Coverage Report

Created: 2025-06-10 07:06

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
2.22M
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
274k
{
110
274k
    const subpath *psub;
111
274k
    const segment *pseg;
112
274k
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
274k
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
274k
    double expand = pgs->line_params.half_width;
115
274k
    int result = 1;
116
117
274k
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
274k
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
274k
    if (pgs->line_params.start_cap == gs_cap_square ||
124
274k
        pgs->line_params.end_cap == gs_cap_square)
125
11.9k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
274k
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
274k
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
274k
        ) {
131
260k
        bool must_be_closed =
132
260k
            !(pgs->line_params.start_cap == gs_cap_square ||
133
260k
              pgs->line_params.start_cap == gs_cap_round  ||
134
260k
              pgs->line_params.end_cap   == gs_cap_square ||
135
260k
              pgs->line_params.end_cap   == gs_cap_round  ||
136
260k
              pgs->line_params.dash_cap  == gs_cap_square ||
137
260k
              pgs->line_params.dash_cap  == gs_cap_round);
138
260k
        gs_fixed_point prev;
139
140
260k
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
655k
        for (pseg = (const segment *)psub; pseg;
142
395k
             prev = pseg->pt, pseg = pseg->next
143
260k
             )
144
556k
            switch (pseg->type) {
145
245k
            case s_start:
146
245k
                if (((const subpath *)pseg)->curve_count ||
147
245k
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
245k
                    )
149
43.1k
                    goto not_exact;
150
202k
                break;
151
276k
            case s_line:
152
276k
            case s_dash:
153
311k
            case s_line_close:
154
311k
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
117k
                    goto not_exact;
156
193k
                break;
157
193k
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
556k
            }
161
98.9k
        result = 0;             /* exact result */
162
98.9k
    }
163
274k
not_exact:
164
274k
    if (result) {
165
175k
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
175k
            (psub == 0 || (pseg = psub->next) == 0 ||
167
167k
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
175k
            DO_NOTHING;
169
15.2k
        else {
170
15.2k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
15.2k
            if (pgs->line_params.curve_join >= 0)
173
0
                factor = max(factor, join_expansion_factor(pgs,
174
15.2k
                                (gs_line_join)pgs->line_params.curve_join));
175
15.2k
            expand *= factor;
176
15.2k
        }
177
175k
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
274k
    {
181
274k
        float exx = expand * cx;
182
274k
        float exy = expand * cy;
183
274k
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
274k
        if (code < 0)
186
9.80k
            return code;
187
264k
        code = set_float2fixed_vars(ppt->y, exy);
188
264k
        if (code < 0)
189
1.33k
            return code;
190
264k
    }
191
192
262k
    return result;
193
264k
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
15.2k
{
197
15.2k
    switch (join) {
198
12.1k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
0
    case gs_join_triangle: return 2.0;
200
3.12k
    default: return 1.0;
201
15.2k
    }
202
15.2k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
2.48M
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
2.48M
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
2.18M
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
35
{
342
35
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
35
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
35
    gx_device_cpath_accum adev;
345
35
    gx_device_color devc;
346
35
    gx_clip_path stroke_as_clip_path;
347
35
    int code;
348
35
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
35
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
35
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
35
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
35
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
35
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
35
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
35
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
35
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
35
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
35
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
35
    gs_set_logical_op_inline(pgs, save_lop);
368
35
    if (code >= 0)
369
35
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
35
        gs_fixed_rect clip_box, shading_box;
373
35
        gs_int_rect cb;
374
35
        gx_device_clip cdev;
375
376
35
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
35
        if (gx_dc_is_pattern2_color(pdevc) &&
382
35
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
35
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
35
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
35
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
35
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
35
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
35
        code = pdevc->type->fill_rectangle(pdevc,
392
35
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
35
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
35
        gx_destroy_clip_device_on_stack(&cdev);
395
35
    }
396
35
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
35
    return code;
399
35
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
174k
{
408
174k
    if (gx_dc_is_pattern2_color(pdevc) ||
409
174k
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
174k
        (gx_dc_is_pattern1_color(pdevc) &&
411
174k
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
31
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
31
                                                         pdevc, pcpath);
414
174k
    else
415
174k
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
174k
                                   pdevc, pcpath);
417
174k
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
1.49M
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
1.49M
     (final || lop_is_idempotent(pgs->log_op))) {\
425
1.09M
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
1.09M
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
1.09M
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
1.09M
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
1.09M
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
1.09M
    if ( code < 0 ) goto exit;\
434
1.09M
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
1.09M
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
174k
{
509
174k
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
174k
    bool traditional = CPSI_mode | params->traditional;
511
174k
    stroke_line_proc_t line_proc =
512
174k
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
174k
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
174k
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
174k
    gs_fixed_rect ibox, cbox;
516
174k
    gx_device_clip cdev;
517
174k
    gx_device *dev = pdev;
518
174k
    int code = 0;
519
174k
    gx_fill_params fill_params;
520
174k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
174k
    int dash_count = pgs_lp->dash.pattern_size;
522
174k
    gx_path fpath, dpath;
523
174k
    gx_path stroke_path_body;
524
174k
    gx_path stroke_path_reverse;
525
174k
    gx_path *to_path_reverse = NULL;
526
174k
    const gx_path *spath;
527
174k
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
174k
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
174k
    int uniform;
535
174k
    bool reflected;
536
174k
    orientation orient =
537
174k
        (
538
174k
#ifdef OPTIMIZE_ORIENTATION
539
174k
         is_fzero2(xy, yx) ?
540
158k
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
158k
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
158k
          orient_portrait) :
543
174k
         is_fzero2(xx, yy) ?
544
2.03k
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
2.03k
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
2.03k
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
15.4k
#endif
550
15.4k
         (uniform = 0,
551
13.4k
          reflected = xy * yx > xx * yy,
552
13.4k
          orient_other));
553
174k
    const segment_notes not_first = sn_not_first;
554
174k
    gs_line_join curve_join =
555
174k
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
174k
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
88.0k
            gs_join_bevel : pgs_lp->join);
558
174k
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
174k
    bool always_thin;
560
174k
    double line_width_and_scale;
561
174k
    double device_line_width_scale = 0; /* Quiet compiler. */
562
174k
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
174k
    const subpath *psub;
564
174k
    gs_matrix initial_matrix;
565
174k
    bool initial_matrix_reflected, flattened_path = false;
566
174k
    note_flags flags;
567
568
174k
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
174k
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
174k
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
174k
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
174k
    {
595
174k
        gs_fixed_point expansion;
596
597
174k
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
10.7k
            ibox.p.x = ibox.p.y = min_fixed;
600
10.7k
            ibox.q.x = ibox.q.y = max_fixed;
601
163k
        } else {
602
163k
            expansion.x += pgs->fill_adjust.x;
603
163k
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
163k
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
163k
                        ibox.p.x - expansion.x);
610
163k
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
163k
                        ibox.p.y - expansion.y);
612
163k
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
163k
                        ibox.q.x + expansion.x);
614
163k
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
163k
                        ibox.q.y + expansion.y);
616
163k
        }
617
174k
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
174k
    if (pcpath)
620
33.8k
        gx_cpath_inner_box(pcpath, &cbox);
621
140k
    else if (pdevc)
622
140k
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
12
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
12
        cbox = ibox;
626
12
    }
627
174k
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
97.5k
        gs_fixed_rect bbox;
631
632
97.5k
        if (pcpath) {
633
32.2k
            gx_cpath_outer_box(pcpath, &bbox);
634
32.2k
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
32.2k
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
32.2k
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
32.2k
            rect_intersect(ibox, bbox);
638
32.2k
        } else
639
97.5k
            rect_intersect(ibox, cbox);
640
97.5k
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
21.2k
            return 0;
643
21.2k
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
76.2k
        if (pcpath && line_proc == stroke_fill) {
664
17.1k
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
17.1k
            cdev.max_fill_band = pdev->max_fill_band;
666
17.1k
            dev = (gx_device *)&cdev;
667
17.1k
        }
668
76.2k
    }
669
152k
    fill_params.rule = gx_rule_winding_number;
670
152k
    fill_params.flatness = pgs->flatness;
671
152k
    if (line_width < 0)
672
0
        line_width = -line_width;
673
152k
    line_width_and_scale = line_width * (double)int2fixed(1);
674
152k
    if (is_fzero(line_width))
675
3.54k
        always_thin = true;
676
149k
    else {
677
149k
        float xa, ya;
678
679
149k
        switch (orient) {
680
141k
            case orient_portrait:
681
141k
                xa = xx, ya = yy;
682
141k
                goto sat;
683
1.36k
            case orient_landscape:
684
1.36k
                xa = xy, ya = yx;
685
143k
              sat:
686
143k
                if (xa < 0)
687
2.31k
                    xa = -xa;
688
143k
                if (ya < 0)
689
69.0k
                    ya = -ya;
690
143k
                always_thin = (max(xa, ya) * line_width < 0.5);
691
143k
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
63.6k
                    device_line_width_scale = line_width_and_scale * xa;
693
63.6k
                }
694
143k
                break;
695
6.15k
            default:
696
6.15k
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
6.15k
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
6.15k
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
6.15k
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
6.15k
                                          )
712
6.15k
                                     )/2;
713
714
6.15k
                    always_thin = max_rr * line_width * line_width < 0.25;
715
6.15k
                }
716
149k
        }
717
149k
    }
718
152k
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
152k
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
152k
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
152k
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
148k
        if (!ppath->first_subpath) {
739
10.9k
            if (dev == (gx_device *)&cdev)
740
2.63k
                gx_destroy_clip_device_on_stack(&cdev);
741
10.9k
            return 0;
742
10.9k
        }
743
137k
        spath = ppath;
744
137k
    } else {
745
4.63k
        gx_path_init_local(&fpath, ppath->memory);
746
4.63k
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
4.63k
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
4.63k
        spath = &fpath;
753
4.63k
        flattened_path = true;
754
4.63k
    }
755
142k
    if (dash_count) {
756
2.16k
        float max_dash_len = 0;
757
2.16k
        float expand_squared;
758
2.16k
        int i;
759
2.16k
        float adjust = (float)pgs->fill_adjust.x;
760
2.16k
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
6.53k
        for (i = 0; i < dash_count; i++) {
763
4.37k
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
2.64k
                max_dash_len = pgs_lp->dash.pattern[i];
765
4.37k
        }
766
2.16k
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
2.16k
        if (expand_squared < 0)
768
857
            expand_squared = -expand_squared;
769
2.16k
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
2.16k
        if (pgs->line_params.half_width > 1)
773
55
            adjust /= pgs->line_params.half_width;
774
2.16k
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
2.16k
            gx_path_init_local(&dpath, ppath->memory);
776
2.16k
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
2.16k
            if (code < 0)
778
0
                goto exf;
779
2.16k
            spath = &dpath;
780
2.16k
        } else {
781
0
            dash_count = 0;
782
0
        }
783
2.16k
    }
784
142k
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
142k
        to_path = &stroke_path_body;
787
142k
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
142k
    }
789
142k
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
391k
    for (psub = spath->first_subpath; psub != 0;) {
794
249k
        int index = 0;
795
249k
        const segment *pseg = (const segment *)psub;
796
249k
        fixed x = pseg->pt.x;
797
249k
        fixed y = pseg->pt.y;
798
249k
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
249k
        partial_line pl, pl_prev, pl_first;
800
249k
        bool zero_length = true;
801
249k
        int pseg_notes = pseg->notes;
802
803
249k
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
1.61M
        while ((pseg = pseg->next) != 0 &&
810
1.61M
               pseg->type != s_start
811
1.36M
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
1.36M
            fixed sx, udx, sy, udy;
815
1.36M
            bool is_dash_segment;
816
817
1.36M
            pseg_notes = pseg->notes;
818
819
1.36M
         d2:is_dash_segment = false;
820
1.36M
         d1:if (pseg->type == s_dash) {
821
14.0k
                dash_segment *pd = (dash_segment *)pseg;
822
823
14.0k
                sx = pd->pt.x;
824
14.0k
                sy = pd->pt.y;
825
14.0k
                udx = pd->tangent.x;
826
14.0k
                udy = pd->tangent.y;
827
14.0k
                is_dash_segment = true;
828
1.35M
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
1.35M
            } else {
835
1.35M
                sx = pseg->pt.x;
836
1.35M
                sy = pseg->pt.y;
837
1.35M
                udx = sx - x;
838
1.35M
                udy = sy - y;
839
1.35M
            }
840
1.36M
            zero_length &= ((udx | udy) == 0);
841
1.36M
            pl.o.p.x = x, pl.o.p.y = y;
842
1.36M
          d:flags = (((pseg_notes & sn_not_first) ?
843
795k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
1.36M
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
1.36M
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
1.36M
                     (flags & ~nf_all_from_arc));
847
1.36M
            pl.e.p.x = sx, pl.e.p.y = sy;
848
1.36M
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
27.3k
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
12.0k
                {
856
12.0k
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
7.31k
                        continue;
858
4.74k
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
4.74k
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
3.69k
                                  (pseg->notes & ~sn_not_first) :
866
4.74k
                                  pseg->notes);
867
4.74k
                    goto d2;
868
12.0k
                }
869
                /* Check for a degenerate subpath. */
870
16.2k
                while ((pseg = pseg->next) != 0 &&
871
16.2k
                       pseg->type != s_start
872
15.3k
                    ) {
873
1.18k
                    if (is_dash_segment)
874
6
                        break;
875
1.18k
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
1.18k
                    sx = pseg->pt.x, udx = sx - x;
878
1.18k
                    sy = pseg->pt.y, udy = sy - y;
879
1.18k
                    if (udx | udy) {
880
228
                        zero_length = false;
881
228
                        goto d;
882
228
                    }
883
1.18k
                }
884
15.0k
                if (pgs_lp->dot_length == 0 &&
885
15.0k
                    pgs_lp->start_cap != gs_cap_round &&
886
15.0k
                    pgs_lp->end_cap != gs_cap_round &&
887
15.0k
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
917
                    break;
893
917
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
14.1k
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
14.1k
                    const segment *end = psub->last;
906
907
14.1k
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
14.0k
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
14.1k
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
14.1k
                if ((udx | udy) == 0) {
917
111
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
111
                        udx = fixed_1;
920
111
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
111
                }
925
14.1k
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
13.9k
                    double scale = device_dot_length /
927
13.9k
                                hypot((double)udx, (double)udy);
928
13.9k
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
13.9k
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
13.9k
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
13.9k
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
13.9k
                    udx1 = (fixed) (udx * scale);
944
13.9k
                    udy1 = (fixed) (udy * scale);
945
13.9k
                    sx = x + udx1;
946
13.9k
                    sy = y + udy1;
947
13.9k
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
14.1k
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
14.1k
                if (!is_dash_segment)
953
111
                    goto d;
954
14.0k
                pl.e.p.x = sx;
955
14.0k
                pl.e.p.y = sy;
956
14.0k
            }
957
1.35M
            pl.vector.x = udx;
958
1.35M
            pl.vector.y = udy;
959
1.35M
            if (always_thin) {
960
230k
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
230k
                pl.width.x = pl.width.y = 0;
962
230k
                pl.thin = true;
963
1.12M
            } else {
964
1.12M
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
1.06M
                    double dpx = udx, dpy = udy;
968
1.06M
                    double wl = device_line_width_scale /
969
1.06M
                    hypot(dpx, dpy);
970
971
1.06M
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
1.06M
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
1.06M
                    if (initial_matrix_reflected)
976
1.06M
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
810
                    else
978
810
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
1.06M
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
1.06M
                } else {
983
64.0k
                    gs_point dpt;       /* unscaled */
984
64.0k
                    float wl;
985
986
64.0k
                    code = gs_gstate_idtransform(pgs,
987
64.0k
                                                 (float)udx, (float)udy,
988
64.0k
                                                 &dpt);
989
64.0k
                    if (code < 0) {
990
541
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
541
                        code = 0;
993
63.5k
                    } else {
994
63.5k
                        wl = line_width_and_scale /
995
63.5k
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
63.5k
                        dpt.x *= wl;
999
63.5k
                        dpt.y *= wl;
1000
63.5k
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
64.0k
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
64.0k
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
64.0k
                    if (orient != orient_portrait)
1016
46.0k
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
46.0k
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
64.0k
                    if (!reflected ^ initial_matrix_reflected)
1019
46.6k
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
64.0k
                    pl.width.x = (fixed) (dpt.y * xx),
1021
64.0k
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
64.0k
                    if (orient != orient_portrait)
1023
46.0k
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
46.0k
                            pl.width.y += (fixed) (dpt.y * xy);
1025
64.0k
                    pl.thin = width_is_thin(&pl);
1026
64.0k
                }
1027
1.12M
                if (!pl.thin) {
1028
1.12M
                    if (index)
1029
951k
                        dev->sgr.stroke_stored = false;
1030
1.12M
                    adjust_stroke(dev, &pl, pgs, false,
1031
1.12M
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
1.12M
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
1.12M
                            (zero_length || !is_closed),
1034
1.12M
                            COMBINE_FLAGS(flags));
1035
1.12M
                    compute_caps(&pl);
1036
1.12M
                }
1037
1.12M
            }
1038
1.35M
            if (index++) {
1039
1.10M
                gs_line_join join =
1040
1.10M
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
1.10M
                int first;
1042
1.10M
                pl_ptr lptr;
1043
1.10M
                bool ensure_closed;
1044
1045
1.10M
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
0
                    first = 0;
1049
0
                    lptr = 0;
1050
0
                    index = 1;
1051
1.10M
                } else {
1052
1.10M
                    first = (is_closed ? 1 : index - 2);
1053
1.10M
                    lptr = &pl;
1054
1.10M
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
1.10M
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
1.10M
                ensure_closed = ((to_path == &stroke_path_body &&
1068
1.10M
                                  lop_is_idempotent(pgs->log_op)) ||
1069
1.10M
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
1.10M
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
1.10M
                                     first, &pl_prev, lptr,
1074
1.10M
                                     pdevc, dev, pgs, params, &cbox,
1075
1.10M
                                     uniform, join, initial_matrix_reflected,
1076
1.10M
                                     COMBINE_FLAGS(flags));
1077
1.10M
                if (code < 0)
1078
0
                    goto exit;
1079
1.10M
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
1.10M
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
248k
                pl_first = pl;
1086
1.35M
            pl_prev = pl;
1087
1.35M
            x = sx, y = sy;
1088
1.35M
            flags = (flags<<4) | nf_all_from_arc;
1089
1.35M
        }
1090
249k
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
248k
            segment_notes notes = (pseg == 0 ?
1093
141k
                                   (const segment *)spath->first_subpath :
1094
248k
                                   pseg)->notes;
1095
248k
            gs_line_join join = (notes & not_first ? curve_join :
1096
248k
                                 pgs_lp->join);
1097
248k
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
248k
            pl_ptr lptr =
1101
248k
                (!is_closed || join == gs_join_none || zero_length ?
1102
214k
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
248k
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
248k
            flags = (((notes & sn_not_first) ?
1113
248k
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
248k
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
248k
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
248k
                     (flags & ~nf_all_from_arc));
1117
248k
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
248k
                                 index - 1, &pl_prev, lptr, pdevc,
1119
248k
                                 dev, pgs, params, &cbox, uniform, join,
1120
248k
                                 initial_matrix_reflected,
1121
248k
                                 COMBINE_FLAGS(flags));
1122
248k
            if (code < 0)
1123
0
                goto exit;
1124
248k
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
248k
            cap = ((flags & nf_prev_dash_head) ?
1126
148k
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
248k
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
76
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
76
                if (code < 0)
1131
0
                    goto exit;
1132
76
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
76
            }
1134
248k
        }
1135
249k
        psub = (const subpath *)pseg;
1136
249k
    }
1137
142k
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
142k
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
142k
  exit:
1141
142k
    if (dev == (gx_device *)&cdev)
1142
14.4k
        cdev.target->sgr = cdev.sgr;
1143
142k
    if (to_path == &stroke_path_body)
1144
142k
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
142k
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
142k
  exf:
1148
142k
    if (dash_count)
1149
2.16k
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
142k
    if(flattened_path)
1152
4.63k
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
142k
    if (dev == (gx_device *)&cdev)
1154
14.4k
        gx_destroy_clip_device_on_stack(&cdev);
1155
142k
    return code;
1156
142k
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
174k
{
1163
174k
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
174k
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
64.0k
{
1177
64.0k
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
64.0k
    if ((dy = plp->vector.y) == 0)
1181
5.94k
        return any_abs(wy) < fixed_half;
1182
58.1k
    if ((dx = plp->vector.x) == 0)
1183
8.08k
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
50.0k
    return false;
1249
58.1k
#endif
1250
58.1k
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
21.2k
{
1256
21.2k
    fixed *pw;
1257
21.2k
    fixed *pov;
1258
21.2k
    fixed *pev;
1259
21.2k
    fixed w, w2;
1260
21.2k
    fixed adj2;
1261
1262
21.2k
    if (horiz) {
1263
        /* More horizontal stroke */
1264
19.8k
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
19.8k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
19.8k
    } else {
1267
        /* More vertical stroke */
1268
1.39k
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
1.39k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
1.39k
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
21.2k
    w = *pw;
1276
21.2k
    if (w > 0)
1277
1.25k
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
19.9k
    else
1279
19.9k
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
21.2k
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
21.2k
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
20.8k
        if (w >= 0)
1290
1.25k
            w2 += adj2;
1291
19.5k
        else
1292
19.5k
            w2 = adj2 - w2;
1293
20.8k
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
1.31k
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
19.5k
        else                    /* even width, move to pixel */
1296
19.5k
            *pov = *pev = fixed_rounded(*pov);
1297
1298
20.8k
    }
1299
21.2k
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
19.6k
{
1306
1307
19.6k
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
19.6k
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
19.6k
    if (*pow == *pew) {
1313
19.2k
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
19.2k
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
19.2k
        fixed length = any_abs(*pov - *pev);
1316
19.2k
        fixed length_r, length_r_2;
1317
19.2k
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
19.2k
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
19.2k
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
19.2k
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
5.47k
            return;
1329
13.7k
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
0
            length_r = fixed_rounded(length);
1331
0
            if (length_r < fixed_1)
1332
0
                length_r = fixed_1;
1333
0
            length_r_2 = length_r / 2;
1334
13.7k
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
13.7k
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
13.7k
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
13.7k
            length_r_2 = fixed_rounded(length) / 2;
1340
13.7k
        }
1341
13.7k
        if (length_r & fixed_1)
1342
0
            mv_r = fixed_floor(mv) + fixed_half;
1343
13.7k
        else
1344
13.7k
            mv_r = fixed_floor(mv);
1345
13.7k
        if (*pov < *pev) {
1346
0
            *pov = mv_r - length_r_2;
1347
0
            *pev = mv_r + length_r_2;
1348
13.7k
        } else {
1349
13.7k
            *pov = mv_r + length_r_2;
1350
13.7k
            *pev = mv_r - length_r_2;
1351
13.7k
        }
1352
13.7k
    }
1353
19.6k
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
1.12M
{
1362
1.12M
    bool horiz, adjust = true;
1363
1.12M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
277
                             pgs->line_params.dash_cap :
1365
1.12M
                             pgs->line_params.start_cap);
1366
1.12M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
373
                             pgs->line_params.dash_cap :
1368
1.12M
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
1.12M
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
1.10M
        dev->sgr.stroke_stored = false;
1374
1.10M
        return;                 /* don't adjust */
1375
1.10M
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
21.2k
    if (dev->sgr.stroke_stored &&
1380
21.2k
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
21.2k
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
70
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
70
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
70
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
0
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
0
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
0
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
0
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
0
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
0
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
0
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
0
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
0
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
0
            }
1443
0
        }
1444
70
    }
1445
21.2k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
1.10k
        dev->sgr.stroke_stored = true;
1447
1.10k
        dev->sgr.orig[0] = plp->o.p;
1448
1.10k
        dev->sgr.orig[1] = plp->e.p;
1449
1.10k
        dev->sgr.orig[2] = plp->width;
1450
1.10k
        dev->sgr.orig[3] = plp->vector;
1451
1.10k
    } else
1452
20.1k
        dev->sgr.stroke_stored = false;
1453
21.2k
    if (adjust) {
1454
21.2k
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
21.2k
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
21.2k
        if (adjust_longitude)
1457
19.6k
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
21.2k
    }
1459
21.2k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
1.10k
        dev->sgr.adjusted[0] = plp->o.p;
1461
1.10k
        dev->sgr.adjusted[1] = plp->e.p;
1462
1.10k
        dev->sgr.adjusted[2] = plp->width;
1463
1.10k
        dev->sgr.adjusted[3] = plp->vector;
1464
1.10k
    }
1465
21.2k
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
1.10M
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
1.10M
    double u1 = pd1->x, v1 = pd1->y;
1482
1.10M
    double u2 = pd2->x, v2 = pd2->y;
1483
1.10M
    double denom = u1 * v2 - u2 * v1;
1484
1.10M
    double xdiff = pp2->x - pp1->x;
1485
1.10M
    double ydiff = pp2->y - pp1->y;
1486
1.10M
    double f1;
1487
1.10M
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
1.10M
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
30
        if_debug0('O', "\tdegenerate!\n");
1506
30
        return -1;
1507
30
    }
1508
1.10M
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
1.10M
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
1.10M
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
1.10M
    if_debug2('O', "\t%f,%f\n",
1512
1.10M
              fixed2float(pi->x), fixed2float(pi->y));
1513
1.10M
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
1.10M
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
4.37k
{
1521
4.37k
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
4.37k
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
4.37k
    if (any_abs(dx) > any_abs(dy)) {
1525
2.22k
        plp->width.x = plp->e.cdelta.y = 0;
1526
2.22k
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
2.22k
    } else {
1528
2.15k
        plp->width.y = plp->e.cdelta.x = 0;
1529
2.15k
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
2.15k
    }
1531
4.37k
#undef TRSIGN
1532
4.37k
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
1.31M
{
1545
1.31M
    const fixed lix = plp->o.p.x;
1546
1.31M
    const fixed liy = plp->o.p.y;
1547
1.31M
    const fixed litox = plp->e.p.x;
1548
1.31M
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
1.31M
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
226k
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
226k
                                                pdevc, pgs->log_op,
1555
226k
                                                pgs->fill_adjust.x,
1556
226k
                                                pgs->fill_adjust.y);
1557
226k
    }
1558
    /* Check for being able to fill directly. */
1559
1.08M
    {
1560
1.08M
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
1.08M
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
986k
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
1.08M
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
984k
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
1.08M
        if (first != 0)
1567
944k
            start_cap = gs_cap_butt;
1568
1.08M
        if (nplp != 0)
1569
944k
            end_cap = gs_cap_butt;
1570
1.08M
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
1.08M
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
1.08M
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
1.08M
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
1.05M
                join == gs_join_none)
1575
1.08M
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
1.08M
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
1.08M
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
1.08M
 general:
1641
1.08M
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
1.08M
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
1.08M
                      flags);
1644
1.08M
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
1.12M
{
1655
1.12M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
1.12M
    gs_fixed_point points[8];
1657
1.12M
    int npoints;
1658
1.12M
    int code;
1659
1.12M
    bool moveto_first = true;
1660
1.12M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
1.02M
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
1.12M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
1.02M
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
1.12M
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
4.37k
        set_thin_widths(plp);
1669
4.37k
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
4.37k
        compute_caps(plp);
1671
4.37k
    }
1672
    /* Create an initial cap if desired. */
1673
1.12M
    if (first == 0 && start_cap == gs_cap_round) {
1674
29.0k
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
29.0k
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
29.0k
        npoints = 0;
1678
29.0k
        moveto_first = false;
1679
1.10M
    } else {
1680
1.10M
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
1.10M
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
1.10M
    }
1684
1.12M
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
142k
        if (end_cap == gs_cap_round) {
1687
29.0k
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
29.0k
            ++npoints;
1689
29.0k
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
29.0k
            code = add_pie_cap(ppath, &plp->e);
1692
29.0k
            goto done;
1693
29.0k
        }
1694
113k
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
987k
    } else if (nplp->thin) /* no join */
1696
4.42k
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
982k
    else if (join == gs_join_round) {
1698
71.7k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
71.7k
        ++npoints;
1700
71.7k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
71.7k
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
71.7k
        goto done;
1704
911k
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
590k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
590k
        ++npoints;
1710
590k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
590k
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
590k
        goto done;
1714
590k
    } else                      /* non-round join */
1715
320k
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
320k
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
320k
                                join, reflected);
1718
438k
    if (code < 0)
1719
0
        return code;
1720
438k
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
1.12M
  done:
1722
1.12M
    if (code < 0)
1723
0
        return code;
1724
1.12M
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
1.12M
        (nplp != NULL) && (!nplp->thin))
1726
709k
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
1.12M
    return gx_path_close_subpath(ppath);
1728
1.12M
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
314k
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
314k
    float check;
1794
314k
    double u1, v1, u2, v2;
1795
314k
    double num, denom;
1796
314k
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
314k
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
314k
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
95.9k
        return 1;
1806
1807
218k
    check = pgs_lp->miter_check;
1808
218k
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
218k
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
218k
    if (pmat) {
1812
11.3k
        gs_point pt;
1813
1814
11.3k
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
11.3k
        if (code < 0)
1816
0
        return code;
1817
11.3k
        v1 = pt.x, u1 = pt.y;
1818
11.3k
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
11.3k
        if (code < 0)
1820
0
            return code;
1821
11.3k
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
11.3k
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
11.3k
    }
1846
218k
    num = u1 * v2 - u2 * v1;
1847
218k
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
218k
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
86.0k
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
218k
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
218k
    if (denom < 0)
1881
109k
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
218k
    if (check > 0 ?
1884
218k
        (num < 0 || num >= denom * check) :
1885
218k
        (num < 0 && num >= denom * check)
1886
218k
        ) {
1887
        /* OK to use a miter join. */
1888
217k
        gs_fixed_point dirn1, dirn2;
1889
1890
217k
        dirn1.x = plp->e.cdelta.x;
1891
217k
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
217k
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
217k
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
4
        {
1898
4
            float scale = 65536.0;
1899
4
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
4
                scale /= abs(plp->vector.x);
1901
0
            else
1902
0
                scale /= abs(plp->vector.y);
1903
4
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
4
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
4
        }
1906
217k
        dirn2.x = nplp->o.cdelta.x;
1907
217k
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
217k
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
217k
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
4
        {
1914
4
            float scale = 65536.0;
1915
4
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
4
                scale /= abs(nplp->vector.x);
1917
0
            else
1918
0
                scale /= abs(nplp->vector.y);
1919
4
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
4
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
4
        }
1922
217k
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
217k
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
215k
            return 0;
1926
217k
    }
1927
2.85k
    return 1;
1928
218k
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
80
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
80
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
80
    gs_fixed_point points[6];
2286
80
    int npoints;
2287
80
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
80
    int code;
2289
2290
80
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
0
        set_thin_widths(plp);
2294
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
0
        compute_caps(plp);
2296
0
    }
2297
    /* The segment itself : */
2298
80
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
80
    ASSIGN_POINT(&points[1], plp->e.co);
2300
80
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
80
    ASSIGN_POINT(&points[3], plp->o.co);
2302
80
    code = add_points(ppath, points, 4, moveto_first);
2303
80
    if (code < 0)
2304
0
        return code;
2305
80
    code = gx_path_close_subpath(ppath);
2306
80
    if (code < 0)
2307
0
        return code;
2308
80
    npoints = 0;
2309
80
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
76
        if (pgs_lp->start_cap == gs_cap_butt)
2312
0
            return 0;
2313
76
        if (pgs_lp->start_cap == gs_cap_round) {
2314
76
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
76
            ++npoints;
2316
76
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
76
            return add_round_cap(ppath, &plp->e);
2319
76
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
4
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
4
    } else if (nplp->thin) {    /* no join */
2335
0
        npoints = 0;
2336
4
    } else {                    /* non-round join */
2337
4
        bool ccw =
2338
4
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
4
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
4
        if (ccw ^ reflected) {
2342
4
            ASSIGN_POINT(&points[0], plp->e.co);
2343
4
            ++npoints;
2344
4
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
4
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
4
                                    join, reflected);
2347
4
            if (code < 0)
2348
0
                return code;
2349
4
            code--; /* Drop the last point of the non-compatible mode. */
2350
4
            npoints += code;
2351
4
        } else {
2352
0
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
0
                                    join, reflected);
2355
0
            if (code < 0)
2356
0
                return code;
2357
0
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
0
            npoints = code;
2359
0
        }
2360
4
    }
2361
4
    code = add_points(ppath, points, npoints, moveto_first);
2362
4
    if (code < 0)
2363
0
        return code;
2364
4
    code = gx_path_close_subpath(ppath);
2365
4
    return code;
2366
4
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
76
{
2379
76
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
76
    gs_fixed_point points[5];
2381
76
    int npoints = 0;
2382
76
    int code;
2383
2384
76
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
76
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
0
        set_thin_widths(plp);
2390
0
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
0
        compute_caps(plp);
2392
0
    }
2393
    /* Create an initial cap if desired. */
2394
76
    if (pgs_lp->start_cap == gs_cap_round) {
2395
76
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
76
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
76
            )
2398
0
            return code;
2399
76
        return 0;
2400
76
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
76
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
1.12M
{
2420
1.12M
    int code;
2421
2422
1.12M
    if (moveto_first) {
2423
1.10M
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
1.10M
        if (code < 0)
2425
0
            return code;
2426
1.10M
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
1.10M
    } else {
2428
29.0k
        return gx_path_add_lines(ppath, points, npoints);
2429
29.0k
    }
2430
1.12M
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
320k
{
2443
320k
#define jp1 join_points[0]
2444
320k
#define np1 join_points[1]
2445
320k
#define np2 join_points[2]
2446
320k
#define jp2 join_points[3]
2447
320k
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
320k
    bool ccw =
2476
320k
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
320k
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
320k
    bool ccw0 = ccw;
2479
320k
    p_ptr outp, np;
2480
320k
    int   code;
2481
320k
    gs_fixed_point mpt;
2482
2483
320k
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
320k
    ASSIGN_POINT(&jp1, plp->e.co);
2487
320k
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
320k
    if (!ccw) {
2495
168k
        outp = &jp2;
2496
168k
        ASSIGN_POINT(&np2, nplp->o.co);
2497
168k
        ASSIGN_POINT(&np1, nplp->o.p);
2498
168k
        np = &np2;
2499
168k
    } else {
2500
151k
        outp = &jp1;
2501
151k
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
151k
        ASSIGN_POINT(&np2, nplp->o.p);
2503
151k
        np = &np1;
2504
151k
    }
2505
320k
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
320k
    if (join == gs_join_triangle) {
2509
0
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
0
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
0
        ASSIGN_POINT(&jpx, jp2);
2513
0
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
0
            jp2.x = tpx, jp2.y = tpy;
2516
0
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
0
            ASSIGN_POINT(&jp2, np2);
2519
0
            ASSIGN_POINT(&np2, np1);
2520
0
            np1.x = tpx, np1.y = tpy;
2521
0
        }
2522
0
        return 5;
2523
0
    }
2524
320k
    if (join == gs_join_miter &&
2525
320k
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
215k
        if (code < 0)
2527
0
            return code;
2528
215k
        ASSIGN_POINT(outp, mpt);
2529
215k
    }
2530
320k
    return 4;
2531
320k
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
1.12M
{
2594
1.12M
    fixed wx2 = plp->width.x;
2595
1.12M
    fixed wy2 = plp->width.y;
2596
2597
1.12M
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
1.12M
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
1.12M
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
1.12M
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
1.12M
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
1.12M
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
1.12M
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
152
{
2630
152
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
152
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
152
                                        xo + cdx, yo + cdy,
2638
152
                                        quarter_arc_fraction)) < 0 ||
2639
152
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
152
                                        quarter_arc_fraction)) < 0 ||
2641
152
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
152
                                        xe - cdx, ye - cdy,
2643
152
                                        quarter_arc_fraction)) < 0 ||
2644
152
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
152
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
152
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
152
        )
2649
0
        return code;
2650
152
    return 0;
2651
152
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
58.2k
{
2658
58.2k
    int code;
2659
2660
58.2k
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
58.2k
                                        xo + cdx, yo + cdy,
2662
58.2k
                                        quarter_arc_fraction)) < 0 ||
2663
58.2k
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
58.2k
                                        quarter_arc_fraction)) < 0 ||
2665
58.2k
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
58.2k
    return 0;
2668
58.2k
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
454k
{
2676
454k
    int code;
2677
454k
    double rad_squared, dist_squared, F;
2678
454k
    gs_fixed_point current, tangent, tangmeet;
2679
2680
454k
    tangent.x = current_tangent->x;
2681
454k
    tangent.y = current_tangent->y;
2682
454k
    current.x = current_orig->x;
2683
454k
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
454k
    if ((double)tangent.x * (double)final_tangent->x +
2687
454k
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
5.68k
        code = gx_path_add_partial_arc(ppath,
2690
5.68k
                                       centre->x + tangent.x,
2691
5.68k
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
5.68k
                                       current.x + tangent.x,
2694
5.68k
                                       current.y + tangent.y,
2695
5.68k
                                       quarter_arc_fraction);
2696
5.68k
        if (code < 0)
2697
0
            return code;
2698
5.68k
        current.x = centre->x + tangent.x;
2699
5.68k
        current.y = centre->y + tangent.y;
2700
5.68k
        if (ccw) {
2701
0
            int tmp = tangent.x;
2702
0
            tangent.x = -tangent.y;
2703
0
            tangent.y = tmp;
2704
5.68k
        } else {
2705
5.68k
            int tmp = tangent.x;
2706
5.68k
            tangent.x = tangent.y;
2707
5.68k
            tangent.y = -tmp;
2708
5.68k
        }
2709
5.68k
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
454k
    if (line_intersect(&current, &tangent,
2714
454k
                       final, final_tangent, &tangmeet) != 0) {
2715
111k
        return gx_path_add_line(ppath, final->x, final->y);
2716
111k
    }
2717
342k
    current.x -= tangmeet.x;
2718
342k
    current.y -= tangmeet.y;
2719
342k
    dist_squared = ((double)current.x) * current.x +
2720
342k
                   ((double)current.y) * current.y;
2721
342k
    rad_squared  = ((double)width->x) * width->x +
2722
342k
                   ((double)width->y) * width->y;
2723
342k
    dist_squared /= rad_squared;
2724
342k
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
342k
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
454k
                                   tangmeet.x, tangmeet.y, F);
2727
454k
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
662k
{
2735
662k
    int code;
2736
662k
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
662k
    double l, r;
2738
662k
    bool ccw;
2739
2740
662k
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
662k
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
662k
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
259k
        if (cap &&
2746
259k
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
89
            return add_pie_cap(ppath, &plp->e);
2748
259k
        else
2749
259k
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
259k
    }
2751
2752
403k
    ccw = (l > r);
2753
2754
403k
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
403k
    if (ccw) {
2758
197k
        current       = & plp->e.co;
2759
197k
        final         = &nplp->o.ce;
2760
197k
        tangent       = & plp->e.cdelta;
2761
197k
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
197k
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
205k
    } else {
2767
205k
        current       = &nplp->o.co;
2768
205k
        final         = & plp->e.ce;
2769
205k
        tangent       = &nplp->o.cdelta;
2770
205k
        final_tangent = & plp->e.cdelta;
2771
205k
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
205k
        if (code < 0)
2773
0
            return code;
2774
205k
        code = gx_path_add_line(ppath, current->x, current->y);
2775
205k
        if (code < 0)
2776
0
            return code;
2777
205k
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
205k
    }
2780
2781
403k
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
403k
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
403k
    if (ccw &&
2785
403k
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
197k
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
403k
    return 0;
2790
403k
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
709k
{
2819
709k
    int code;
2820
709k
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
709k
    double l, r;
2822
709k
    bool ccw;
2823
2824
709k
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
709k
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
709k
    if (l == r)
2828
278k
        return 0;
2829
2830
430k
    ccw = (l > r);
2831
2832
430k
    ccw ^= reflected;
2833
2834
430k
    if (ccw) {
2835
214k
        dirn1.x = - plp->width.x;
2836
214k
        dirn1.y = - plp->width.y;
2837
214k
        dirn2.x = -nplp->width.x;
2838
214k
        dirn2.y = -nplp->width.y;
2839
214k
        if (line_intersect(& plp->o.co, &dirn1,
2840
214k
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
182k
            return 0;
2842
31.1k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
31.1k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
31.1k
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
31.1k
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
31.1k
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
31.1k
                                &plp->width)))
2848
0
            return code;
2849
216k
    } else {
2850
216k
        if (line_intersect(& plp->o.ce, & plp->width,
2851
216k
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
196k
            return 0;
2853
19.8k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
19.8k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
19.8k
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
19.8k
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
19.8k
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
19.8k
                                &plp->width)))
2859
0
            return code;
2860
19.8k
    }
2861
50.9k
    return 0;
2862
430k
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
1.21M
{
2869
1.21M
#define PUT_POINT(i, px, py)\
2870
2.43M
  pts[i].x = (px), pts[i].y = (py)
2871
1.21M
    switch (type) {
2872
1.20M
        case gs_cap_butt:
2873
1.20M
            PUT_POINT(0, xo, yo);
2874
1.20M
            PUT_POINT(1, xe, ye);
2875
1.20M
            return 2;
2876
12.1k
        case gs_cap_square:
2877
12.1k
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
12.1k
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
12.1k
            return 2;
2880
0
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
0
            PUT_POINT(0, xo, yo);
2882
0
            PUT_POINT(1, px + cdx, py + cdy);
2883
0
            PUT_POINT(2, xe, ye);
2884
0
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
1.21M
    }
2888
1.21M
#undef PUT_POINT
2889
1.21M
}