Coverage Report

Created: 2025-06-10 07:15

/src/ghostpdl/base/gsfunc0.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Implementation of FunctionType 0 (Sampled) Functions */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsfunc0.h"
22
#include "gsparam.h"
23
#include "gxfarith.h"
24
#include "gxfunc.h"
25
#include "stream.h"
26
#include "gsccolor.h"           /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */
27
28
#define POLE_CACHE_DEBUG 0      /* A temporary development technology need.
29
                                   Remove after the beta testing. */
30
60
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
31
                                   Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
32
138
#define POLE_CACHE_IGNORE 0     /* A temporary development technology need.
33
                                   Remove after the beta testing. */
34
35
20.9k
#define MAX_FAST_COMPS 8
36
37
typedef struct gs_function_Sd_s {
38
    gs_function_head_t head;
39
    gs_function_Sd_params_t params;
40
} gs_function_Sd_t;
41
42
/* GC descriptor */
43
private_st_function_Sd();
44
static
45
30
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
46
12
{
47
12
    index -= 6;
48
12
    if (index < st_data_source_max_ptrs)
49
3
        return ENUM_USING(st_data_source, &pfn->params.DataSource,
50
12
                          sizeof(pfn->params.DataSource), index);
51
9
    return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
52
12
}
53
12
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
54
30
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
55
30
ENUM_PTRS_END
56
static
57
3
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
58
3
{
59
3
    RELOC_PREFIX(st_function);
60
3
    RELOC_USING(st_data_source, &pfn->params.DataSource,
61
3
                sizeof(pfn->params.DataSource));
62
3
    RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
63
3
    RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
64
3
}
65
3
RELOC_PTRS_END
66
67
/* Define the maximum plausible number of inputs and outputs */
68
/* for a Sampled function. */
69
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS   /* Allow override with XCFLAGS */
70
6.62k
#  define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
71
#  define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
72
#else
73
#  define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
74
#  define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
75
#endif
76
77
/* Get one set of sample values. */
78
#define SETUP_SAMPLES(bps, nbytes)\
79
6.11M
        int n = pfn->params.n;\
80
6.11M
        byte buf[max_Sd_n * ((bps + 7) >> 3)];\
81
6.11M
        const byte *p;\
82
6.11M
        int i;\
83
6.11M
\
84
6.11M
        data_source_access(&pfn->params.DataSource, offset >> 3,\
85
6.11M
                           nbytes, buf, &p)
86
87
static int
88
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
89
0
{
90
0
    SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
91
0
    for (i = 0; i < n; ++i) {
92
0
        samples[i] = (*p >> (~offset & 7)) & 1;
93
0
        if (!(++offset & 7))
94
0
            p++;
95
0
    }
96
0
    return 0;
97
0
}
98
static int
99
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
100
0
{
101
0
    SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
102
0
    for (i = 0; i < n; ++i) {
103
0
        samples[i] = (*p >> (6 - (offset & 7))) & 3;
104
0
        if (!((offset += 2) & 7))
105
0
            p++;
106
0
    }
107
0
    return 0;
108
0
}
109
static int
110
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
111
0
{
112
0
    SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
113
0
    for (i = 0; i < n; ++i) {
114
0
        samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
115
0
    }
116
0
    return 0;
117
0
}
118
static int
119
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
120
6.10M
{
121
6.10M
    SETUP_SAMPLES(8, n);
122
15.3M
    for (i = 0; i < n; ++i) {
123
9.28M
        samples[i] = *p++;
124
9.28M
    }
125
6.10M
    return 0;
126
6.10M
}
127
static int
128
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
129
0
{
130
0
    SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
131
0
    for (i = 0; i < n; ++i) {
132
0
        if (offset & 4)
133
0
            samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
134
0
        else
135
0
            samples[i] = (*p << 4) + (p[1] >> 4), p++;
136
0
        offset ^= 4;
137
0
    }
138
0
    return 0;
139
0
}
140
static int
141
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
142
5.38k
{
143
5.38k
    SETUP_SAMPLES(16, n * 2);
144
10.8k
    for (i = 0; i < n; ++i) {
145
5.50k
        samples[i] = (*p << 8) + p[1];
146
5.50k
        p += 2;
147
5.50k
    }
148
5.38k
    return 0;
149
5.38k
}
150
static int
151
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
152
0
{
153
0
    SETUP_SAMPLES(24, n * 3);
154
0
    for (i = 0; i < n; ++i) {
155
0
        samples[i] = (*p << 16) + (p[1] << 8) + p[2];
156
0
        p += 3;
157
0
    }
158
0
    return 0;
159
0
}
160
static int
161
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
162
0
{
163
0
    SETUP_SAMPLES(32, n * 4);
164
0
    for (i = 0; i < n; ++i) {
165
0
        samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
166
0
        p += 4;
167
0
    }
168
0
    return 0;
169
0
}
170
171
static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
172
                                       ulong offset, uint * samples) =
173
{
174
    0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
175
        fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
176
        fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
177
        fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
178
        fn_gets_32
179
};
180
181
/*
182
 * Compute a value by cubic interpolation.
183
 * f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
184
 * The formula is derived from those presented in
185
 * http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
186
 * (thanks to Raph Levien for the reference).
187
 */
188
static double
189
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
190
0
{
191
    /*
192
     * The parameter 'a' affects the contribution of the high-frequency
193
     * components.  The abovementioned source suggests a = -0.5.
194
     */
195
0
#define a (-0.5)
196
0
#define SQR(v) ((v) * (v))
197
0
#define CUBE(v) ((v) * (v) * (v))
198
0
    const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
199
0
    const double c =
200
0
        (a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
201
0
        ((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
202
0
        ((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
203
0
        (a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;
204
205
0
    if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
206
0
              f0, f1, f2, f3, x, c);
207
0
    return c;
208
0
#undef a
209
0
#undef SQR
210
0
#undef CUBE
211
0
}
212
213
/*
214
 * Compute a value by quadratic interpolation.
215
 * f[] = f(0), f(1), f(2); 0 < x < 1.
216
 *
217
 * We used to use a quadratic formula for this, derived from
218
 * f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
219
 * match what we believe is Acrobat Reader's behavior.
220
 */
221
static inline double
222
interpolate_quadratic(double x, double f0, double f1, double f2)
223
0
{
224
0
    return interpolate_cubic(x + 1, f0, f0, f1, f2);
225
0
}
226
227
/* Calculate a result by multicubic interpolation. */
228
static void
229
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
230
                     const int *iparts, const ulong *factors,
231
                     float *samples, ulong offset, int m)
232
0
{
233
0
    int j;
234
235
0
top:
236
0
    if (m == 0) {
237
0
        uint sdata[max_Sd_n];
238
239
0
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
240
0
        for (j = pfn->params.n - 1; j >= 0; --j)
241
0
            samples[j] = (float)sdata[j];
242
0
    } else {
243
0
        float fpart = *fparts++;
244
0
        int ipart = *iparts++;
245
0
        ulong delta = *factors++;
246
0
        int size = pfn->params.Size[pfn->params.m - m];
247
0
        float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];
248
249
0
        --m;
250
0
        if (is_fzero(fpart))
251
0
            goto top;
252
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
253
0
                             offset, m);
254
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
255
0
                             offset + delta, m);
256
        /* Ensure we don't try to access out of bounds. */
257
        /*
258
         * If size == 1, the only possible value for ipart and fpart is
259
         * 0, so we've already handled this case.
260
         */
261
0
        if (size == 2) { /* ipart = 0 */
262
            /* Use linear interpolation. */
263
0
            for (j = pfn->params.n - 1; j >= 0; --j)
264
0
                samples[j] += (samples1[j] - samples[j]) * fpart;
265
0
            return;
266
0
        }
267
0
        if (ipart == 0) {
268
            /* Use quadratic interpolation. */
269
0
            fn_interpolate_cubic(pfn, fparts, iparts, factors,
270
0
                                 samples2, offset + delta * 2, m);
271
0
            for (j = pfn->params.n - 1; j >= 0; --j)
272
0
                samples[j] =
273
0
                    interpolate_quadratic(fpart, samples[j],
274
0
                                          samples1[j], samples2[j]);
275
0
            return;
276
0
        }
277
        /* At this point we know ipart > 0, size >= 3. */
278
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
279
0
                             offset - delta, m);
280
0
        if (ipart == size - 2) {
281
            /* Use quadratic interpolation. */
282
0
            for (j = pfn->params.n - 1; j >= 0; --j)
283
0
                samples[j] =
284
0
                    interpolate_quadratic(1 - fpart, samples1[j],
285
0
                                          samples[j], samplesm1[j]);
286
0
            return;
287
0
        }
288
        /* Now we know 0 < ipart < size - 2, size > 3. */
289
0
        fn_interpolate_cubic(pfn, fparts, iparts, factors,
290
0
                             samples2, offset + delta * 2, m);
291
0
        for (j = pfn->params.n - 1; j >= 0; --j)
292
0
            samples[j] =
293
0
                interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
294
0
                                  samples1[j], samples2[j]);
295
0
    }
296
0
}
297
298
/* Calculate a result by multilinear interpolation. */
299
static void
300
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
301
                 const ulong *factors, float *samples, ulong offset, int m)
302
1.63M
{
303
1.63M
    int j;
304
305
1.67M
top:
306
1.67M
    if (m == 0) {
307
1.10M
        uint sdata[max_Sd_n];
308
309
1.10M
        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
310
3.69M
        for (j = pfn->params.n - 1; j >= 0; --j)
311
2.58M
            samples[j] = (float)sdata[j];
312
1.10M
    } else {
313
573k
        float fpart = *fparts++;
314
573k
        float samples1[max_Sd_n];
315
316
573k
        if (is_fzero(fpart)) {
317
41.9k
            ++factors;
318
41.9k
            --m;
319
41.9k
            goto top;
320
41.9k
        }
321
531k
        fn_interpolate_linear(pfn, fparts, factors + 1, samples,
322
531k
                              offset, m - 1);
323
531k
        fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
324
531k
                              offset + *factors, m - 1);
325
1.78M
        for (j = pfn->params.n - 1; j >= 0; --j)
326
1.24M
            samples[j] += (samples1[j] - samples[j]) * fpart;
327
531k
    }
328
1.67M
}
329
330
static inline double
331
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
332
8.04M
{
333
8.04M
    float d0, d1, r0, r1;
334
8.04M
    double value;
335
8.04M
    int bps = pfn->params.BitsPerSample;
336
    /* x86 machines have problems with shifts if bps >= 32 */
337
8.04M
    uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;
338
339
8.04M
    if (pfn->params.Range)
340
8.04M
        r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
341
0
    else
342
0
        r0 = 0, r1 = (float)max_samp;
343
8.04M
    if (pfn->params.Decode)
344
3.68M
        d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
345
4.36M
    else
346
4.36M
        d0 = r0, d1 = r1;
347
348
8.04M
    value = sample * (d1 - d0) / max_samp + d0;
349
8.04M
    if (value < r0)
350
0
        value = r0;
351
8.04M
    else if (value > r1)
352
0
        value = r1;
353
8.04M
    return value;
354
8.04M
}
355
356
/* Evaluate a Sampled function. */
357
/* A generic algorithm with a recursion by dimentions. */
358
static int
359
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
360
573k
{
361
573k
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
362
573k
    int bps = pfn->params.BitsPerSample;
363
573k
    ulong offset = 0;
364
573k
    int i;
365
573k
    float encoded[max_Sd_m];
366
573k
    int iparts[max_Sd_m]; /* only needed for cubic interpolation */
367
573k
    ulong factors[max_Sd_m];
368
573k
    float samples[max_Sd_n];
369
370
    /* Encode the input values. */
371
372
1.14M
    for (i = 0; i < pfn->params.m; ++i) {
373
573k
        float d0 = pfn->params.Domain[2 * i],
374
573k
            d1 = pfn->params.Domain[2 * i + 1];
375
573k
        float arg = in[i], enc;
376
377
573k
        if (arg < d0)
378
3
            arg = d0;
379
573k
        else if (arg > d1)
380
0
            arg = d1;
381
573k
        if (pfn->params.Encode) {
382
377k
            float e0 = pfn->params.Encode[2 * i];
383
377k
            float e1 = pfn->params.Encode[2 * i + 1];
384
385
377k
            enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
386
377k
            if (enc < 0)
387
0
                encoded[i] = 0;
388
377k
            else if (enc >= pfn->params.Size[i] - 1)
389
11.7k
                encoded[i] = (float)pfn->params.Size[i] - 1;
390
365k
            else
391
365k
                encoded[i] = enc;
392
377k
        } else {
393
            /* arg is guaranteed to be in bounds, ergo so is enc */
394
                /* TODO: possible issue here.  if (pfn->params.Size[i] == 1 */
395
196k
            encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
396
196k
        }
397
573k
    }
398
399
    /* Look up and interpolate the output values. */
400
401
573k
    {
402
573k
        ulong factor = (ulong)bps * pfn->params.n;
403
404
1.14M
        for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
405
573k
            int ipart = (int)encoded[i];
406
407
573k
            offset += (factors[i] = factor) * ipart;
408
573k
            iparts[i] = ipart;  /* only needed for cubic interpolation */
409
573k
            encoded[i] -= ipart;
410
573k
        }
411
573k
    }
412
573k
    if (pfn->params.Order == 3)
413
0
        fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
414
0
                             offset, pfn->params.m);
415
573k
    else
416
573k
        fn_interpolate_linear(pfn, encoded, factors, samples, offset,
417
573k
                              pfn->params.m);
418
419
    /* Encode the output values. */
420
421
1.91M
    for (i = 0; i < pfn->params.n; ++i)
422
1.33M
        out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);
423
424
573k
    return 0;
425
573k
}
426
427
static const double double_stub = 1e90;
428
429
static inline void
430
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
431
            const int pole_step_minor)
432
12
{   /* The following is poles of the polinomial,
433
       which represents interpolate_cubic in [1,2]. */
434
12
    const double a = -0.5;
435
436
12
    p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
437
12
    p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
438
12
}
439
440
static void
441
fn_make_poles(double *p, const int pole_step, int power, int bias)
442
12
{
443
12
    const int pole_step_minor = pole_step / 3;
444
12
    switch(power) {
445
0
        case 1: /* A linear 3d power curve. */
446
            /* bias must be 0. */
447
0
            p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
448
0
            p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
449
0
            break;
450
0
        case 2:
451
            /* bias may be be 0 or 1. */
452
            /* Duplicate the beginning or the ending pole (the old code compatible). */
453
0
            fn_make_cubic_poles(p + pole_step * bias,
454
0
                    p[pole_step * 0], p[pole_step * bias],
455
0
                    p[pole_step * (1 + bias)], p[pole_step * 2],
456
0
                    pole_step_minor);
457
0
            break;
458
12
        case 3:
459
            /* bias must be 1. */
460
12
            fn_make_cubic_poles(p + pole_step * bias,
461
12
                    p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
462
12
                    pole_step_minor);
463
12
            break;
464
0
        default: /* Must not happen. */
465
0
           DO_NOTHING;
466
12
    }
467
12
}
468
469
/* Evaluate a Sampled function.
470
   A cubic interpolation with a pole cache.
471
   Allows a fast check for extreme suspection. */
472
/* This implementation is a particular case of 1 dimension.
473
   maybe we'll use as an optimisation of the generic case,
474
   so keep it for a while. */
475
static int
476
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
477
0
{
478
0
    float d0 = pfn->params.Domain[2 * 0];
479
0
    float d1 = pfn->params.Domain[2 * 0 + 1];
480
0
    const int pole_step_minor = pfn->params.n;
481
0
    const int pole_step = 3 * pole_step_minor;
482
0
    int i0; /* A cell index. */
483
0
    int ib, ie, i, k;
484
0
    double *p, t0, t1, tt;
485
0
486
0
    tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
487
0
    i0 = (int)floor(tt);
488
0
    ib = max(i0 - 1, 0);
489
0
    ie = min(pfn->params.Size[0], i0 + 3);
490
0
    for (i = ib; i < ie; i++) {
491
0
        if (pfn->params.pole[i * pole_step] == double_stub) {
492
0
            uint sdata[max_Sd_n];
493
0
            int bps = pfn->params.BitsPerSample;
494
0
495
0
            p = &pfn->params.pole[i * pole_step];
496
0
            fn_get_samples[pfn->params.BitsPerSample](pfn, (ulong)i * bps * pfn->params.n, sdata);
497
0
            for (k = 0; k < pfn->params.n; k++, p++)
498
0
                *p = fn_Sd_encode(pfn, k, (double)sdata[k]);
499
0
        }
500
0
    }
501
0
    p = &pfn->params.pole[i0 * pole_step];
502
0
    t0 = tt - i0;
503
0
    if (t0 == 0) {
504
0
        for (k = 0; k < pfn->params.n; k++, p++)
505
0
            out[k] = *p;
506
0
    } else {
507
0
        if (p[1 * pole_step_minor] == double_stub) {
508
0
            for (k = 0; k < pfn->params.n; k++)
509
0
                fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
510
0
                        ie - ib - 1, i0 - ib);
511
0
        }
512
0
        t1 = 1 - t0;
513
0
        for (k = 0; k < pfn->params.n; k++, p++) {
514
0
            double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
515
0
                       p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
516
0
                       p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
517
0
                       p[3 * pole_step_minor] * t0 * t0 * t0;
518
0
            if (y < pfn->params.Range[0])
519
0
                y = pfn->params.Range[0];
520
0
            if (y > pfn->params.Range[1])
521
0
                y = pfn->params.Range[1];
522
0
            out[k] = y;
523
0
        }
524
0
    }
525
0
    return 0;
526
0
}
527
528
static inline void
529
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
530
30
{
531
30
    int i;
532
533
60
    for (i = 0; i < pfn->params.m; i++) {
534
30
        float xi = in[i];
535
30
        float d0 = pfn->params.Domain[2 * i + 0];
536
30
        float d1 = pfn->params.Domain[2 * i + 1];
537
30
        double t;
538
539
30
        if (xi < d0)
540
0
            xi = d0;
541
30
        if (xi > d1)
542
0
            xi = d1;
543
30
        t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
544
30
        I[i] = (int)floor(t);
545
30
        T[i] = t - I[i];
546
30
    }
547
30
}
548
549
static inline void
550
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
551
30
{
552
30
    *Ii = I[ii];
553
30
    if (T[ii] != 0) {
554
3
        *ib = max(*Ii - 1, 0);
555
3
        *ie = min(pfn->params.Size[ii], *Ii + 3);
556
27
    } else {
557
27
        *ib = *Ii;
558
27
        *ie = *Ii + 1;
559
27
    }
560
30
}
561
562
static inline int
563
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
564
5.00M
{
565
5.00M
    uint sdata[max_Sd_n];
566
5.00M
    int k, code;
567
568
5.00M
    code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
569
5.00M
    if (code < 0)
570
0
        return code;
571
11.7M
    for (k = 0; k < pfn->params.n; k++)
572
6.70M
        V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
573
5.00M
    return 0;
574
5.00M
}
575
576
static inline int
577
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
578
39
{
579
39
    if (*(pfn->params.pole + a_offset) == double_stub) {
580
39
        uint sdata[max_Sd_n];
581
39
        int k, code;
582
583
39
        code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
584
39
        if (code < 0)
585
0
            return code;
586
195
        for (k = 0; k < pfn->params.n; k++)
587
156
            *(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
588
39
    }
589
39
    return 0;
590
39
}
591
592
static inline void
593
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
594
3
{
595
3
    int k;
596
597
15
    for (k = 0; k < pfn->params.n; k++)
598
12
        fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
599
3
}
600
601
static inline void
602
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
603
        int offset, int pole_step, int power, int bias, int ii)
604
3
{
605
3
    if (ii < 0)
606
3
        interpolate_vector(pfn, offset, pole_step, power, bias);
607
0
    else {
608
0
        int s = pfn->params.array_step[ii];
609
0
        int Ii = I[ii];
610
611
0
        if (T[ii] == 0) {
612
0
            interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
613
0
        } else {
614
0
            int l;
615
616
0
            for (l = 0; l < 4; l++)
617
0
                interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
618
0
        }
619
0
    }
620
3
}
621
622
static inline bool
623
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
624
30
{
625
    /* Check an inner pole of the cell. */
626
30
    int i, o = 0;
627
628
60
    for (i = ii; i >= 0; i--) {
629
30
        o += I[i] * pfn->params.array_step[i];
630
30
        if (T[i] != 0)
631
3
            o += pfn->params.array_step[i] / 3;
632
30
    }
633
30
    if (*(pfn->params.pole + a_offset + o) != double_stub)
634
0
        return true;
635
30
    return false;
636
30
}
637
638
/* Creates a tensor of Bezier coefficients by node interpolation. */
639
static inline int
640
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
641
                            int a_offset, int s_offset, int ii)
642
69
{
643
    /* Well, this function isn't obvious. Trying to explain what it does.
644
645
       Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
646
       a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
647
       We represent the multicubic function with a tensor of Besier poles,
648
       and the size of the tensor is 4x4x....x4. Note that the corners
649
       of the tensor are equal to the corners of the 2x2x...x2 hypercube.
650
651
       We organize the 'pole' array so that a tensor of a cell
652
       occupies the cell, and tensors for neighbour cells have a common hyperplane.
653
654
       For a 1-dimentional case let the nodes are n0, n1, n2, n3.
655
       It defines 3 cells n0...n1, n1...n2, n2...n3.
656
       For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
657
       We choose a cubic approximation, in which tangents at nodes n1, n2
658
       are parallel to (n2 - n0) and (n3 - n1) correspondingly.
659
       (Well, this doesn't give a the minimal curvity, but likely it is
660
       what Adobe implementations do, see the bug 687352,
661
       and we agree that it's some reasonable).
662
663
       Then we have :
664
665
       q11 = n0
666
       q12 = (n0/2 + 3*n1 - n2/2)/3;
667
       q11 = (n1/2 + 3*n2 - n3/2)/3;
668
       q13 = n2
669
670
       When the source node array have an insufficient nomber of nodes
671
       along a dimension to determine tangents a cell
672
       (this happens near the array boundaries),
673
       we simply duplicate ending nodes. This solution is done
674
       for the compatibility to the old code, and definitely
675
       there exists a better one. Likely Adobe does the same.
676
677
       For a 2-dimensional case we apply the 1-dimentional case through
678
       the first dimension, and then construct a surface by varying the
679
       second coordinate as a parameter. It gives a bicubic surface,
680
       and the result doesn't depend on the order of coordinates
681
       (I proved the latter with Matematica 3.0).
682
       Then we know that an interpolation by one coordinate and
683
       a differentiation by another coordinate are interchangeble operators.
684
       Due to that poles of the interpolated function are same as
685
       interpolated poles of the function (well, we didn't spend time
686
       for a strong proof, but this fact was confirmed with testing the
687
       implementation with POLE_CACHE_DEBUG).
688
689
       Then we apply the 2-dimentional considerations recursively
690
       to all dimensions. This is exactly what the function does.
691
692
     */
693
69
    int code;
694
695
69
    if (ii < 0) {
696
39
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
697
39
            code = load_vector(pfn, a_offset, s_offset);
698
39
            if (code < 0)
699
0
                return code;
700
39
        }
701
39
    } else {
702
30
        int Ii, ib, ie, i;
703
30
        int sa = pfn->params.array_step[ii];
704
30
        int ss = pfn->params.stream_step[ii];
705
706
30
        index_span(pfn, I, T, ii, &Ii, &ib, &ie);
707
30
        if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
708
69
            for (i = ib; i < ie; i++) {
709
39
                code = make_interpolation_tensor(pfn, I, T,
710
39
                                a_offset + i * sa, s_offset + i * ss, ii - 1);
711
39
                if (code < 0)
712
0
                    return code;
713
39
            }
714
30
            if (T[ii] != 0)
715
3
                interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
716
3
                                Ii - ib, ii - 1);
717
30
        }
718
30
    }
719
69
    return 0;
720
69
}
721
722
/* Creates a subarray of samples. */
723
static inline int
724
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
725
                            int *I, double *T,
726
                            int a_offset, int s_offset, int ii)
727
0
{
728
0
    int code;
729
730
0
    if (ii < 0) {
731
0
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
732
0
            code = load_vector(pfn, a_offset, s_offset);
733
0
            if (code < 0)
734
0
                return code;
735
0
        }
736
0
        if (pfn->params.Order == 3) {
737
0
            code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
738
0
            if (code < 0)
739
0
                return code;
740
0
        }
741
0
    } else {
742
0
        int i;
743
0
        int i0 = (int)floor(T0[ii]);
744
0
        int i1 = (int)ceil(T1[ii]);
745
0
        int sa = pfn->params.array_step[ii];
746
0
        int ss = pfn->params.stream_step[ii];
747
748
0
        if (i0 < 0 || i0 >= pfn->params.Size[ii])
749
0
            return_error(gs_error_unregistered); /* Must not happen. */
750
0
        if (i1 < 0 || i1 >= pfn->params.Size[ii])
751
0
            return_error(gs_error_unregistered); /* Must not happen. */
752
0
        I[ii] = i0;
753
0
        T[ii] = (i1 > i0 ? 1 : 0);
754
0
        for (i = i0; i <= i1; i++) {
755
0
            code = make_interpolation_nodes(pfn, T0, T1, I, T,
756
0
                            a_offset + i * sa, s_offset + i * ss, ii - 1);
757
0
            if (code < 0)
758
0
                return code;
759
0
        }
760
0
    }
761
0
    return 0;
762
0
}
763
764
static inline int
765
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
766
69
{
767
69
    int s = pfn->params.array_step[ii], k, l, code;
768
769
69
    if (ii < 0) {
770
195
        for (k = 0; k < pfn->params.n; k++)
771
156
            y[k] = *(pfn->params.pole + offset + k);
772
39
    } else if (T[ii] == 0) {
773
27
        return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
774
27
    } else {
775
3
        double t0 = T[ii], t1 = 1 - t0;
776
3
        double p[4][max_Sd_n];
777
778
15
        for (l = 0; l < 4; l++) {
779
12
            code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
780
12
            if (code < 0)
781
0
                return code;
782
12
        }
783
15
        for (k = 0; k < pfn->params.n; k++)
784
12
            y[k] = p[0][k] * t1 * t1 * t1 +
785
12
                   p[1][k] * t1 * t1 * t0 * 3 +
786
12
                   p[2][k] * t1 * t0 * t0 * 3 +
787
12
           p[3][k] * t0 * t0 * t0;
788
3
    }
789
42
    return 0;
790
69
}
791
792
/* Evaluate a Sampled function. */
793
/* A cubic interpolation with pole cache. */
794
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
795
static int
796
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
797
30
{
798
30
    double T[max_Sd_m], y[max_Sd_n];
799
30
    int I[max_Sd_m], k, code;
800
801
30
    decode_argument(pfn, in, T, I);
802
30
    code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
803
30
    if (code < 0)
804
0
        return code;
805
30
    evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
806
150
    for (k = 0; k < pfn->params.n; k++) {
807
120
        double yk = y[k];
808
809
120
        if (yk < pfn->params.Range[k * 2 + 0])
810
0
            yk = pfn->params.Range[k * 2 + 0];
811
120
        if (yk > pfn->params.Range[k * 2 + 1])
812
0
            yk = pfn->params.Range[k * 2 + 1];
813
120
        out[k] = yk;
814
120
    }
815
30
    return 0;
816
30
}
817
818
/* Evaluate a Sampled function. */
819
static int
820
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
821
573k
{
822
573k
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
823
573k
    int code;
824
825
573k
    if (pfn->params.Order == 3) {
826
30
        if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
827
30
            code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
828
0
        else
829
0
            code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
830
# if POLE_CACHE_DEBUG
831
        {   float y[max_Sd_n];
832
            int k, code1;
833
834
            code1 = fn_Sd_evaluate_general(pfn_common, in, y);
835
            if (code != code1)
836
                return_error(gs_error_unregistered); /* Must not happen. */
837
            for (k = 0; k < pfn->params.n; k++) {
838
                if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
839
                    return_error(gs_error_unregistered); /* Must not happen. */
840
            }
841
        }
842
# endif
843
30
    } else
844
573k
        code = fn_Sd_evaluate_general(pfn_common, in, out);
845
573k
    return code;
846
573k
}
847
848
/* Map a function subdomain to the sample index subdomain. */
849
static inline int
850
get_scaled_range(const gs_function_Sd_t *const pfn,
851
                   const float *lower, const float *upper,
852
                   int i, float *pw0, float *pw1)
853
8.19k
{
854
8.19k
    float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
855
8.19k
    float v0 = lower[i], v1 = upper[i];
856
8.19k
    float e0, e1, w0, w1, w;
857
8.19k
    const float small_noise = (float)1e-6;
858
859
8.19k
    if (v0 < d0 || v0 > d1)
860
1
        return_error(gs_error_rangecheck);
861
8.19k
    if (pfn->params.Encode)
862
3.90k
        e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
863
4.29k
    else
864
4.29k
        e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
865
8.19k
    w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
866
8.19k
    if (w0 < 0)
867
0
        w0 = 0;
868
8.19k
    else if (w0 >= pfn->params.Size[i] - 1)
869
2.20k
        w0 = (float)pfn->params.Size[i] - 1;
870
8.19k
    w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
871
8.19k
    if (w1 < 0)
872
0
        w1 = 0;
873
8.19k
    else if (w1 >= pfn->params.Size[i] - 1)
874
3.10k
        w1 = (float)pfn->params.Size[i] - 1;
875
8.19k
    if (w0 > w1) {
876
1.16k
        w = w0; w0 = w1; w1 = w;
877
1.16k
    }
878
8.19k
    if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
879
28
        w0 = (floor(w0) + 1);
880
8.19k
    if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
881
5.52k
        w1 = floor(w1);
882
8.19k
    if (w0 > w1)
883
10
        w0 = w1;
884
8.19k
    *pw0 = w0;
885
8.19k
    *pw1 = w1;
886
8.19k
    return 0;
887
8.19k
}
888
889
/* Copy a tensor to a differently indexed pole array. */
890
static int
891
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
892
                int ii, double *pole, int p_offset, int pole_step)
893
0
{
894
0
    int i, ei, sa, code;
895
0
    int order = pfn->params.Order;
896
897
0
    if (pole_step <= 0)
898
0
        return_error(gs_error_limitcheck); /* Too small buffer. */
899
0
    ei = (T0[ii] == T1[ii] ? 1 : order + 1);
900
0
    sa = pfn->params.array_step[ii];
901
0
    if (ii == 0) {
902
0
        for (i = 0; i < ei; i++)
903
0
            *(pole + p_offset + i * pole_step) =
904
0
                    *(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
905
0
    } else {
906
0
        for (i = 0; i < ei; i++) {
907
0
            code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
908
0
                            pole, p_offset + i * pole_step, pole_step / 4);
909
0
            if (code < 0)
910
0
                return code;
911
0
        }
912
0
    }
913
0
    return 0;
914
0
}
915
916
static inline void
917
subcurve(double *pole, int pole_step, double t0, double t1)
918
0
{
919
    /* Generated with subcurve.nb using Mathematica 3.0. */
920
0
    double q0 = pole[pole_step * 0];
921
0
    double q1 = pole[pole_step * 1];
922
0
    double q2 = pole[pole_step * 2];
923
0
    double q3 = pole[pole_step * 3];
924
0
    double t01 = t0 - 1, t11 = t1 - 1;
925
0
    double small = 1e-13;
926
927
0
#define Power2(a) (a) * (a)
928
0
#define Power3(a) (a) * (a) * (a)
929
0
    pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
930
0
    pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
931
0
                            3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
932
0
    pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
933
0
                            q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
934
0
    pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
935
0
                            3*q1*Power2(t11)) - q0*Power3(t11);
936
0
#undef Power2
937
0
#undef Power3
938
0
    if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
939
0
        pole[pole_step * 1] = pole[pole_step * 0];
940
0
    if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
941
0
        pole[pole_step * 2] = pole[pole_step * 3];
942
0
}
943
944
static inline void
945
subline(double *pole, int pole_step, double t0, double t1)
946
0
{
947
0
    double q0 = pole[pole_step * 0];
948
0
    double q1 = pole[pole_step * 1];
949
950
0
    pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
951
0
    pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
952
0
}
953
954
static void
955
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
956
                int p_offset, int pole_step, int pole_step_i, int order)
957
0
{
958
0
    if (ii < 0) {
959
0
        if (order == 3)
960
0
            subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
961
0
        else
962
0
            subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
963
0
    } else if (i == ii) {
964
0
        clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
965
0
    } else {
966
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);
967
968
0
        for (j = 0; j < ei; j++)
969
0
            clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
970
0
                            pole_step / 4, pole_step_i, order);
971
0
    }
972
0
}
973
974
static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
975
curve_monotonity(double *pole, int pole_step)
976
0
{
977
0
    double p0 = pole[pole_step * 0];
978
0
    double p1 = pole[pole_step * 1];
979
0
    double p2 = pole[pole_step * 2];
980
0
    double p3 = pole[pole_step * 3];
981
982
0
    if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
983
0
        return 0;
984
0
    if (p0 <= p1 && p1 <= p2 && p2 <= p3)
985
0
        return 1;
986
0
    if (p0 >= p1 && p1 >= p2 && p2 >= p3)
987
0
        return 2;
988
    /* Maybe not monotonic.
989
       Don't want to solve quadratic equations, so return "don't know".
990
       This case should be rare.
991
     */
992
0
    return 3;
993
0
}
994
995
static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
996
line_monotonity(double *pole, int pole_step)
997
0
{
998
0
    double p0 = pole[pole_step * 0];
999
0
    double p1 = pole[pole_step * 1];
1000
1001
0
    if (p1 - p0 > 1e-13)
1002
0
        return 1;
1003
0
    if (p0 - p1 > 1e-13)
1004
0
        return 2;
1005
0
    return 0;
1006
0
}
1007
1008
static int /* 3 bits per guide : 3 - non-monotonic or don't know,
1009
                    2 - decreesing, 0 - constant, 1 - increasing.
1010
                    The number of guides is order+1. */
1011
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
1012
                int p_offset, int pole_step, int pole_step_i, int order)
1013
0
{
1014
0
    if (ii < 0) {
1015
0
        if (order == 3)
1016
0
            return curve_monotonity(pole + p_offset, pole_step_i);
1017
0
        else
1018
0
            return line_monotonity(pole + p_offset, pole_step_i);
1019
0
    } else if (i0 == ii) {
1020
        /* Delay the dimension till the end, and adjust pole_step. */
1021
0
        return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
1022
0
                            pole_step / 4, pole_step, order);
1023
0
    } else {
1024
0
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;
1025
1026
0
        for (j = 0; j < ei; j++) {
1027
0
            mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
1028
0
                            pole_step/ 4, pole_step_i, order);
1029
0
            m |= mm << (j * 3);
1030
0
            if (mm == 3) {
1031
                /* If one guide is not monotonic, the dimension is not monotonic.
1032
                   Can return early. */
1033
0
                break;
1034
0
            }
1035
0
        }
1036
0
        return m;
1037
0
    }
1038
0
}
1039
1040
static inline int
1041
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
1042
                    uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
1043
                    2 - decreesing, 0 - constant, 1 - increasing.
1044
                    The number of guides is order+1. */)
1045
0
{
1046
0
    double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
1047
                 More arguments need a bigger buffer, but the rest of code is same. */
1048
0
    int i, code, ii = pfn->params.m - 1;
1049
0
    double TT0[3], TT1[3];
1050
1051
0
    *mask = 0;
1052
0
    if (ii >= 3) {
1053
         /* Unimplemented. We don't know practical cases,
1054
            because currently it is only called while decomposing a shading.  */
1055
0
        return_error(gs_error_limitcheck);
1056
0
    }
1057
0
    code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
1058
0
    if (code < 0)
1059
0
        return code;
1060
0
    for (i = ii; i >= 0; i--) {
1061
0
        TT0[i] = 0;
1062
0
        if (T0[i] != T1[i]) {
1063
0
            if (T0[i] != 0 || T1[i] != 1)
1064
0
                clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
1065
0
            TT1[i] = 1;
1066
0
        } else
1067
0
            TT1[i] = 0;
1068
0
    }
1069
0
    *mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
1070
0
                        count_of(pole) / 4, 1, pfn->params.Order);
1071
0
    return 0;
1072
0
}
1073
1074
static int /* error code */
1075
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1076
        int *I, double *S0, double *S1, int ii, int i0, int k,
1077
        uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
1078
                      The number of guides is order+1. */)
1079
0
{
1080
0
    if (ii == -1) {
1081
        /* fixme : could cache the cell monotonity against redundant evaluation. */
1082
0
        return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
1083
0
    } else {
1084
0
        int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
1085
0
        int j, code;
1086
0
        int bi = (int)floor(T0[i1]);
1087
0
        int ei = (int)floor(T1[i1]);
1088
0
        uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);
1089
1090
0
        if (floor(T1[i1]) == T1[i1])
1091
0
            ei --;
1092
0
        m = 0;
1093
0
        for (j = bi; j <= ei; j++) {
1094
            /* fixme : A better performance may be obtained with comparing central nodes with side ones. */
1095
0
            I[i1] = j;
1096
0
            S0[i1] = max(T0[i1] - j, 0);
1097
0
            S1[i1] = min(T1[i1] - j, 1);
1098
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
1099
0
            if (code < 0)
1100
0
                return code;
1101
0
            m |= mm;
1102
0
            if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
1103
0
                break;
1104
0
        }
1105
0
        if (ii == 0) {
1106
            /* Detect non-monotonic guides. */
1107
0
            m = m & (m >> 1);
1108
0
        }
1109
0
        *mask = m;
1110
0
        return 0;
1111
0
    }
1112
0
}
1113
1114
static inline int /* error code */
1115
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
1116
         int *I, double *S0, double *S1,
1117
         int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1118
                      0 - monotonic. */)
1119
0
{
1120
0
    uint m, mm = 0;
1121
0
    int i, code;
1122
1123
0
    for (i = 0; i < pfn->params.m; i++) {
1124
0
        if (T0[i] != T1[i]) {
1125
0
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
1126
0
            if (code < 0)
1127
0
                return code;
1128
0
            if (m)
1129
0
                mm |= 1 << i;
1130
0
        }
1131
0
    }
1132
0
    *mask = mm;
1133
0
    return 0;
1134
0
}
1135
1136
static int /* 3 bits per result : 3 - non-monotonic or don't know,
1137
               2 - decreesing, 0 - constant, 1 - increasing,
1138
               <0 - error. */
1139
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
1140
                                const double *V0, const double *V1)
1141
10.0M
{
1142
10.0M
    if (i1 - i0 <= 1) {
1143
5.00M
        int code = 0, i;
1144
1145
11.7M
        for (i = 0; i < pfn->params.n; i++) {
1146
6.69M
            if (V0[i] < V1[i])
1147
454k
                code |= 1 << (i * 3);
1148
6.24M
            else if (V0[i] > V1[i])
1149
385k
                code |= 2 << (i * 3);
1150
6.69M
        }
1151
5.00M
        return code;
1152
5.00M
    } else {
1153
5.00M
        double VV[MAX_FAST_COMPS];
1154
5.00M
        int ii = (i0 + i1) / 2, code, cod1;
1155
1156
5.00M
        code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
1157
5.00M
        if (code < 0)
1158
0
            return code;
1159
5.00M
        if (code & (code >> 1))
1160
0
            return code; /* Not monotonic by some component of the result. */
1161
5.00M
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
1162
5.00M
        if (code < 0)
1163
0
            return code;
1164
5.00M
        cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
1165
5.00M
        if (cod1 < 0)
1166
0
            return cod1;
1167
5.00M
        return code | cod1;
1168
5.00M
    }
1169
10.0M
}
1170
1171
static int
1172
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
1173
                            uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
1174
8.19k
{
1175
8.19k
    int i0 = (int)floor(T0);
1176
8.19k
    int i1 = (int)ceil(T1), code;
1177
8.19k
    double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];
1178
1179
8.19k
    if (i1 - i0 > 1) {
1180
4.14k
        code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
1181
4.14k
        if (code < 0)
1182
0
            return code;
1183
4.14k
        code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
1184
4.14k
        if (code < 0)
1185
0
            return code;
1186
4.14k
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
1187
4.14k
        if (code < 0)
1188
0
            return code;
1189
4.14k
        if (code & (code >> 1)) {
1190
1.80k
            *mask = 1;
1191
1.80k
            return 0;
1192
1.80k
        }
1193
4.14k
    }
1194
6.39k
    *mask = 0;
1195
6.39k
    return 1;
1196
8.19k
}
1197
1198
0
#define DEBUG_Sd_1arg 0
1199
1200
/* Test whether a Sampled function is monotonic. */
1201
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
1202
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
1203
                   const float *lower, const float *upper,
1204
                   uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
1205
                      0 - monotonic. */)
1206
8.19k
{
1207
8.19k
    int i, code, ii = pfn->params.m - 1;
1208
8.19k
    int I[4];
1209
8.19k
    double T0[count_of(I)], T1[count_of(I)];
1210
8.19k
    double S0[count_of(I)], S1[count_of(I)];
1211
8.19k
    uint m, mm, m1;
1212
#   if DEBUG_Sd_1arg
1213
    int code1, mask1;
1214
#   endif
1215
1216
8.19k
    if (ii >= count_of(T0)) {
1217
         /* Unimplemented. We don't know practical cases,
1218
            because currently it is only called while decomposing a shading.  */
1219
0
        return_error(gs_error_limitcheck);
1220
0
    }
1221
16.3k
    for (i = 0; i <= ii; i++) {
1222
8.19k
        float w0, w1;
1223
1224
8.19k
        code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
1225
8.19k
        if (code < 0)
1226
1
            return code;
1227
8.19k
        T0[i] = w0;
1228
8.19k
        T1[i] = w1;
1229
8.19k
    }
1230
8.19k
    if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
1231
8.19k
        code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
1232
8.19k
# if !DEBUG_Sd_1arg
1233
8.19k
            return code;
1234
# else
1235
            mask1 = *mask;
1236
            code1 = code;
1237
# endif
1238
8.19k
    }
1239
0
    m1 = (1 << pfn->params.m )- 1;
1240
0
    code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
1241
0
    if (code < 0)
1242
0
        return code;
1243
0
    mm = 0;
1244
0
    for (i = 0; i < pfn->params.n; i++) {
1245
0
        code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
1246
0
        if (code < 0)
1247
0
            return code;
1248
0
        mm |= m;
1249
0
        if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
1250
0
            break;
1251
0
    }
1252
#   if DEBUG_Sd_1arg
1253
        if (mask1 != mm)
1254
            return_error(gs_error_unregistered);
1255
        if (code1 != !mm)
1256
            return_error(gs_error_unregistered);
1257
#   endif
1258
0
    *mask = mm;
1259
0
    return !mm;
1260
0
}
1261
1262
/* Test whether a Sampled function is monotonic. */
1263
/* 1 = monotonic, 0 = don't know, <0 = error. */
1264
static int
1265
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
1266
                   const float *lower, const float *upper, uint *mask)
1267
8.19k
{
1268
8.19k
    const gs_function_Sd_t *const pfn =
1269
8.19k
        (const gs_function_Sd_t *)pfn_common;
1270
1271
8.19k
    return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
1272
8.19k
}
1273
1274
/* Return Sampled function information. */
1275
static void
1276
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
1277
16.8k
{
1278
16.8k
    const gs_function_Sd_t *const pfn =
1279
16.8k
        (const gs_function_Sd_t *)pfn_common;
1280
16.8k
    long size;
1281
16.8k
    int i;
1282
1283
16.8k
    gs_function_get_info_default(pfn_common, pfi);
1284
16.8k
    pfi->DataSource = &pfn->params.DataSource;
1285
34.1k
    for (i = 0, size = 1; i < pfn->params.m; ++i)
1286
17.2k
        size *= pfn->params.Size[i];
1287
16.8k
    pfi->data_size =
1288
16.8k
        (size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
1289
16.8k
}
1290
1291
/* Write Sampled function parameters on a parameter list. */
1292
static int
1293
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
1294
2.68k
{
1295
2.68k
    const gs_function_Sd_t *const pfn =
1296
2.68k
        (const gs_function_Sd_t *)pfn_common;
1297
2.68k
    int ecode = fn_common_get_params(pfn_common, plist);
1298
2.68k
    int code;
1299
1300
2.68k
    if (pfn->params.Order != 1) {
1301
20
        if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
1302
0
            ecode = code;
1303
20
    }
1304
2.68k
    if ((code = param_write_int(plist, "BitsPerSample",
1305
2.68k
                                &pfn->params.BitsPerSample)) < 0)
1306
0
        ecode = code;
1307
2.68k
    if (pfn->params.Encode) {
1308
58
        if ((code = param_write_float_values(plist, "Encode",
1309
58
                                             pfn->params.Encode,
1310
58
                                             2 * pfn->params.m, false)) < 0)
1311
0
            ecode = code;
1312
58
    }
1313
2.68k
    if (pfn->params.Decode) {
1314
1.16k
        if ((code = param_write_float_values(plist, "Decode",
1315
1.16k
                                             pfn->params.Decode,
1316
1.16k
                                             2 * pfn->params.n, false)) < 0)
1317
0
            ecode = code;
1318
1.16k
    }
1319
2.68k
    if (pfn->params.Size) {
1320
2.68k
        if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
1321
2.68k
                                           pfn->params.m, false)) < 0)
1322
0
            ecode = code;
1323
2.68k
    }
1324
2.68k
    return ecode;
1325
2.68k
}
1326
1327
/* Make a scaled copy of a Sampled function. */
1328
static int
1329
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
1330
                  const gs_range_t *pranges, gs_memory_t *mem)
1331
0
{
1332
0
    gs_function_Sd_t *psfn =
1333
0
        gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1334
0
                        "fn_Sd_make_scaled");
1335
0
    int code;
1336
1337
0
    if (psfn == 0)
1338
0
        return_error(gs_error_VMerror);
1339
0
    psfn->params = pfn->params;
1340
0
    psfn->params.Encode = 0;    /* in case of failure */
1341
0
    psfn->params.Decode = 0;
1342
0
    psfn->params.Size =
1343
0
        fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
1344
0
    if ((code = (psfn->params.Size == 0 ?
1345
0
                 gs_note_error(gs_error_VMerror) : 0)) < 0 ||
1346
0
        (code = fn_common_scale((gs_function_t *)psfn,
1347
0
                                (const gs_function_t *)pfn,
1348
0
                                pranges, mem)) < 0 ||
1349
0
        (code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
1350
0
                               pfn->params.m, NULL, mem)) < 0 ||
1351
0
        (code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
1352
0
                               pfn->params.n, pranges, mem)) < 0) {
1353
0
        gs_function_free((gs_function_t *)psfn, true, mem);
1354
0
    } else
1355
0
        *ppsfn = psfn;
1356
0
    return code;
1357
0
}
1358
1359
/* Free the parameters of a Sampled function. */
1360
void
1361
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
1362
4.07k
{
1363
4.07k
    gs_free_const_object(mem, params->Size, "Size");
1364
4.07k
    params->Size = NULL;
1365
4.07k
    gs_free_const_object(mem, params->Decode, "Decode");
1366
4.07k
    params->Decode = NULL;
1367
4.07k
    gs_free_const_object(mem, params->Encode, "Encode");
1368
4.07k
    params->Encode = NULL;
1369
4.07k
    fn_common_free_params((gs_function_params_t *) params, mem);
1370
4.07k
    if (params->DataSource.type == data_source_type_stream && params->DataSource.data.strm != NULL) {
1371
3.91k
        s_close_filters(&params->DataSource.data.strm, params->DataSource.data.strm->strm);
1372
3.91k
        params->DataSource.data.strm = NULL;
1373
3.91k
    }
1374
4.07k
    gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
1375
4.07k
    params->pole = NULL;
1376
4.07k
    gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
1377
4.07k
    params->array_step = NULL;
1378
4.07k
    gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
1379
4.07k
    params->stream_step = NULL;
1380
4.07k
}
1381
1382
/* aA helper for gs_function_Sd_serialize. */
1383
static int serialize_array(const float *a, int half_size, stream *s)
1384
28.3k
{
1385
28.3k
    uint n;
1386
28.3k
    const float dummy[2] = {0, 0};
1387
28.3k
    int i, code;
1388
1389
28.3k
    if (a != NULL)
1390
13.0k
        return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
1391
53.7k
    for (i = 0; i < half_size; i++) {
1392
38.4k
        code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
1393
38.4k
        if (code < 0)
1394
0
            return code;
1395
38.4k
    }
1396
15.3k
    return 0;
1397
15.3k
}
1398
1399
/* Serialize. */
1400
static int
1401
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
1402
14.1k
{
1403
14.1k
    uint n;
1404
14.1k
    const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
1405
14.1k
    gs_function_info_t info;
1406
14.1k
    int code = fn_common_serialize(pfn, s);
1407
14.1k
    ulong pos;
1408
14.1k
    uint count;
1409
14.1k
    byte buf[100];
1410
14.1k
    const byte *ptr;
1411
1412
14.1k
    if (code < 0)
1413
0
        return code;
1414
14.1k
    code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
1415
14.1k
    if (code < 0)
1416
0
        return code;
1417
14.1k
    code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
1418
14.1k
    if (code < 0)
1419
0
        return code;
1420
14.1k
    code = serialize_array(p->Encode, p->m, s);
1421
14.1k
    if (code < 0)
1422
0
        return code;
1423
14.1k
    code = serialize_array(p->Decode, p->n, s);
1424
14.1k
    if (code < 0)
1425
0
        return code;
1426
14.1k
    gs_function_get_info(pfn, &info);
1427
14.1k
    code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
1428
14.1k
    if (code < 0)
1429
0
        return code;
1430
160k
    for (pos = 0; pos < info.data_size; pos += count) {
1431
146k
        count = min(sizeof(buf), info.data_size - pos);
1432
146k
        data_source_access_only(info.DataSource, pos, count, buf, &ptr);
1433
146k
        code = sputs(s, ptr, count, &n);
1434
146k
        if (code < 0)
1435
0
            return code;
1436
146k
    }
1437
14.1k
    return 0;
1438
14.1k
}
1439
1440
/* Allocate and initialize a Sampled function. */
1441
int
1442
gs_function_Sd_init(gs_function_t ** ppfn,
1443
                  const gs_function_Sd_params_t * params, gs_memory_t * mem)
1444
6.62k
{
1445
6.62k
    static const gs_function_head_t function_Sd_head = {
1446
6.62k
        function_type_Sampled,
1447
6.62k
        {
1448
6.62k
            (fn_evaluate_proc_t) fn_Sd_evaluate,
1449
6.62k
            (fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
1450
6.62k
            (fn_get_info_proc_t) fn_Sd_get_info,
1451
6.62k
            (fn_get_params_proc_t) fn_Sd_get_params,
1452
6.62k
            (fn_make_scaled_proc_t) fn_Sd_make_scaled,
1453
6.62k
            (fn_free_params_proc_t) gs_function_Sd_free_params,
1454
6.62k
            fn_common_free,
1455
6.62k
            (fn_serialize_proc_t) gs_function_Sd_serialize,
1456
6.62k
        }
1457
6.62k
    };
1458
6.62k
    int code;
1459
6.62k
    int i;
1460
1461
6.62k
    *ppfn = 0;      /* in case of error */
1462
6.62k
    code = fn_check_mnDR((const gs_function_params_t *)params,
1463
6.62k
                         params->m, params->n);
1464
6.62k
    if (code < 0)
1465
3
        return code;
1466
6.62k
    if (params->m > max_Sd_m)
1467
0
        return_error(gs_error_limitcheck);
1468
6.62k
    switch (params->Order) {
1469
318
        case 0:   /* use default */
1470
6.55k
        case 1:
1471
6.62k
        case 3:
1472
6.62k
            break;
1473
0
        default:
1474
0
            return_error(gs_error_rangecheck);
1475
6.62k
    }
1476
6.62k
    switch (params->BitsPerSample) {
1477
0
        case 1:
1478
0
        case 2:
1479
0
        case 4:
1480
6.17k
        case 8:
1481
6.17k
        case 12:
1482
6.56k
        case 16:
1483
6.56k
        case 24:
1484
6.56k
        case 32:
1485
6.56k
            break;
1486
54
        default:
1487
54
            return_error(gs_error_rangecheck);
1488
6.62k
    }
1489
13.4k
    for (i = 0; i < params->m; ++i)
1490
6.93k
        if (params->Size[i] <= 0)
1491
0
            return_error(gs_error_rangecheck);
1492
6.56k
    {
1493
6.56k
        gs_function_Sd_t *pfn =
1494
6.56k
            gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
1495
6.56k
                            "gs_function_Sd_init");
1496
6.56k
        int bps, sa, ss, i, order, was;
1497
1498
6.56k
        if (pfn == 0)
1499
0
            return_error(gs_error_VMerror);
1500
6.56k
        pfn->params = *params;
1501
6.56k
        if (params->Order == 0)
1502
318
            pfn->params.Order = 1; /* default */
1503
6.56k
        pfn->params.pole = NULL;
1504
6.56k
        pfn->params.array_step = NULL;
1505
6.56k
        pfn->params.stream_step = NULL;
1506
6.56k
        pfn->head = function_Sd_head;
1507
6.56k
        pfn->params.array_size = 0;
1508
6.56k
        if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
1509
            /* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
1510
6.16k
        } else {
1511
406
            pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
1512
406
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1513
406
            pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
1514
406
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
1515
406
            if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
1516
0
                return_error(gs_error_VMerror);
1517
406
            bps = pfn->params.BitsPerSample;
1518
406
            sa = pfn->params.n;
1519
406
            ss = pfn->params.n * bps;
1520
406
            order = pfn->params.Order;
1521
1.17k
            for (i = 0; i < pfn->params.m; i++) {
1522
772
                pfn->params.array_step[i] = sa * order;
1523
772
                was = sa;
1524
772
                sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
1525
                /* If the calculation of sa went backwards then we overflowed! */
1526
772
                if (was > sa)
1527
0
                    return_error(gs_error_VMerror);
1528
772
                pfn->params.stream_step[i] = ss;
1529
772
                ss = pfn->params.Size[i] * ss;
1530
772
            }
1531
406
            pfn->params.pole = (double *)gs_alloc_byte_array(mem,
1532
406
                                    sa, sizeof(double), "gs_function_Sd_init");
1533
406
            if (pfn->params.pole == NULL)
1534
0
                return_error(gs_error_VMerror);
1535
562k
            for (i = 0; i < sa; i++)
1536
562k
                pfn->params.pole[i] = double_stub;
1537
406
            pfn->params.array_size = sa;
1538
406
        }
1539
6.56k
        *ppfn = (gs_function_t *) pfn;
1540
6.56k
    }
1541
0
    return 0;
1542
6.56k
}