_t *c[2][2];     /* [v][u] */
655
} tensor_patch;
656
657
typedef enum {
658
    interpatch_padding = 1, /* A Padding between patches for poorly designed documents. */
659
    inpatch_wedge = 2  /* Wedges while a patch decomposition. */
660
} wedge_type_t;
661
662
int
663
wedge_vertex_list_elem_buffer_alloc(patch_fill_state_t *pfs)
664
1.86k
{
665
1.86k
    const int max_level = LAZY_WEDGES_MAX_LEVEL;
666
1.86k
    gs_memory_t *memory = pfs->memory;
667
668
    /* We have 'max_level' levels, each of which divides 1 or 3 sides.
669
       LAZY_WEDGES stores all 2^level divisions until
670
       the other area of same bnoundary is processed.
671
       Thus the upper estimation of the buffer size is :
672
       max_level * (1 << max_level) * 3.
673
       Likely this estimation to be decreased to
674
       max_level * (1 << max_level) * 2.
675
       because 1 side of a triangle is always outside the division path.
676
       For now we set the smaller estimation for obtaining an experimental data
677
       from the wild. */
678
1.86k
    pfs->wedge_vertex_list_elem_count_max = max_level * (1 << max_level) * 2;
679
1.86k
    pfs->wedge_vertex_list_elem_buffer = (wedge_vertex_list_elem_t *)gs_alloc_bytes(memory,
680
1.86k
            sizeof(wedge_vertex_list_elem_t) * pfs->wedge_vertex_list_elem_count_max,
681
1.86k
            "alloc_wedge_vertex_list_elem_buffer");
682
1.86k
    if (pfs->wedge_vertex_list_elem_buffer == NULL)
683
0
        return_error(gs_error_VMerror);
684
1.86k
    pfs->free_wedge_vertex = NULL;
685
1.86k
    pfs->wedge_vertex_list_elem_count = 0;
686
1.86k
    return 0;
687
1.86k
}
688
689
void
690
wedge_vertex_list_elem_buffer_free(patch_fill_state_t *pfs)
691
1.86k
{
692
1.86k
    gs_memory_t *memory = pfs->memory;
693
694
1.86k
    gs_free_object(memory, pfs->wedge_vertex_list_elem_buffer,
695
1.86k
                "wedge_vertex_list_elem_buffer_free");
696
1.86k
    pfs->wedge_vertex_list_elem_buffer = NULL;
697
1.86k
    pfs->free_wedge_vertex = NULL;
698
1.86k
}
699
700
static inline wedge_vertex_list_elem_t *
701
wedge_vertex_list_elem_reserve(patch_fill_state_t *pfs)
702
59.1k
{
703
59.1k
    wedge_vertex_list_elem_t *e = pfs->free_wedge_vertex;
704
705
59.1k
    if (e != NULL) {
706
44.6k
        pfs->free_wedge_vertex = e->next;
707
44.6k
        return e;
708
44.6k
    }
709
14.4k
    if (pfs->wedge_vertex_list_elem_count < pfs->wedge_vertex_list_elem_count_max)
710
14.4k
        return pfs->wedge_vertex_list_elem_buffer + pfs->wedge_vertex_list_elem_count++;
711
0
    return NULL;
712
14.4k
}
713
714
static inline void
715
wedge_vertex_list_elem_release(patch_fill_state_t *pfs, wedge_vertex_list_elem_t *e)
716
59.1k
{
717
59.1k
    e->next = pfs->free_wedge_vertex;
718
59.1k
    pfs->free_wedge_vertex = e;
719
59.1k
}
720
721
static inline void
722
release_wedge_vertex_list_interval(patch_fill_state_t *pfs,
723
    wedge_vertex_list_elem_t *beg, wedge_vertex_list_elem_t *end)
724
25.9k
{
725
25.9k
    wedge_vertex_list_elem_t *e = beg->next, *ee;
726
727
25.9k
    beg->next = end;
728
25.9k
    end->prev = beg;
729
56.0k
    for (; e != end; e = ee) {
730
30.1k
        ee = e->next;
731
30.1k
        wedge_vertex_list_elem_release(pfs, e);
732
30.1k
    }
733
25.9k
}
734
735
static inline int
736
release_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *ll, int n)
737
14.4k
{
738
14.4k
    int i;
739
740
28.9k
    for (i = 0; i < n; i++) {
741
14.4k
        wedge_vertex_list_t *l = ll + i;
742
743
14.4k
        if (l->beg != NULL) {
744
14.4k
            if (l->end == NULL)
745
0
                return_error(gs_error_unregistered); /* Must not happen. */
746
14.4k
            release_wedge_vertex_list_interval(pfs, l->beg, l->end);
747
14.4k
            wedge_vertex_list_elem_release(pfs, l->beg);
748
14.4k
            wedge_vertex_list_elem_release(pfs, l->end);
749
14.4k
            l->beg = l->end = NULL;
750
14.4k
        } else if (l->end != NULL)
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
14.4k
    }
753
14.4k
    return 0;
754
14.4k
}
755
756
static inline wedge_vertex_list_elem_t *
757
wedge_vertex_list_find(wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
758
            int level)
759
16.5k
{
760
16.5k
    wedge_vertex_list_elem_t *e = beg;
761
762
16.5k
    if (beg == NULL || end == NULL)
763
0
        return NULL; /* Must not happen. */
764
50.3k
    for (; e != end; e = e->next)
765
50.3k
        if (e->level == level)
766
16.5k
            return e;
767
0
    return NULL;
768
16.5k
}
769
770
static inline void
771
init_wedge_vertex_list(wedge_vertex_list_t *l, int n)
772
812k
{
773
812k
    memset(l, 0, sizeof(*l) * n);
774
812k
}
775
776
/* For a given set of poles in the tensor patch (for instance
777
 * [0][0], [0][1], [0][2], [0][3] or [0][2], [1][2], [2][2], [3][2])
778
 * return the number of subdivisions required to flatten the bezier
779
 * given by those poles to the required flatness.
780
 */
781
static inline int
782
curve_samples(patch_fill_state_t *pfs,
783
                const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
784
1.43M
{
785
1.43M
    curve_segment s;
786
1.43M
    int k;
787
788
1.43M
    s.p1.x = pole[pole_step].x;
789
1.43M
    s.p1.y = pole[pole_step].y;
790
1.43M
    s.p2.x = pole[pole_step * 2].x;
791
1.43M
    s.p2.y = pole[pole_step * 2].y;
792
1.43M
    s.pt.x = pole[pole_step * 3].x;
793
1.43M
    s.pt.y = pole[pole_step * 3].y;
794
1.43M
    k = gx_curve_log2_samples(pole[0].x, pole[0].y, &s, fixed_flat);
795
1.43M
    {
796
1.43M
#       if LAZY_WEDGES || QUADRANGLES
797
1.43M
            int k1;
798
1.43M
            fixed L = any_abs(pole[pole_step * 1].x - pole[pole_step * 0].x) + any_abs(pole[pole_step * 1].y - pole[pole_step * 0].y) +
799
1.43M
                      any_abs(pole[pole_step * 2].x - pole[pole_step * 1].x) + any_abs(pole[pole_step * 2].y - pole[pole_step * 1].y) +
800
1.43M
                      any_abs(pole[pole_step * 3].x - pole[pole_step * 2].x) + any_abs(pole[pole_step * 3].y - pole[pole_step * 2].y);
801
1.43M
#       endif
802
803
1.43M
#       if LAZY_WEDGES
804
            /* Restrict lengths for a reasonable memory consumption : */
805
1.43M
            k1 = ilog2(L / fixed_1 / (1 << (LAZY_WEDGES_MAX_LEVEL - 1)));
806
1.43M
            k = max(k, k1);
807
1.43M
#       endif
808
#       if QUADRANGLES
809
            /* Restrict lengths for intersection_of_small_bars : */
810
            k = max(k, ilog2(L) - ilog2(pfs->max_small_coord));
811
#       endif
812
1.43M
    }
813
1.43M
    return 1 << k;
814
1.43M
}
815
816
static inline bool
817
intersection_of_small_bars(const gs_fixed_point q[4], int i0, int i1, int i2, int i3, fixed *ry, fixed *ey)
818
0
{
819
    /* This function is only used with QUADRANGLES. */
820
0
    return gx_intersect_small_bars(q[i0].x, q[i0].y, q[i1].x, q[i1].y, q[i2].x, q[i2].y, q[i3].x, q[i3].y, ry, ey);
821
0
}
822
823
static inline void
824
adjust_swapped_boundary(fixed *b, bool swap_axes)
825
2.86M
{
826
2.86M
    if (swap_axes) {
827
        /*  Sinse the rasterizer algorithm assumes semi-open interval
828
            when computing pixel coverage, we should expand
829
            the right side of the area. Otherwise a dropout can happen :
830
            if the left neighbour is painted with !swap_axes,
831
            the left side of this area appears to be the left side
832
            of the neighbour area, and the side is not included
833
            into both areas.
834
         */
835
2.20M
        *b += fixed_epsilon;
836
2.20M
    }
837
2.86M
}
838
839
static inline void
840
make_trapezoid(const gs_fixed_point q[4],
841
        int vi0, int vi1, int vi2, int vi3, fixed ybot, fixed ytop,
842
        bool swap_axes, bool orient, gs_fixed_edge *le, gs_fixed_edge *re)
843
481k
{
844
481k
    if (!orient) {
845
405k
        le->start = q[vi0];
846
405k
        le->end = q[vi1];
847
405k
        re->start = q[vi2];
848
405k
        re->end = q[vi3];
849
405k
    } else {
850
75.9k
        le->start = q[vi2];
851
75.9k
        le->end = q[vi3];
852
75.9k
        re->start = q[vi0];
853
75.9k
        re->end = q[vi1];
854
75.9k
    }
855
481k
    adjust_swapped_boundary(&re->start.x, swap_axes);
856
481k
    adjust_swapped_boundary(&re->end.x, swap_axes);
857
481k
}
858
859
static inline int
860
gx_shade_trapezoid(patch_fill_state_t *pfs, const gs_fixed_point q[4],
861
        int vi0, int vi1, int vi2, int vi3, fixed ybot0, fixed ytop0,
862
        bool swap_axes, const gx_device_color *pdevc, bool orient)
863
21.9k
{
864
21.9k
    gs_fixed_edge le, re;
865
21.9k
    int code;
866
21.9k
    fixed ybot = max(ybot0, swap_axes ? pfs->rect.p.x : pfs->rect.p.y);
867
21.9k
    fixed ytop = min(ytop0, swap_axes ? pfs->rect.q.x : pfs->rect.q.y);
868
21.9k
    fixed xleft  = (swap_axes ? pfs->rect.p.y : pfs->rect.p.x);
869
21.9k
    fixed xright = (swap_axes ? pfs->rect.q.y : pfs->rect.q.x);
870
871
21.9k
    if (ybot >= ytop)
872
4.77k
        return 0;
873
#   if NOFILL_TEST
874
        if (dbg_nofill)
875
            return 0;
876
#   endif
877
17.1k
    make_trapezoid(q, vi0, vi1, vi2, vi3, ybot, ytop, swap_axes, orient, &le, &re);
878
17.1k
    if (!pfs->inside) {
879
6.28k
        bool clip = false;
880
881
        /* We are asked to clip a trapezoid to a rectangle. If the rectangle
882
         * is entirely contained within the rectangle, then no clipping is
883
         * actually required. If the left edge is entirely to the right of
884
         * the rectangle, or the right edge is entirely to the left, we
885
         * clip away to nothing. If the left edge is entirely to the left of
886
         * the rectangle, then we can simplify it to a vertical edge along
887
         * the edge of the rectangle. Likewise with the right edge if it's
888
         * entirely to the right of the rectangle.*/
889
6.28k
        if (le.start.x > xright) {
890
979
            if (le.end.x > xright) {
891
14
                return 0;
892
14
            }
893
965
            clip = true;
894
5.30k
        } else if (le.end.x > xright) {
895
502
            clip = true;
896
502
        }
897
6.27k
        if (le.start.x < xleft) {
898
1.43k
            if (le.end.x < xleft) {
899
896
                le.start.x = xleft;
900
896
                le.end.x   = xleft;
901
896
                le.start.y = ybot;
902
896
                le.end.y   = ytop;
903
896
            } else {
904
534
                clip = true;
905
534
            }
906
4.84k
        } else if (le.end.x < xleft) {
907
815
            clip = true;
908
815
        }
909
6.27k
        if (re.start.x < xleft) {
910
651
            if (re.end.x < xleft) {
911
0
                return 0;
912
0
            }
913
651
            clip = true;
914
5.61k
        } else if (re.end.x < xleft) {
915
849
            clip = true;
916
849
        }
917
6.27k
        if (re.start.x > xright) {
918
1.76k
            if (re.end.x > xright) {
919
849
                re.start.x = xright;
920
849
                re.end.x   = xright;
921
849
                re.start.y = ybot;
922
849
                re.end.y   = ytop;
923
913
            } else {
924
913
                clip = true;
925
913
            }
926
4.50k
        } else if (re.end.x > xright) {
927
485
            clip = true;
928
485
        }
929
6.27k
        if (clip)
930
3.42k
        {
931
            /* Some form of clipping seems to be required. A certain amount
932
             * of horridness goes on here to ensure that we round 'outwards'
933
             * in all cases. */
934
3.42k
            gs_fixed_edge lenew, renew;
935
3.42k
            fixed ybl, ybr, ytl, ytr, ymid;
936
937
            /* Reduce the clipping region horizontally if possible. */
938
3.42k
            if (re.start.x > re.end.x) {
939
1.45k
                if (re.start.x < xright)
940
541
                    xright = re.start.x;
941
1.97k
            } else if (re.end.x < xright)
942
706
                xright = re.end.x;
943
3.42k
            if (le.start.x > le.end.x) {
944
1.48k
                if (le.end.x > xleft)
945
670
                    xleft = le.end.x;
946
1.94k
            } else if (le.start.x > xleft)
947
586
                xleft = le.start.x;
948
949
3.42k
            ybot = max(ybot, min(le.start.y, re.start.y));
950
3.42k
            ytop = min(ytop, max(le.end.y, re.end.y));
951
#if 0
952
            /* RJW: I've disabled this code a) because it doesn't make any
953
             * difference in the cluster tests, and b) because I think it's wrong.
954
             * Taking the first case as an example; just because the le.start.x
955
             * is > xright, does not mean that we can simply truncate the edge at
956
             * xright, as this may throw away part of the trap between ybot and
957
             * the new le.start.y. */
958
            /* Reduce the edges to the left/right of the clipping region. */
959
            /* Only in the 4 cases which can bring ytop/ybot closer */
960
            if (le.start.x > xright) {
961
                le.start.y += (fixed)((int64_t)(le.end.y-le.start.y)*
962
                                      (int64_t)(le.start.x-xright)/
963
                                      (int64_t)(le.start.x-le.end.x));
964
                le.start.x = xright;
965
            }
966
            if (re.start.x < xleft) {
967
                re.start.y += (fixed)((int64_t)(re.end.y-re.start.y)*
968
                                      (int64_t)(xleft-re.start.x)/
969
                                      (int64_t)(re.end.x-re.start.x));
970
                re.start.x = xleft;
971
            }
972
            if (le.end.x > xright) {
973
                le.end.y -= (fixed)((int64_t)(le.end.y-le.start.y)*
974
                                    (int64_t)(le.end.x-xright)/
975
                                    (int64_t)(le.end.x-le.start.x));
976
                le.end.x = xright;
977
            }
978
            if (re.end.x < xleft) {
979
                re.end.y -= (fixed)((int64_t)(re.end.y-re.start.y)*
980
                                    (int64_t)(xleft-re.end.x)/
981
                                    (int64_t)(re.start.x-re.end.x));
982
                re.end.x = xleft;
983
            }
984
#endif
985
986
3.42k
            if (ybot >= ytop)
987
0
                return 0;
988
            /* Follow the edges in, so that le.start.y == ybot etc. */
989
3.42k
            if (le.start.y < ybot) {
990
1.37k
                int round = ((le.end.x < le.start.x) ?
991
815
                             (le.end.y-le.start.y-1) : 0);
992
1.37k
                le.start.x += (fixed)(((int64_t)(ybot-le.start.y)*
993
1.37k
                                       (int64_t)(le.end.x-le.start.x)-round)/
994
1.37k
                                      (int64_t)(le.end.y-le.start.y));
995
1.37k
                le.start.y = ybot;
996
1.37k
            }
997
3.42k
            if (le.end.y > ytop) {
998
1.43k
                int round = ((le.end.x > le.start.x) ?
999
750
                             (le.end.y-le.start.y-1) : 0);
1000
1.43k
                le.end.x += (fixed)(((int64_t)(le.end.y-ytop)*
1001
1.43k
                                     (int64_t)(le.start.x-le.end.x)-round)/
1002
1.43k
                                    (int64_t)(le.end.y-le.start.y));
1003
1.43k
                le.end.y = ytop;
1004
1.43k
            }
1005
3.42k
            if ((le.start.x < xleft) && (le.end.x < xleft)) {
1006
203
                le.start.x = xleft;
1007
203
                le.end.x   = xleft;
1008
203
                le.start.y = ybot;
1009
203
                le.end.y   = ytop;
1010
203
            }
1011
3.42k
            if (re.start.y < ybot) {
1012
1.39k
                int round = ((re.end.x > re.start.x) ?
1013
706
                             (re.end.y-re.start.y-1) : 0);
1014
1.39k
                re.start.x += (fixed)(((int64_t)(ybot-re.start.y)*
1015
1.39k
                                       (int64_t)(re.end.x-re.start.x)+round)/
1016
1.39k
                                      (int64_t)(re.end.y-re.start.y));
1017
1.39k
                re.start.y = ybot;
1018
1.39k
            }
1019
3.42k
            if (re.end.y > ytop) {
1020
1.47k
                int round = ((re.end.x < re.start.x) ?
1021
777
                             (re.end.y-re.start.y-1) : 0);
1022
1.47k
                re.end.x += (fixed)(((int64_t)(re.end.y-ytop)*
1023
1.47k
                                     (int64_t)(re.start.x-re.end.x)+round)/
1024
1.47k
                                    (int64_t)(re.end.y-re.start.y));
1025
1.47k
                re.end.y = ytop;
1026
1.47k
            }
1027
3.42k
            if ((re.start.x > xright) && (re.end.x > xright)) {
1028
128
                re.start.x = xright;
1029
128
                re.end.x   = xright;
1030
128
                re.start.y = ybot;
1031
128
                re.end.y   = ytop;
1032
128
            }
1033
            /* Now, check whether the left and right edges cross. Previously
1034
             * this comment said: "This can only happen (for well formed
1035
             * input) in the case where one of the edges was completely out
1036
             * of range and has now been pulled in to the edge of the clip
1037
             * region." I now do not believe this to be true. */
1038
3.42k
            if (le.start.x > re.start.x) {
1039
1.18k
                if (le.start.x == le.end.x) {
1040
565
                    if (re.start.x == re.end.x)
1041
0
                        return 0;
1042
565
                    ybot += (fixed)((int64_t)(re.end.y-re.start.y)*
1043
565
                                    (int64_t)(le.start.x-re.start.x)/
1044
565
                                    (int64_t)(re.end.x-re.start.x));
1045
565
                    re.start.x = le.start.x;
1046
616
                } else {
1047
616
                    ybot += (fixed)((int64_t)(le.end.y-le.start.y)*
1048
616
                                    (int64_t)(le.start.x-re.start.x)/
1049
616
                                    (int64_t)(le.start.x-le.end.x));
1050
616
                    le.start.x = re.start.x;
1051
616
                }
1052
1.18k
                if (ybot >= ytop)
1053
379
                    return 0;
1054
802
                le.start.y = ybot;
1055
802
                re.start.y = ybot;
1056
802
            }
1057
3.04k
            if (le.end.x > re.end.x) {
1058
755
                if (le.start.x == le.end.x) {
1059
472
                    if (re.start.x == re.end.x)
1060
0
                        return 0;
1061
472
                    ytop -= (fixed)((int64_t)(re.end.y-re.start.y)*
1062
472
                                    (int64_t)(le.end.x-re.end.x)/
1063
472
                                    (int64_t)(re.start.x-re.end.x));
1064
472
                    re.end.x = le.end.x;
1065
472
                } else {
1066
283
                    ytop -= (fixed)((int64_t)(le.end.y-le.start.y)*
1067
283
                                    (int64_t)(le.end.x-re.end.x)/
1068
283
                                    (int64_t)(le.end.x-le.start.x));
1069
283
                    le.end.x = re.end.x;
1070
283
                }
1071
755
                if (ybot >= ytop)
1072
299
                    return 0;
1073
456
                le.end.y = ytop;
1074
456
                re.end.y = ytop;
1075
456
            }
1076
            /* At this point we are guaranteed that le and re are constrained
1077
             * as tightly as possible to the ybot/ytop range, and that the
1078
             * entire ybot/ytop range will be marked at least somewhere. All
1079
             * we need to do now is to actually fill the region.
1080
             */
1081
2.75k
            lenew.start.x = xleft;
1082
2.75k
            lenew.start.y = ybot;
1083
2.75k
            lenew.end.x   = xleft;
1084
2.75k
            lenew.end.y   = ytop;
1085
2.75k
            renew.start.x = xright;
1086
2.75k
            renew.start.y = ybot;
1087
2.75k
            renew.end.x   = xright;
1088
2.75k
            renew.end.y   = ytop;
1089
            /* Figure out where the left edge intersects with the left at
1090
             * the bottom */
1091
2.75k
            ybl = ybot;
1092
2.75k
            if (le.start.x > le.end.x) {
1093
1.13k
                ybl += (fixed)((int64_t)(le.start.x-xleft) *
1094
1.13k
                               (int64_t)(le.end.y-le.start.y) /
1095
1.13k
                               (int64_t)(le.start.x-le.end.x));
1096
1.13k
                if (ybl > ytop)
1097
488
                    ybl = ytop;
1098
1.13k
            }
1099
            /* Figure out where the right edge intersects with the right at
1100
             * the bottom */
1101
2.75k
            ybr = ybot;
1102
2.75k
            if (re.start.x < re.end.x) {
1103
974
                ybr += (fixed)((int64_t)(xright-re.start.x) *
1104
974
                               (int64_t)(re.end.y-re.start.y) /
1105
974
                               (int64_t)(re.end.x-re.start.x));
1106
974
                if (ybr > ytop)
1107
489
                    ybr = ytop;
1108
974
            }
1109
            /* Figure out where the left edge intersects with the left at
1110
             * the top */
1111
2.75k
            ytl = ytop;
1112
2.75k
            if (le.end.x > le.start.x) {
1113
947
                ytl -= (fixed)((int64_t)(le.end.x-xleft) *
1114
947
                               (int64_t)(le.end.y-le.start.y) /
1115
947
                               (int64_t)(le.end.x-le.start.x));
1116
947
                if (ytl < ybot)
1117
420
                    ytl = ybot;
1118
947
            }
1119
            /* Figure out where the right edge intersects with the right at
1120
             * the bottom */
1121
2.75k
            ytr = ytop;
1122
2.75k
            if (re.end.x < re.start.x) {
1123
1.18k
                ytr -= (fixed)((int64_t)(xright-re.end.x) *
1124
1.18k
                               (int64_t)(re.end.y-re.start.y) /
1125
1.18k
                               (int64_t)(re.start.x-re.end.x));
1126
1.18k
                if (ytr < ybot)
1127
417
                    ytr = ybot;
1128
1.18k
            }
1129
            /* Check for the 2 cases where top and bottom diagonal extents
1130
             * overlap, and deal with them explicitly. */
1131
2.75k
            if (ytl < ybr) {
1132
                /*     |     |
1133
                 *  ---+-----+---
1134
                 *     | /222|
1135
                 *     |/111/|
1136
                 *     |000/ |
1137
                 *  ---+-----+---
1138
                 *     |     |
1139
                 */
1140
379
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1141
379
                                        &lenew, &re, ybot, ytl,
1142
379
                                        swap_axes, pdevc, pfs->pgs->log_op);
1143
379
                if (code < 0)
1144
0
                    return code;
1145
379
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1146
379
                                        &le, &re, ytl, ybr,
1147
379
                                        swap_axes, pdevc, pfs->pgs->log_op);
1148
379
                if (code < 0)
1149
0
                    return code;
1150
379
                ybot = ybr;
1151
379
                return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1152
379
                                        &le, &renew, ybr, ytop,
1153
379
                                        swap_axes, pdevc, pfs->pgs->log_op);
1154
2.37k
            } else if (ytr < ybl) {
1155
                /*     |     |
1156
                 *  ---+-----+----
1157
                 *     |555\ |
1158
                 *     |\444\|
1159
                 *     | \333|
1160
                 *  ---+-----+---
1161
                 *     |     |
1162
                 */
1163
483
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1164
483
                                        &le, &renew, ybot, ytr,
1165
483
                                        swap_axes, pdevc, pfs->pgs->log_op);
1166
483
                if (code < 0)
1167
0
                    return code;
1168
483
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1169
483
                                        &le, &re, ytr, ybl,
1170
483
                                        swap_axes, pdevc, pfs->pgs->log_op);
1171
483
                if (code < 0)
1172
0
                    return code;
1173
483
                return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1174
483
                                        &le, &re, ybl, ytop,
1175
483
                                        swap_axes, pdevc, pfs->pgs->log_op);
1176
483
            }
1177
            /* Fill in any section where both left and right edges are
1178
             * diagonal at the bottom */
1179
1.88k
            ymid = ybl;
1180
1.88k
            if (ymid > ybr)
1181
466
                ymid = ybr;
1182
1.88k
            if (ymid > ybot) {
1183
                /*     |\   |          |   /|
1184
                 *     | \6/|    or    |\6/ |
1185
                 *  ---+----+---    ---+----+---
1186
                 *     |    |          |    |
1187
                 */
1188
166
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1189
166
                                        &le, &re, ybot, ymid,
1190
166
                                        swap_axes, pdevc, pfs->pgs->log_op);
1191
166
                if (code < 0)
1192
0
                    return code;
1193
166
                ybot = ymid;
1194
166
            }
1195
            /* Fill in any section where both left and right edges are
1196
             * diagonal at the top */
1197
1.88k
            ymid = ytl;
1198
1.88k
            if (ymid < ytr)
1199
357
                ymid = ytr;
1200
1.88k
            if (ymid < ytop) {
1201
                /*     |    |          |    |
1202
                 *  ---+----+---    ---+----+---
1203
                 *     |/7\ |    or    | /7\|
1204
                 *     |   \|          |/   |
1205
                 */
1206
197
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1207
197
                                        &le, &re, ymid, ytop,
1208
197
                                        swap_axes, pdevc, pfs->pgs->log_op);
1209
197
                if (code < 0)
1210
0
                    return code;
1211
197
                ytop = ymid;
1212
197
            }
1213
            /* Now do the single diagonal cases at the bottom */
1214
1.88k
            if (ybl > ybot) {
1215
                /*     |    |
1216
                 *     |\666|
1217
                 *  ---+----+---
1218
                 *     |    |
1219
                 */
1220
466
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1221
466
                                        &le, &renew, ybot, ybl,
1222
466
                                        swap_axes, pdevc, pfs->pgs->log_op);
1223
466
                if (code < 0)
1224
0
                    return code;
1225
466
                ybot = ybl;
1226
1.42k
            } else if (ybr > ybot) {
1227
                /*     |    |
1228
                 *     |777/|
1229
                 *  ---+----+---
1230
                 *     |    |
1231
                 */
1232
380
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1233
380
                                        &lenew, &re, ybot, ybr,
1234
380
                                        swap_axes, pdevc, pfs->pgs->log_op);
1235
380
                if (code < 0)
1236
0
                    return code;
1237
380
                ybot = ybr;
1238
380
            }
1239
            /* Now do the single diagonal cases at the top */
1240
1.88k
            if (ytl < ytop) {
1241
                /*     |    |
1242
                 *  ---+----+---
1243
                 *     |/888|
1244
                 *     |    |
1245
                 */
1246
357
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1247
357
                                        &le, &renew, ytl, ytop,
1248
357
                                        swap_axes, pdevc, pfs->pgs->log_op);
1249
357
                if (code < 0)
1250
0
                    return code;
1251
357
                ytop = ytl;
1252
1.53k
            } else if (ytr < ytop) {
1253
                /*     |    |
1254
                 *  ---+----+---
1255
                 *     |999\|
1256
                 *     |    |
1257
                 */
1258
462
                code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1259
462
                                        &lenew, &re, ytr, ytop,
1260
462
                                        swap_axes, pdevc, pfs->pgs->log_op);
1261
462
                if (code < 0)
1262
0
                    return code;
1263
462
                ytop = ytr;
1264
462
            }
1265
            /* And finally just whatever rectangular section is left over in
1266
             * the middle */
1267
1.88k
            if (ybot > ytop)
1268
0
                return 0;
1269
1.88k
            return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1270
1.88k
                                        &lenew, &renew, ybot, ytop,
1271
1.88k
                                        swap_axes, pdevc, pfs->pgs->log_op);
1272
1.88k
        }
1273
6.27k
    }
1274
13.6k
    return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1275
13.6k
            &le, &re, ybot, ytop, swap_axes, pdevc, pfs->pgs->log_op);
1276
17.1k
}
1277
1278
static inline void
1279
dc2fc31(const patch_fill_state_t *pfs, gx_device_color *pdevc,
1280
            frac31 fc[GX_DEVICE_COLOR_MAX_COMPONENTS])
1281
0
{
1282
0
    int j;
1283
0
    const gx_device_color_info *cinfo = &pfs->trans_device->color_info;
1284
    /* Note trans device is actually either the transparency parent
1285
       device if transparency is present or the target device.  Basically
1286
       the device from which we want to get the color information from
1287
       for this */
1288
1289
0
    if (pdevc->type == &gx_dc_type_data_pure) {
1290
0
        for (j = 0; j < cinfo->num_components; j++) {
1291
0
                int shift = cinfo->comp_shift[j];
1292
0
                int bits = cinfo->comp_bits[j];
1293
1294
0
                fc[j] = ((pdevc->colors.pure >> shift) & ((1 << bits) - 1)) <<
1295
0
                        (sizeof(frac31) * 8 - 1 - bits);
1296
0
        }
1297
0
    } else {
1298
0
        for (j = 0; j < cinfo->num_components; j++) {
1299
0
                fc[j] = cv2frac31(pdevc->colors.devn.values[j]);
1300
0
        }
1301
0
    }
1302
0
}
1303
1304
12.9M
#define DEBUG_COLOR_INDEX_CACHE 0
1305
1306
static inline int
1307
patch_color_to_device_color_inline(const patch_fill_state_t *pfs,
1308
                                   const patch_color_t *c, gx_device_color *pdevc,
1309
                                   frac31 *frac_values)
1310
3.22M
{
1311
    /* Must return 2 if the color is not pure.
1312
       See try_device_linear_color.
1313
     */
1314
3.22M
    int code;
1315
3.22M
    gx_device_color devc;
1316
1317
3.22M
#ifdef PACIFY_VALGRIND
1318
    /* This is a hack to get us around some valgrind warnings seen
1319
     * when transparency is in use with the clist. We run through
1320
     * the shading code dealing with pfs->num_components components.
1321
     * I believe this is intended to match the source space of the
1322
     * shading, as we have to perform all shadings in the source
1323
     * space initially, and only convert after decomposition.
1324
     * When this reaches down to the clist writing phase, the
1325
     * clist writes pfs->dev->color_info.num_components color
1326
     * components to the clist. In the example I am using
1327
     *  pfs->num_components = 1
1328
     *  pfs->dev->color_info.num_components=3
1329
     * So valgrind complains that 2 of the 3 color components
1330
     * it is writing are uninitialised. Magically, it appears
1331
     * not to actually use them when read back though, so
1332
     * it suffices to blank them to kill the warnings now.
1333
     * If pfs->num_components > pfs->dev->color_info.num_components
1334
     * then we'll not be writing enough information to the clist
1335
     * and so hopefully we'll see bad rendering!
1336
     *
1337
     * An example that shows why this is required:
1338
     *  make gsdebugvg
1339
     *  valgrind --track-origins=yes debugbin/gs -sOutputFile=test.ps
1340
     *    -dMaxBitmap=1000 -sDEVICE=ps2write  -r300  -Z: -dNOPAUSE
1341
     *    -dBATCH -K2000000 -dClusterJob Bug693480.pdf
1342
     * (though ps2write is not implicated here).
1343
     */
1344
3.22M
     if (frac_values) {
1345
3.18M
        int i;
1346
3.18M
  int n = pfs->dev->color_info.num_components;
1347
3.35M
  for (i = pfs->num_components; i < n; i++) {
1348
160k
            frac_values[i] = 0;
1349
160k
  }
1350
3.18M
    }
1351
3.22M
#endif
1352
1353
3.22M
    if (DEBUG_COLOR_INDEX_CACHE && pdevc == NULL)
1354
0
        pdevc = &devc;
1355
3.22M
    if (pfs->pcic) {
1356
3.22M
        code = gs_cached_color_index(pfs->pcic, c->cc.paint.values, pdevc, frac_values);
1357
3.22M
        if (code < 0)
1358
0
            return code;
1359
3.22M
    }
1360
3.22M
    if (DEBUG_COLOR_INDEX_CACHE || pfs->pcic == NULL) {
1361
#       if DEBUG_COLOR_INDEX_CACHE
1362
        gx_color_index cindex = pdevc->colors.pure;
1363
#       endif
1364
0
        gs_client_color fcc;
1365
0
        const gs_color_space *pcs = pfs->direct_space;
1366
1367
0
        if (pcs != NULL) {
1368
1369
0
            if (pdevc == NULL)
1370
0
                pdevc = &devc;
1371
0
            memcpy(fcc.paint.values, c->cc.paint.values,
1372
0
                        sizeof(fcc.paint.values[0]) * pfs->num_components);
1373
0
            code = pcs->type->remap_color(&fcc, pcs, pdevc, pfs->pgs,
1374
0
                                      pfs->trans_device, gs_color_select_texture);
1375
0
            if (code < 0)
1376
0
                return code;
1377
0
            if (frac_values != NULL) {
1378
0
                if (!(pdevc->type == &gx_dc_type_data_devn ||
1379
0
                      pdevc->type == &gx_dc_type_data_pure))
1380
0
                    return 2;
1381
0
                dc2fc31(pfs, pdevc, frac_values);
1382
0
            }
1383
#           if DEBUG_COLOR_INDEX_CACHE
1384
            if (cindex != pdevc->colors.pure)
1385
                return_error(gs_error_unregistered);
1386
#           endif
1387
0
        } else {
1388
            /* This is reserved for future extension,
1389
            when a linear color triangle with frac31 colors is being decomposed
1390
            during a clist rasterization. In this case frac31 colors are written into
1391
            the patch color, and pcs==NULL means an identity color mapping.
1392
            For a while we assume here pfs->pcic is also NULL. */
1393
0
            int j;
1394
0
            const gx_device_color_info *cinfo = &pfs->dev->color_info;
1395
1396
0
            for (j = 0; j < cinfo->num_components; j++)
1397
0
                frac_values[j] = (frac31)c->cc.paint.values[j];
1398
0
            pdevc->type = &gx_dc_type_data_pure;
1399
0
        }
1400
0
    }
1401
3.22M
    return 0;
1402
3.22M
}
1403
1404
int
1405
patch_color_to_device_color(const patch_fill_state_t *pfs, const patch_color_t *c, gx_device_color *pdevc)
1406
0
{
1407
0
    return patch_color_to_device_color_inline(pfs, c, pdevc, NULL);
1408
0
}
1409
1410
static inline double
1411
color_span(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1412
3.64M
{
1413
3.64M
    int n = pfs->num_components, i;
1414
3.64M
    double m;
1415
1416
    /* Dont want to copy colors, which are big things. */
1417
3.64M
    m = any_abs(c1->cc.paint.values[0] - c0->cc.paint.values[0]) / pfs->color_domain.paint.values[0];
1418
14.0M
    for (i = 1; i < n; i++)
1419
10.4M
        m = max(m, any_abs(c1->cc.paint.values[i] - c0->cc.paint.values[i]) / pfs->color_domain.paint.values[i]);
1420
3.64M
    return m;
1421
3.64M
}
1422
1423
static inline void
1424
color_diff(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1, patch_color_t *d)
1425
1.06M
{
1426
1.06M
    int n = pfs->num_components, i;
1427
1428
4.96M
    for (i = 0; i < n; i++)
1429
3.90M
        d->cc.paint.values[i] = c1->cc.paint.values[i] - c0->cc.paint.values[i];
1430
1.06M
}
1431
1432
static inline double
1433
color_norm(const patch_fill_state_t *pfs, const patch_color_t *c)
1434
730k
{
1435
730k
    int n = pfs->num_components, i;
1436
730k
    double m;
1437
1438
730k
    m = any_abs(c->cc.paint.values[0]) / pfs->color_domain.paint.values[0];
1439
2.68M
    for (i = 1; i < n; i++)
1440
1.95M
        m = max(m, any_abs(c->cc.paint.values[i]) / pfs->color_domain.paint.values[i]);
1441
730k
    return m;
1442
730k
}
1443
1444
static inline int
1445
isnt_color_monotonic(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1446
158k
{   /* checks whether the color is monotonic in the n-dimensional interval,
1447
       where n is the number of parameters in c0->t, c1->t.
1448
       returns : 0 = monotonic,
1449
       bit 0 = not or don't know by t0,
1450
       bit 1 = not or don't know by t1,
1451
       <0 = error. */
1452
    /* When pfs->Function is not set, the color is monotonic.
1453
       In this case do not call this function because
1454
       it doesn't check whether pfs->Function is set.
1455
       Actually pfs->monotonic_color prevents that.
1456
     */
1457
    /* This assumes that the color space is always monotonic.
1458
       Non-monotonic color spaces are not recommended by PLRM,
1459
       and the result with them may be imprecise.
1460
     */
1461
158k
    uint mask;
1462
158k
    int code = gs_function_is_monotonic(pfs->Function, c0->t, c1->t, &mask);
1463
1464
158k
    if (code >= 0)
1465
158k
        return mask;
1466
2
    return code;
1467
158k
}
1468
1469
static inline bool
1470
covers_pixel_centers(fixed ybot, fixed ytop)
1471
738k
{
1472
738k
    return fixed_pixround(ybot) < fixed_pixround(ytop);
1473
738k
}
1474
1475
static inline int
1476
constant_color_trapezoid(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re,
1477
        fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c)
1478
28.0k
{
1479
28.0k
    gx_device_color dc;
1480
28.0k
    int code;
1481
1482
#   if NOFILL_TEST
1483
        /* if (dbg_nofill)
1484
                return 0; */
1485
#   endif
1486
1487
28.0k
    code = patch_color_to_device_color_inline(pfs, c, &dc, NULL);
1488
28.0k
    if (code < 0)
1489
0
        return code;
1490
1491
28.0k
    dc.tag = device_current_tag(pfs->dev);
1492
1493
28.0k
    return dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
1494
28.0k
        le, re, ybot, ytop, swap_axes, &dc, pfs->pgs->log_op);
1495
28.0k
}
1496
1497
static inline float
1498
function_linearity(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1499
3.79M
{
1500
3.79M
    float s = 0;
1501
1502
3.79M
    if (pfs->Function != NULL) {
1503
1.00M
        patch_color_t c;
1504
        /* Solaris 9 (Sun C 5.5) compiler cannot initialize a 'const' */
1505
        /* unless it is 'static const' */
1506
1.00M
        static const float q[2] = {(float)0.3, (float)0.7};
1507
1.00M
        int i, j;
1508
1509
2.97M
        for (j = 0; j < count_of(q); j++) {
1510
1.98M
            c.t[0] = c0->t[0] * (1 - q[j]) + c1->t[0] * q[j];
1511
1.98M
            c.t[1] = c0->t[1] * (1 - q[j]) + c1->t[1] * q[j];
1512
1.98M
            patch_resolve_color_inline(&c, pfs);
1513
7.77M
            for (i = 0; i < pfs->num_components; i++) {
1514
5.80M
                float v = c0->cc.paint.values[i] * (1 - q[j]) + c1->cc.paint.values[i] * q[j];
1515
5.80M
                float d = v - c.cc.paint.values[i];
1516
5.80M
                float s1 = any_abs(d) / pfs->color_domain.paint.values[i];
1517
1518
5.80M
                if (s1 > pfs->smoothness)
1519
15.8k
                    return s1;
1520
5.78M
                if (s < s1)
1521
463k
                    s = s1;
1522
5.78M
            }
1523
1.98M
        }
1524
1.00M
    }
1525
3.78M
    return s;
1526
3.79M
}
1527
1528
static inline int
1529
is_color_linear(const patch_fill_state_t *pfs, const patch_color_t *c0, const patch_color_t *c1)
1530
931k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
1531
931k
    if (pfs->unlinear)
1532
0
        return 1; /* Disable this check. */
1533
931k
    else {
1534
931k
        const gs_color_space *cs = pfs->direct_space;
1535
931k
        int code;
1536
931k
        float s = function_linearity(pfs, c0, c1);
1537
1538
931k
        if (s > pfs->smoothness)
1539
7.12k
            return 0;
1540
924k
        if (pfs->cs_always_linear)
1541
559k
            return 1;
1542
364k
        code = cs_is_linear(cs, pfs->pgs, pfs->trans_device,
1543
364k
                &c0->cc, &c1->cc, NULL, NULL, pfs->smoothness - s, pfs->icclink);
1544
364k
        if (code <= 0)
1545
874
            return code;
1546
363k
        return 1;
1547
364k
    }
1548
931k
}
1549
1550
static int
1551
decompose_linear_color(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re,
1552
        fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c0,
1553
        const patch_color_t *c1)
1554
1.44M
{
1555
    /* Assuming a very narrow trapezoid - ignore the transversal color variation. */
1556
    /* Assuming the XY span is restricted with curve_samples.
1557
       It is important for intersection_of_small_bars to compute faster. */
1558
1.44M
    int code;
1559
1.44M
    patch_color_t *c;
1560
1.44M
    byte *color_stack_ptr;
1561
1.44M
    bool save_inside = pfs->inside;
1562
1563
1.44M
    if (!pfs->inside) {
1564
1.39M
        gs_fixed_rect r, r1;
1565
1566
1.39M
        if(swap_axes) {
1567
1.08M
            r.p.y = min(le->start.x, le->end.x);
1568
1.08M
            r.p.x = min(le->start.y, le->end.y);
1569
1.08M
            r.q.y = max(re->start.x, re->end.x);
1570
1.08M
            r.q.x = max(re->start.y, re->end.y);
1571
1.08M
        } else {
1572
309k
            r.p.x = min(le->start.x, le->end.x);
1573
309k
            r.p.y = min(le->start.y, le->end.y);
1574
309k
            r.q.x = max(re->start.x, re->end.x);
1575
309k
            r.q.y = max(re->start.y, re->end.y);
1576
309k
        }
1577
1.39M
        r1 = r;
1578
1.39M
        rect_intersect(r, pfs->rect);
1579
1.39M
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
1580
1.23M
            return 0;
1581
160k
        if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
1582
160k
            r1.q.x == r.q.x && r1.q.y == r.q.y)
1583
121k
            pfs->inside = true;
1584
160k
    }
1585
211k
    color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
1586
211k
    if (color_stack_ptr == NULL)
1587
0
        return_error(gs_error_unregistered); /* Must not happen. */
1588
    /* Use the recursive decomposition due to isnt_color_monotonic
1589
       based on fn_is_monotonic_proc_t is_monotonic,
1590
       which applies to intervals. */
1591
211k
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
1592
211k
    if (ytop - ybot < pfs->decomposition_limit) /* Prevent an infinite color decomposition. */
1593
28.0k
        code = constant_color_trapezoid(pfs, le, re, ybot, ytop, swap_axes, c);
1594
183k
    else {
1595
183k
        bool monotonic_color_save = pfs->monotonic_color;
1596
183k
        bool linear_color_save = pfs->linear_color;
1597
1598
183k
        if (!pfs->monotonic_color) {
1599
52.5k
            code = isnt_color_monotonic(pfs, c0, c1);
1600
52.5k
            if (code < 0)
1601
2
                goto out;
1602
52.5k
            if (!code)
1603
38.0k
                pfs->monotonic_color = true;
1604
52.5k
        }
1605
183k
        if (pfs->monotonic_color && !pfs->linear_color) {
1606
168k
            code = is_color_linear(pfs, c0, c1);
1607
168k
            if (code < 0)
1608
0
                goto out;
1609
168k
            if (code > 0)
1610
167k
                pfs->linear_color =  true;
1611
168k
        }
1612
183k
        if (!pfs->unlinear && pfs->linear_color) {
1613
168k
            gx_device *pdev = pfs->dev;
1614
168k
            frac31 fc[2][GX_DEVICE_COLOR_MAX_COMPONENTS];
1615
168k
            gs_fill_attributes fa;
1616
168k
            gs_fixed_rect clip;
1617
1618
168k
            memset(fc, 0x99, sizeof(fc));
1619
1620
168k
            clip = pfs->rect;
1621
168k
            if (swap_axes) {
1622
106k
                fixed v;
1623
1624
106k
                v = clip.p.x; clip.p.x = clip.p.y; clip.p.y = v;
1625
106k
                v = clip.q.x; clip.q.x = clip.q.y; clip.q.y = v;
1626
                /* Don't need adjust_swapped_boundary here. */
1627
106k
            }
1628
168k
            clip.p.y = max(clip.p.y, ybot);
1629
168k
            clip.q.y = min(clip.q.y, ytop);
1630
168k
            fa.clip = &clip;
1631
168k
            fa.ht = NULL;
1632
168k
            fa.swap_axes = swap_axes;
1633
168k
            fa.lop = 0;
1634
168k
            fa.ystart = ybot;
1635
168k
            fa.yend = ytop;
1636
168k
            code = patch_color_to_device_color_inline(pfs, c0, NULL, fc[0]);
1637
168k
            if (code < 0)
1638
0
                goto out;
1639
168k
            if (code == 2) {
1640
                /* Must not happen. */
1641
0
                code=gs_note_error(gs_error_unregistered);
1642
0
                goto out;
1643
0
            }
1644
168k
            code = patch_color_to_device_color_inline(pfs, c1, NULL, fc[1]);
1645
168k
            if (code < 0)
1646
0
                goto out;
1647
168k
            code = dev_proc(pdev, fill_linear_color_trapezoid)(pdev, &fa,
1648
168k
                            &le->start, &le->end, &re->start, &re->end,
1649
168k
                            fc[0], fc[1], NULL, NULL);
1650
168k
            if (code == 1) {
1651
168k
                pfs->monotonic_color = monotonic_color_save;
1652
168k
                pfs->linear_color = linear_color_save;
1653
168k
                code = 0; /* The area is filled. */
1654
168k
                goto out;
1655
168k
            }
1656
0
            if (code < 0)
1657
0
                goto out;
1658
0
            else {      /* code == 0, the device requested to decompose the area. */
1659
0
                code = gs_note_error(gs_error_unregistered); /* Must not happen. */
1660
0
                goto out;
1661
0
            }
1662
0
        }
1663
14.8k
        if (!pfs->unlinear || !pfs->linear_color ||
1664
14.8k
                color_span(pfs, c0, c1) > pfs->smoothness) {
1665
14.8k
            fixed y = (ybot + ytop) / 2;
1666
1667
14.8k
            code = decompose_linear_color(pfs, le, re, ybot, y, swap_axes, c0, c);
1668
14.8k
            if (code >= 0)
1669
14.8k
                code = decompose_linear_color(pfs, le, re, y, ytop, swap_axes, c, c1);
1670
14.8k
        } else
1671
0
            code = constant_color_trapezoid(pfs, le, re, ybot, ytop, swap_axes, c);
1672
14.8k
        pfs->monotonic_color = monotonic_color_save;
1673
14.8k
        pfs->linear_color = linear_color_save;
1674
14.8k
    }
1675
211k
out:
1676
211k
    pfs->inside = save_inside;
1677
211k
    release_colors_inline(pfs, color_stack_ptr, 1);
1678
211k
    return code;
1679
211k
}
1680
1681
static inline int
1682
linear_color_trapezoid(patch_fill_state_t *pfs, gs_fixed_point q[4], int i0, int i1, int i2, int i3,
1683
                fixed ybot, fixed ytop, bool swap_axes, const patch_color_t *c0, const patch_color_t *c1,
1684
                bool orient)
1685
464k
{
1686
    /* Assuming a very narrow trapezoid - ignore the transversal color change. */
1687
464k
    gs_fixed_edge le, re;
1688
1689
464k
    make_trapezoid(q, i0, i1, i2, i3, ybot, ytop, swap_axes, orient, &le, &re);
1690
464k
    return decompose_linear_color(pfs, &le, &re, ybot, ytop, swap_axes, c0, c1);
1691
464k
}
1692
1693
static int
1694
wedge_trap_decompose(patch_fill_state_t *pfs, gs_fixed_point q[4],
1695
        fixed ybot, fixed ytop, const patch_color_t *c0, const patch_color_t *c1,
1696
        bool swap_axes, bool self_intersecting)
1697
738k
{
1698
    /* Assuming a very narrow trapezoid - ignore the transversal color change. */
1699
738k
    fixed dx1, dy1, dx2, dy2;
1700
738k
    bool orient;
1701
1702
738k
    if (!pfs->vectorization && !covers_pixel_centers(ybot, ytop))
1703
273k
        return 0;
1704
464k
    if (ybot == ytop)
1705
0
        return 0;
1706
464k
    dx1 = q[1].x - q[0].x, dy1 = q[1].y - q[0].y;
1707
464k
    dx2 = q[2].x - q[0].x, dy2 = q[2].y - q[0].y;
1708
464k
    if ((int64_t)dx1 * dy2 != (int64_t)dy1 * dx2) {
1709
231k
        orient = ((int64_t)dx1 * dy2 > (int64_t)dy1 * dx2);
1710
231k
        return linear_color_trapezoid(pfs, q, 0, 1, 2, 3, ybot, ytop, swap_axes, c0, c1, orient);
1711
233k
    } else {
1712
233k
        fixed dx3 = q[3].x - q[0].x, dy3 = q[3].y - q[0].y;
1713
1714
233k
        orient = ((int64_t)dx1 * dy3 > (int64_t)dy1 * dx3);
1715
233k
        return linear_color_trapezoid(pfs, q, 0, 1, 2, 3, ybot, ytop, swap_axes, c0, c1, orient);
1716
233k
    }
1717
464k
}
1718
1719
static inline int
1720
fill_wedge_trap(patch_fill_state_t *pfs, const gs_fixed_point *p0, const gs_fixed_point *p1,
1721
            const gs_fixed_point *q0, const gs_fixed_point *q1, const patch_color_t *c0, const patch_color_t *c1,
1722
            bool swap_axes, bool self_intersecting)
1723
738k
{
1724
    /* We assume that the width of the wedge is close to zero,
1725
       so we can ignore the slope when computing transversal distances. */
1726
738k
    gs_fixed_point p[4];
1727
738k
    const patch_color_t *cc0, *cc1;
1728
1729
738k
    if (p0->y < p1->y) {
1730
378k
        p[2] = *p0;
1731
378k
        p[3] = *p1;
1732
378k
        cc0 = c0;
1733
378k
        cc1 = c1;
1734
378k
    } else {
1735
359k
        p[2] = *p1;
1736
359k
        p[3] = *p0;
1737
359k
        cc0 = c1;
1738
359k
        cc1 = c0;
1739
359k
    }
1740
738k
    p[0] = *q0;
1741
738k
    p[1] = *q1;
1742
738k
    return wedge_trap_decompose(pfs, p, p[2].y, p[3].y, cc0, cc1, swap_axes, self_intersecting);
1743
738k
}
1744
1745
static void
1746
split_curve_s(const gs_fixed_point *pole, gs_fixed_point *q0, gs_fixed_point *q1, int pole_step)
1747
6.38M
{
1748
    /*  This copies a code fragment from split_curve_midpoint,
1749
        substituting another data type.
1750
     */
1751
    /*
1752
     * We have to define midpoint carefully to avoid overflow.
1753
     * (If it overflows, something really pathological is going
1754
     * on, but we could get infinite recursion that way....)
1755
     */
1756
6.38M
#define midpoint(a,b)\
1757
76.6M
  (arith_rshift_1(a) + arith_rshift_1(b) + (((a) | (b)) & 1))
1758
6.38M
    fixed x12 = midpoint(pole[1 * pole_step].x, pole[2 * pole_step].x);
1759
6.38M
    fixed y12 = midpoint(pole[1 * pole_step].y, pole[2 * pole_step].y);
1760
1761
    /* q[0] and q[1] must not be the same as pole. */
1762
6.38M
    q0[1 * pole_step].x = midpoint(pole[0 * pole_step].x, pole[1 * pole_step].x);
1763
6.38M
    q0[1 * pole_step].y = midpoint(pole[0 * pole_step].y, pole[1 * pole_step].y);
1764
6.38M
    q1[2 * pole_step].x = midpoint(pole[2 * pole_step].x, pole[3 * pole_step].x);
1765
6.38M
    q1[2 * pole_step].y = midpoint(pole[2 * pole_step].y, pole[3 * pole_step].y);
1766
6.38M
    q0[2 * pole_step].x = midpoint(q0[1 * pole_step].x, x12);
1767
6.38M
    q0[2 * pole_step].y = midpoint(q0[1 * pole_step].y, y12);
1768
6.38M
    q1[1 * pole_step].x = midpoint(x12, q1[2 * pole_step].x);
1769
6.38M
    q1[1 * pole_step].y = midpoint(y12, q1[2 * pole_step].y);
1770
6.38M
    q0[0 * pole_step].x = pole[0 * pole_step].x;
1771
6.38M
    q0[0 * pole_step].y = pole[0 * pole_step].y;
1772
6.38M
    q0[3 * pole_step].x = q1[0 * pole_step].x = midpoint(q0[2 * pole_step].x, q1[1 * pole_step].x);
1773
6.38M
    q0[3 * pole_step].y = q1[0 * pole_step].y = midpoint(q0[2 * pole_step].y, q1[1 * pole_step].y);
1774
6.38M
    q1[3 * pole_step].x = pole[3 * pole_step].x;
1775
6.38M
    q1[3 * pole_step].y = pole[3 * pole_step].y;
1776
6.38M
#undef midpoint
1777
6.38M
}
1778
1779
static void
1780
split_curve(const gs_fixed_point pole[4], gs_fixed_point q0[4], gs_fixed_point q1[4])
1781
662k
{
1782
662k
    split_curve_s(pole, q0, q1, 1);
1783
662k
}
1784
1785
#ifdef SHADING_SWAP_AXES_FOR_PRECISION
1786
static inline void
1787
do_swap_axes(gs_fixed_point *p, int k)
1788
{
1789
    int i;
1790
1791
    for (i = 0; i < k; i++) {
1792
        p[i].x ^= p[i].y; p[i].y ^= p[i].x; p[i].x ^= p[i].y;
1793
    }
1794
}
1795
1796
static inline fixed
1797
span_x(const gs_fixed_point *p, int k)
1798
{
1799
    int i;
1800
    fixed xmin = p[0].x, xmax = p[0].x;
1801
1802
    for (i = 1; i < k; i++) {
1803
        xmin = min(xmin, p[i].x);
1804
        xmax = max(xmax, p[i].x);
1805
    }
1806
    return xmax - xmin;
1807
}
1808
1809
static inline fixed
1810
span_y(const gs_fixed_point *p, int k)
1811
{
1812
    int i;
1813
    fixed ymin = p[0].y, ymax = p[0].y;
1814
1815
    for (i = 1; i < k; i++) {
1816
        ymin = min(ymin, p[i].y);
1817
        ymax = max(ymax, p[i].y);
1818
    }
1819
    return ymax - ymin;
1820
}
1821
#endif
1822
1823
static inline fixed
1824
manhattan_dist(const gs_fixed_point *p0, const gs_fixed_point *p1)
1825
14.3k
{
1826
14.3k
    fixed dx = any_abs(p1->x - p0->x), dy = any_abs(p1->y - p0->y);
1827
1828
14.3k
    return max(dx, dy);
1829
14.3k
}
1830
1831
static inline int
1832
create_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1833
        const gs_fixed_point *p0, const gs_fixed_point *p1)
1834
14.4k
{
1835
14.4k
    if (l->end != NULL)
1836
0
        return_error(gs_error_unregistered); /* Must not happen. */
1837
14.4k
    l->beg = wedge_vertex_list_elem_reserve(pfs);
1838
14.4k
    l->end = wedge_vertex_list_elem_reserve(pfs);
1839
14.4k
    if (l->beg == NULL)
1840
0
        return_error(gs_error_unregistered); /* Must not happen. */
1841
14.4k
    if (l->end == NULL)
1842
0
        return_error(gs_error_unregistered); /* Must not happen. */
1843
14.4k
    l->beg->prev = l->end->next = NULL;
1844
14.4k
    l->beg->next = l->end;
1845
14.4k
    l->end->prev = l->beg;
1846
14.4k
    l->beg->p = *p0;
1847
14.4k
    l->end->p = *p1;
1848
14.4k
    l->beg->level = l->end->level = 0;
1849
14.4k
    return 0;
1850
14.4k
}
1851
1852
static inline int
1853
insert_wedge_vertex_list_elem(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1854
                              const gs_fixed_point *p, wedge_vertex_list_elem_t **r)
1855
30.1k
{
1856
30.1k
    wedge_vertex_list_elem_t *e = wedge_vertex_list_elem_reserve(pfs);
1857
1858
    /* We have got enough free elements due to the preliminary decomposition
1859
       of curves to LAZY_WEDGES_MAX_LEVEL, see curve_samples. */
1860
30.1k
    if (e == NULL)
1861
0
        return_error(gs_error_unregistered); /* Must not happen. */
1862
30.1k
    if (l->beg->next != l->end)
1863
0
        return_error(gs_error_unregistered); /* Must not happen. */
1864
30.1k
    if (l->end->prev != l->beg)
1865
0
        return_error(gs_error_unregistered); /* Must not happen. */
1866
30.1k
    e->next = l->end;
1867
30.1k
    e->prev = l->beg;
1868
30.1k
    e->p = *p;
1869
30.1k
    e->level = max(l->beg->level, l->end->level) + 1;
1870
30.1k
    e->divide_count = 0;
1871
30.1k
    l->beg->next = l->end->prev = e;
1872
30.1k
    {   int sx = l->beg->p.x < l->end->p.x ? 1 : -1;
1873
30.1k
        int sy = l->beg->p.y < l->end->p.y ? 1 : -1;
1874
1875
30.1k
        if ((p->x - l->beg->p.x) * sx < 0)
1876
0
            return_error(gs_error_unregistered); /* Must not happen. */
1877
30.1k
        if ((p->y - l->beg->p.y) * sy < 0)
1878
0
            return_error(gs_error_unregistered); /* Must not happen. */
1879
30.1k
        if ((l->end->p.x - p->x) * sx < 0)
1880
0
            return_error(gs_error_unregistered); /* Must not happen. */
1881
30.1k
        if ((l->end->p.y - p->y) * sy < 0)
1882
0
            return_error(gs_error_unregistered); /* Must not happen. */
1883
30.1k
    }
1884
30.1k
    *r = e;
1885
30.1k
    return 0;
1886
30.1k
}
1887
1888
static inline int
1889
open_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1890
        const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *pm,
1891
        wedge_vertex_list_elem_t **r)
1892
38.6k
{
1893
38.6k
    wedge_vertex_list_elem_t *e;
1894
38.6k
    int code;
1895
1896
38.6k
    if (!l->last_side) {
1897
27.2k
        if (l->beg == NULL) {
1898
12.8k
            code = create_wedge_vertex_list(pfs, l, p0, p1);
1899
12.8k
            if (code < 0)
1900
0
                return code;
1901
12.8k
        }
1902
27.2k
        if (l->beg->p.x != p0->x)
1903
0
            return_error(gs_error_unregistered); /* Must not happen. */
1904
27.2k
        if (l->beg->p.y != p0->y)
1905
0
            return_error(gs_error_unregistered); /* Must not happen. */
1906
27.2k
        if (l->end->p.x != p1->x)
1907
0
            return_error(gs_error_unregistered); /* Must not happen. */
1908
27.2k
        if (l->end->p.y != p1->y)
1909
0
            return_error(gs_error_unregistered); /* Must not happen. */
1910
27.2k
        code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1911
27.2k
        if (code < 0)
1912
0
            return code;
1913
27.2k
        e->divide_count++;
1914
27.2k
    } else if (l->beg == NULL) {
1915
1.68k
        code = create_wedge_vertex_list(pfs, l, p1, p0);
1916
1.68k
        if (code < 0)
1917
0
            return code;
1918
1.68k
        code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1919
1.68k
        if (code < 0)
1920
0
            return code;
1921
1.68k
        e->divide_count++;
1922
9.73k
    } else {
1923
9.73k
        if (l->beg->p.x != p1->x)
1924
0
            return_error(gs_error_unregistered); /* Must not happen. */
1925
9.73k
        if (l->beg->p.y != p1->y)
1926
0
            return_error(gs_error_unregistered); /* Must not happen. */
1927
9.73k
        if (l->end->p.x != p0->x)
1928
0
            return_error(gs_error_unregistered); /* Must not happen. */
1929
9.73k
        if (l->end->p.y != p0->y)
1930
0
            return_error(gs_error_unregistered); /* Must not happen. */
1931
9.73k
        if (l->beg->next == l->end) {
1932
1.24k
            code = insert_wedge_vertex_list_elem(pfs, l, pm, &e);
1933
1.24k
            if (code < 0)
1934
0
                return code;
1935
1.24k
            e->divide_count++;
1936
8.48k
        } else {
1937
8.48k
            e = wedge_vertex_list_find(l->beg, l->end,
1938
8.48k
                        max(l->beg->level, l->end->level) + 1);
1939
8.48k
            if (e == NULL)
1940
0
                return_error(gs_error_unregistered); /* Must not happen. */
1941
8.48k
            if (e->p.x != pm->x || e->p.y != pm->y)
1942
0
                return_error(gs_error_unregistered); /* Must not happen. */
1943
8.48k
            e->divide_count++;
1944
8.48k
        }
1945
9.73k
    }
1946
38.6k
    *r = e;
1947
38.6k
    return 0;
1948
38.6k
}
1949
1950
static inline int
1951
make_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1952
        wedge_vertex_list_t *l0, bool forth,
1953
        const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *pm)
1954
38.6k
{
1955
38.6k
    int code;
1956
1957
38.6k
    l->last_side = l0->last_side;
1958
38.6k
    if (!l->last_side ^ !forth) {
1959
22.1k
        code = open_wedge_median(pfs, l0, p0, p1, pm, &l->end);
1960
22.1k
        l->beg = l0->beg;
1961
22.1k
    } else {
1962
16.5k
        code = open_wedge_median(pfs, l0, p0, p1, pm, &l->beg);
1963
16.5k
        l->end = l0->end;
1964
16.5k
    }
1965
38.6k
    return code;
1966
38.6k
}
1967
1968
static int fill_wedge_from_list(patch_fill_state_t *pfs, const wedge_vertex_list_t *l,
1969
            const patch_color_t *c0, const patch_color_t *c1);
1970
1971
static inline int
1972
close_wedge_median(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
1973
        const patch_color_t *c0, const patch_color_t *c1)
1974
38.6k
{
1975
38.6k
    int code;
1976
1977
38.6k
    if (!l->last_side)
1978
27.2k
        return 0;
1979
11.4k
    code = fill_wedge_from_list(pfs, l, c1, c0);
1980
11.4k
    if (code < 0)
1981
0
        return code;
1982
11.4k
    release_wedge_vertex_list_interval(pfs, l->beg, l->end);
1983
11.4k
    return 0;
1984
11.4k
}
1985
1986
static inline void
1987
move_wedge(wedge_vertex_list_t *l, const wedge_vertex_list_t *l0, bool forth)
1988
38.6k
{
1989
38.6k
    if (!l->last_side ^ !forth) {
1990
22.1k
        l->beg = l->end;
1991
22.1k
        l->end = l0->end;
1992
22.1k
    } else {
1993
16.5k
        l->end = l->beg;
1994
16.5k
        l->beg = l0->beg;
1995
16.5k
    }
1996
38.6k
}
1997
1998
static inline int
1999
fill_triangle_wedge_aux(patch_fill_state_t *pfs,
2000
            const shading_vertex_t *q0, const shading_vertex_t *q1, const shading_vertex_t *q2)
2001
369k
{   int code;
2002
369k
    const gs_fixed_point *p0, *p1, *p2;
2003
369k
    gs_fixed_point qq0, qq1, qq2;
2004
369k
    fixed dx = any_abs(q0->p.x - q1->p.x), dy = any_abs(q0->p.y - q1->p.y);
2005
369k
    bool swap_axes;
2006
2007
#   if SKIP_TEST
2008
        dbg_wedge_triangle_cnt++;
2009
#   endif
2010
369k
    if (dx > dy) {
2011
332k
        swap_axes = true;
2012
332k
        qq0.x = q0->p.y;
2013
332k
        qq0.y = q0->p.x;
2014
332k
        qq1.x = q1->p.y;
2015
332k
        qq1.y = q1->p.x;
2016
332k
        qq2.x = q2->p.y;
2017
332k
        qq2.y = q2->p.x;
2018
332k
        p0 = &qq0;
2019
332k
        p1 = &qq1;
2020
332k
        p2 = &qq2;
2021
332k
    } else {
2022
36.9k
        swap_axes = false;
2023
36.9k
        p0 = &q0->p;
2024
36.9k
        p1 = &q1->p;
2025
36.9k
        p2 = &q2->p;
2026
36.9k
    }
2027
    /* We decompose the thin triangle into 2 thin trapezoids.
2028
       An optimization with decomposing into 2 triangles
2029
       appears low useful, because the self_intersecting argument
2030
       with inline expansion does that job perfectly. */
2031
369k
    if (p0->y < p1->y) {
2032
190k
        code = fill_wedge_trap(pfs, p0, p2, p0, p1, q0->c, q2->c, swap_axes, false);
2033
190k
        if (code < 0)
2034
0
            return code;
2035
190k
        return fill_wedge_trap(pfs, p2, p1, p0, p1, q2->c, q1->c, swap_axes, false);
2036
190k
    } else {
2037
179k
        code = fill_wedge_trap(pfs, p0, p2, p1, p0, q0->c, q2->c, swap_axes, false);
2038
179k
        if (code < 0)
2039
0
            return code;
2040
179k
        return fill_wedge_trap(pfs, p2, p1, p1, p0, q2->c, q1->c, swap_axes, false);
2041
179k
    }
2042
369k
}
2043
2044
static inline int
2045
try_device_linear_color(patch_fill_state_t *pfs, bool wedge,
2046
        const shading_vertex_t *p0, const shading_vertex_t *p1,
2047
        const shading_vertex_t *p2)
2048
959k
{
2049
    /*  Returns :
2050
        <0 - error;
2051
        0 - success;
2052
        1 - decompose to linear color areas;
2053
        2 - decompose to constant color areas;
2054
     */
2055
959k
    int code;
2056
2057
959k
    if (pfs->unlinear)
2058
0
        return 2;
2059
959k
    if (!wedge) {
2060
959k
        const gs_color_space *cs = pfs->direct_space;
2061
2062
959k
        if (cs != NULL) {
2063
959k
            float s0, s1, s2, s01, s012;
2064
2065
959k
            s0 = function_linearity(pfs, p0->c, p1->c);
2066
959k
            if (s0 > pfs->smoothness)
2067
5.19k
                return 1;
2068
954k
            s1 = function_linearity(pfs, p1->c, p2->c);
2069
954k
            if (s1 > pfs->smoothness)
2070
3.46k
                return 1;
2071
950k
            s2 = function_linearity(pfs, p2->c, p0->c);
2072
950k
            if (s2 > pfs->smoothness)
2073
91
                return 1;
2074
            /* fixme: check an inner color ? */
2075
950k
            s01 = max(s0, s1);
2076
950k
            s012 = max(s01, s2);
2077
950k
            if (pfs->cs_always_linear)
2078
539k
                code = 1;
2079
411k
            else
2080
411k
                code = cs_is_linear(cs, pfs->pgs, pfs->trans_device,
2081
950k
                                  &p0->c->cc, &p1->c->cc, &p2->c->cc, NULL,
2082
950k
                                  pfs->smoothness - s012, pfs->icclink);
2083
950k
            if (code < 0)
2084
0
                return code;
2085
950k
            if (code == 0)
2086
29
                return 1;
2087
950k
        }
2088
959k
    }
2089
950k
    {   gx_device *pdev = pfs->dev;
2090
950k
        frac31 fc[3][GX_DEVICE_COLOR_MAX_COMPONENTS];
2091
950k
        gs_fill_attributes fa;
2092
950k
        gx_device_color dc[3];
2093
2094
950k
        fa.clip = &pfs->rect;
2095
950k
        fa.ht = NULL;
2096
950k
        fa.swap_axes = false;
2097
950k
        fa.lop = 0;
2098
950k
        code = patch_color_to_device_color_inline(pfs, p0->c, &dc[0], fc[0]);
2099
950k
        if (code != 0)
2100
0
            return code;
2101
950k
        if (!(dc[0].type == &gx_dc_type_data_pure ||
2102
950k
            dc[0].type == &gx_dc_type_data_devn))
2103
0
            return 2;
2104
950k
        if (!wedge) {
2105
950k
            code = patch_color_to_device_color_inline(pfs, p1->c, &dc[1], fc[1]);
2106
950k
            if (code != 0)
2107
0
                return code;
2108
950k
        }
2109
950k
        code = patch_color_to_device_color_inline(pfs, p2->c, &dc[2], fc[2]);
2110
950k
        if (code != 0)
2111
0
            return code;
2112
950k
        code = dev_proc(pdev, fill_linear_color_triangle)(pdev, &fa,
2113
950k
                        &p0->p, &p1->p, &p2->p,
2114
950k
                        fc[0], (wedge ? NULL : fc[1]), fc[2]);
2115
950k
        if (code == 1)
2116
950k
            return 0; /* The area is filled. */
2117
0
        if (code < 0)
2118
0
            return code;
2119
0
        else /* code == 0, the device requested to decompose the area. */
2120
0
            return 1;
2121
0
    }
2122
0
}
2123
2124
static inline int
2125
fill_triangle_wedge(patch_fill_state_t *pfs,
2126
            const shading_vertex_t *q0, const shading_vertex_t *q1, const shading_vertex_t *q2)
2127
1.45M
{
2128
1.45M
    if ((int64_t)(q1->p.x - q0->p.x) * (q2->p.y - q0->p.y) ==
2129
1.45M
        (int64_t)(q1->p.y - q0->p.y) * (q2->p.x - q0->p.x))
2130
1.08M
        return 0; /* Zero area. */
2131
    /*
2132
        Can't apply try_device_linear_color here
2133
        because didn't check is_color_linear.
2134
        Maybe need a decomposition.
2135
        Do same as for 'unlinear', and branch later.
2136
     */
2137
369k
    return fill_triangle_wedge_aux(pfs, q0, q1, q2);
2138
1.45M
}
2139
2140
static inline int
2141
fill_triangle_wedge_from_list(patch_fill_state_t *pfs,
2142
    const wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
2143
    const wedge_vertex_list_elem_t *mid,
2144
    const patch_color_t *c0, const patch_color_t *c1)
2145
21.6k
{
2146
21.6k
    shading_vertex_t p[3];
2147
21.6k
    patch_color_t *c;
2148
21.6k
    byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2149
21.6k
    int code;
2150
2151
21.6k
    if (color_stack_ptr == NULL)
2152
0
        return_error(gs_error_unregistered); /* Must not happen. */
2153
21.6k
    p[2].c = c;
2154
21.6k
    p[0].p = beg->p;
2155
21.6k
    p[0].c = c0;
2156
21.6k
    p[1].p = end->p;
2157
21.6k
    p[1].c = c1;
2158
21.6k
    p[2].p = mid->p;
2159
21.6k
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
2160
21.6k
    code = fill_triangle_wedge(pfs, &p[0], &p[1], &p[2]);
2161
21.6k
    release_colors_inline(pfs, color_stack_ptr, 1);
2162
21.6k
    return code;
2163
21.6k
}
2164
2165
static int
2166
fill_wedge_from_list_rec(patch_fill_state_t *pfs,
2167
            wedge_vertex_list_elem_t *beg, const wedge_vertex_list_elem_t *end,
2168
            int level, const patch_color_t *c0, const patch_color_t *c1)
2169
41.9k
{
2170
41.9k
    if (beg->next == end)
2171
11.7k
        return 0;
2172
30.1k
    else if (beg->next->next == end) {
2173
22.1k
        if (beg->next->divide_count != 1 && beg->next->divide_count != 2)
2174
0
            return_error(gs_error_unregistered); /* Must not happen. */
2175
22.1k
        if (beg->next->divide_count != 1)
2176
8.41k
            return 0;
2177
13.7k
        return fill_triangle_wedge_from_list(pfs, beg, end, beg->next, c0, c1);
2178
22.1k
    } else {
2179
8.02k
        gs_fixed_point p;
2180
8.02k
        wedge_vertex_list_elem_t *e;
2181
8.02k
        patch_color_t *c;
2182
8.02k
        int code;
2183
8.02k
        byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2184
2185
8.02k
        if (color_stack_ptr == NULL)
2186
0
            return_error(gs_error_unregistered); /* Must not happen. */
2187
8.02k
        p.x = (beg->p.x + end->p.x) / 2;
2188
8.02k
        p.y = (beg->p.y + end->p.y) / 2;
2189
8.02k
        e = wedge_vertex_list_find(beg, end, level + 1);
2190
8.02k
        if (e == NULL)
2191
0
            return_error(gs_error_unregistered); /* Must not happen. */
2192
8.02k
        if (e->p.x != p.x || e->p.y != p.y)
2193
0
            return_error(gs_error_unregistered); /* Must not happen. */
2194
8.02k
        patch_interpolate_color(c, c0, c1, pfs, 0.5);
2195
8.02k
        code = fill_wedge_from_list_rec(pfs, beg, e, level + 1, c0, c);
2196
8.02k
        if (code >= 0)
2197
8.02k
            code = fill_wedge_from_list_rec(pfs, e, end, level + 1, c, c1);
2198
8.02k
        if (code >= 0) {
2199
8.02k
            if (e->divide_count != 1 && e->divide_count != 2)
2200
0
                return_error(gs_error_unregistered); /* Must not happen. */
2201
8.02k
            if (e->divide_count == 1)
2202
7.94k
                code = fill_triangle_wedge_from_list(pfs, beg, end, e, c0, c1);
2203
8.02k
        }
2204
8.02k
        release_colors_inline(pfs, color_stack_ptr, 1);
2205
8.02k
        return code;
2206
8.02k
    }
2207
41.9k
}
2208
2209
static int
2210
fill_wedge_from_list(patch_fill_state_t *pfs, const wedge_vertex_list_t *l,
2211
            const patch_color_t *c0, const patch_color_t *c1)
2212
25.9k
{
2213
25.9k
    return fill_wedge_from_list_rec(pfs, l->beg, l->end,
2214
25.9k
                    max(l->beg->level, l->end->level), c0, c1);
2215
25.9k
}
2216
2217
static inline int
2218
terminate_wedge_vertex_list(patch_fill_state_t *pfs, wedge_vertex_list_t *l,
2219
        const patch_color_t *c0, const patch_color_t *c1)
2220
2.50M
{
2221
2.50M
    if (l->beg != NULL) {
2222
14.4k
        int code = fill_wedge_from_list(pfs, l, c0, c1);
2223
2224
14.4k
        if (code < 0)
2225
0
            return code;
2226
14.4k
        return release_wedge_vertex_list(pfs, l, 1);
2227
14.4k
    }
2228
2.49M
    return 0;
2229
2.50M
}
2230
2231
static int
2232
wedge_by_triangles(patch_fill_state_t *pfs, int ka,
2233
        const gs_fixed_point pole[4], const patch_color_t *c0, const patch_color_t *c1)
2234
656k
{   /* Assuming ka >= 2, see fill_wedges. */
2235
656k
    gs_fixed_point q[2][4];
2236
656k
    patch_color_t *c;
2237
656k
    shading_vertex_t p[3];
2238
656k
    int code;
2239
656k
    byte *color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2240
2241
656k
    if (color_stack_ptr == NULL)
2242
0
        return_error(gs_error_unregistered); /* Must not happen. */
2243
656k
    p[2].c = c;
2244
656k
    split_curve(pole, q[0], q[1]);
2245
656k
    p[0].p = pole[0];
2246
656k
    p[0].c = c0;
2247
656k
    p[1].p = pole[3];
2248
656k
    p[1].c = c1;
2249
656k
    p[2].p = q[0][3];
2250
656k
    patch_interpolate_color(c, c0, c1, pfs, 0.5);
2251
656k
    code = fill_triangle_wedge(pfs, &p[0], &p[1], &p[2]);
2252
656k
    if (code >= 0) {
2253
656k
        if (ka == 2)
2254
329k
            goto out;
2255
326k
        code = wedge_by_triangles(pfs, ka / 2, q[0], c0, p[2].c);
2256
326k
    }
2257
326k
    if (code >= 0)
2258
326k
        code = wedge_by_triangles(pfs, ka / 2, q[1], p[2].c, c1);
2259
656k
out:
2260
656k
    release_colors_inline(pfs, color_stack_ptr, 1);
2261
656k
    return code;
2262
326k
}
2263
2264
int
2265
mesh_padding(patch_fill_state_t *pfs, const gs_fixed_point *p0, const gs_fixed_point *p1,
2266
            const patch_color_t *c0, const patch_color_t *c1)
2267
953k
{
2268
953k
    gs_fixed_point q0, q1;
2269
953k
    const patch_color_t *cc0, *cc1;
2270
953k
    fixed dx = p1->x - p0->x;
2271
953k
    fixed dy = p1->y - p0->y;
2272
953k
    bool swap_axes = (any_abs(dx) > any_abs(dy));
2273
953k
    gs_fixed_edge le, re;
2274
953k
    const fixed adjust = INTERPATCH_PADDING;
2275
2276
953k
    if (swap_axes) {
2277
682k
        if (p0->x < p1->x) {
2278
348k
            q0.x = p0->y;
2279
348k
            q0.y = p0->x;
2280
348k
            q1.x = p1->y;
2281
348k
            q1.y = p1->x;
2282
348k
            cc0 = c0;
2283
348k
            cc1 = c1;
2284
348k
        } else {
2285
333k
            q0.x = p1->y;
2286
333k
            q0.y = p1->x;
2287
333k
            q1.x = p0->y;
2288
333k
            q1.y = p0->x;
2289
333k
            cc0 = c1;
2290
333k
            cc1 = c0;
2291
333k
        }
2292
682k
    } else if (p0->y < p1->y) {
2293
30.3k
        q0 = *p0;
2294
30.3k
        q1 = *p1;
2295
30.3k
        cc0 = c0;
2296
30.3k
        cc1 = c1;
2297
240k
    } else {
2298
240k
        q0 = *p1;
2299
240k
        q1 = *p0;
2300
240k
        cc0 = c1;
2301
240k
        cc1 = c0;
2302
240k
    }
2303
953k
    le.start.x = q0.x - adjust;
2304
953k
    re.start.x = q0.x + adjust;
2305
953k
    le.start.y = re.start.y = q0.y - adjust;
2306
953k
    le.end.x = q1.x - adjust;
2307
953k
    re.end.x = q1.x + adjust;
2308
953k
    le.end.y = re.end.y = q1.y + adjust;
2309
953k
    adjust_swapped_boundary(&re.start.x, swap_axes);
2310
953k
    adjust_swapped_boundary(&re.end.x, swap_axes);
2311
953k
    return decompose_linear_color(pfs, &le, &re, le.start.y, le.end.y, swap_axes, cc0, cc1);
2312
    /* fixme : for a better performance and quality, we would like to
2313
       consider the bar as an oriented one and to know at what side of it the spot resides.
2314
       If we know that, we could expand only to outside the spot.
2315
       Note that if the boundary has a self-intersection,
2316
       we still need to expand to both directions.
2317
     */
2318
953k
}
2319
2320
static inline void
2321
bbox_of_points(gs_fixed_rect *r,
2322
        const gs_fixed_point *p0, const gs_fixed_point *p1,
2323
        const gs_fixed_point *p2, const gs_fixed_point *p3)
2324
505k
{
2325
505k
    r->p.x = r->q.x = p0->x;
2326
505k
    r->p.y = r->q.y = p0->y;
2327
2328
505k
    if (r->p.x > p1->x)
2329
231k
        r->p.x = p1->x;
2330
505k
    if (r->q.x < p1->x)
2331
236k
        r->q.x = p1->x;
2332
505k
    if (r->p.y > p1->y)
2333
214k
        r->p.y = p1->y;
2334
505k
    if (r->q.y < p1->y)
2335
199k
        r->q.y = p1->y;
2336
2337
505k
    if (r->p.x > p2->x)
2338
134k
        r->p.x = p2->x;
2339
505k
    if (r->q.x < p2->x)
2340
115k
        r->q.x = p2->x;
2341
505k
    if (r->p.y > p2->y)
2342
108k
        r->p.y = p2->y;
2343
505k
    if (r->q.y < p2->y)
2344
109k
        r->q.y = p2->y;
2345
2346
505k
    if (p3 == NULL)
2347
269k
        return;
2348
2349
235k
    if (r->p.x > p3->x)
2350
58.7k
        r->p.x = p3->x;
2351
235k
    if (r->q.x < p3->x)
2352
43.4k
        r->q.x = p3->x;
2353
235k
    if (r->p.y > p3->y)
2354
35.9k
        r->p.y = p3->y;
2355
235k
    if (r->q.y < p3->y)
2356
36.2k
        r->q.y = p3->y;
2357
235k
}
2358
2359
static int
2360
fill_wedges_aux(patch_fill_state_t *pfs, int k, int ka,
2361
        const gs_fixed_point pole[4], const patch_color_t *c0, const patch_color_t *c1,
2362
        int wedge_type)
2363
156k
{
2364
156k
    int code;
2365
2366
156k
    if (k > 1) {
2367
67.0k
        gs_fixed_point q[2][4];
2368
67.0k
        patch_color_t *c;
2369
67.0k
        bool save_inside = pfs->inside;
2370
67.0k
        byte *color_stack_ptr;
2371
2372
67.0k
        if (!pfs->inside) {
2373
65.1k
            gs_fixed_rect r, r1;
2374
2375
65.1k
            bbox_of_points(&r, &pole[0], &pole[1], &pole[2], &pole[3]);
2376
65.1k
            r.p.x -= INTERPATCH_PADDING;
2377
65.1k
            r.p.y -= INTERPATCH_PADDING;
2378
65.1k
            r.q.x += INTERPATCH_PADDING;
2379
65.1k
            r.q.y += INTERPATCH_PADDING;
2380
65.1k
            r1 = r;
2381
65.1k
            rect_intersect(r, pfs->rect);
2382
65.1k
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
2383
60.6k
                return 0;
2384
4.44k
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
2385
4.44k
                r1.q.x == r.q.x && r1.q.y == r.q.y)
2386
1.82k
                pfs->inside = true;
2387
4.44k
        }
2388
6.34k
        color_stack_ptr = reserve_colors_inline(pfs, &c, 1);
2389
6.34k
        if (color_stack_ptr == NULL)
2390
0
            return_error(gs_error_unregistered); /* Must not happen. */
2391
6.34k
        patch_interpolate_color(c, c0, c1, pfs, 0.5);
2392
6.34k
        split_curve(pole, q[0], q[1]);
2393
6.34k
        code = fill_wedges_aux(pfs, k / 2, ka, q[0], c0, c, wedge_type);
2394
6.34k
        if (code >= 0)
2395
6.34k
            code = fill_wedges_aux(pfs, k / 2, ka, q[1], c, c1, wedge_type);
2396
6.34k
        release_colors_inline(pfs, color_stack_ptr, 1);
2397
6.34k
        pfs->inside = save_inside;
2398
6.34k
        return code;
2399
89.5k
    } else {
2400
89.5k
        if ((INTERPATCH_PADDING != 0) && (wedge_type & interpatch_padding)) {
2401
88.5k
            code = mesh_padding(pfs, &pole[0], &pole[3], c0, c1);
2402
88.5k
            if (code < 0)
2403
0
                return code;
2404
88.5k
        }
2405
89.5k
        if (ka >= 2 && (wedge_type & inpatch_wedge))
2406
3.76k
            return wedge_by_triangles(pfs, ka, pole, c0, c1);
2407
85.8k
        return 0;
2408
89.5k
    }
2409
156k
}
2410
2411
static int
2412
fill_wedges(patch_fill_state_t *pfs, int k0, int k1,
2413
        const gs_fixed_point *pole, int pole_step,
2414
        const patch_color_t *c0, const patch_color_t *c1,
2415
        int wedge_type)
2416
1.00M
{
2417
    /* Generate wedges between 2 variants of a curve flattening. */
2418
    /* k0, k1 is a power of 2. */
2419
1.00M
    gs_fixed_point p[4];
2420
2421
1.00M
    if (!(wedge_type & interpatch_padding) && k0 == k1)
2422
859k
        return 0; /* Wedges are zero area. */
2423
143k
    if (k0 > k1) { /* Swap if required, so that k0 <= k1 */
2424
0
        k0 ^= k1; k1 ^= k0; k0 ^= k1;
2425
0
    }
2426
143k
    p[0] = pole[0];
2427
143k
    p[1] = pole[pole_step];
2428
143k
    p[2] = pole[pole_step * 2];
2429
143k
    p[3] = pole[pole_step * 3];
2430
143k
    return fill_wedges_aux(pfs, k0, k1 / k0, p, c0, c1, wedge_type);
2431
1.00M
}
2432
2433
static inline void
2434
make_vertices(gs_fixed_point q[4], const quadrangle_patch *p)
2435
7.31k
{
2436
7.31k
    q[0] = p->p[0][0]->p;
2437
7.31k
    q[1] = p->p[0][1]->p;
2438
7.31k
    q[2] = p->p[1][1]->p;
2439
7.31k
    q[3] = p->p[1][0]->p;
2440
7.31k
}
2441
2442
static inline void
2443
wrap_vertices_by_y(gs_fixed_point q[4], const gs_fixed_point s[4])
2444
7.31k
{
2445
7.31k
    fixed y = s[0].y;
2446
7.31k
    int i = 0;
2447
2448
7.31k
    if (y > s[1].y)
2449
4.77k
        i = 1, y = s[1].y;
2450
7.31k
    if (y > s[2].y)
2451
3.88k
        i = 2, y = s[2].y;
2452
7.31k
    if (y > s[3].y)
2453
656
        i = 3, y = s[3].y;
2454
7.31k
    q[0] = s[(i + 0) % 4];
2455
7.31k
    q[1] = s[(i + 1) % 4];
2456
7.31k
    q[2] = s[(i + 2) % 4];
2457
7.31k
    q[3] = s[(i + 3) % 4];
2458
7.31k
}
2459
2460
static int
2461
ordered_triangle(patch_fill_state_t *pfs, gs_fixed_edge *le, gs_fixed_edge *re, patch_color_t *c)
2462
4.55k
{
2463
4.55k
    gs_fixed_edge ue;
2464
4.55k
    int code;
2465
4.55k
    gx_device_color dc;
2466
2467
#   if NOFILL_TEST
2468
        if (dbg_nofill)
2469
            return 0;
2470
#   endif
2471
4.55k
    code = patch_color_to_device_color_inline(pfs, c, &dc, NULL);
2472
4.55k
    if (code < 0)
2473
0
        return code;
2474
4.55k
    if (le->end.y < re->end.y) {
2475
1.69k
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2476
1.69k
            le, re, le->start.y, le->end.y, false, &dc, pfs->pgs->log_op);
2477
1.69k
        if (code >= 0) {
2478
1.69k
            ue.start = le->end;
2479
1.69k
            ue.end = re->end;
2480
1.69k
            code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2481
1.69k
                &ue, re, le->end.y, re->end.y, false, &dc, pfs->pgs->log_op);
2482
1.69k
        }
2483
2.86k
    } else if (le->end.y > re->end.y) {
2484
1.68k
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2485
1.68k
            le, re, le->start.y, re->end.y, false, &dc, pfs->pgs->log_op);
2486
1.68k
        if (code >= 0) {
2487
1.68k
            ue.start = re->end;
2488
1.68k
            ue.end = le->end;
2489
1.68k
            code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2490
1.68k
                le, &ue, re->end.y, le->end.y, false, &dc, pfs->pgs->log_op);
2491
1.68k
        }
2492
1.68k
    } else
2493
1.17k
        code = dev_proc(pfs->dev, fill_trapezoid)(pfs->dev,
2494
1.17k
            le, re, le->start.y, le->end.y, false, &dc, pfs->pgs->log_op);
2495
4.55k
    return code;
2496
4.55k
}
2497
2498
static int
2499
constant_color_triangle(patch_fill_state_t *pfs,
2500
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
2501
3.38k
{
2502
3.38k
    patch_color_t *c[2];
2503
3.38k
    gs_fixed_edge le, re;
2504
3.38k
    fixed dx0, dy0, dx1, dy1;
2505
3.38k
    const shading_vertex_t *pp;
2506
3.38k
    int i, code = 0;
2507
3.38k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
2508
2509
3.38k
    if (color_stack_ptr == NULL)
2510
0
        return_error(gs_error_unregistered); /* Must not happen. */
2511
3.38k
    patch_interpolate_color(c[0], p0->c, p1->c, pfs, 0.5);
2512
3.38k
    patch_interpolate_color(c[1], p2->c, c[0], pfs, 0.5);
2513
13.5k
    for (i = 0; i < 3; i++) {
2514
        /* fixme : does optimizer compiler expand this cycle ? */
2515
10.1k
        if (p0->p.y <= p1->p.y && p0->p.y <= p2->p.y) {
2516
4.55k
            le.start = re.start = p0->p;
2517
4.55k
            le.end = p1->p;
2518
4.55k
            re.end = p2->p;
2519
2520
4.55k
            dx0 = le.end.x - le.start.x;
2521
4.55k
            dy0 = le.end.y - le.start.y;
2522
4.55k
            dx1 = re.end.x - re.start.x;
2523
4.55k
            dy1 = re.end.y - re.start.y;
2524
4.55k
            if ((int64_t)dx0 * dy1 < (int64_t)dy0 * dx1)
2525
1.02k
                code = ordered_triangle(pfs, &le, &re, c[1]);
2526
3.53k
            else
2527
3.53k
                code = ordered_triangle(pfs, &re, &le, c[1]);
2528
4.55k
            if (code < 0)
2529
0
                break;
2530
4.55k
        }
2531
10.1k
        pp = p0; p0 = p1; p1 = p2; p2 = pp;
2532
10.1k
    }
2533
3.38k
    release_colors_inline(pfs, color_stack_ptr, 2);
2534
3.38k
    return code;
2535
3.38k
}
2536
2537
static inline int
2538
constant_color_quadrangle_aux(patch_fill_state_t *pfs, const quadrangle_patch *p, bool self_intersecting,
2539
        patch_color_t *c[3])
2540
7.31k
{
2541
    /* Assuming the XY span is restricted with curve_samples.
2542
       It is important for intersection_of_small_bars to compute faster. */
2543
7.31k
    gs_fixed_point q[4];
2544
7.31k
    fixed ry, ey;
2545
7.31k
    int code;
2546
7.31k
    bool swap_axes = false;
2547
7.31k
    gx_device_color dc;
2548
7.31k
    bool orient;
2549
2550
7.31k
    dc.tag = device_current_tag(pfs->dev);
2551
2552
7.31k
    patch_interpolate_color(c[1], p->p[0][0]->c, p->p[0][1]->c, pfs, 0.5);
2553
7.31k
    patch_interpolate_color(c[2], p->p[1][0]->c, p->p[1][1]->c, pfs, 0.5);
2554
7.31k
    patch_interpolate_color(c[0], c[1], c[2], pfs, 0.5);
2555
7.31k
    code = patch_color_to_device_color_inline(pfs, c[0], &dc, NULL);
2556
7.31k
    if (code < 0)
2557
0
        return code;
2558
7.31k
    {   gs_fixed_point qq[4];
2559
2560
7.31k
        make_vertices(qq, p);
2561
#ifdef SHADING_SWAP_AXES_FOR_PRECISION
2562
             /* Swapping axes may improve the precision,
2563
                but slows down due to the area expansion needed
2564
                in gx_shade_trapezoid. */
2565
            dx = span_x(qq, 4);
2566
            dy = span_y(qq, 4);
2567
            if (dy < dx) {
2568
                do_swap_axes(qq, 4);
2569
                swap_axes = true;
2570
            }
2571
#endif
2572
7.31k
        wrap_vertices_by_y(q, qq);
2573
7.31k
    }
2574
7.31k
    {   fixed dx1 = q[1].x - q[0].x, dy1 = q[1].y - q[0].y;
2575
7.31k
        fixed dx3 = q[3].x - q[0].x, dy3 = q[3].y - q[0].y;
2576
7.31k
        int64_t g13 = (int64_t)dx1 * dy3, h13 = (int64_t)dy1 * dx3;
2577
2578
7.31k
        if (g13 == h13) {
2579
30
            fixed dx2 = q[2].x - q[0].x, dy2 = q[2].y - q[0].y;
2580
30
            int64_t g23 = (int64_t)dx2 * dy3, h23 = (int64_t)dy2 * dx3;
2581
2582
30
            if (dx1 == 0 && dy1 == 0 && g23 == h23)
2583
0
                return 0;
2584
30
            if (g23 != h23) {
2585
30
                orient = (g23 > h23);
2586
30
                if (q[2].y <= q[3].y) {
2587
30
                    if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[2].y, swap_axes, &dc, orient)) < 0)
2588
0
                        return code;
2589
30
                    return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2590
30
                } else {
2591
0
                    if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient)) < 0)
2592
0
                        return code;
2593
0
                    return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2594
0
                }
2595
30
            } else {
2596
0
                int64_t g12 = (int64_t)dx1 * dy2, h12 = (int64_t)dy1 * dx2;
2597
2598
0
                if (dx3 == 0 && dy3 == 0 && g12 == h12)
2599
0
                    return 0;
2600
0
                orient = (g12 > h12);
2601
0
                if (q[1].y <= q[2].y) {
2602
0
                    if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2603
0
                        return code;
2604
0
                    return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2605
0
                } else {
2606
0
                    if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[0].y, q[2].y, swap_axes, &dc, orient)) < 0)
2607
0
                        return code;
2608
0
                    return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2609
0
                }
2610
0
            }
2611
30
        }
2612
7.28k
        orient = ((int64_t)dx1 * dy3 > (int64_t)dy1 * dx3);
2613
7.28k
    }
2614
7.28k
    if (q[1].y <= q[2].y && q[2].y <= q[3].y) {
2615
1.73k
        if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2616
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2617
0
                return code;
2618
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 3, 1, 2, q[1].y, ry + ey, swap_axes, &dc, orient)) < 0)
2619
0
                return code;
2620
0
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, ry, q[2].y, swap_axes, &dc, orient)) < 0)
2621
0
                return code;
2622
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2623
1.73k
        } else {
2624
1.73k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2625
0
                return code;
2626
1.73k
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[2].y, swap_axes, &dc, orient)) < 0)
2627
0
                return code;
2628
1.73k
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient);
2629
1.73k
        }
2630
5.54k
    } else if (q[1].y <= q[3].y && q[3].y <= q[2].y) {
2631
4.43k
        if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2632
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2633
0
                return code;
2634
0
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, ry + ey, swap_axes, &dc, orient)) < 0)
2635
0
                return code;
2636
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 3, 1, 2, ry, q[3].y, swap_axes, &dc, orient)) < 0)
2637
0
                return code;
2638
0
            return gx_shade_trapezoid(pfs, q, 3, 2, 1, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2639
4.43k
        } else {
2640
4.43k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2641
0
                return code;
2642
4.43k
            if ((code = gx_shade_trapezoid(pfs, q, 1, 2, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient)) < 0)
2643
0
                return code;
2644
4.43k
            return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient);
2645
4.43k
        }
2646
4.43k
    } else if (q[2].y <= q[1].y && q[1].y <= q[3].y) {
2647
0
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2648
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2649
0
                return code;
2650
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2651
0
                return code;
2652
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2653
0
                return code;
2654
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, ry, q[3].y, swap_axes, &dc, orient);
2655
0
        } else if (self_intersecting && intersection_of_small_bars(q, 0, 3, 1, 2, &ry, &ey)) {
2656
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2657
0
                return code;
2658
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2659
0
                return code;
2660
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2661
0
                return code;
2662
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, ry, q[3].y, swap_axes, &dc, orient);
2663
0
        } else {
2664
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[1].y, swap_axes, &dc, orient)) < 0)
2665
0
                return code;
2666
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 3, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient)) < 0)
2667
0
                return code;
2668
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[1].y, q[3].y, swap_axes, &dc, orient);
2669
0
        }
2670
1.10k
    } else if (q[2].y <= q[3].y && q[3].y <= q[1].y) {
2671
2
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2672
            /* Same code as someone above. */
2673
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2674
0
                return code;
2675
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2676
0
                return code;
2677
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2678
0
                return code;
2679
0
            return gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, ry, q[3].y, swap_axes, &dc, orient);
2680
2
        } else if (self_intersecting && intersection_of_small_bars(q, 0, 3, 2, 1, &ry, &ey)) {
2681
            /* Same code as someone above. */
2682
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, ry + ey, swap_axes, &dc, orient)) < 0)
2683
0
                return code;
2684
0
            if ((code = gx_shade_trapezoid(pfs, q, 2, 1, 2, 3, q[2].y, ry + ey, swap_axes, &dc, orient)) < 0)
2685
0
                return code;
2686
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2687
0
                return code;
2688
0
            return gx_shade_trapezoid(pfs, q, 0, 3, 2, 3, ry, q[3].y, swap_axes, &dc, orient);
2689
2
        } else {
2690
2
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[2].y, swap_axes, &dc, orient)) < 0)
2691
0
                return code;
2692
2
            if ((code = gx_shade_trapezoid(pfs, q, 2, 3, 0, 3, q[2].y, q[3].y, swap_axes, &dc, orient)) < 0)
2693
0
                return code;
2694
2
            return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2695
2
        }
2696
1.10k
    } else if (q[3].y <= q[1].y && q[1].y <= q[2].y) {
2697
1.10k
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 3, 2, &ry, &ey)) {
2698
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2699
0
                return code;
2700
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, ry + ey, swap_axes, &dc, orient)) < 0)
2701
0
                return code;
2702
0
            if ((code = gx_shade_trapezoid(pfs, q, 3, 2, 0, 1, ry, q[1].y, swap_axes, &dc, orient)) < 0)
2703
0
                return code;
2704
0
            return gx_shade_trapezoid(pfs, q, 3, 2, 1, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2705
1.10k
        } else {
2706
1.10k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2707
0
                return code;
2708
1.10k
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, q[1].y, swap_axes, &dc, orient)) < 0)
2709
0
                return code;
2710
1.10k
            return gx_shade_trapezoid(pfs, q, 1, 2, 3, 2, q[1].y, q[2].y, swap_axes, &dc, orient);
2711
1.10k
        }
2712
1.10k
    } else if (q[3].y <= q[2].y && q[2].y <= q[1].y) {
2713
2
        if (self_intersecting && intersection_of_small_bars(q, 0, 1, 2, 3, &ry, &ey)) {
2714
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2715
0
                return code;
2716
0
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, ry + ey, swap_axes, &dc, orient)) < 0)
2717
0
                return code;
2718
0
            if ((code = gx_shade_trapezoid(pfs, q, 3, 2, 0, 1, ry, q[2].y, swap_axes, &dc, orient)) < 0)
2719
0
                return code;
2720
0
            return gx_shade_trapezoid(pfs, q, 2, 1, 0, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2721
2
        } else {
2722
2
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 0, 3, q[0].y, q[3].y, swap_axes, &dc, orient)) < 0)
2723
0
                return code;
2724
2
            if ((code = gx_shade_trapezoid(pfs, q, 0, 1, 3, 2, q[3].y, q[2].y, swap_axes, &dc, orient)) < 0)
2725
0
                return code;
2726
2
            return gx_shade_trapezoid(pfs, q, 0, 1, 2, 1, q[2].y, q[1].y, swap_axes, &dc, orient);
2727
2
        }
2728
2
    } else {
2729
        /* Impossible. */
2730
0
        return_error(gs_error_unregistered);
2731
0
    }
2732
7.28k
}
2733
2734
int
2735
constant_color_quadrangle(patch_fill_state_t *pfs, const quadrangle_patch *p, bool self_intersecting)
2736
7.31k
{
2737
7.31k
    patch_color_t *c[3];
2738
7.31k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
2739
7.31k
    int code;
2740
2741
7.31k
    if (color_stack_ptr == NULL)
2742
0
        return_error(gs_error_unregistered); /* Must not happen. */
2743
7.31k
    code = constant_color_quadrangle_aux(pfs, p, self_intersecting, c);
2744
7.31k
    release_colors_inline(pfs, color_stack_ptr, 3);
2745
7.31k
    return code;
2746
7.31k
}
2747
2748
static inline void
2749
divide_quadrangle_by_v(patch_fill_state_t *pfs, quadrangle_patch *s0, quadrangle_patch *s1,
2750
            shading_vertex_t q[2], const quadrangle_patch *p, patch_color_t *c[2])
2751
7.37k
{
2752
7.37k
    q[0].c = c[0];
2753
7.37k
    q[1].c = c[1];
2754
7.37k
    q[0].p.x = (p->p[0][0]->p.x + p->p[1][0]->p.x) / 2;
2755
7.37k
    q[1].p.x = (p->p[0][1]->p.x + p->p[1][1]->p.x) / 2;
2756
7.37k
    q[0].p.y = (p->p[0][0]->p.y + p->p[1][0]->p.y) / 2;
2757
7.37k
    q[1].p.y = (p->p[0][1]->p.y + p->p[1][1]->p.y) / 2;
2758
7.37k
    patch_interpolate_color(c[0], p->p[0][0]->c, p->p[1][0]->c, pfs, 0.5);
2759
7.37k
    patch_interpolate_color(c[1], p->p[0][1]->c, p->p[1][1]->c, pfs, 0.5);
2760
7.37k
    s0->p[0][0] = p->p[0][0];
2761
7.37k
    s0->p[0][1] = p->p[0][1];
2762
7.37k
    s0->p[1][0] = s1->p[0][0] = &q[0];
2763
7.37k
    s0->p[1][1] = s1->p[0][1] = &q[1];
2764
7.37k
    s1->p[1][0] = p->p[1][0];
2765
7.37k
    s1->p[1][1] = p->p[1][1];
2766
7.37k
}
2767
2768
static inline void
2769
divide_quadrangle_by_u(patch_fill_state_t *pfs, quadrangle_patch *s0, quadrangle_patch *s1,
2770
            shading_vertex_t q[2], const quadrangle_patch *p, patch_color_t *c[2])
2771
3.86k
{
2772
3.86k
    q[0].c = c[0];
2773
3.86k
    q[1].c = c[1];
2774
3.86k
    q[0].p.x = (p->p[0][0]->p.x + p->p[0][1]->p.x) / 2;
2775
3.86k
    q[1].p.x = (p->p[1][0]->p.x + p->p[1][1]->p.x) / 2;
2776
3.86k
    q[0].p.y = (p->p[0][0]->p.y + p->p[0][1]->p.y) / 2;
2777
3.86k
    q[1].p.y = (p->p[1][0]->p.y + p->p[1][1]->p.y) / 2;
2778
3.86k
    patch_interpolate_color(c[0], p->p[0][0]->c, p->p[0][1]->c, pfs, 0.5);
2779
3.86k
    patch_interpolate_color(c[1], p->p[1][0]->c, p->p[1][1]->c, pfs, 0.5);
2780
3.86k
    s0->p[0][0] = p->p[0][0];
2781
3.86k
    s0->p[1][0] = p->p[1][0];
2782
3.86k
    s0->p[0][1] = s1->p[0][0] = &q[0];
2783
3.86k
    s0->p[1][1] = s1->p[1][0] = &q[1];
2784
3.86k
    s1->p[0][1] = p->p[0][1];
2785
3.86k
    s1->p[1][1] = p->p[1][1];
2786
3.86k
}
2787
2788
static inline int
2789
is_quadrangle_color_monotonic(const patch_fill_state_t *pfs, const quadrangle_patch *p,
2790
                              bool *not_monotonic_by_u, bool *not_monotonic_by_v)
2791
105k
{   /* returns : 1 = monotonic, 0 = don't know, <0 = error. */
2792
105k
    int code, r;
2793
2794
105k
    code = isnt_color_monotonic(pfs, p->p[0][0]->c, p->p[1][1]->c);
2795
105k
    if (code <= 0)
2796
101k
        return code;
2797
3.93k
    r = code << pfs->function_arg_shift;
2798
3.93k
    if (r & 1)
2799
0
        *not_monotonic_by_u = true;
2800
3.93k
    if (r & 2)
2801
3.93k
        *not_monotonic_by_v = true;
2802
3.93k
    return !code;
2803
105k
}
2804
2805
static inline void
2806
divide_bar(patch_fill_state_t *pfs,
2807
        const shading_vertex_t *p0, const shading_vertex_t *p1, int radix, shading_vertex_t *p,
2808
        patch_color_t *c)
2809
392k
{
2810
    /* Assuming p.c == c for providing a non-const access. */
2811
392k
    p->p.x = (fixed)((int64_t)p0->p.x * (radix - 1) + p1->p.x) / radix;
2812
392k
    p->p.y = (fixed)((int64_t)p0->p.y * (radix - 1) + p1->p.y) / radix;
2813
392k
    patch_interpolate_color(c, p0->c, p1->c, pfs, (double)(radix - 1) / radix);
2814
392k
}
2815
2816
static int
2817
triangle_by_4(patch_fill_state_t *pfs,
2818
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2,
2819
        wedge_vertex_list_t *l01, wedge_vertex_list_t *l12, wedge_vertex_list_t *l20,
2820
        double cd, fixed sd)
2821
991k
{
2822
991k
    shading_vertex_t p01, p12, p20;
2823
991k
    patch_color_t *c[3];
2824
991k
    wedge_vertex_list_t L01, L12, L20, L[3];
2825
991k
    bool inside_save = pfs->inside;
2826
991k
    gs_fixed_rect r = {{0,0},{0,0}}, r1 =  {{0,0},{0,0}};
2827
991k
    int code = 0;
2828
991k
    byte *color_stack_ptr;
2829
991k
    const bool inside = pfs->inside; /* 'const' should help compiler to analyze initializations. */
2830
2831
991k
    if (!inside) {
2832
269k
        bbox_of_points(&r, &p0->p, &p1->p, &p2->p, NULL);
2833
269k
        r1 = r;
2834
269k
        rect_intersect(r, pfs->rect);
2835
269k
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
2836
31.5k
            return 0;
2837
269k
    }
2838
959k
    color_stack_ptr = reserve_colors_inline(pfs, c, 3);
2839
959k
    if(color_stack_ptr == NULL)
2840
0
        return_error(gs_error_unregistered);
2841
959k
    p01.c = c[0];
2842
959k
    p12.c = c[1];
2843
959k
    p20.c = c[2];
2844
959k
    code = try_device_linear_color(pfs, false, p0, p1, p2);
2845
959k
    switch(code) {
2846
950k
        case 0: /* The area is filled. */
2847
950k
            goto out;
2848
0
        case 2: /* decompose to constant color areas */
2849
            /* Halftoned devices may do with some bigger areas
2850
               due to imprecise representation of a contone color.
2851
               So we multiply the decomposition limit by 4 for a faster rendering. */
2852
0
            if (sd < pfs->decomposition_limit * 4) {
2853
0
                code = constant_color_triangle(pfs, p2, p0, p1);
2854
0
                goto out;
2855
0
            }
2856
0
            if (pfs->Function != NULL) {
2857
0
                double d01 = color_span(pfs, p1->c, p0->c);
2858
0
                double d12 = color_span(pfs, p2->c, p1->c);
2859
0
                double d20 = color_span(pfs, p0->c, p2->c);
2860
2861
0
                if (d01 <= pfs->smoothness / COLOR_CONTIGUITY &&
2862
0
                    d12 <= pfs->smoothness / COLOR_CONTIGUITY &&
2863
0
                    d20 <= pfs->smoothness / COLOR_CONTIGUITY) {
2864
0
                    code = constant_color_triangle(pfs, p2, p0, p1);
2865
0
                    goto out;
2866
0
                }
2867
0
            } else if (cd <= pfs->smoothness / COLOR_CONTIGUITY) {
2868
0
                code = constant_color_triangle(pfs, p2, p0, p1);
2869
0
                goto out;
2870
0
            }
2871
0
            break;
2872
8.77k
        case 1: /* decompose to linear color areas */
2873
8.77k
            if (sd < pfs->decomposition_limit) {
2874
3.38k
                code = constant_color_triangle(pfs, p2, p0, p1);
2875
3.38k
                goto out;
2876
3.38k
            }
2877
5.39k
            break;
2878
5.39k
        default: /* Error. */
2879
0
            goto out;
2880
959k
    }
2881
5.39k
    if (!inside) {
2882
1.72k
        if (r.p.x == r1.p.x && r.p.y == r1.p.y &&
2883
1.72k
            r.q.x == r1.q.x && r.q.y == r1.q.y)
2884
308
            pfs->inside = true;
2885
1.72k
    }
2886
5.39k
    divide_bar(pfs, p0, p1, 2, &p01, c[0]);
2887
5.39k
    divide_bar(pfs, p1, p2, 2, &p12, c[1]);
2888
5.39k
    divide_bar(pfs, p2, p0, 2, &p20, c[2]);
2889
5.39k
    if (LAZY_WEDGES) {
2890
5.39k
        init_wedge_vertex_list(L, count_of(L));
2891
5.39k
        code = make_wedge_median(pfs, &L01, l01, true,  &p0->p, &p1->p, &p01.p);
2892
5.39k
        if (code >= 0)
2893
5.39k
            code = make_wedge_median(pfs, &L12, l12, true,  &p1->p, &p2->p, &p12.p);
2894
5.39k
        if (code >= 0)
2895
5.39k
            code = make_wedge_median(pfs, &L20, l20, false, &p2->p, &p0->p, &p20.p);
2896
5.39k
    } else {
2897
0
        code = fill_triangle_wedge(pfs, p0, p1, &p01);
2898
0
        if (code >= 0)
2899
0
            code = fill_triangle_wedge(pfs, p1, p2, &p12);
2900
0
        if (code >= 0)
2901
0
            code = fill_triangle_wedge(pfs, p2, p0, &p20);
2902
0
    }
2903
5.39k
    if (code >= 0)
2904
5.39k
        code = triangle_by_4(pfs, p0, &p01, &p20, &L01, &L[0], &L20, cd / 2, sd / 2);
2905
5.39k
    if (code >= 0) {
2906
5.39k
        if (LAZY_WEDGES) {
2907
5.39k
            move_wedge(&L01, l01, true);
2908
5.39k
            move_wedge(&L20, l20, false);
2909
5.39k
        }
2910
5.39k
        code = triangle_by_4(pfs, p1, &p12, &p01, &L12, &L[1], &L01, cd / 2, sd / 2);
2911
5.39k
    }
2912
5.39k
    if (code >= 0) {
2913
5.39k
        if (LAZY_WEDGES)
2914
5.39k
            move_wedge(&L12, l12, true);
2915
5.39k
        code = triangle_by_4(pfs, p2, &p20, &p12, &L20, &L[2], &L12, cd / 2, sd / 2);
2916
5.39k
    }
2917
5.39k
    if (code >= 0) {
2918
5.39k
        L[0].last_side = L[1].last_side = L[2].last_side = true;
2919
5.39k
        code = triangle_by_4(pfs, &p01, &p12, &p20, &L[1], &L[2], &L[0], cd / 2, sd / 2);
2920
5.39k
    }
2921
5.39k
    if (LAZY_WEDGES) {
2922
5.39k
        if (code >= 0)
2923
5.39k
            code = close_wedge_median(pfs, l01, p0->c, p1->c);
2924
5.39k
        if (code >= 0)
2925
5.39k
            code = close_wedge_median(pfs, l12, p1->c, p2->c);
2926
5.39k
        if (code >= 0)
2927
5.39k
            code = close_wedge_median(pfs, l20, p2->c, p0->c);
2928
5.39k
        if (code >= 0)
2929
5.39k
            code = terminate_wedge_vertex_list(pfs, &L[0], p01.c, p20.c);
2930
5.39k
        if (code >= 0)
2931
5.39k
            code = terminate_wedge_vertex_list(pfs, &L[1], p12.c, p01.c);
2932
5.39k
        if (code >= 0)
2933
5.39k
            code = terminate_wedge_vertex_list(pfs, &L[2], p20.c, p12.c);
2934
5.39k
    }
2935
5.39k
    pfs->inside = inside_save;
2936
959k
out:
2937
959k
    release_colors_inline(pfs, color_stack_ptr, 3);
2938
959k
    return code;
2939
5.39k
}
2940
2941
static inline int
2942
fill_triangle(patch_fill_state_t *pfs,
2943
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2,
2944
        wedge_vertex_list_t *l01, wedge_vertex_list_t *l12, wedge_vertex_list_t *l20)
2945
969k
{
2946
969k
    fixed sd01 = max(any_abs(p1->p.x - p0->p.x), any_abs(p1->p.y - p0->p.y));
2947
969k
    fixed sd12 = max(any_abs(p2->p.x - p1->p.x), any_abs(p2->p.y - p1->p.y));
2948
969k
    fixed sd20 = max(any_abs(p0->p.x - p2->p.x), any_abs(p0->p.y - p2->p.y));
2949
969k
    fixed sd1 = max(sd01, sd12);
2950
969k
    fixed sd = max(sd1, sd20);
2951
969k
    double cd = 0;
2952
2953
#   if SKIP_TEST
2954
        dbg_triangle_cnt++;
2955
#   endif
2956
969k
    if (pfs->Function == NULL) {
2957
742k
        double d01 = color_span(pfs, p1->c, p0->c);
2958
742k
        double d12 = color_span(pfs, p2->c, p1->c);
2959
742k
        double d20 = color_span(pfs, p0->c, p2->c);
2960
742k
        double cd1 = max(d01, d12);
2961
2962
742k
        cd = max(cd1, d20);
2963
742k
    }
2964
969k
    return triangle_by_4(pfs, p0, p1, p2, l01, l12, l20, cd, sd);
2965
969k
}
2966
2967
static int
2968
small_mesh_triangle(patch_fill_state_t *pfs,
2969
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
2970
4.28k
{
2971
4.28k
    int code;
2972
4.28k
    wedge_vertex_list_t l[3];
2973
2974
4.28k
    init_wedge_vertex_list(l, count_of(l));
2975
4.28k
    code = fill_triangle(pfs, p0, p1, p2, &l[0], &l[1], &l[2]);
2976
4.28k
    if (code < 0)
2977
0
        return code;
2978
4.28k
    code = terminate_wedge_vertex_list(pfs, &l[0], p0->c, p1->c);
2979
4.28k
    if (code < 0)
2980
0
        return code;
2981
4.28k
    code = terminate_wedge_vertex_list(pfs, &l[1], p1->c, p2->c);
2982
4.28k
    if (code < 0)
2983
0
        return code;
2984
4.28k
    return terminate_wedge_vertex_list(pfs, &l[2], p2->c, p0->c);
2985
4.28k
}
2986
2987
int
2988
gx_init_patch_fill_state_for_clist(gx_device *dev, patch_fill_state_t *pfs, gs_memory_t *memory)
2989
0
{
2990
0
    int i;
2991
2992
0
    pfs->dev = dev;
2993
0
    pfs->pgs = NULL;
2994
0
    pfs->direct_space = NULL;
2995
0
    pfs->num_components = dev->color_info.num_components;
2996
    /* pfs->cc_max_error[GS_CLIENT_COLOR_MAX_COMPONENTS] unused */
2997
0
    pfs->pshm = NULL;
2998
0
    pfs->Function = NULL;
2999
0
    pfs->function_arg_shift = 0;
3000
0
    pfs->vectorization = false; /* A stub for a while. Will use with pclwrite. */
3001
0
    pfs->n_color_args = 1; /* unused. */
3002
0
    pfs->max_small_coord = 0; /* unused. */
3003
0
    pfs->wedge_vertex_list_elem_buffer = NULL; /* fixme */
3004
0
    pfs->free_wedge_vertex = NULL; /* fixme */
3005
0
    pfs->wedge_vertex_list_elem_count = 0; /* fixme */
3006
0
    pfs->wedge_vertex_list_elem_count_max = 0; /* fixme */
3007
0
    for (i = 0; i < pfs->num_components; i++)
3008
0
        pfs->color_domain.paint.values[i] = (float)0x7fffffff;
3009
    /* decomposition_limit must be same as one in init_patch_fill_state */
3010
#ifdef MAX_SHADING_RESOLUTION
3011
    pfs->decomposition_limit = float2fixed(min(pfs->dev->HWResolution[0],
3012
                                               pfs->dev->HWResolution[1]) / MAX_SHADING_RESOLUTION);
3013
    pfs->decomposition_limit = max(pfs->decomposition_limit, fixed_1);
3014
#else
3015
0
    pfs->decomposition_limit = fixed_1;
3016
0
#endif
3017
0
    pfs->fixed_flat = 0; /* unused */
3018
0
    pfs->smoothness = 0; /* unused */
3019
0
    pfs->maybe_self_intersecting = false; /* unused */
3020
0
    pfs->monotonic_color = true;
3021
0
    pfs->linear_color = true;
3022
0
    pfs->unlinear = false; /* Because it is used when fill_linear_color_triangle was called. */
3023
0
    pfs->inside = false;
3024
0
    pfs->color_stack_size = 0;
3025
0
    pfs->color_stack_step = dev->color_info.num_components;
3026
0
    pfs->color_stack_ptr = NULL; /* fixme */
3027
0
    pfs->color_stack = NULL; /* fixme */
3028
0
    pfs->color_stack_limit = NULL; /* fixme */
3029
0
    pfs->pcic = NULL; /* Will do someday. */
3030
0
    pfs->trans_device = NULL;
3031
0
    pfs->icclink = NULL;
3032
0
    return alloc_patch_fill_memory(pfs, memory, NULL);
3033
0
}
3034
3035
/* A method for filling a small triangle that the device can't handle.
3036
   Used by clist playback. */
3037
int
3038
gx_fill_triangle_small(gx_device *dev, const gs_fill_attributes *fa,
3039
        const gs_fixed_point *p0, const gs_fixed_point *p1,
3040
        const gs_fixed_point *p2,
3041
        const frac31 *c0, const frac31 *c1, const frac31 *c2)
3042
0
{
3043
0
    patch_fill_state_t *pfs = fa->pfs;
3044
0
    patch_color_t c[3];
3045
0
    shading_vertex_t p[3];
3046
0
    uchar i;
3047
3048
    /* pfs->rect = *fa->clip; unused ? */
3049
0
    p[0].p = *p0;
3050
0
    p[1].p = *p1;
3051
0
    p[2].p = *p2;
3052
0
    p[0].c = &c[0];
3053
0
    p[1].c = &c[1];
3054
0
    p[2].c = &c[2];
3055
0
    c[0].t[0] = c[0].t[1] = c[1].t[0] = c[1].t[1] = c[2].t[0] = c[2].t[1] = 0; /* Dummy - not used. */
3056
0
    for (i = 0; i < dev->color_info.num_components; i++) {
3057
0
        c[0].cc.paint.values[i] = (float)c0[i];
3058
0
        c[1].cc.paint.values[i] = (float)c1[i];
3059
0
        c[2].cc.paint.values[i] = (float)c2[i];
3060
0
    }
3061
    /* fixme: the cycle above converts frac31 values into floats.
3062
       We don't like this because (1) it misses lower bits,
3063
       and (2) fixed point values can be faster on some platforms.
3064
       We could fix it with coding a template for small_mesh_triangle
3065
       and its callees until patch_color_to_device_color_inline.
3066
    */
3067
    /* fixme : this function is called from gxclrast.c
3068
       after dev->procs.fill_linear_color_triangle returns 0 - "subdivide".
3069
       After few moments small_mesh_triangle indirectly calls
3070
       same function with same arguments as a part of
3071
       try_device_linear_color in triangle_by_4.
3072
       Obviusly it will return zero again.
3073
       Actually we don't need the second call,
3074
       so optimize with skipping the second call.
3075
     */
3076
0
    return small_mesh_triangle(pfs, &p[0], &p[1], &p[2]);
3077
0
}
3078
3079
static int
3080
mesh_triangle_rec(patch_fill_state_t *pfs,
3081
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
3082
5.22k
{
3083
5.22k
    pfs->unlinear = !is_linear_color_applicable(pfs);
3084
5.22k
    if (manhattan_dist(&p0->p, &p1->p) < pfs->max_small_coord &&
3085
5.22k
        manhattan_dist(&p1->p, &p2->p) < pfs->max_small_coord &&
3086
5.22k
        manhattan_dist(&p2->p, &p0->p) < pfs->max_small_coord)
3087
4.28k
        return small_mesh_triangle(pfs, p0, p1, p2);
3088
940
    else {
3089
        /* Subdivide into 4 triangles with 3 triangle non-lazy wedges.
3090
           Doing so against the wedge_vertex_list_elem_buffer overflow.
3091
           We could apply a smarter method, dividing long sides
3092
           with no wedges and short sides with lazy wedges.
3093
           This needs to start wedges dynamically when
3094
           a side becomes short. We don't do so because the
3095
           number of checks per call significantly increases
3096
           and the logics is complicated, but the performance
3097
           advantage appears small due to big meshes are rare.
3098
         */
3099
940
        shading_vertex_t p01, p12, p20;
3100
940
        patch_color_t *c[3];
3101
940
        int code;
3102
940
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
3103
3104
940
        if (color_stack_ptr == NULL)
3105
0
            return_error(gs_error_unregistered); /* Must not happen. */
3106
940
        p01.c = c[0];
3107
940
        p12.c = c[1];
3108
940
        p20.c = c[2];
3109
940
        divide_bar(pfs, p0, p1, 2, &p01, c[0]);
3110
940
        divide_bar(pfs, p1, p2, 2, &p12, c[1]);
3111
940
        divide_bar(pfs, p2, p0, 2, &p20, c[2]);
3112
940
        code = fill_triangle_wedge(pfs, p0, p1, &p01);
3113
940
        if (code >= 0)
3114
940
            code = fill_triangle_wedge(pfs, p1, p2, &p12);
3115
940
        if (code >= 0)
3116
940
            code = fill_triangle_wedge(pfs, p2, p0, &p20);
3117
940
        if (code >= 0)
3118
940
            code = mesh_triangle_rec(pfs, p0, &p01, &p20);
3119
940
        if (code >= 0)
3120
940
            code = mesh_triangle_rec(pfs, p1, &p12, &p01);
3121
940
        if (code >= 0)
3122
940
            code = mesh_triangle_rec(pfs, p2, &p20, &p12);
3123
940
        if (code >= 0)
3124
940
            code = mesh_triangle_rec(pfs, &p01, &p12, &p20);
3125
940
        release_colors_inline(pfs, color_stack_ptr, 3);
3126
940
        return code;
3127
940
    }
3128
5.22k
}
3129
3130
int
3131
mesh_triangle(patch_fill_state_t *pfs,
3132
        const shading_vertex_t *p0, const shading_vertex_t *p1, const shading_vertex_t *p2)
3133
1.46k
{
3134
1.46k
    if ((*dev_proc(pfs->dev, dev_spec_op))(pfs->dev,
3135
1.46k
            gxdso_pattern_shading_area, NULL, 0) > 0) {
3136
        /* Inform the device with the shading coverage area.
3137
           First compute the sign of the area, because
3138
           all areas to be clipped in same direction. */
3139
0
        gx_device *pdev = pfs->dev;
3140
0
        gx_path path;
3141
0
        int code;
3142
0
        fixed d01x = p1->p.x - p0->p.x, d01y = p1->p.y - p0->p.y;
3143
0
        fixed d12x = p2->p.x - p1->p.x, d12y = p2->p.y - p1->p.y;
3144
0
        int64_t s1 = (int64_t)d01x * d12y - (int64_t)d01y * d12x;
3145
3146
0
        gx_path_init_local(&path, pdev->memory);
3147
0
        code = gx_path_add_point(&path, p0->p.x, p0->p.y);
3148
0
        if (code >= 0 && s1 >= 0)
3149
0
            code = gx_path_add_line(&path, p1->p.x, p1->p.y);
3150
0
        if (code >= 0)
3151
0
            code = gx_path_add_line(&path, p2->p.x, p2->p.y);
3152
0
        if (code >= 0 && s1 < 0)
3153
0
            code = gx_path_add_line(&path, p1->p.x, p1->p.y);
3154
0
        if (code >= 0)
3155
0
            code = gx_path_close_subpath(&path);
3156
0
        if (code >= 0)
3157
0
            code = (*dev_proc(pfs->dev, fill_path))(pdev, NULL, &path, NULL, NULL, NULL);
3158
0
        gx_path_free(&path, "mesh_triangle");
3159
0
        if (code < 0)
3160
0
            return code;
3161
0
    }
3162
1.46k
    return mesh_triangle_rec(pfs, p0, p1, p2);
3163
1.46k
}
3164
3165
static inline int
3166
triangles4(patch_fill_state_t *pfs, const quadrangle_patch *p, bool dummy_argument)
3167
124k
{
3168
124k
    shading_vertex_t p0001, p1011, q;
3169
124k
    patch_color_t *c[3];
3170
124k
    wedge_vertex_list_t l[4];
3171
124k
    int code;
3172
124k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 3);
3173
3174
124k
    if(color_stack_ptr == NULL)
3175
0
        return_error(gs_error_unregistered); /* Must not happen. */
3176
124k
    p0001.c = c[0];
3177
124k
    p1011.c = c[1];
3178
124k
    q.c = c[2];
3179
124k
    init_wedge_vertex_list(l, count_of(l));
3180
124k
    divide_bar(pfs, p->p[0][0], p->p[0][1], 2, &p0001, c[0]);
3181
124k
    divide_bar(pfs, p->p[1][0], p->p[1][1], 2, &p1011, c[1]);
3182
124k
    divide_bar(pfs, &p0001, &p1011, 2, &q, c[2]);
3183
124k
    code = fill_triangle(pfs, p->p[0][0], p->p[0][1], &q, p->l0001, &l[0], &l[3]);
3184
124k
    if (code >= 0) {
3185
124k
        l[0].last_side = true;
3186
124k
        l[3].last_side = true;
3187
124k
        code = fill_triangle(pfs, p->p[0][1], p->p[1][1], &q, p->l0111, &l[1], &l[0]);
3188
124k
    }
3189
124k
    if (code >= 0) {
3190
124k
        l[1].last_side = true;
3191
124k
        code = fill_triangle(pfs, p->p[1][1], p->p[1][0], &q, p->l1110, &l[2], &l[1]);
3192
124k
    }
3193
124k
    if (code >= 0) {
3194
124k
        l[2].last_side = true;
3195
124k
        code = fill_triangle(pfs, p->p[1][0], p->p[0][0], &q, p->l1000, &l[3], &l[2]);
3196
124k
    }
3197
124k
    if (code >= 0)
3198
124k
        code = terminate_wedge_vertex_list(pfs, &l[0], p->p[0][1]->c, q.c);
3199
124k
    if (code >= 0)
3200
124k
        code = terminate_wedge_vertex_list(pfs, &l[1], p->p[1][1]->c, q.c);
3201
124k
    if (code >= 0)
3202
124k
        code = terminate_wedge_vertex_list(pfs, &l[2], p->p[1][0]->c, q.c);
3203
124k
    if (code >= 0)
3204
124k
        code = terminate_wedge_vertex_list(pfs, &l[3], q.c, p->p[0][0]->c);
3205
124k
    release_colors_inline(pfs, color_stack_ptr, 3);
3206
124k
    return code;
3207
124k
}
3208
3209
static inline int
3210
triangles2(patch_fill_state_t *pfs, const quadrangle_patch *p, bool dummy_argument)
3211
233k
{
3212
233k
    wedge_vertex_list_t l;
3213
233k
    int code;
3214
3215
233k
    init_wedge_vertex_list(&l, 1);
3216
233k
    code = fill_triangle(pfs, p->p[0][0], p->p[0][1], p->p[1][1], p->l0001, p->l0111, &l);
3217
233k
    if (code < 0)
3218
0
        return code;
3219
233k
    l.last_side = true;
3220
233k
    code = fill_triangle(pfs, p->p[1][1], p->p[1][0], p->p[0][0], p->l1110, p->l1000, &l);
3221
233k
    if (code < 0)
3222
0
        return code;
3223
233k
    code = terminate_wedge_vertex_list(pfs, &l, p->p[1][1]->c, p->p[0][0]->c);
3224
233k
    if (code < 0)
3225
0
        return code;
3226
233k
    return 0;
3227
233k
}
3228
3229
static inline void
3230
make_quadrangle(const tensor_patch *p, shading_vertex_t qq[2][2],
3231
        wedge_vertex_list_t l[4], quadrangle_patch *q)
3232
433k
{
3233
433k
    qq[0][0].p = p->pole[0][0];
3234
433k
    qq[0][1].p = p->pole[0][3];
3235
433k
    qq[1][0].p = p->pole[3][0];
3236
433k
    qq[1][1].p = p->pole[3][3];
3237
433k
    qq[0][0].c = p->c[0][0];
3238
433k
    qq[0][1].c = p->c[0][1];
3239
433k
    qq[1][0].c = p->c[1][0];
3240
433k
    qq[1][1].c = p->c[1][1];
3241
433k
    q->p[0][0] = &qq[0][0];
3242
433k
    q->p[0][1] = &qq[0][1];
3243
433k
    q->p[1][0] = &qq[1][0];
3244
433k
    q->p[1][1] = &qq[1][1];
3245
433k
    q->l0001 = &l[0];
3246
433k
    q->l0111 = &l[1];
3247
433k
    q->l1110 = &l[2];
3248
433k
    q->l1000 = &l[3];
3249
433k
}
3250
3251
static inline int
3252
is_quadrangle_color_linear_by_u(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3253
339k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3254
339k
    int code;
3255
3256
339k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[0][1]->c);
3257
339k
    if (code <= 0)
3258
40
        return code;
3259
339k
    return is_color_linear(pfs, p->p[1][0]->c, p->p[1][1]->c);
3260
339k
}
3261
3262
static inline int
3263
is_quadrangle_color_linear_by_v(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3264
24.3k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3265
24.3k
    int code;
3266
3267
24.3k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[1][0]->c);
3268
24.3k
    if (code <= 0)
3269
4.50k
        return code;
3270
19.8k
    return is_color_linear(pfs, p->p[0][1]->c, p->p[1][1]->c);
3271
24.3k
}
3272
3273
static inline int
3274
is_quadrangle_color_linear_by_diagonals(const patch_fill_state_t *pfs, const quadrangle_patch *p)
3275
21.5k
{   /* returns : 1 = linear, 0 = unlinear, <0 = error. */
3276
21.5k
    int code;
3277
3278
21.5k
    code = is_color_linear(pfs, p->p[0][0]->c, p->p[1][1]->c);
3279
21.5k
    if (code <= 0)
3280
3.00k
        return code;
3281
18.5k
    return is_color_linear(pfs, p->p[0][1]->c, p->p[1][0]->c);
3282
21.5k
}
3283
3284
typedef enum {
3285
    color_change_small,
3286
    color_change_gradient,
3287
    color_change_linear,
3288
    color_change_bilinear,
3289
    color_change_general
3290
} color_change_type_t;
3291
3292
static inline color_change_type_t
3293
quadrangle_color_change(const patch_fill_state_t *pfs, const quadrangle_patch *p,
3294
                        bool is_big_u, bool is_big_v, double size_u, double size_v,
3295
                        bool *divide_u, bool *divide_v)
3296
354k
{
3297
354k
    patch_color_t d0001, d1011, d;
3298
354k
    double D, D0001, D1011, D0010, D0111, D0011, D0110;
3299
354k
    double Du, Dv;
3300
3301
354k
    color_diff(pfs, p->p[0][0]->c, p->p[0][1]->c, &d0001);
3302
354k
    color_diff(pfs, p->p[1][0]->c, p->p[1][1]->c, &d1011);
3303
354k
    D0001 = color_norm(pfs, &d0001);
3304
354k
    D1011 = color_norm(pfs, &d1011);
3305
354k
    D0010 = color_span(pfs, p->p[0][0]->c, p->p[1][0]->c);
3306
354k
    D0111 = color_span(pfs, p->p[0][1]->c, p->p[1][1]->c);
3307
354k
    D0011 = color_span(pfs, p->p[0][0]->c, p->p[1][1]->c);
3308
354k
    D0110 = color_span(pfs, p->p[0][1]->c, p->p[1][0]->c);
3309
354k
    if (pfs->unlinear) {
3310
0
        if (D0001 <= pfs->smoothness && D1011 <= pfs->smoothness &&
3311
0
            D0010 <= pfs->smoothness && D0111 <= pfs->smoothness &&
3312
0
            D0011 <= pfs->smoothness && D0110 <= pfs->smoothness)
3313
0
            return color_change_small;
3314
0
        if (D0001 <= pfs->smoothness && D1011 <= pfs->smoothness) {
3315
0
            if (!is_big_v) {
3316
                /* The color function looks uncontiguous. */
3317
0
                return color_change_small;
3318
0
            }
3319
0
            *divide_v = true;
3320
0
            return color_change_gradient;
3321
0
        }
3322
0
        if (D0010 <= pfs->smoothness && D0111 <= pfs->smoothness) {
3323
0
            if (!is_big_u) {
3324
                /* The color function looks uncontiguous. */
3325
0
                return color_change_small;
3326
0
            }
3327
0
            *divide_u = true;
3328
0
            return color_change_gradient;
3329
0
        }
3330
0
    }
3331
354k
    color_diff(pfs, &d0001, &d1011, &d);
3332
354k
    Du = max(D0001, D1011);
3333
354k
    Dv = max(D0010, D0111);
3334
354k
    if (Du <= pfs->smoothness / 8 && Dv <= pfs->smoothness / 8)
3335
97.8k
        return color_change_small;
3336
256k
    if (Du <= pfs->smoothness / 8)
3337
5.86k
        return color_change_linear;
3338
250k
    if (Dv <= pfs->smoothness / 8)
3339
227k
        return color_change_linear;
3340
22.5k
    D = color_norm(pfs, &d);
3341
22.5k
    if (D <= pfs->smoothness)
3342
18.7k
        return color_change_bilinear;
3343
3.83k
#if 1
3344
3.83k
    if (Du > Dv && is_big_u)
3345
2.03k
        *divide_u = true;
3346
1.79k
    else if (Du < Dv && is_big_v)
3347
1.37k
        *divide_v = true;
3348
414
    else if (is_big_u && size_u > size_v)
3349
170
        *divide_u = true;
3350
244
    else if (is_big_v && size_v > size_u)
3351
244
        *divide_v = true;
3352
0
    else if (is_big_u)
3353
0
        *divide_u = true;
3354
0
    else if (is_big_v)
3355
0
        *divide_v = true;
3356
0
    else {
3357
        /* The color function looks uncontiguous. */
3358
0
        return color_change_small;
3359
0
    }
3360
#else /* Disabled due to infinite recursion with -r200 09-57.PS
3361
         (Standard Test 6.4  - Range 6) (Test05). */
3362
    if (Du > Dv)
3363
        *divide_u = true;
3364
    else
3365
        *divide_v = true;
3366
#endif
3367
3.83k
    return color_change_general;
3368
3.83k
}
3369
3370
static int
3371
fill_quadrangle(patch_fill_state_t *pfs, const quadrangle_patch *p, bool big)
3372
455k
{
3373
    /* The quadrangle is flattened enough by V and U, so ignore inner poles. */
3374
    /* Assuming the XY span is restricted with curve_samples.
3375
       It is important for intersection_of_small_bars to compute faster. */
3376
455k
    quadrangle_patch s0, s1;
3377
455k
    wedge_vertex_list_t l0, l1, l2;
3378
455k
    int code;
3379
455k
    bool divide_u = false, divide_v = false, big1 = big;
3380
455k
    shading_vertex_t q[2];
3381
455k
    bool monotonic_color_save = pfs->monotonic_color;
3382
455k
    bool linear_color_save = pfs->linear_color;
3383
455k
    bool inside_save = pfs->inside;
3384
455k
    const bool inside = pfs->inside; /* 'const' should help compiler to analyze initializations. */
3385
455k
    gs_fixed_rect r = {{0,0},{0,0}}, r1 = {{0,0},{0,0}};
3386
    /* Warning : pfs->monotonic_color is not restored on error. */
3387
3388
455k
    if (!inside) {
3389
170k
        bbox_of_points(&r, &p->p[0][0]->p, &p->p[0][1]->p, &p->p[1][0]->p, &p->p[1][1]->p);
3390
170k
        r1 = r;
3391
170k
        rect_intersect(r, pfs->rect);
3392
170k
        if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3393
79.1k
            return 0; /* Outside. */
3394
170k
    }
3395
376k
    if (big) {
3396
        /* Likely 'big' is an unuseful rudiment due to curve_samples
3397
           restricts lengthes. We keep it for a while because its implementation
3398
           isn't obvious and its time consumption is invisibly small.
3399
         */
3400
354k
        fixed size_u = max(max(any_abs(p->p[0][0]->p.x - p->p[0][1]->p.x),
3401
354k
                               any_abs(p->p[1][0]->p.x - p->p[1][1]->p.x)),
3402
354k
                           max(any_abs(p->p[0][0]->p.y - p->p[0][1]->p.y),
3403
354k
                               any_abs(p->p[1][0]->p.y - p->p[1][1]->p.y)));
3404
354k
        fixed size_v = max(max(any_abs(p->p[0][0]->p.x - p->p[1][0]->p.x),
3405
354k
                               any_abs(p->p[0][1]->p.x - p->p[1][1]->p.x)),
3406
354k
                           max(any_abs(p->p[0][0]->p.y - p->p[1][0]->p.y),
3407
354k
                               any_abs(p->p[0][1]->p.y - p->p[1][1]->p.y)));
3408
3409
354k
        if (QUADRANGLES && pfs->maybe_self_intersecting) {
3410
0
            if (size_v > pfs->max_small_coord) {
3411
                /* constant_color_quadrangle can't handle big self-intersecting areas
3412
                   because we don't want int64_t in it. */
3413
0
                divide_v = true;
3414
0
            } else if (size_u > pfs->max_small_coord) {
3415
                /* constant_color_quadrangle can't handle big self-intersecting areas,
3416
                   because we don't want int64_t in it. */
3417
0
                divide_u = true;
3418
0
            } else
3419
0
                big1 = false;
3420
0
        } else
3421
354k
            big1 = false;
3422
354k
    }
3423
376k
    if (!big1) {
3424
376k
        bool is_big_u = false, is_big_v = false;
3425
376k
        double d0001x = any_abs(p->p[0][0]->p.x - p->p[0][1]->p.x);
3426
376k
        double d1011x = any_abs(p->p[1][0]->p.x - p->p[1][1]->p.x);
3427
376k
        double d0001y = any_abs(p->p[0][0]->p.y - p->p[0][1]->p.y);
3428
376k
        double d1011y = any_abs(p->p[1][0]->p.y - p->p[1][1]->p.y);
3429
376k
        double d0010x = any_abs(p->p[0][0]->p.x - p->p[1][0]->p.x);
3430
376k
        double d0111x = any_abs(p->p[0][1]->p.x - p->p[1][1]->p.x);
3431
376k
        double d0010y = any_abs(p->p[0][0]->p.y - p->p[1][0]->p.y);
3432
376k
        double d0111y = any_abs(p->p[0][1]->p.y - p->p[1][1]->p.y);
3433
376k
        double size_u = max(max(d0001x, d1011x), max(d0001y, d1011y));
3434
376k
        double size_v = max(max(d0010x, d0111x), max(d0010y, d0111y));
3435
3436
376k
        if (size_u > pfs->decomposition_limit)
3437
358k
            is_big_u = true;
3438
376k
        if (size_v > pfs->decomposition_limit)
3439
34.2k
            is_big_v = true;
3440
342k
        else if (!is_big_u)
3441
15.2k
            return (QUADRANGLES || !pfs->maybe_self_intersecting ?
3442
12.0k
                        constant_color_quadrangle : triangles4)(pfs, p,
3443
15.2k
                            pfs->maybe_self_intersecting);
3444
361k
        if (!pfs->monotonic_color) {
3445
105k
            bool not_monotonic_by_u = false, not_monotonic_by_v = false;
3446
3447
105k
            code = is_quadrangle_color_monotonic(pfs, p, &not_monotonic_by_u, &not_monotonic_by_v);
3448
105k
            if (code < 0)
3449
0
                return code;
3450
105k
            if (is_big_u)
3451
105k
                divide_u = not_monotonic_by_u;
3452
105k
            if (is_big_v)
3453
8.31k
                divide_v = not_monotonic_by_v;
3454
105k
            if (!divide_u && !divide_v)
3455
103k
                pfs->monotonic_color = true;
3456
105k
        }
3457
361k
        if (pfs->monotonic_color && !pfs->linear_color) {
3458
351k
            if (divide_v && divide_u) {
3459
0
                if (size_u > size_v)
3460
0
                    divide_v = false;
3461
0
                else
3462
0
                    divide_u = false;
3463
351k
            } else if (!divide_u && !divide_v && !pfs->unlinear) {
3464
351k
                if (d0001x + d1011x + d0001y + d1011y > d0010x + d0111x + d0010y + d0111y) { /* fixme: use size_u, size_v */
3465
339k
                    code = is_quadrangle_color_linear_by_u(pfs, p);
3466
339k
                    if (code < 0)
3467
0
                        return code;
3468
339k
                    divide_u = !code;
3469
339k
                }
3470
351k
                if (is_big_v) {
3471
24.3k
                    code = is_quadrangle_color_linear_by_v(pfs, p);
3472
24.3k
                    if (code < 0)
3473
0
                        return code;
3474
24.3k
                    divide_v = !code;
3475
24.3k
                }
3476
351k
                if (is_big_u && is_big_v) {
3477
21.5k
                    code = is_quadrangle_color_linear_by_diagonals(pfs, p);
3478
21.5k
                    if (code < 0)
3479
0
                        return code;
3480
21.5k
                    if (!code) {
3481
3.03k
                        if (d0001x + d1011x + d0001y + d1011y > d0010x + d0111x + d0010y + d0111y) { /* fixme: use size_u, size_v */
3482
1.65k
                            divide_u = true;
3483
1.65k
                            divide_v = false;
3484
1.65k
                        } else {
3485
1.38k
                            divide_v = true;
3486
1.38k
                            divide_u = false;
3487
1.38k
                        }
3488
3.03k
                    }
3489
21.5k
                }
3490
351k
            }
3491
351k
            if (!divide_u && !divide_v)
3492
346k
                pfs->linear_color = true;
3493
351k
        }
3494
361k
        if (!pfs->linear_color) {
3495
            /* go to divide. */
3496
354k
        } else switch(quadrangle_color_change(pfs, p, is_big_u, is_big_v, size_u, size_v, &divide_u, &divide_v)) {
3497
97.8k
            case color_change_small:
3498
97.8k
                code = (QUADRANGLES || !pfs->maybe_self_intersecting ?
3499
93.7k
                            constant_color_quadrangle : triangles4)(pfs, p,
3500
97.8k
                                pfs->maybe_self_intersecting);
3501
97.8k
                pfs->monotonic_color = monotonic_color_save;
3502
97.8k
                pfs->linear_color = linear_color_save;
3503
97.8k
                return code;
3504
18.7k
            case color_change_bilinear:
3505
18.7k
                if (!QUADRANGLES) {
3506
18.7k
                    code = triangles4(pfs, p, true);
3507
18.7k
                    pfs->monotonic_color = monotonic_color_save;
3508
18.7k
                    pfs->linear_color = linear_color_save;
3509
18.7k
                    return code;
3510
18.7k
                }
3511
233k
            case color_change_linear:
3512
233k
                if (!QUADRANGLES) {
3513
233k
                    code = triangles2(pfs, p, true);
3514
233k
                    pfs->monotonic_color = monotonic_color_save;
3515
233k
                    pfs->linear_color = linear_color_save;
3516
233k
                    return code;
3517
233k
                }
3518
0
            case color_change_gradient:
3519
3.83k
            case color_change_general:
3520
3.83k
                ; /* goto divide. */
3521
354k
        }
3522
361k
    }
3523
11.2k
    if (!inside) {
3524
2.81k
        if (r.p.x == r1.p.x && r.p.y == r1.p.y &&
3525
2.81k
            r.q.x == r1.q.x && r.q.y == r1.q.y)
3526
1.01k
            pfs->inside = true;
3527
2.81k
    }
3528
11.2k
    if (LAZY_WEDGES)
3529
11.2k
        init_wedge_vertex_list(&l0, 1);
3530
11.2k
    if (divide_v) {
3531
7.37k
        patch_color_t *c[2];
3532
7.37k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3533
3534
7.37k
        if(color_stack_ptr == NULL)
3535
0
            return_error(gs_error_unregistered); /* Must not happen. */
3536
7.37k
        q[0].c = c[0];
3537
7.37k
        q[1].c = c[1];
3538
7.37k
        divide_quadrangle_by_v(pfs, &s0, &s1, q, p, c);
3539
7.37k
        if (LAZY_WEDGES) {
3540
7.37k
            code = make_wedge_median(pfs, &l1, p->l0111, true,  &p->p[0][1]->p, &p->p[1][1]->p, &s0.p[1][1]->p);
3541
7.37k
            if (code >= 0)
3542
7.37k
                code = make_wedge_median(pfs, &l2, p->l1000, false, &p->p[1][0]->p, &p->p[0][0]->p, &s0.p[1][0]->p);
3543
7.37k
            if (code >= 0) {
3544
7.37k
                s0.l1110 = s1.l0001 = &l0;
3545
7.37k
                s0.l0111 = s1.l0111 = &l1;
3546
7.37k
                s0.l1000 = s1.l1000 = &l2;
3547
7.37k
                s0.l0001 = p->l0001;
3548
7.37k
                s1.l1110 = p->l1110;
3549
7.37k
            }
3550
7.37k
        } else {
3551
0
            code = fill_triangle_wedge(pfs, s0.p[0][0], s1.p[1][0], s0.p[1][0]);
3552
0
            if (code >= 0)
3553
0
                code = fill_triangle_wedge(pfs, s0.p[0][1], s1.p[1][1], s0.p[1][1]);
3554
0
        }
3555
7.37k
        if (code >= 0)
3556
7.37k
            code = fill_quadrangle(pfs, &s0, big1);
3557
7.37k
        if (code >= 0) {
3558
7.37k
            if (LAZY_WEDGES) {
3559
7.37k
                l0.last_side = true;
3560
7.37k
                move_wedge(&l1, p->l0111, true);
3561
7.37k
                move_wedge(&l2, p->l1000, false);
3562
7.37k
            }
3563
7.37k
            code = fill_quadrangle(pfs, &s1, big1);
3564
7.37k
        }
3565
7.37k
        if (LAZY_WEDGES) {
3566
7.37k
            if (code >= 0)
3567
7.37k
                code = close_wedge_median(pfs, p->l0111, p->p[0][1]->c, p->p[1][1]->c);
3568
7.37k
            if (code >= 0)
3569
7.37k
                code = close_wedge_median(pfs, p->l1000, p->p[1][0]->c, p->p[0][0]->c);
3570
7.37k
            if (code >= 0)
3571
7.37k
                code = terminate_wedge_vertex_list(pfs, &l0, s0.p[1][0]->c, s0.p[1][1]->c);
3572
7.37k
            release_colors_inline(pfs, color_stack_ptr, 2);
3573
7.37k
        }
3574
7.37k
    } else if (divide_u) {
3575
3.86k
        patch_color_t *c[2];
3576
3.86k
        byte *color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3577
3578
3.86k
        if(color_stack_ptr == NULL)
3579
0
            return_error(gs_error_unregistered); /* Must not happen. */
3580
3.86k
        q[0].c = c[0];
3581
3.86k
        q[1].c = c[1];
3582
3.86k
        divide_quadrangle_by_u(pfs, &s0, &s1, q, p, c);
3583
3.86k
        if (LAZY_WEDGES) {
3584
3.86k
            code = make_wedge_median(pfs, &l1, p->l0001, true,  &p->p[0][0]->p, &p->p[0][1]->p, &s0.p[0][1]->p);
3585
3.86k
            if (code >= 0)
3586
3.86k
                code = make_wedge_median(pfs, &l2, p->l1110, false, &p->p[1][1]->p, &p->p[1][0]->p, &s0.p[1][1]->p);
3587
3.86k
            if (code >= 0) {
3588
3.86k
                s0.l0111 = s1.l1000 = &l0;
3589
3.86k
                s0.l0001 = s1.l0001 = &l1;
3590
3.86k
                s0.l1110 = s1.l1110 = &l2;
3591
3.86k
                s0.l1000 = p->l1000;
3592
3.86k
                s1.l0111 = p->l0111;
3593
3.86k
            }
3594
3.86k
        } else {
3595
0
            code = fill_triangle_wedge(pfs, s0.p[0][0], s1.p[0][1], s0.p[0][1]);
3596
0
            if (code >= 0)
3597
0
                code = fill_triangle_wedge(pfs, s0.p[1][0], s1.p[1][1], s0.p[1][1]);
3598
0
        }
3599
3.86k
        if (code >= 0)
3600
3.86k
            code = fill_quadrangle(pfs, &s0, big1);
3601
3.86k
        if (code >= 0) {
3602
3.86k
            if (LAZY_WEDGES) {
3603
3.86k
                l0.last_side = true;
3604
3.86k
                move_wedge(&l1, p->l0001, true);
3605
3.86k
                move_wedge(&l2, p->l1110, false);
3606
3.86k
            }
3607
3.86k
            code = fill_quadrangle(pfs, &s1, big1);
3608
3.86k
        }
3609
3.86k
        if (LAZY_WEDGES) {
3610
3.86k
            if (code >= 0)
3611
3.86k
                code = close_wedge_median(pfs, p->l0001, p->p[0][0]->c, p->p[0][1]->c);
3612
3.86k
            if (code >= 0)
3613
3.86k
                code = close_wedge_median(pfs, p->l1110, p->p[1][1]->c, p->p[1][0]->c);
3614
3.86k
            if (code >= 0)
3615
3.86k
                code = terminate_wedge_vertex_list(pfs, &l0, s0.p[0][1]->c, s0.p[1][1]->c);
3616
3.86k
            release_colors_inline(pfs, color_stack_ptr, 2);
3617
3.86k
        }
3618
3.86k
    } else
3619
0
        code = (QUADRANGLES || !pfs->maybe_self_intersecting ?
3620
0
                    constant_color_quadrangle : triangles4)(pfs, p,
3621
0
                        pfs->maybe_self_intersecting);
3622
11.2k
    pfs->monotonic_color = monotonic_color_save;
3623
11.2k
    pfs->linear_color = linear_color_save;
3624
11.2k
    pfs->inside = inside_save;
3625
11.2k
    return code;
3626
11.2k
}
3627
3628
/* This splits tensor patch p->pole[v][u] on u to give s0->pole[v][u] and s1->pole[v][u] */
3629
static inline void
3630
split_stripe(patch_fill_state_t *pfs, tensor_patch *s0, tensor_patch *s1, const tensor_patch *p, patch_color_t *c[2])
3631
1.03M
{
3632
1.03M
    s0->c[0][1] = c[0];
3633
1.03M
    s0->c[1][1] = c[1];
3634
1.03M
    split_curve_s(p->pole[0], s0->pole[0], s1->pole[0], 1);
3635
1.03M
    split_curve_s(p->pole[1], s0->pole[1], s1->pole[1], 1);
3636
1.03M
    split_curve_s(p->pole[2], s0->pole[2], s1->pole[2], 1);
3637
1.03M
    split_curve_s(p->pole[3], s0->pole[3], s1->pole[3], 1);
3638
1.03M
    s0->c[0][0] = p->c[0][0];
3639
1.03M
    s0->c[1][0] = p->c[1][0];
3640
1.03M
    s1->c[0][0] = s0->c[0][1];
3641
1.03M
    s1->c[1][0] = s0->c[1][1];
3642
1.03M
    patch_interpolate_color(s0->c[0][1], p->c[0][0], p->c[0][1], pfs, 0.5);
3643
1.03M
    patch_interpolate_color(s0->c[1][1], p->c[1][0], p->c[1][1], pfs, 0.5);
3644
1.03M
    s1->c[0][1] = p->c[0][1];
3645
1.03M
    s1->c[1][1] = p->c[1][1];
3646
1.03M
}
3647
3648
/* This splits tensor patch p->pole[v][u] on v to give s0->pole[v][u] and s1->pole[v][u] */
3649
static inline void
3650
split_patch(patch_fill_state_t *pfs, tensor_patch *s0, tensor_patch *s1, const tensor_patch *p, patch_color_t *c[2])
3651
394k
{
3652
394k
    s0->c[1][0] = c[0];
3653
394k
    s0->c[1][1] = c[1];
3654
394k
    split_curve_s(&p->pole[0][0], &s0->pole[0][0], &s1->pole[0][0], 4);
3655
394k
    split_curve_s(&p->pole[0][1], &s0->pole[0][1], &s1->pole[0][1], 4);
3656
394k
    split_curve_s(&p->pole[0][2], &s0->pole[0][2], &s1->pole[0][2], 4);
3657
394k
    split_curve_s(&p->pole[0][3], &s0->pole[0][3], &s1->pole[0][3], 4);
3658
394k
    s0->c[0][0] = p->c[0][0];
3659
394k
    s0->c[0][1] = p->c[0][1];
3660
394k
    s1->c[0][0] = s0->c[1][0];
3661
394k
    s1->c[0][1] = s0->c[1][1];
3662
394k
    patch_interpolate_color(s0->c[1][0], p->c[0][0], p->c[1][0], pfs, 0.5);
3663
394k
    patch_interpolate_color(s0->c[1][1], p->c[0][1], p->c[1][1], pfs, 0.5);
3664
394k
    s1->c[1][0] = p->c[1][0];
3665
394k
    s1->c[1][1] = p->c[1][1];
3666
394k
}
3667
3668
static inline void
3669
tensor_patch_bbox(gs_fixed_rect *r, const tensor_patch *p)
3670
2.28M
{
3671
2.28M
    int i, j;
3672
3673
2.28M
    r->p.x = r->q.x = p->pole[0][0].x;
3674
2.28M
    r->p.y = r->q.y = p->pole[0][0].y;
3675
11.4M
    for (i = 0; i < 4; i++) {
3676
45.6M
        for (j = 0; j < 4; j++) {
3677
36.5M
            const gs_fixed_point *q = &p->pole[i][j];
3678
3679
36.5M
            if (r->p.x > q->x)
3680
5.95M
                r->p.x = q->x;
3681
36.5M
            if (r->p.y > q->y)
3682
4.47M
                r->p.y = q->y;
3683
36.5M
            if (r->q.x < q->x)
3684
6.88M
                r->q.x = q->x;
3685
36.5M
            if (r->q.y < q->y)
3686
3.91M
                r->q.y = q->y;
3687
36.5M
        }
3688
9.12M
    }
3689
2.28M
}
3690
3691
static int
3692
decompose_stripe(patch_fill_state_t *pfs, const tensor_patch *p, int ku)
3693
2.50M
{
3694
2.50M
    if (ku > 1) {
3695
2.06M
        tensor_patch s0, s1;
3696
2.06M
        patch_color_t *c[2];
3697
2.06M
        int code;
3698
2.06M
        byte *color_stack_ptr;
3699
2.06M
        bool save_inside = pfs->inside;
3700
3701
2.06M
        if (!pfs->inside) {
3702
1.85M
            gs_fixed_rect r, r1;
3703
3704
1.85M
            tensor_patch_bbox(&r, p);
3705
1.85M
            r1 = r;
3706
1.85M
            rect_intersect(r, pfs->rect);
3707
1.85M
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3708
1.03M
                return 0;
3709
823k
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
3710
823k
                r1.q.x == r.q.x && r1.q.y == r.q.y)
3711
22.4k
                pfs->inside = true;
3712
823k
        }
3713
1.03M
        color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3714
1.03M
        if(color_stack_ptr == NULL)
3715
0
            return_error(gs_error_unregistered); /* Must not happen. */
3716
1.03M
        split_stripe(pfs, &s0, &s1, p, c);
3717
1.03M
        code = decompose_stripe(pfs, &s0, ku / 2);
3718
1.03M
        if (code >= 0)
3719
1.03M
            code = decompose_stripe(pfs, &s1, ku / 2);
3720
1.03M
        release_colors_inline(pfs, color_stack_ptr, 2);
3721
1.03M
        pfs->inside = save_inside;
3722
1.03M
        return code;
3723
1.03M
    } else {
3724
433k
        quadrangle_patch q;
3725
433k
        shading_vertex_t qq[2][2];
3726
433k
        wedge_vertex_list_t l[4];
3727
433k
        int code;
3728
3729
433k
        init_wedge_vertex_list(l, count_of(l));
3730
433k
        make_quadrangle(p, qq, l, &q);
3731
#       if SKIP_TEST
3732
            dbg_quad_cnt++;
3733
#       endif
3734
433k
        code = fill_quadrangle(pfs, &q, true);
3735
433k
        if (code < 0)
3736
0
            return code;
3737
433k
        if (LAZY_WEDGES) {
3738
433k
            code = terminate_wedge_vertex_list(pfs, &l[0], q.p[0][0]->c, q.p[0][1]->c);
3739
433k
            if (code < 0)
3740
0
                return code;
3741
433k
            code = terminate_wedge_vertex_list(pfs, &l[1], q.p[0][1]->c, q.p[1][1]->c);
3742
433k
            if (code < 0)
3743
0
                return code;
3744
433k
            code = terminate_wedge_vertex_list(pfs, &l[2], q.p[1][1]->c, q.p[1][0]->c);
3745
433k
            if (code < 0)
3746
0
                return code;
3747
433k
            code = terminate_wedge_vertex_list(pfs, &l[3], q.p[1][0]->c, q.p[0][1]->c);
3748
433k
            if (code < 0)
3749
0
                return code;
3750
433k
        }
3751
433k
        return code;
3752
433k
    }
3753
2.50M
}
3754
3755
static int
3756
fill_stripe(patch_fill_state_t *pfs, const tensor_patch *p)
3757
430k
{
3758
    /* The stripe is flattened enough by V, so ignore inner poles. */
3759
430k
    int ku[4], kum, code;
3760
3761
    /* We would like to apply iterations for enumerating the kum curve parts,
3762
       but the roundinmg errors would be too complicated due to
3763
       the dependence on the direction. Note that neigbour
3764
       patches may use the opposite direction for same bounding curve.
3765
       We apply the recursive dichotomy, in which
3766
       the rounding errors do not depend on the direction. */
3767
430k
    ku[0] = curve_samples(pfs, p->pole[0], 1, pfs->fixed_flat);
3768
430k
    ku[3] = curve_samples(pfs, p->pole[3], 1, pfs->fixed_flat);
3769
430k
    kum = max(ku[0], ku[3]);
3770
430k
    code = fill_wedges(pfs, ku[0], kum, p->pole[0], 1, p->c[0][0], p->c[0][1], inpatch_wedge);
3771
430k
    if (code < 0)
3772
0
        return code;
3773
430k
    if (INTERPATCH_PADDING) {
3774
430k
        code = mesh_padding(pfs, &p->pole[0][0], &p->pole[3][0], p->c[0][0], p->c[1][0]);
3775
430k
        if (code < 0)
3776
2
            return code;
3777
430k
        code = mesh_padding(pfs, &p->pole[0][3], &p->pole[3][3], p->c[0][1], p->c[1][1]);
3778
430k
        if (code < 0)
3779
0
            return code;
3780
430k
    }
3781
430k
    code = decompose_stripe(pfs, p, kum);
3782
430k
    if (code < 0)
3783
0
        return code;
3784
430k
    return fill_wedges(pfs, ku[3], kum, p->pole[3], 1, p->c[1][0], p->c[1][1], inpatch_wedge);
3785
430k
}
3786
3787
static inline bool neqs(int *a, int b)
3788
1.02M
{   /* Unequal signs. Assuming -1, 0, 1 only. */
3789
1.02M
    if (*a * b < 0)
3790
386k
        return true;
3791
636k
    if (!*a)
3792
7.31k
        *a = b;
3793
636k
    return false;
3794
1.02M
}
3795
3796
static inline int
3797
vector_pair_orientation(const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *p2)
3798
1.43M
{   fixed dx1 = p1->x - p0->x, dy1 = p1->y - p0->y;
3799
1.43M
    fixed dx2 = p2->x - p0->x, dy2 = p2->y - p0->y;
3800
1.43M
    int64_t vp = (int64_t)dx1 * dy2 - (int64_t)dy1 * dx2;
3801
3802
1.43M
    return (vp > 0 ? 1 : vp < 0 ? -1 : 0);
3803
1.43M
}
3804
3805
static inline bool
3806
is_x_bended(const tensor_patch *p)
3807
414k
{
3808
414k
    int sign = vector_pair_orientation(&p->pole[0][0], &p->pole[0][1], &p->pole[1][0]);
3809
3810
414k
    if (neqs(&sign, vector_pair_orientation(&p->pole[0][1], &p->pole[0][2], &p->pole[1][1])))
3811
212k
        return true;
3812
202k
    if (neqs(&sign, vector_pair_orientation(&p->pole[0][2], &p->pole[0][3], &p->pole[1][2])))
3813
142k
        return true;
3814
59.1k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[0][3], &p->pole[0][2], &p->pole[1][3])))
3815
29.9k
        return true;
3816
3817
29.1k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[1][2], &p->pole[2][1])))
3818
104
        return true;
3819
29.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[1][2], &p->pole[2][1])))
3820
0
        return true;
3821
29.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[1][3], &p->pole[2][2])))
3822
26
        return true;
3823
29.0k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[1][2], &p->pole[2][3])))
3824
41
        return true;
3825
3826
29.0k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[2][2], &p->pole[3][1])))
3827
83
        return true;
3828
28.9k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[2][2], &p->pole[3][1])))
3829
0
        return true;
3830
28.9k
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][2], &p->pole[2][3], &p->pole[3][2])))
3831
115
        return true;
3832
28.8k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[2][3], &p->pole[2][2], &p->pole[3][3])))
3833
80
        return true;
3834
3835
28.7k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[3][2], &p->pole[2][1])))
3836
9
        return true;
3837
28.7k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[3][2], &p->pole[2][1])))
3838
0
        return true;
3839
28.7k
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][2], &p->pole[3][3], &p->pole[2][2])))
3840
20
        return true;
3841
28.7k
    if (neqs(&sign, vector_pair_orientation(&p->pole[3][3], &p->pole[3][2], &p->pole[2][3])))
3842
4
        return true;
3843
28.6k
    return false;
3844
28.7k
}
3845
3846
static inline bool
3847
is_y_bended(const tensor_patch *p)
3848
0
{
3849
0
    int sign = vector_pair_orientation(&p->pole[0][0], &p->pole[1][0], &p->pole[0][1]);
3850
3851
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][0], &p->pole[2][0], &p->pole[1][1])))
3852
0
        return true;
3853
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][0], &p->pole[3][0], &p->pole[2][1])))
3854
0
        return true;
3855
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][0], &p->pole[2][0], &p->pole[3][1])))
3856
0
        return true;
3857
3858
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[2][1], &p->pole[1][2])))
3859
0
        return true;
3860
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][1], &p->pole[2][1], &p->pole[1][2])))
3861
0
        return true;
3862
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][1], &p->pole[3][1], &p->pole[2][2])))
3863
0
        return true;
3864
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][1], &p->pole[2][1], &p->pole[3][2])))
3865
0
        return true;
3866
3867
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[2][2], &p->pole[1][3])))
3868
0
        return true;
3869
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[1][2], &p->pole[2][2], &p->pole[1][3])))
3870
0
        return true;
3871
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[2][2], &p->pole[3][2], &p->pole[2][3])))
3872
0
        return true;
3873
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[3][2], &p->pole[2][2], &p->pole[3][3])))
3874
0
        return true;
3875
3876
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[2][3], &p->pole[1][2])))
3877
0
        return true;
3878
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[1][3], &p->pole[2][3], &p->pole[1][2])))
3879
0
        return true;
3880
0
    if (neqs(&sign, -vector_pair_orientation(&p->pole[2][3], &p->pole[3][3], &p->pole[2][2])))
3881
0
        return true;
3882
0
    if (neqs(&sign, vector_pair_orientation(&p->pole[3][3], &p->pole[2][3], &p->pole[3][2])))
3883
0
        return true;
3884
0
    return false;
3885
0
}
3886
3887
static inline bool
3888
is_curve_x_small(const patch_fill_state_t *pfs, const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
3889
2.39M
{   /* Is curve within a single pixel, or smaller than half pixel ? */
3890
2.39M
    fixed xmin0 = min(pole[0 * pole_step].x, pole[1 * pole_step].x);
3891
2.39M
    fixed xmin1 = min(pole[2 * pole_step].x, pole[3 * pole_step].x);
3892
2.39M
    fixed xmin =  min(xmin0, xmin1);
3893
2.39M
    fixed xmax0 = max(pole[0 * pole_step].x, pole[1 * pole_step].x);
3894
2.39M
    fixed xmax1 = max(pole[2 * pole_step].x, pole[3 * pole_step].x);
3895
2.39M
    fixed xmax =  max(xmax0, xmax1);
3896
3897
2.39M
    if(xmax - xmin <= pfs->decomposition_limit)
3898
1.98M
        return true;
3899
406k
    return false;
3900
2.39M
}
3901
3902
static inline bool
3903
is_curve_y_small(const patch_fill_state_t *pfs, const gs_fixed_point *pole, int pole_step, fixed fixed_flat)
3904
1.62M
{   /* Is curve within a single pixel, or smaller than half pixel ? */
3905
1.62M
    fixed ymin0 = min(pole[0 * pole_step].y, pole[1 * pole_step].y);
3906
1.62M
    fixed ymin1 = min(pole[2 * pole_step].y, pole[3 * pole_step].y);
3907
1.62M
    fixed ymin =  min(ymin0, ymin1);
3908
1.62M
    fixed ymax0 = max(pole[0 * pole_step].y, pole[1 * pole_step].y);
3909
1.62M
    fixed ymax1 = max(pole[2 * pole_step].y, pole[3 * pole_step].y);
3910
1.62M
    fixed ymax =  max(ymax0, ymax1);
3911
3912
1.62M
    if (ymax - ymin <= pfs->decomposition_limit)
3913
1.61M
        return true;
3914
8.62k
    return false;
3915
1.62M
}
3916
3917
static inline bool
3918
is_patch_narrow(const patch_fill_state_t *pfs, const tensor_patch *p)
3919
816k
{
3920
816k
    if (!is_curve_x_small(pfs, &p->pole[0][0], 4, pfs->fixed_flat))
3921
204k
        return false;
3922
611k
    if (!is_curve_x_small(pfs, &p->pole[0][1], 4, pfs->fixed_flat))
3923
104k
        return false;
3924
506k
    if (!is_curve_x_small(pfs, &p->pole[0][2], 4, pfs->fixed_flat))
3925
47.0k
        return false;
3926
459k
    if (!is_curve_x_small(pfs, &p->pole[0][3], 4, pfs->fixed_flat))
3927
49.3k
        return false;
3928
410k
    if (!is_curve_y_small(pfs, &p->pole[0][0], 4, pfs->fixed_flat))
3929
2.86k
        return false;
3930
407k
    if (!is_curve_y_small(pfs, &p->pole[0][1], 4, pfs->fixed_flat))
3931
2.84k
        return false;
3932
404k
    if (!is_curve_y_small(pfs, &p->pole[0][2], 4, pfs->fixed_flat))
3933
1.79k
        return false;
3934
402k
    if (!is_curve_y_small(pfs, &p->pole[0][3], 4, pfs->fixed_flat))
3935
1.12k
        return false;
3936
401k
    return true;
3937
402k
}
3938
3939
static int
3940
fill_patch(patch_fill_state_t *pfs, const tensor_patch *p, int kv, int kv0, int kv1)
3941
860k
{
3942
860k
    if (kv <= 1) {
3943
816k
        if (is_patch_narrow(pfs, p))
3944
401k
            return fill_stripe(pfs, p);
3945
414k
        if (!is_x_bended(p))
3946
28.6k
            return fill_stripe(pfs, p);
3947
414k
    }
3948
429k
    {   tensor_patch s0, s1;
3949
429k
        patch_color_t *c[2];
3950
429k
        shading_vertex_t q0, q1, q2;
3951
429k
        int code = 0;
3952
429k
        byte *color_stack_ptr;
3953
429k
        bool save_inside = pfs->inside;
3954
3955
429k
        if (!pfs->inside) {
3956
425k
            gs_fixed_rect r, r1;
3957
3958
425k
            tensor_patch_bbox(&r, p);
3959
425k
            r.p.x -= INTERPATCH_PADDING;
3960
425k
            r.p.y -= INTERPATCH_PADDING;
3961
425k
            r.q.x += INTERPATCH_PADDING;
3962
425k
            r.q.y += INTERPATCH_PADDING;
3963
425k
            r1 = r;
3964
425k
            rect_intersect(r, pfs->rect);
3965
425k
            if (r.q.x <= r.p.x || r.q.y <= r.p.y)
3966
35.6k
                return 0;
3967
389k
            if (r1.p.x == r.p.x && r1.p.y == r.p.y &&
3968
389k
                r1.q.x == r.q.x && r1.q.y == r.q.y)
3969
1.88k
                pfs->inside = true;
3970
389k
        }
3971
394k
        color_stack_ptr = reserve_colors_inline(pfs, c, 2);
3972
394k
        if(color_stack_ptr == NULL)
3973
0
            return_error(gs_error_unregistered); /* Must not happen. */
3974
394k
        split_patch(pfs, &s0, &s1, p, c);
3975
394k
        if (kv0 <= 1) {
3976
385k
            q0.p = s0.pole[0][0];
3977
385k
            q0.c = s0.c[0][0];
3978
385k
            q1.p = s1.pole[3][0];
3979
385k
            q1.c = s1.c[1][0];
3980
385k
            q2.p = s0.pole[3][0];
3981
385k
            q2.c = s0.c[1][0];
3982
385k
            code = fill_triangle_wedge(pfs, &q0, &q1, &q2);
3983
385k
        }
3984
394k
        if (kv1 <= 1 && code >= 0) {
3985
386k
            q0.p = s0.pole[0][3];
3986
386k
            q0.c = s0.c[0][1];
3987
386k
            q1.p = s1.pole[3][3];
3988
386k
            q1.c = s1.c[1][1];
3989
386k
            q2.p = s0.pole[3][3];
3990
386k
            q2.c = s0.c[1][1];
3991
386k
            code = fill_triangle_wedge(pfs, &q0, &q1, &q2);
3992
386k
        }
3993
394k
        if (code >= 0)
3994
394k
            code = fill_patch(pfs, &s0, kv / 2, kv0 / 2, kv1 / 2);
3995
394k
        if (code >= 0)
3996
394k
            code = fill_patch(pfs, &s1, kv / 2, kv0 / 2, kv1 / 2);
3997
        /* fixme : To provide the precise filling order, we must
3998
           decompose left and right wedges into pieces by intersections
3999
           with stripes, and fill each piece with its stripe.
4000
           A lazy wedge list would be fine for storing
4001
           the necessary information.
4002
4003
           If the patch is created from a radial shading,
4004
           the wedge color appears a constant, so the filling order
4005
           isn't important. The order is important for other
4006
           self-overlapping patches, but the visible effect is
4007
           just a slight narrowing of the patch (as its lower layer appears
4008
           visible through the upper layer near the side).
4009
           This kind of dropout isn't harmful, because
4010
           contacting self-overlapping patches are painted
4011
           one after one by definition, so that a side coverage break
4012
           appears unavoidable by definition.
4013
4014
           Delaying this improvement because it is low importance.
4015
         */
4016
394k
        release_colors_inline(pfs, color_stack_ptr, 2);
4017
394k
        pfs->inside = save_inside;
4018
394k
        return code;
4019
394k
    }
4020
394k
}
4021
4022
static inline int64_t
4023
lcp1(int64_t p0, int64_t p3)
4024
69.6k
{   /* Computing the 1st pole of a 3d order besier, which appears a line. */
4025
69.6k
    return (p0 + p0 + p3);
4026
69.6k
}
4027
static inline int64_t
4028
lcp2(int64_t p0, int64_t p3)
4029
69.6k
{   /* Computing the 2nd pole of a 3d order besier, which appears a line. */
4030
69.6k
    return (p0 + p3 + p3);
4031
69.6k
}
4032
4033
static void
4034
patch_set_color(const patch_fill_state_t *pfs, patch_color_t *c, const float *cc)
4035
286k
{
4036
286k
    if (pfs->Function) {
4037
13.9k
        c->t[0] = cc[0];
4038
13.9k
        c->t[1] = cc[1];
4039
13.9k
    } else
4040
272k
        memcpy(c->cc.paint.values, cc, sizeof(c->cc.paint.values[0]) * pfs->num_components);
4041
286k
}
4042
4043
static void
4044
make_tensor_patch(const patch_fill_state_t *pfs, tensor_patch *p, const patch_curve_t curve[4],
4045
           const gs_fixed_point interior[4])
4046
71.6k
{
4047
71.6k
    const gs_color_space *pcs = pfs->direct_space;
4048
4049
71.6k
    p->pole[0][0] = curve[0].vertex.p;
4050
71.6k
    p->pole[1][0] = curve[0].control[0];
4051
71.6k
    p->pole[2][0] = curve[0].control[1];
4052
71.6k
    p->pole[3][0] = curve[1].vertex.p;
4053
71.6k
    p->pole[3][1] = curve[1].control[0];
4054
71.6k
    p->pole[3][2] = curve[1].control[1];
4055
71.6k
    p->pole[3][3] = curve[2].vertex.p;
4056
71.6k
    p->pole[2][3] = curve[2].control[0];
4057
71.6k
    p->pole[1][3] = curve[2].control[1];
4058
71.6k
    p->pole[0][3] = curve[3].vertex.p;
4059
71.6k
    p->pole[0][2] = curve[3].control[0];
4060
71.6k
    p->pole[0][1] = curve[3].control[1];
4061
71.6k
    if (interior != NULL) {
4062
68.2k
        p->pole[1][1] = interior[0];
4063
68.2k
        p->pole[1][2] = interior[1];
4064
68.2k
        p->pole[2][2] = interior[2];
4065
68.2k
        p->pole[2][1] = interior[3];
4066
68.2k
    } else {
4067
3.48k
        p->pole[1][1].x = (fixed)((3*(lcp1(p->pole[0][1].x, p->pole[3][1].x) +
4068
3.48k
                                      lcp1(p->pole[1][0].x, p->pole[1][3].x)) -
4069
3.48k
                                   lcp1(lcp1(p->pole[0][0].x, p->pole[0][3].x),
4070
3.48k
                                        lcp1(p->pole[3][0].x, p->pole[3][3].x)))/9);
4071
3.48k
        p->pole[1][2].x = (fixed)((3*(lcp1(p->pole[0][2].x, p->pole[3][2].x) +
4072
3.48k
                                      lcp2(p->pole[1][0].x, p->pole[1][3].x)) -
4073
3.48k
                                   lcp1(lcp2(p->pole[0][0].x, p->pole[0][3].x),
4074
3.48k
                                        lcp2(p->pole[3][0].x, p->pole[3][3].x)))/9);
4075
3.48k
        p->pole[2][1].x = (fixed)((3*(lcp2(p->pole[0][1].x, p->pole[3][1].x) +
4076
3.48k
                                      lcp1(p->pole[2][0].x, p->pole[2][3].x)) -
4077
3.48k
                                   lcp2(lcp1(p->pole[0][0].x, p->pole[0][3].x),
4078
3.48k
                                        lcp1(p->pole[3][0].x, p->pole[3][3].x)))/9);
4079
3.48k
        p->pole[2][2].x = (fixed)((3*(lcp2(p->pole[0][2].x, p->pole[3][2].x) +
4080
3.48k
                                      lcp2(p->pole[2][0].x, p->pole[2][3].x)) -
4081
3.48k
                                   lcp2(lcp2(p->pole[0][0].x, p->pole[0][3].x),
4082
3.48k
                                        lcp2(p->pole[3][0].x, p->pole[3][3].x)))/9);
4083
4084
3.48k
        p->pole[1][1].y = (fixed)((3*(lcp1(p->pole[0][1].y, p->pole[3][1].y) +
4085
3.48k
                                      lcp1(p->pole[1][0].y, p->pole[1][3].y)) -
4086
3.48k
                                   lcp1(lcp1(p->pole[0][0].y, p->pole[0][3].y),
4087
3.48k
                                        lcp1(p->pole[3][0].y, p->pole[3][3].y)))/9);
4088
3.48k
        p->pole[1][2].y = (fixed)((3*(lcp1(p->pole[0][2].y, p->pole[3][2].y) +
4089
3.48k
                                      lcp2(p->pole[1][0].y, p->pole[1][3].y)) -
4090
3.48k
                                   lcp1(lcp2(p->pole[0][0].y, p->pole[0][3].y),
4091
3.48k
                                        lcp2(p->pole[3][0].y, p->pole[3][3].y)))/9);
4092
3.48k
        p->pole[2][1].y = (fixed)((3*(lcp2(p->pole[0][1].y, p->pole[3][1].y) +
4093
3.48k
                                      lcp1(p->pole[2][0].y, p->pole[2][3].y)) -
4094
3.48k
                                   lcp2(lcp1(p->pole[0][0].y, p->pole[0][3].y),
4095
3.48k
                                        lcp1(p->pole[3][0].y, p->pole[3][3].y)))/9);
4096
3.48k
        p->pole[2][2].y = (fixed)((3*(lcp2(p->pole[0][2].y, p->pole[3][2].y) +
4097
3.48k
                                      lcp2(p->pole[2][0].y, p->pole[2][3].y)) -
4098
3.48k
                                   lcp2(lcp2(p->pole[0][0].y, p->pole[0][3].y),
4099
3.48k
                                        lcp2(p->pole[3][0].y, p->pole[3][3].y)))/9);
4100
3.48k
    }
4101
71.6k
    patch_set_color(pfs, p->c[0][0], curve[0].vertex.cc);
4102
71.6k
    patch_set_color(pfs, p->c[1][0], curve[1].vertex.cc);
4103
71.6k
    patch_set_color(pfs, p->c[1][1], curve[2].vertex.cc);
4104
71.6k
    patch_set_color(pfs, p->c[0][1], curve[3].vertex.cc);
4105
71.6k
    patch_resolve_color_inline(p->c[0][0], pfs);
4106
71.6k
    patch_resolve_color_inline(p->c[0][1], pfs);
4107
71.6k
    patch_resolve_color_inline(p->c[1][0], pfs);
4108
71.6k
    patch_resolve_color_inline(p->c[1][1], pfs);
4109
71.6k
    if (!pfs->Function) {
4110
68.2k
        pcs->type->restrict_color(&p->c[0][0]->cc, pcs);
4111
68.2k
        pcs->type->restrict_color(&p->c[0][1]->cc, pcs);
4112
68.2k
        pcs->type->restrict_color(&p->c[1][0]->cc, pcs);
4113
68.2k
        pcs->type->restrict_color(&p->c[1][1]->cc, pcs);
4114
68.2k
    }
4115
71.6k
}
4116
4117
int
4118
gx_shade_background(gx_device *pdev, const gs_fixed_rect *rect,
4119
        const gx_device_color *pdevc, gs_logical_operation_t log_op)
4120
5
{
4121
5
    gs_fixed_edge le, re;
4122
4123
5
    le.start.x = rect->p.x - INTERPATCH_PADDING;
4124
5
    le.start.y = rect->p.y - INTERPATCH_PADDING;
4125
5
    le.end.x = rect->p.x - INTERPATCH_PADDING;
4126
5
    le.end.y = rect->q.y + INTERPATCH_PADDING;
4127
5
    re.start.x = rect->q.x + INTERPATCH_PADDING;
4128
5
    re.start.y = rect->p.y - INTERPATCH_PADDING;
4129
5
    re.end.x = rect->q.x + INTERPATCH_PADDING;
4130
5
    re.end.y = rect->q.y + INTERPATCH_PADDING;
4131
5
    return dev_proc(pdev, fill_trapezoid)(pdev,
4132
5
            &le, &re, le.start.y, le.end.y, false, pdevc, log_op);
4133
5
}
4134
4135
int
4136
patch_fill(patch_fill_state_t *pfs, const patch_curve_t curve[4],
4137
           const gs_fixed_point interior[4],
4138
           void (*transform) (gs_fixed_point *, const patch_curve_t[4],
4139
                              const gs_fixed_point[4], double, double))
4140
71.6k
{
4141
71.6k
    tensor_patch p;
4142
71.6k
    patch_color_t *c[4];
4143
71.6k
    int kv[4], kvm, ku[4], kum;
4144
71.6k
    int code = 0;
4145
71.6k
    byte *color_stack_ptr = reserve_colors_inline(pfs, c, 4); /* Can't fail */
4146
4147
71.6k
    p.c[0][0] = c[0];
4148
71.6k
    p.c[0][1] = c[1];
4149
71.6k
    p.c[1][0] = c[2];
4150
71.6k
    p.c[1][1] = c[3];
4151
#if SKIP_TEST
4152
    dbg_patch_cnt++;
4153
    /*if (dbg_patch_cnt != 67 && dbg_patch_cnt != 78)
4154
        return 0;*/
4155
#endif
4156
    /* We decompose the patch into tiny quadrangles,
4157
       possibly inserting wedges between them against a dropout. */
4158
71.6k
    make_tensor_patch(pfs, &p, curve, interior);
4159
71.6k
    pfs->unlinear = !is_linear_color_applicable(pfs);
4160
71.6k
    pfs->linear_color = false;
4161
71.6k
    if ((*dev_proc(pfs->dev, dev_spec_op))(pfs->dev,
4162
71.6k
            gxdso_pattern_shading_area, NULL, 0) > 0) {
4163
        /* Inform the device with the shading coverage area.
4164
           First compute the sign of the area, because
4165
           all areas to be clipped in same direction. */
4166
0
        gx_device *pdev = pfs->dev;
4167
0
        gx_path path;
4168
0
        fixed d01x = (curve[1].vertex.p.x - curve[0].vertex.p.x) >> 1;
4169
0
        fixed d01y = (curve[1].vertex.p.y - curve[0].vertex.p.y) >> 1;
4170
0
        fixed d12x = (curve[2].vertex.p.x - curve[1].vertex.p.x) >> 1;
4171
0
        fixed d12y = (curve[2].vertex.p.y - curve[1].vertex.p.y) >> 1;
4172
0
        fixed d23x = (curve[3].vertex.p.x - curve[2].vertex.p.x) >> 1;
4173
0
        fixed d23y = (curve[3].vertex.p.y - curve[2].vertex.p.y) >> 1;
4174
0
        fixed d30x = (curve[0].vertex.p.x - curve[3].vertex.p.x) >> 1;
4175
0
        fixed d30y = (curve[0].vertex.p.y - curve[3].vertex.p.y) >> 1;
4176
0
        int64_t s1 = (int64_t)d01x * d12y - (int64_t)d01y * d12x;
4177
0
        int64_t s2 = (int64_t)d23x * d30y - (int64_t)d23y * d30x;
4178
0
        int s = (s1 + s2 > 0 ? 1 : 3), i, j, k, jj, l = (s == 1 ? 0 : 1);
4179
4180
0
        gx_path_init_local(&path, pdev->memory);
4181
0
        if (is_x_bended(&p) || is_y_bended(&p)) {
4182
            /* The patch possibly is self-overlapping,
4183
               so the patch coverage may fall outside the patch outline.
4184
               In this case we pass an empty path,
4185
               and the device must use a bitmap mask instead clipping. */
4186
0
        } else {
4187
0
            code = gx_path_add_point(&path, curve[0].vertex.p.x, curve[0].vertex.p.y);
4188
0
            for (i = k = 0; k < 4 && code >= 0; i = j, k++) {
4189
0
                j = (i + s) % 4, jj = (s == 1 ? i : j);
4190
0
                if (curve[jj].straight)
4191
0
                    code = gx_path_add_line(&path, curve[j].vertex.p.x,
4192
0
                                                curve[j].vertex.p.y);
4193
0
                else
4194
0
                    code = gx_path_add_curve(&path, curve[jj].control[l].x, curve[jj].control[l].y,
4195
0
                                                    curve[jj].control[(l + 1) & 1].x, curve[jj].control[(l + 1) & 1].y,
4196
0
                                                    curve[j].vertex.p.x,
4197
0
                                                    curve[j].vertex.p.y);
4198
0
            }
4199
0
            if (code >= 0)
4200
0
                code = gx_path_close_subpath(&path);
4201
0
        }
4202
0
        if (code >= 0)
4203
0
            code = (*dev_proc(pfs->dev, fill_path))(pdev, NULL, &path, NULL, NULL, NULL);
4204
0
        gx_path_free(&path, "patch_fill");
4205
0
        if (code < 0)
4206
0
            goto out;
4207
0
    }
4208
    /* How many subdivisions of the patch in the u and v direction? */
4209
71.6k
    kv[0] = curve_samples(pfs, &p.pole[0][0], 4, pfs->fixed_flat);
4210
71.6k
    kv[1] = curve_samples(pfs, &p.pole[0][1], 4, pfs->fixed_flat);
4211
71.6k
    kv[2] = curve_samples(pfs, &p.pole[0][2], 4, pfs->fixed_flat);
4212
71.6k
    kv[3] = curve_samples(pfs, &p.pole[0][3], 4, pfs->fixed_flat);
4213
71.6k
    kvm = max(max(kv[0], kv[1]), max(kv[2], kv[3]));
4214
71.6k
    ku[0] = curve_samples(pfs, p.pole[0], 1, pfs->fixed_flat);
4215
71.6k
    ku[1] = curve_samples(pfs, p.pole[1], 1, pfs->fixed_flat);
4216
71.6k
    ku[2] = curve_samples(pfs, p.pole[2], 1, pfs->fixed_flat);
4217
71.6k
    ku[3] = curve_samples(pfs, p.pole[3], 1, pfs->fixed_flat);
4218
71.6k
    kum = max(max(ku[0], ku[1]), max(ku[2], ku[3]));
4219
#   if NOFILL_TEST
4220
    dbg_nofill = false;
4221
#   endif
4222
71.6k
    code = fill_wedges(pfs, ku[0], kum, p.pole[0], 1, p.c[0][0], p.c[0][1],
4223
71.6k
        interpatch_padding | inpatch_wedge);
4224
71.6k
    if (code >= 0) {
4225
        /* We would like to apply iterations for enumerating the kvm curve parts,
4226
           but the roundinmg errors would be too complicated due to
4227
           the dependence on the direction. Note that neigbour
4228
           patches may use the opposite direction for same bounding curve.
4229
           We apply the recursive dichotomy, in which
4230
           the rounding errors do not depend on the direction. */
4231
#       if NOFILL_TEST
4232
            dbg_nofill = false;
4233
            code = fill_patch(pfs, &p, kvm, kv[0], kv[3]);
4234
            dbg_nofill = true;
4235
#       endif
4236
71.6k
            code = fill_patch(pfs, &p, kvm, kv[0], kv[3]);
4237
71.6k
    }
4238
71.6k
    if (code >= 0)
4239
71.6k
        code = fill_wedges(pfs, ku[3], kum, p.pole[3], 1, p.c[1][0], p.c[1][1],
4240
71.6k
                interpatch_padding | inpatch_wedge);
4241
71.6k
out:
4242
71.6k
    release_colors_inline(pfs, color_stack_ptr, 4);
4243
71.6k
    return code;
4244
71.6k
}