396 | 9.56M | } Unexecuted instantiation: gx_fill_trapezoid_cf_fd Unexecuted instantiation: gx_fill_trapezoid_cf_nd gdevddrw.c:gx_fill_trapezoid_as_fd Line | Count | Source | 137 | 71.6k | { | 138 | 71.6k | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 71.6k | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 71.6k | if (ymin >= ymax) | 142 | 5.15k | return 0; /* no scan lines to sample */ | 143 | 66.5k | { | 144 | 66.5k | int iy = fixed2int_var(ymin); | 145 | 66.5k | const int iy1 = fixed2int_var(ymax); | 146 | 66.5k | trap_line l, r; | 147 | 66.5k | register int rxl, rxr; | 148 | 66.5k | #if !LINEAR_COLOR | 149 | 66.5k | int ry; | 150 | 66.5k | #endif | 151 | 66.5k | const fixed | 152 | 66.5k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 66.5k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 66.5k | const fixed /* partial pixel offset to first line to sample */ | 155 | 66.5k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 66.5k | fixed fxl; | 157 | 66.5k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 66.5k | gx_color_index cindex = pdevc->colors.pure; | 178 | 66.5k | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 66.5k | dev_proc(dev, fill_rectangle); | 180 | 66.5k | # endif | 181 | | | 182 | 66.5k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 66.5k | l.h = left->end.y - left->start.y; | 185 | 66.5k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 66.5k | r.h = right->end.y - right->start.y; | 188 | 66.5k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 66.5k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 66.5k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 66.5k | #if !LINEAR_COLOR | 193 | 66.5k | ry = iy; | 194 | 66.5k | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 66.5k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 66.5k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 66.5k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 66.5k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 66.5k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 66.5k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 66.5k | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 66.5k | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 66.5k | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 66.5k | #define YMULT_QUO(ys, tl)\ | 228 | 66.5k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 66.5k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 66.5k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 66.5k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 66.5k | #endif | 264 | 66.5k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 39.5k | l.di = 0, l.df = 0; | 267 | 39.5k | fxl = 0; | 268 | 39.5k | } else { | 269 | 26.9k | compute_dx(&l, dxl, ysl); | 270 | 26.9k | fxl = YMULT_QUO(ysl, l); | 271 | 26.9k | l.x += fxl; | 272 | 26.9k | } | 273 | 66.5k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 40.0k | # if !LINEAR_COLOR | 277 | 40.0k | if (l.di == 0 && l.df == 0) { | 278 | 35.2k | rxl = fixed2int_var(l.x); | 279 | 35.2k | rxr = fixed2int_var(r.x); | 280 | 35.2k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 35.2k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 35.2k | goto xit; | 283 | 35.2k | } | 284 | 4.85k | # endif | 285 | 4.85k | r.di = 0, r.df = 0; | 286 | 4.85k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 26.4k | else if (dxr == dxl && fxl != 0) { | 292 | 6.30k | if (l.di == 0) | 293 | 3.18k | r.di = 0, r.df = l.df; | 294 | 3.12k | else | 295 | 3.12k | compute_dx(&r, dxr, ysr); | 296 | 6.30k | if (ysr == ysl && r.h == l.h) | 297 | 6.29k | r.x += fxl; | 298 | 8 | else | 299 | 8 | r.x += YMULT_QUO(ysr, r); | 300 | 20.1k | } else { | 301 | 20.1k | compute_dx(&r, dxr, ysr); | 302 | 20.1k | r.x += YMULT_QUO(ysr, r); | 303 | 20.1k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 31.2k | compute_ldx(&l, ysl); | 306 | 31.2k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 31.2k | l.x += fixed_epsilon; | 310 | 31.2k | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 31.2k | #define rational_floor(tl)\ | 338 | 31.2k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 31.2k | #define STEP_LINE(ix, tl)\ | 340 | 31.2k | tl.x += tl.ldi;\ | 341 | 31.2k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 31.2k | ix = rational_floor(tl) | 343 | | | 344 | 31.2k | rxl = rational_floor(l); | 345 | 31.2k | rxr = rational_floor(r); | 346 | 31.2k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 3.41M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 3.38M | register int ixl, ixr; | 365 | | | 366 | 3.38M | STEP_LINE(ixl, l); | 367 | 3.38M | STEP_LINE(ixr, r); | 368 | 3.38M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 3.38M | if (ixl != rxl || ixr != rxr) { | 370 | 223k | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 223k | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 223k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 223k | if (code < 0) | 374 | 0 | goto xit; | 375 | 223k | rxl = ixl, rxr = ixr, ry = iy; | 376 | 223k | } | 377 | 3.38M | # endif | 378 | 3.38M | } | 379 | 31.2k | # if !LINEAR_COLOR | 380 | 31.2k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 31.2k | #undef STEP_LINE | 385 | 31.2k | #undef SET_MINIMAL_WIDTH | 386 | 31.2k | #undef CONNECT_RECTANGLES | 387 | 31.2k | #undef FILL_TRAP_RECT | 388 | 31.2k | #undef FILL_TRAP_RECT_DIRECT | 389 | 31.2k | #undef FILL_TRAP_RECT_INRECT | 390 | 31.2k | #undef YMULT_QUO | 391 | 66.5k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 66.5k | return_if_interrupt(dev->memory); | 394 | 66.5k | return code; | 395 | 66.5k | } | 396 | 66.5k | } |
Unexecuted instantiation: gdevddrw.c:gx_fill_trapezoid_as_nd gdevddrw.c:gx_fill_trapezoid_ns_fd Line | Count | Source | 137 | 1.55M | { | 138 | 1.55M | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 1.55M | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 1.55M | if (ymin >= ymax) | 142 | 150k | return 0; /* no scan lines to sample */ | 143 | 1.40M | { | 144 | 1.40M | int iy = fixed2int_var(ymin); | 145 | 1.40M | const int iy1 = fixed2int_var(ymax); | 146 | 1.40M | trap_line l, r; | 147 | 1.40M | register int rxl, rxr; | 148 | 1.40M | #if !LINEAR_COLOR | 149 | 1.40M | int ry; | 150 | 1.40M | #endif | 151 | 1.40M | const fixed | 152 | 1.40M | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 1.40M | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 1.40M | const fixed /* partial pixel offset to first line to sample */ | 155 | 1.40M | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 1.40M | fixed fxl; | 157 | 1.40M | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 1.40M | gx_color_index cindex = pdevc->colors.pure; | 178 | 1.40M | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 1.40M | dev_proc(dev, fill_rectangle); | 180 | 1.40M | # endif | 181 | | | 182 | 1.40M | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 1.40M | l.h = left->end.y - left->start.y; | 185 | 1.40M | if (l.h == 0) | 186 | 0 | return 0; | 187 | 1.40M | r.h = right->end.y - right->start.y; | 188 | 1.40M | if (r.h == 0) | 189 | 0 | return 0; | 190 | 1.40M | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 1.40M | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 1.40M | #if !LINEAR_COLOR | 193 | 1.40M | ry = iy; | 194 | 1.40M | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 1.40M | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 1.40M | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 1.40M | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 1.40M | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 1.40M | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 1.40M | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 1.40M | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 1.40M | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 1.40M | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 1.40M | #define YMULT_QUO(ys, tl)\ | 228 | 1.40M | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 1.40M | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 1.40M | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 1.40M | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 1.40M | #endif | 264 | 1.40M | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 969k | l.di = 0, l.df = 0; | 267 | 969k | fxl = 0; | 268 | 969k | } else { | 269 | 436k | compute_dx(&l, dxl, ysl); | 270 | 436k | fxl = YMULT_QUO(ysl, l); | 271 | 436k | l.x += fxl; | 272 | 436k | } | 273 | 1.40M | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 967k | # if !LINEAR_COLOR | 277 | 967k | if (l.di == 0 && l.df == 0) { | 278 | 915k | rxl = fixed2int_var(l.x); | 279 | 915k | rxr = fixed2int_var(r.x); | 280 | 915k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 915k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 915k | goto xit; | 283 | 915k | } | 284 | 52.0k | # endif | 285 | 52.0k | r.di = 0, r.df = 0; | 286 | 52.0k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 438k | else if (dxr == dxl && fxl != 0) { | 292 | 212k | if (l.di == 0) | 293 | 106k | r.di = 0, r.df = l.df; | 294 | 106k | else | 295 | 106k | compute_dx(&r, dxr, ysr); | 296 | 212k | if (ysr == ysl && r.h == l.h) | 297 | 139k | r.x += fxl; | 298 | 73.1k | else | 299 | 73.1k | r.x += YMULT_QUO(ysr, r); | 300 | 226k | } else { | 301 | 226k | compute_dx(&r, dxr, ysr); | 302 | 226k | r.x += YMULT_QUO(ysr, r); | 303 | 226k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 490k | compute_ldx(&l, ysl); | 306 | 490k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 490k | l.x += fixed_epsilon; | 310 | 490k | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 490k | #define rational_floor(tl)\ | 338 | 490k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 490k | #define STEP_LINE(ix, tl)\ | 340 | 490k | tl.x += tl.ldi;\ | 341 | 490k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 490k | ix = rational_floor(tl) | 343 | | | 344 | 490k | rxl = rational_floor(l); | 345 | 490k | rxr = rational_floor(r); | 346 | 490k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 4.31M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 3.82M | register int ixl, ixr; | 365 | | | 366 | 3.82M | STEP_LINE(ixl, l); | 367 | 3.82M | STEP_LINE(ixr, r); | 368 | 3.82M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 3.82M | if (ixl != rxl || ixr != rxr) { | 370 | 2.54M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 2.54M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 2.54M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 2.54M | if (code < 0) | 374 | 0 | goto xit; | 375 | 2.54M | rxl = ixl, rxr = ixr, ry = iy; | 376 | 2.54M | } | 377 | 3.82M | # endif | 378 | 3.82M | } | 379 | 490k | # if !LINEAR_COLOR | 380 | 490k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 490k | #undef STEP_LINE | 385 | 490k | #undef SET_MINIMAL_WIDTH | 386 | 490k | #undef CONNECT_RECTANGLES | 387 | 490k | #undef FILL_TRAP_RECT | 388 | 490k | #undef FILL_TRAP_RECT_DIRECT | 389 | 490k | #undef FILL_TRAP_RECT_INRECT | 390 | 490k | #undef YMULT_QUO | 391 | 1.40M | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 1.40M | return_if_interrupt(dev->memory); | 394 | 1.40M | return code; | 395 | 1.40M | } | 396 | 1.40M | } |
gdevddrw.c:gx_fill_trapezoid_ns_nd Line | Count | Source | 137 | 123k | { | 138 | 123k | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 123k | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 123k | if (ymin >= ymax) | 142 | 1 | return 0; /* no scan lines to sample */ | 143 | 123k | { | 144 | 123k | int iy = fixed2int_var(ymin); | 145 | 123k | const int iy1 = fixed2int_var(ymax); | 146 | 123k | trap_line l, r; | 147 | 123k | register int rxl, rxr; | 148 | 123k | #if !LINEAR_COLOR | 149 | 123k | int ry; | 150 | 123k | #endif | 151 | 123k | const fixed | 152 | 123k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 123k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 123k | const fixed /* partial pixel offset to first line to sample */ | 155 | 123k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 123k | fixed fxl; | 157 | 123k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | | # if LINEAR_COLOR | 165 | | int num_components = dev->color_info.num_components; | 166 | | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | | trap_gradient lg, rg, xg; | 176 | | # else | 177 | 123k | gx_color_index cindex = pdevc->colors.pure; | 178 | 123k | dev_proc_fill_rectangle((*fill_rect)) = | 179 | 123k | dev_proc(dev, fill_rectangle); | 180 | 123k | # endif | 181 | | | 182 | 123k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 123k | l.h = left->end.y - left->start.y; | 185 | 123k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 123k | r.h = right->end.y - right->start.y; | 188 | 123k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 123k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 123k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | 123k | #if !LINEAR_COLOR | 193 | 123k | ry = iy; | 194 | 123k | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 123k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 123k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 123k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 123k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 123k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 123k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | | #if LINEAR_COLOR | 210 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | 123k | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | 123k | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | 123k | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 123k | #define YMULT_QUO(ys, tl)\ | 228 | 123k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 123k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 123k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 123k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 123k | #endif | 264 | 123k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 57.3k | l.di = 0, l.df = 0; | 267 | 57.3k | fxl = 0; | 268 | 65.6k | } else { | 269 | 65.6k | compute_dx(&l, dxl, ysl); | 270 | 65.6k | fxl = YMULT_QUO(ysl, l); | 271 | 65.6k | l.x += fxl; | 272 | 65.6k | } | 273 | 123k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | 50.4k | # if !LINEAR_COLOR | 277 | 50.4k | if (l.di == 0 && l.df == 0) { | 278 | 39.6k | rxl = fixed2int_var(l.x); | 279 | 39.6k | rxr = fixed2int_var(r.x); | 280 | 39.6k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | 39.6k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | 39.6k | goto xit; | 283 | 39.6k | } | 284 | 10.8k | # endif | 285 | 10.8k | r.di = 0, r.df = 0; | 286 | 10.8k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 72.5k | else if (dxr == dxl && fxl != 0) { | 292 | 8 | if (l.di == 0) | 293 | 0 | r.di = 0, r.df = l.df; | 294 | 8 | else | 295 | 8 | compute_dx(&r, dxr, ysr); | 296 | 8 | if (ysr == ysl && r.h == l.h) | 297 | 0 | r.x += fxl; | 298 | 8 | else | 299 | 8 | r.x += YMULT_QUO(ysr, r); | 300 | 72.5k | } else { | 301 | 72.5k | compute_dx(&r, dxr, ysr); | 302 | 72.5k | r.x += YMULT_QUO(ysr, r); | 303 | 72.5k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 83.3k | compute_ldx(&l, ysl); | 306 | 83.3k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 83.3k | l.x += fixed_epsilon; | 310 | 83.3k | r.x += fixed_epsilon; | 311 | | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | | lg.c = lgc; | 320 | | lg.f = lgf; | 321 | | lg.num = lgnum; | 322 | | rg.c = rgc; | 323 | | rg.f = rgf; | 324 | | rg.num = rgnum; | 325 | | xg.c = xgc; | 326 | | xg.f = xgf; | 327 | | xg.num = xgnum; | 328 | | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | | if (code < 0) | 330 | | return code; | 331 | | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | | if (code < 0) | 333 | | return code; | 334 | | | 335 | | # endif | 336 | | | 337 | 83.3k | #define rational_floor(tl)\ | 338 | 83.3k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 83.3k | #define STEP_LINE(ix, tl)\ | 340 | 83.3k | tl.x += tl.ldi;\ | 341 | 83.3k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 83.3k | ix = rational_floor(tl) | 343 | | | 344 | 83.3k | rxl = rational_floor(l); | 345 | 83.3k | rxr = rational_floor(r); | 346 | 83.3k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 2.92M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | | # if LINEAR_COLOR | 349 | | if (rxl != rxr) { | 350 | | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | | if (code < 0) | 352 | | goto xit; | 353 | | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | | if (code < 0) | 355 | | goto xit; | 356 | | } | 357 | | if (++iy == iy1) | 358 | | break; | 359 | | STEP_LINE(rxl, l); | 360 | | STEP_LINE(rxr, r); | 361 | | step_gradient(&lg, num_components); | 362 | | step_gradient(&rg, num_components); | 363 | | # else | 364 | 2.84M | register int ixl, ixr; | 365 | | | 366 | 2.84M | STEP_LINE(ixl, l); | 367 | 2.84M | STEP_LINE(ixr, r); | 368 | 2.84M | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | 2.84M | if (ixl != rxl || ixr != rxr) { | 370 | 1.83M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | 1.83M | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | 1.83M | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | 1.83M | if (code < 0) | 374 | 0 | goto xit; | 375 | 1.83M | rxl = ixl, rxr = ixr, ry = iy; | 376 | 1.83M | } | 377 | 2.84M | # endif | 378 | 2.84M | } | 379 | 83.3k | # if !LINEAR_COLOR | 380 | 83.3k | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | | code = 0; | 383 | | # endif | 384 | 83.3k | #undef STEP_LINE | 385 | 83.3k | #undef SET_MINIMAL_WIDTH | 386 | 83.3k | #undef CONNECT_RECTANGLES | 387 | 83.3k | #undef FILL_TRAP_RECT | 388 | 83.3k | #undef FILL_TRAP_RECT_DIRECT | 389 | 83.3k | #undef FILL_TRAP_RECT_INRECT | 390 | 83.3k | #undef YMULT_QUO | 391 | 123k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 123k | return_if_interrupt(dev->memory); | 394 | 123k | return code; | 395 | 123k | } | 396 | 123k | } |
gdevddrw.c:gx_fill_trapezoid_as_lc Line | Count | Source | 137 | 756k | { | 138 | 756k | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 756k | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 756k | if (ymin >= ymax) | 142 | 211k | return 0; /* no scan lines to sample */ | 143 | 544k | { | 144 | 544k | int iy = fixed2int_var(ymin); | 145 | 544k | const int iy1 = fixed2int_var(ymax); | 146 | 544k | trap_line l, r; | 147 | 544k | register int rxl, rxr; | 148 | | #if !LINEAR_COLOR | 149 | | int ry; | 150 | | #endif | 151 | 544k | const fixed | 152 | 544k | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 544k | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 544k | const fixed /* partial pixel offset to first line to sample */ | 155 | 544k | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 544k | fixed fxl; | 157 | 544k | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | 544k | # if LINEAR_COLOR | 165 | 544k | int num_components = dev->color_info.num_components; | 166 | 544k | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | 544k | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | 544k | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | 544k | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | 544k | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | 544k | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | 544k | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | 544k | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | 544k | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | 544k | trap_gradient lg, rg, xg; | 176 | | # else | 177 | | gx_color_index cindex = pdevc->colors.pure; | 178 | | dev_proc_fill_rectangle((*fill_rect)) = | 179 | | dev_proc(dev, fill_rectangle); | 180 | | # endif | 181 | | | 182 | 544k | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 544k | l.h = left->end.y - left->start.y; | 185 | 544k | if (l.h == 0) | 186 | 0 | return 0; | 187 | 544k | r.h = right->end.y - right->start.y; | 188 | 544k | if (r.h == 0) | 189 | 0 | return 0; | 190 | 544k | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 544k | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | | #if !LINEAR_COLOR | 193 | | ry = iy; | 194 | | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 544k | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 544k | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 544k | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 544k | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 544k | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 544k | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | 544k | #if LINEAR_COLOR | 210 | 544k | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | 544k | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 544k | #define YMULT_QUO(ys, tl)\ | 228 | 544k | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 544k | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 544k | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 544k | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 544k | #endif | 264 | 544k | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 238k | l.di = 0, l.df = 0; | 267 | 238k | fxl = 0; | 268 | 306k | } else { | 269 | 306k | compute_dx(&l, dxl, ysl); | 270 | 306k | fxl = YMULT_QUO(ysl, l); | 271 | 306k | l.x += fxl; | 272 | 306k | } | 273 | 544k | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | | # if !LINEAR_COLOR | 277 | | if (l.di == 0 && l.df == 0) { | 278 | | rxl = fixed2int_var(l.x); | 279 | | rxr = fixed2int_var(r.x); | 280 | | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | | goto xit; | 283 | | } | 284 | | # endif | 285 | 237k | r.di = 0, r.df = 0; | 286 | 237k | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 306k | else if (dxr == dxl && fxl != 0) { | 292 | 221k | if (l.di == 0) | 293 | 38.6k | r.di = 0, r.df = l.df; | 294 | 182k | else | 295 | 182k | compute_dx(&r, dxr, ysr); | 296 | 221k | if (ysr == ysl && r.h == l.h) | 297 | 221k | r.x += fxl; | 298 | 6 | else | 299 | 6 | r.x += YMULT_QUO(ysr, r); | 300 | 221k | } else { | 301 | 85.1k | compute_dx(&r, dxr, ysr); | 302 | 85.1k | r.x += YMULT_QUO(ysr, r); | 303 | 85.1k | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 544k | compute_ldx(&l, ysl); | 306 | 544k | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 544k | l.x += fixed_epsilon; | 310 | 544k | r.x += fixed_epsilon; | 311 | 544k | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | 544k | lg.c = lgc; | 320 | 544k | lg.f = lgf; | 321 | 544k | lg.num = lgnum; | 322 | 544k | rg.c = rgc; | 323 | 544k | rg.f = rgf; | 324 | 544k | rg.num = rgnum; | 325 | 544k | xg.c = xgc; | 326 | 544k | xg.f = xgf; | 327 | 544k | xg.num = xgnum; | 328 | 544k | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | 544k | if (code < 0) | 330 | 0 | return code; | 331 | 544k | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | 544k | if (code < 0) | 333 | 0 | return code; | 334 | | | 335 | 544k | # endif | 336 | | | 337 | 544k | #define rational_floor(tl)\ | 338 | 544k | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 544k | #define STEP_LINE(ix, tl)\ | 340 | 544k | tl.x += tl.ldi;\ | 341 | 544k | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 544k | ix = rational_floor(tl) | 343 | | | 344 | 544k | rxl = rational_floor(l); | 345 | 544k | rxr = rational_floor(r); | 346 | 544k | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 11.5M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | 11.5M | # if LINEAR_COLOR | 349 | 11.5M | if (rxl != rxr) { | 350 | 7.57M | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | 7.57M | if (code < 0) | 352 | 0 | goto xit; | 353 | 7.57M | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | 7.57M | if (code < 0) | 355 | 0 | goto xit; | 356 | 7.57M | } | 357 | 11.5M | if (++iy == iy1) | 358 | 544k | break; | 359 | 11.0M | STEP_LINE(rxl, l); | 360 | 11.0M | STEP_LINE(rxr, r); | 361 | 11.0M | step_gradient(&lg, num_components); | 362 | 11.0M | step_gradient(&rg, num_components); | 363 | | # else | 364 | | register int ixl, ixr; | 365 | | | 366 | | STEP_LINE(ixl, l); | 367 | | STEP_LINE(ixr, r); | 368 | | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | | if (ixl != rxl || ixr != rxr) { | 370 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | | if (code < 0) | 374 | | goto xit; | 375 | | rxl = ixl, rxr = ixr, ry = iy; | 376 | | } | 377 | | # endif | 378 | 11.0M | } | 379 | | # if !LINEAR_COLOR | 380 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | 544k | code = 0; | 383 | 544k | # endif | 384 | 544k | #undef STEP_LINE | 385 | 544k | #undef SET_MINIMAL_WIDTH | 386 | 544k | #undef CONNECT_RECTANGLES | 387 | 544k | #undef FILL_TRAP_RECT | 388 | 544k | #undef FILL_TRAP_RECT_DIRECT | 389 | 544k | #undef FILL_TRAP_RECT_INRECT | 390 | 544k | #undef YMULT_QUO | 391 | 544k | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 544k | return_if_interrupt(dev->memory); | 394 | 544k | return code; | 395 | 544k | } | 396 | 544k | } |
gdevddrw.c:gx_fill_trapezoid_ns_lc Line | Count | Source | 137 | 11.8M | { | 138 | 11.8M | const fixed ymin = fixed_pixround(ybot) + fixed_half; | 139 | 11.8M | const fixed ymax = fixed_pixround(ytop); | 140 | | | 141 | 11.8M | if (ymin >= ymax) | 142 | 4.41M | return 0; /* no scan lines to sample */ | 143 | 7.42M | { | 144 | 7.42M | int iy = fixed2int_var(ymin); | 145 | 7.42M | const int iy1 = fixed2int_var(ymax); | 146 | 7.42M | trap_line l, r; | 147 | 7.42M | register int rxl, rxr; | 148 | | #if !LINEAR_COLOR | 149 | | int ry; | 150 | | #endif | 151 | 7.42M | const fixed | 152 | 7.42M | x0l = left->start.x, x1l = left->end.x, x0r = right->start.x, | 153 | 7.42M | x1r = right->end.x, dxl = x1l - x0l, dxr = x1r - x0r; | 154 | 7.42M | const fixed /* partial pixel offset to first line to sample */ | 155 | 7.42M | ysl = ymin - left->start.y, ysr = ymin - right->start.y; | 156 | 7.42M | fixed fxl; | 157 | 7.42M | int code; | 158 | | # if CONTIGUOUS_FILL | 159 | | const bool peak0 = ((flags & 1) != 0); | 160 | | const bool peak1 = ((flags & 2) != 0); | 161 | | int peak_y0 = ybot + fixed_half; | 162 | | int peak_y1 = ytop - fixed_half; | 163 | | # endif | 164 | 7.42M | # if LINEAR_COLOR | 165 | 7.42M | int num_components = dev->color_info.num_components; | 166 | 7.42M | frac31 lgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 167 | 7.42M | int32_t lgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 168 | 7.42M | int32_t lgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 169 | 7.42M | frac31 rgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 170 | 7.42M | int32_t rgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 171 | 7.42M | int32_t rgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 172 | 7.42M | frac31 xgc[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 173 | 7.42M | int32_t xgf[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 174 | 7.42M | int32_t xgnum[GX_DEVICE_COLOR_MAX_COMPONENTS]; | 175 | 7.42M | trap_gradient lg, rg, xg; | 176 | | # else | 177 | | gx_color_index cindex = pdevc->colors.pure; | 178 | | dev_proc_fill_rectangle((*fill_rect)) = | 179 | | dev_proc(dev, fill_rectangle); | 180 | | # endif | 181 | | | 182 | 7.42M | if_debug2m('z', dev->memory, "[z]y=[%d,%d]\n", iy, iy1); | 183 | | | 184 | 7.42M | l.h = left->end.y - left->start.y; | 185 | 7.42M | if (l.h == 0) | 186 | 0 | return 0; | 187 | 7.42M | r.h = right->end.y - right->start.y; | 188 | 7.42M | if (r.h == 0) | 189 | 0 | return 0; | 190 | 7.42M | l.x = x0l + (fixed_half - fixed_epsilon); | 191 | 7.42M | r.x = x0r + (fixed_half - fixed_epsilon); | 192 | | #if !LINEAR_COLOR | 193 | | ry = iy; | 194 | | #endif | 195 | | | 196 | | /* | 197 | | * Free variables of FILL_TRAP_RECT: | 198 | | * SWAP_AXES, pdevc, dev, fa | 199 | | * Free variables of FILL_TRAP_RECT_DIRECT: | 200 | | * SWAP_AXES, fill_rect, dev, cindex | 201 | | */ | 202 | 7.42M | #define FILL_TRAP_RECT_INDIRECT(x,y,w,h)\ | 203 | 7.42M | (SWAP_AXES ? gx_fill_rectangle_device_rop(y, x, h, w, pdevc, dev, fa) :\ | 204 | 7.42M | gx_fill_rectangle_device_rop(x, y, w, h, pdevc, dev, fa)) | 205 | 7.42M | #define FILL_TRAP_RECT_DIRECT(x,y,w,h)\ | 206 | 7.42M | (SWAP_AXES ? (*fill_rect)(dev, y, x, h, w, cindex) :\ | 207 | 7.42M | (*fill_rect)(dev, x, y, w, h, cindex)) | 208 | | | 209 | 7.42M | #if LINEAR_COLOR | 210 | 7.42M | # define FILL_TRAP_RECT(x,y,w,h)\ | 211 | 7.42M | (!(w) ? 0 : dev_proc(dev, fill_linear_color_scanline)(dev, fa, x, y, w, xg.c, xg.f, xg.num, xg.den)) | 212 | | #else | 213 | | # define FILL_TRAP_RECT(x,y,w,h)\ | 214 | | (FILL_DIRECT ? FILL_TRAP_RECT_DIRECT(x,y,w,h) : FILL_TRAP_RECT_INDIRECT(x,y,w,h)) | 215 | | #endif | 216 | | | 217 | | /* Compute the dx/dy ratios. */ | 218 | | | 219 | | /* | 220 | | * Compute the x offsets at the first scan line to sample. We need | 221 | | * to be careful in computing ys# * dx#f {/,%} h# because the | 222 | | * multiplication may overflow. We know that all the quantities | 223 | | * involved are non-negative, and that ys# is usually less than 1 (as | 224 | | * a fixed, of course); this gives us a cheap conservative check for | 225 | | * overflow in the multiplication. | 226 | | */ | 227 | 7.42M | #define YMULT_QUO(ys, tl)\ | 228 | 7.42M | (ys < fixed_1 && tl.df < YMULT_LIMIT ? ys * tl.df / tl.h :\ | 229 | 7.42M | fixed_mult_quo(ys, tl.df, tl.h)) | 230 | | | 231 | | #if CONTIGUOUS_FILL | 232 | | /* | 233 | | * If left and right boundary round to same pixel index, | 234 | | * we would not paing the scan and would get a dropout. | 235 | | * Check for this case and choose one of two pixels | 236 | | * which is closer to the "axis". We need to exclude | 237 | | * 'peak' because it would paint an excessive pixel. | 238 | | */ | 239 | | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) \ | 240 | | if (ixl == ixr) \ | 241 | | if ((!peak0 || iy >= peak_y0) && (!peak1 || iy <= peak_y1)) {\ | 242 | | fixed x = int2fixed(ixl) + fixed_half;\ | 243 | | if (x - l.x < r.x - x)\ | 244 | | ++ixr;\ | 245 | | else\ | 246 | | --ixl;\ | 247 | | } | 248 | | | 249 | | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill)\ | 250 | | if (adj1 < adj2) {\ | 251 | | if (iy - ry > 1) {\ | 252 | | code = fill(rxl, ry, rxr - rxl, iy - ry - 1);\ | 253 | | if (code < 0)\ | 254 | | goto xit;\ | 255 | | ry = iy - 1;\ | 256 | | }\ | 257 | | adj1 = adj2 = (adj2 + adj2) / 2;\ | 258 | | } | 259 | | | 260 | | #else | 261 | 7.42M | #define SET_MINIMAL_WIDTH(ixl, ixr, l, r) DO_NOTHING | 262 | 7.42M | #define CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, adj1, adj2, fill) DO_NOTHING | 263 | 7.42M | #endif | 264 | 7.42M | if (fixed_floor(l.x) == fixed_pixround(x1l)) { | 265 | | /* Left edge is vertical, we don't need to increment. */ | 266 | 1.88M | l.di = 0, l.df = 0; | 267 | 1.88M | fxl = 0; | 268 | 5.53M | } else { | 269 | 5.53M | compute_dx(&l, dxl, ysl); | 270 | 5.53M | fxl = YMULT_QUO(ysl, l); | 271 | 5.53M | l.x += fxl; | 272 | 5.53M | } | 273 | 7.42M | if (fixed_floor(r.x) == fixed_pixround(x1r)) { | 274 | | /* Right edge is vertical. If both are vertical, */ | 275 | | /* we have a rectangle. */ | 276 | | # if !LINEAR_COLOR | 277 | | if (l.di == 0 && l.df == 0) { | 278 | | rxl = fixed2int_var(l.x); | 279 | | rxr = fixed2int_var(r.x); | 280 | | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 281 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy1 - ry); | 282 | | goto xit; | 283 | | } | 284 | | # endif | 285 | 1.87M | r.di = 0, r.df = 0; | 286 | 1.87M | } | 287 | | /* | 288 | | * The test for fxl != 0 is required because the right edge might | 289 | | * cross some pixel centers even if the left edge doesn't. | 290 | | */ | 291 | 5.54M | else if (dxr == dxl && fxl != 0) { | 292 | 572k | if (l.di == 0) | 293 | 307k | r.di = 0, r.df = l.df; | 294 | 264k | else | 295 | 264k | compute_dx(&r, dxr, ysr); | 296 | 572k | if (ysr == ysl && r.h == l.h) | 297 | 413k | r.x += fxl; | 298 | 158k | else | 299 | 158k | r.x += YMULT_QUO(ysr, r); | 300 | 4.97M | } else { | 301 | 4.97M | compute_dx(&r, dxr, ysr); | 302 | 4.97M | r.x += YMULT_QUO(ysr, r); | 303 | 4.97M | } | 304 | | /* Compute one line's worth of dx/dy. */ | 305 | 7.42M | compute_ldx(&l, ysl); | 306 | 7.42M | compute_ldx(&r, ysr); | 307 | | /* We subtracted fixed_epsilon from l.x, r.x to simplify rounding | 308 | | when the rational part is zero. Now add it back to get xl', xr' */ | 309 | 7.42M | l.x += fixed_epsilon; | 310 | 7.42M | r.x += fixed_epsilon; | 311 | 7.42M | # if LINEAR_COLOR | 312 | | # ifdef DEBUG | 313 | | if (check_gradient_overflow(left, right)) { | 314 | | /* The caller must care of. | 315 | | Checking it here looses some performance with triangles. */ | 316 | | return_error(gs_error_unregistered); | 317 | | } | 318 | | # endif | 319 | 7.42M | lg.c = lgc; | 320 | 7.42M | lg.f = lgf; | 321 | 7.42M | lg.num = lgnum; | 322 | 7.42M | rg.c = rgc; | 323 | 7.42M | rg.f = rgf; | 324 | 7.42M | rg.num = rgnum; | 325 | 7.42M | xg.c = xgc; | 326 | 7.42M | xg.f = xgf; | 327 | 7.42M | xg.num = xgnum; | 328 | 7.42M | code = init_gradient(&lg, fa, left, right, &l, ymin, num_components); | 329 | 7.42M | if (code < 0) | 330 | 0 | return code; | 331 | 7.42M | code = init_gradient(&rg, fa, right, left, &r, ymin, num_components); | 332 | 7.42M | if (code < 0) | 333 | 0 | return code; | 334 | | | 335 | 7.42M | # endif | 336 | | | 337 | 7.42M | #define rational_floor(tl)\ | 338 | 7.42M | fixed2int_var(fixed_is_int(tl.x) && tl.xf == -tl.h ? tl.x - fixed_1 : tl.x) | 339 | 7.42M | #define STEP_LINE(ix, tl)\ | 340 | 7.42M | tl.x += tl.ldi;\ | 341 | 7.42M | if ( (tl.xf += tl.ldf) >= 0 ) tl.xf -= tl.h, tl.x++;\ | 342 | 7.42M | ix = rational_floor(tl) | 343 | | | 344 | 7.42M | rxl = rational_floor(l); | 345 | 7.42M | rxr = rational_floor(r); | 346 | 7.42M | SET_MINIMAL_WIDTH(rxl, rxr, l, r); | 347 | 91.4M | while (LINEAR_COLOR ? 1 : ++iy != iy1) { | 348 | 91.4M | # if LINEAR_COLOR | 349 | 91.4M | if (rxl != rxr) { | 350 | 15.8M | code = set_x_gradient(&xg, &lg, &rg, &l, &r, rxl, rxr, num_components); | 351 | 15.8M | if (code < 0) | 352 | 0 | goto xit; | 353 | 15.8M | code = FILL_TRAP_RECT(rxl, iy, rxr - rxl, 1); | 354 | 15.8M | if (code < 0) | 355 | 0 | goto xit; | 356 | 15.8M | } | 357 | 91.4M | if (++iy == iy1) | 358 | 7.42M | break; | 359 | 84.0M | STEP_LINE(rxl, l); | 360 | 84.0M | STEP_LINE(rxr, r); | 361 | 84.0M | step_gradient(&lg, num_components); | 362 | 84.0M | step_gradient(&rg, num_components); | 363 | | # else | 364 | | register int ixl, ixr; | 365 | | | 366 | | STEP_LINE(ixl, l); | 367 | | STEP_LINE(ixr, r); | 368 | | SET_MINIMAL_WIDTH(ixl, ixr, l, r); | 369 | | if (ixl != rxl || ixr != rxr) { | 370 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, rxr, ixl, FILL_TRAP_RECT); | 371 | | CONNECT_RECTANGLES(ixl, ixr, rxl, rxr, iy, ry, ixr, rxl, FILL_TRAP_RECT); | 372 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 373 | | if (code < 0) | 374 | | goto xit; | 375 | | rxl = ixl, rxr = ixr, ry = iy; | 376 | | } | 377 | | # endif | 378 | 84.0M | } | 379 | | # if !LINEAR_COLOR | 380 | | code = FILL_TRAP_RECT(rxl, ry, rxr - rxl, iy - ry); | 381 | | # else | 382 | 7.42M | code = 0; | 383 | 7.42M | # endif | 384 | 7.42M | #undef STEP_LINE | 385 | 7.42M | #undef SET_MINIMAL_WIDTH | 386 | 7.42M | #undef CONNECT_RECTANGLES | 387 | 7.42M | #undef FILL_TRAP_RECT | 388 | 7.42M | #undef FILL_TRAP_RECT_DIRECT | 389 | 7.42M | #undef FILL_TRAP_RECT_INRECT | 390 | 7.42M | #undef YMULT_QUO | 391 | 7.42M | xit: if (code < 0 && FILL_DIRECT) | 392 | 0 | return_error(code); | 393 | 7.42M | return_if_interrupt(dev->memory); | 394 | 7.42M | return code; | 395 | 7.42M | } | 396 | 7.42M | } |
|