Coverage Report

Created: 2025-06-10 07:15

/src/ghostpdl/base/gxshade.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Shading rendering support */
18
#include "math_.h"
19
#include "gx.h"
20
#include "gserrors.h"
21
#include "gsrect.h"
22
#include "gxcspace.h"
23
#include "gscindex.h"
24
#include "gscie.h"    /* requires gscspace.h */
25
#include "gxdevcli.h"
26
#include "gxgstate.h"
27
#include "gxdht.h"    /* for computing # of different colors */
28
#include "gxpaint.h"
29
#include "gxshade.h"
30
#include "gxshade4.h"
31
#include "gsicc.h"
32
#include "gsicc_cache.h"
33
#include "gxcdevn.h"
34
#include "gximage.h"
35
36
/* Define a maximum smoothness value. */
37
/* smoothness > 0.2 produces severely blocky output. */
38
#define MAX_SMOOTHNESS 0.2
39
40
/* ================ Packed coordinate streams ================ */
41
42
/* Forward references */
43
static int cs_next_packed_value(shade_coord_stream_t *, int, uint *);
44
static int cs_next_array_value(shade_coord_stream_t *, int, uint *);
45
static int cs_next_packed_decoded(shade_coord_stream_t *, int,
46
                                   const float[2], float *);
47
static int cs_next_array_decoded(shade_coord_stream_t *, int,
48
                                  const float[2], float *);
49
static void cs_packed_align(shade_coord_stream_t *cs, int radix);
50
static void cs_array_align(shade_coord_stream_t *cs, int radix);
51
static bool cs_eod(const shade_coord_stream_t * cs);
52
53
/* Initialize a packed value stream. */
54
void
55
shade_next_init(shade_coord_stream_t * cs,
56
                const gs_shading_mesh_params_t * params,
57
                const gs_gstate * pgs)
58
348
{
59
348
    cs->params = params;
60
348
    cs->pctm = &pgs->ctm;
61
348
    if (data_source_is_stream(params->DataSource)) {
62
        /*
63
         * Rewind the data stream iff it is reusable -- either a reusable
64
         * file or a reusable string.
65
         */
66
348
        stream *s = cs->s = params->DataSource.data.strm;
67
68
348
        if ((s->file != 0 && s->file_limit != max_long) ||
69
348
            (s->file == 0 && s->strm == 0)
70
348
            )
71
348
            sseek(s, 0);
72
348
    } else {
73
0
        s_init(&cs->ds, NULL);
74
0
        sread_string(&cs->ds, params->DataSource.data.str.data,
75
0
                     params->DataSource.data.str.size);
76
0
        cs->s = &cs->ds;
77
0
    }
78
348
    if (data_source_is_array(params->DataSource)) {
79
0
        cs->get_value = cs_next_array_value;
80
0
        cs->get_decoded = cs_next_array_decoded;
81
0
        cs->align = cs_array_align;
82
348
    } else {
83
348
        cs->get_value = cs_next_packed_value;
84
348
        cs->get_decoded = cs_next_packed_decoded;
85
348
        cs->align = cs_packed_align;
86
348
    }
87
348
    cs->is_eod = cs_eod;
88
348
    cs->left = 0;
89
348
    cs->ds_EOF = false;
90
348
    cs->first_patch = 1;
91
348
}
92
93
/* Check for the End-Of-Data state form a stream. */
94
static bool
95
cs_eod(const shade_coord_stream_t * cs)
96
177
{
97
177
    return cs->ds_EOF;
98
177
}
99
100
/* Get the next (integer) value from a packed value stream. */
101
/* 1 <= num_bits <= sizeof(uint) * 8. */
102
static int
103
cs_next_packed_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
104
4.06M
{
105
4.06M
    uint bits = cs->bits;
106
4.06M
    int left = cs->left;
107
108
4.06M
    if (left >= num_bits) {
109
        /* We can satisfy this request with the current buffered bits. */
110
0
        cs->left = left -= num_bits;
111
0
        *pvalue = (bits >> left) & ((1 << num_bits) - 1);
112
4.06M
    } else {
113
        /* We need more bits. */
114
4.06M
        int needed = num_bits - left;
115
4.06M
        uint value = bits & ((1 << left) - 1);  /* all the remaining bits */
116
117
15.8M
        for (; needed >= 8; needed -= 8) {
118
11.7M
            int b = sgetc(cs->s);
119
120
11.7M
            if (b < 0) {
121
310
                cs->ds_EOF = true;
122
310
                return_error(gs_error_rangecheck);
123
310
            }
124
11.7M
            value = (value << 8) + b;
125
11.7M
        }
126
4.06M
        if (needed == 0) {
127
4.06M
            cs->left = 0;
128
4.06M
            *pvalue = value;
129
4.06M
        } else {
130
0
            int b = sgetc(cs->s);
131
132
0
            if (b < 0) {
133
0
                cs->ds_EOF = true;
134
0
                return_error(gs_error_rangecheck);
135
0
            }
136
0
            cs->bits = b;
137
0
            cs->left = left = 8 - needed;
138
0
            *pvalue = (value << needed) + (b >> left);
139
0
        }
140
4.06M
    }
141
4.06M
    return 0;
142
4.06M
}
143
144
/*
145
 * Get the next (integer) value from an unpacked array.  Note that
146
 * num_bits may be 0 if we are reading a coordinate or color value.
147
 */
148
static int
149
cs_next_array_value(shade_coord_stream_t * cs, int num_bits, uint * pvalue)
150
0
{
151
0
    float value;
152
0
    uint read;
153
154
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
155
0
        read != sizeof(float)) {
156
0
        cs->ds_EOF = true;
157
0
        return_error(gs_error_rangecheck);
158
0
    }
159
0
    if (value < 0 || (num_bits != 0 && num_bits < sizeof(uint) * 8 &&
160
0
         value >= (1 << num_bits)) ||
161
0
        value != (uint)value
162
0
        )
163
0
        return_error(gs_error_rangecheck);
164
0
    *pvalue = (uint) value;
165
0
    return 0;
166
0
}
167
168
/* Get the next decoded floating point value. */
169
static int
170
cs_next_packed_decoded(shade_coord_stream_t * cs, int num_bits,
171
                       const float decode[2], float *pvalue)
172
3.99M
{
173
3.99M
    uint value;
174
3.99M
    int code = cs->get_value(cs, num_bits, &value);
175
3.99M
    double max_value = (double)(uint)
176
3.99M
        (num_bits == sizeof(uint) * 8 ? ~0 : ((1 << num_bits) - 1));
177
3.99M
    double dvalue = (double)value;
178
179
3.99M
    if (code < 0)
180
164
        return code;
181
3.99M
    *pvalue =
182
3.99M
        (decode == 0 ? dvalue / max_value :
183
3.99M
         decode[0] + dvalue * (decode[1] - decode[0]) / max_value);
184
3.99M
    return 0;
185
3.99M
}
186
187
/* Get the next floating point value from an array, without decoding. */
188
static int
189
cs_next_array_decoded(shade_coord_stream_t * cs, int num_bits,
190
                      const float decode[2], float *pvalue)
191
0
{
192
0
    float value;
193
0
    uint read;
194
195
0
    if (sgets(cs->s, (byte *)&value, sizeof(float), &read) < 0 ||
196
0
        read != sizeof(float)
197
0
    ) {
198
0
        cs->ds_EOF = true;
199
0
        return_error(gs_error_rangecheck);
200
0
    }
201
0
    *pvalue = value;
202
0
    return 0;
203
0
}
204
205
static void
206
cs_packed_align(shade_coord_stream_t *cs, int radix)
207
572k
{
208
572k
    cs->left = cs->left / radix * radix;
209
572k
}
210
211
static void
212
cs_array_align(shade_coord_stream_t *cs, int radix)
213
0
{
214
0
}
215
216
/* Get the next flag value. */
217
/* Note that this always starts a new data byte. */
218
int
219
shade_next_flag(shade_coord_stream_t * cs, int BitsPerFlag)
220
70.3k
{
221
70.3k
    uint flag;
222
70.3k
    int code;
223
224
70.3k
    cs->left = 0;   /* start a new byte if packed */
225
70.3k
    code = cs->get_value(cs, BitsPerFlag, &flag);
226
70.3k
    return (code < 0 ? code : flag);
227
70.3k
}
228
229
/* Get one or more coordinate pairs. */
230
int
231
shade_next_coords(shade_coord_stream_t * cs, gs_fixed_point * ppt,
232
                  int num_points)
233
972k
{
234
972k
    int num_bits = cs->params->BitsPerCoordinate;
235
972k
    const float *decode = cs->params->Decode;
236
972k
    int code = 0;
237
972k
    int i;
238
239
2.33M
    for (i = 0; i < num_points; ++i) {
240
1.36M
        float x, y;
241
242
1.36M
        if ((code = cs->get_decoded(cs, num_bits, decode, &x)) < 0 ||
243
1.36M
            (code = cs->get_decoded(cs, num_bits, decode + 2, &y)) < 0 ||
244
1.36M
            (code = gs_point_transform2fixed(cs->pctm, x, y, &ppt[i])) < 0
245
1.36M
            )
246
133
            break;
247
1.36M
    }
248
972k
    return code;
249
972k
}
250
251
/* Get a color.  Currently all this does is look up Indexed colors. */
252
int
253
shade_next_color(shade_coord_stream_t * cs, float *pc)
254
698k
{
255
698k
    const float *decode = cs->params->Decode + 4; /* skip coord decode */
256
698k
    const gs_color_space *pcs = cs->params->ColorSpace;
257
698k
    gs_color_space_index index = gs_color_space_get_index(pcs);
258
698k
    int num_bits = cs->params->BitsPerComponent;
259
260
698k
    if (index == gs_color_space_index_Indexed) {
261
0
        int ncomp = gs_color_space_num_components(gs_cspace_base_space(pcs));
262
0
        int ci;
263
0
        float cf;
264
0
        int code = cs->get_decoded(cs, num_bits, decode, &cf);
265
0
        gs_client_color cc;
266
0
        int i;
267
268
0
        if (code < 0)
269
0
            return code;
270
0
        if (cf < 0)
271
0
            return_error(gs_error_rangecheck);
272
0
        ci = (int)cf;
273
0
        if (ci >= gs_cspace_indexed_num_entries(pcs))
274
0
            return_error(gs_error_rangecheck);
275
0
        code = gs_cspace_indexed_lookup(pcs, ci, &cc);
276
0
        if (code < 0)
277
0
            return code;
278
0
        for (i = 0; i < ncomp; ++i)
279
0
            pc[i] = cc.paint.values[i];
280
698k
    } else {
281
698k
        int i, code;
282
698k
        int ncomp = (cs->params->Function != 0 ? 1 :
283
698k
                     gs_color_space_num_components(pcs));
284
285
1.96M
        for (i = 0; i < ncomp; ++i) {
286
1.26M
            if ((code = cs->get_decoded(cs, num_bits, decode + i * 2, &pc[i])) < 0)
287
32
                return code;
288
1.26M
            if (cs->params->Function) {
289
499k
                gs_function_params_t *params = &cs->params->Function->params;
290
291
499k
                if (pc[i] < params->Domain[i + i])
292
0
                    pc[i] = params->Domain[i + i];
293
499k
                else if (pc[i] > params->Domain[i + i + 1])
294
6
                    pc[i] = params->Domain[i + i + 1];
295
499k
            }
296
1.26M
        }
297
698k
    }
298
698k
    return 0;
299
698k
}
300
301
/* Get the next vertex for a mesh element. */
302
int
303
shade_next_vertex(shade_coord_stream_t * cs, shading_vertex_t * vertex, patch_color_t *c)
304
509k
{   /* Assuming p->c == c, provides a non-const access. */
305
509k
    int code = shade_next_coords(cs, &vertex->p, 1);
306
307
509k
    if (code >= 0)
308
509k
        code = shade_next_color(cs, c->cc.paint.values);
309
509k
    if (code >= 0)
310
509k
        cs->align(cs, 8); /* CET 09-47J.PS SpecialTestI04Test01. */
311
509k
    return code;
312
509k
}
313
314
/* ================ Shading rendering ================ */
315
316
/* Initialize the common parts of the recursion state. */
317
int
318
shade_init_fill_state(shading_fill_state_t * pfs, const gs_shading_t * psh,
319
                      gx_device * dev, gs_gstate * pgs)
320
86.8k
{
321
86.8k
    const gs_color_space *pcs = psh->params.ColorSpace;
322
86.8k
    float max_error = min(pgs->smoothness, MAX_SMOOTHNESS);
323
86.8k
    bool is_lab;
324
86.8k
    bool cs_lin_test;
325
86.8k
    int code;
326
327
    /*
328
     * There's no point in trying to achieve smoothness beyond what
329
     * the device can implement, i.e., the number of representable
330
     * colors times the number of halftone levels.
331
     */
332
86.8k
    long num_colors =
333
86.8k
        max(dev->color_info.max_gray, dev->color_info.max_color) + 1;
334
86.8k
    const gs_range *ranges = 0;
335
86.8k
    int ci;
336
86.8k
    gsicc_rendering_param_t rendering_params;
337
338
86.8k
    pfs->cs_always_linear = false;
339
86.8k
    pfs->dev = dev;
340
86.8k
    pfs->pgs = pgs;
341
86.8k
top:
342
86.8k
    pfs->direct_space = pcs;
343
86.8k
    pfs->num_components = gs_color_space_num_components(pcs);
344
86.8k
    switch ( gs_color_space_get_index(pcs) )
345
86.8k
        {
346
0
        case gs_color_space_index_Indexed:
347
0
            pcs = gs_cspace_base_space(pcs);
348
0
            goto top;
349
0
        case gs_color_space_index_CIEDEFG:
350
0
            ranges = pcs->params.defg->RangeDEFG.ranges;
351
0
            break;
352
0
        case gs_color_space_index_CIEDEF:
353
0
            ranges = pcs->params.def->RangeDEF.ranges;
354
0
            break;
355
0
        case gs_color_space_index_CIEABC:
356
0
            ranges = pcs->params.abc->RangeABC.ranges;
357
0
            break;
358
0
        case gs_color_space_index_CIEA:
359
0
            ranges = &pcs->params.a->RangeA;
360
0
            break;
361
84.8k
        case gs_color_space_index_ICC:
362
84.8k
            ranges = pcs->cmm_icc_profile_data->Range.ranges;
363
84.8k
            break;
364
1.91k
        default:
365
1.91k
            break;
366
86.8k
        }
367
86.8k
    if (num_colors <= 32) {
368
        /****** WRONG FOR MULTI-PLANE HALFTONES ******/
369
0
        num_colors *= pgs->dev_ht[HT_OBJTYPE_DEFAULT]->components[0].corder.num_levels;
370
0
    }
371
86.8k
    if (psh->head.type == 2 || psh->head.type == 3) {
372
86.4k
        max_error *= 0.25;
373
86.4k
        num_colors *= 2;
374
86.4k
    }
375
86.8k
    if (max_error < 1.0 / num_colors)
376
0
        max_error = 1.0 / num_colors;
377
344k
    for (ci = 0; ci < pfs->num_components; ++ci)
378
257k
        pfs->cc_max_error[ci] =
379
257k
            (ranges == 0 ? max_error :
380
257k
             max_error * (ranges[ci].rmax - ranges[ci].rmin));
381
86.8k
    if (pgs->has_transparency && pgs->trans_device != NULL) {
382
6.32k
        pfs->trans_device = pgs->trans_device;
383
80.4k
    } else {
384
80.4k
        pfs->trans_device = dev;
385
80.4k
    }
386
    /* If the CS is PS based and we have not yet converted to the ICC form
387
       then go ahead and do that now */
388
86.8k
    if (gs_color_space_is_PSCIE(pcs) && pcs->icc_equivalent == NULL) {
389
0
        code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &(is_lab), pgs->memory);
390
0
        if (code < 0)
391
0
            return code;
392
0
    }
393
86.8k
    rendering_params.black_point_comp = pgs->blackptcomp;
394
86.8k
    rendering_params.graphics_type_tag = GS_VECTOR_TAG;
395
86.8k
    rendering_params.override_icc = false;
396
86.8k
    rendering_params.preserve_black = gsBKPRESNOTSPECIFIED;
397
86.8k
    rendering_params.rendering_intent = pgs->renderingintent;
398
86.8k
    rendering_params.cmm = gsCMM_DEFAULT;
399
    /* Grab the icc link transform that we need now */
400
86.8k
    if (pcs->cmm_icc_profile_data != NULL) {
401
84.8k
        pfs->icclink = gsicc_get_link(pgs, pgs->trans_device, pcs, NULL,
402
84.8k
                                      &rendering_params, pgs->memory);
403
84.8k
        if (pfs->icclink == NULL)
404
4
            return_error(gs_error_VMerror);
405
84.8k
    } else {
406
1.91k
        if (pcs->icc_equivalent != NULL ) {
407
            /* We have a PS equivalent ICC profile.  We may need to go
408
               through special range adjustments in this case */
409
0
            pfs->icclink = gsicc_get_link(pgs, pgs->trans_device,
410
0
                                          pcs->icc_equivalent, NULL,
411
0
                                          &rendering_params, pgs->memory);
412
0
            if (pfs->icclink == NULL)
413
0
                return_error(gs_error_VMerror);
414
1.91k
        } else {
415
1.91k
            pfs->icclink = NULL;
416
1.91k
        }
417
1.91k
    }
418
    /* Two possible cases of interest here for performance.  One is that the
419
    * icclink is NULL, which could occur if the source space were DeviceN or
420
    * a separation color space, while at the same time, the output device
421
    * supports these colorants (e.g. a separation device).   The other case is
422
    * that the icclink is the identity.  This could happen for example if the
423
    * source space were CMYK and we are going out to a CMYK device. For both
424
    * of these cases we can avoid going through the standard
425
    * color mappings to determine linearity. This is true, provided that the
426
    * transfer function is linear.  It is likely that we can improve
427
    * things even in cases where the transfer function is nonlinear, but for
428
    * now, we will punt on those and let them go through the longer processing
429
    * steps */
430
86.8k
    if (pfs->icclink == NULL)
431
1.91k
            cs_lin_test = !(using_alt_color_space((gs_gstate*)pgs));
432
84.8k
    else
433
84.8k
        cs_lin_test = pfs->icclink->is_identity;
434
435
86.8k
    if (cs_lin_test && !gx_has_transfer(pgs, dev->color_info.num_components)) {
436
86.2k
        pfs->cs_always_linear = true;
437
86.2k
    }
438
439
#ifdef IGNORE_SPEC_MATCH_ADOBE_SHADINGS
440
    /* Per the spec. If the source space is DeviceN or Separation and the
441
       colorants are not supported (i.e. if we are using the alternate tint
442
       transform) the interpolation should occur in the source space to
443
       accommodate non-linear tint transform functions.
444
       e.g. We had a case where the transform function
445
       was an increasing staircase. Including that function in the
446
       gradient smoothness calculation gave us severe quantization. AR on
447
       the other hand is doing the interpolation in device color space
448
       and has a smooth result for that case. So AR is not following the spec. The
449
       bit below solves the issues for Type 4 and Type 5 shadings as
450
       this will avoid interpolations in source space. Type 6 and Type 7 will still
451
       have interpolations in the source space even if pfs->cs_always_linear == true.
452
       So the approach below does not solve those issues. To do that
453
       without changing the shading code, we could make a linear
454
       approximation to the alternate tint transform, which would
455
       ensure smoothness like what AR provides.
456
    */
457
    if ((gs_color_space_get_index(pcs) == gs_color_space_index_DeviceN ||
458
        gs_color_space_get_index(pcs) == gs_color_space_index_Separation) &&
459
        using_alt_color_space((gs_gstate*)pgs) && (psh->head.type == 4 ||
460
        psh->head.type == 5)) {
461
        pfs->cs_always_linear = true;
462
    }
463
#endif
464
465
86.8k
    return 0;
466
86.8k
}
467
468
/* Fill one piece of a shading. */
469
int
470
shade_fill_path(const shading_fill_state_t * pfs, gx_path * ppath,
471
                gx_device_color * pdevc, const gs_fixed_point *fill_adjust)
472
0
{
473
0
    gx_fill_params params;
474
475
0
    params.rule = -1;   /* irrelevant */
476
0
    params.adjust = *fill_adjust;
477
0
    params.flatness = 0;  /* irrelevant */
478
0
    return (*dev_proc(pfs->dev, fill_path)) (pfs->dev, pfs->pgs, ppath,
479
0
                                             &params, pdevc, NULL);
480
0
}