Coverage Report

Created: 2025-06-10 07:15

/src/ghostpdl/base/gxshade1.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Rendering for non-mesh shadings */
18
#include "math_.h"
19
#include "memory_.h"
20
#include "gx.h"
21
#include "gserrors.h"
22
#include "gsmatrix.h"   /* for gscoord.h */
23
#include "gscoord.h"
24
#include "gspath.h"
25
#include "gsptype2.h"
26
#include "gxcspace.h"
27
#include "gxdcolor.h"
28
#include "gxfarith.h"
29
#include "gxfixed.h"
30
#include "gxgstate.h"
31
#include "gxpath.h"
32
#include "gxshade.h"
33
#include "gxdevcli.h"
34
#include "gxshade4.h"
35
#include "gsicc_cache.h"
36
37
/* ---------------- Function-based shading ---------------- */
38
39
typedef struct Fb_frame_s { /* A rudiment of old code. */
40
    gs_rect region;
41
    gs_client_color cc[4];  /* colors at 4 corners */
42
    int state;
43
} Fb_frame_t;
44
45
typedef struct Fb_fill_state_s {
46
    shading_fill_state_common;
47
    const gs_shading_Fb_t *psh;
48
    gs_matrix_fixed ptm;  /* parameter space -> device space */
49
    Fb_frame_t frame;
50
} Fb_fill_state_t;
51
/****** NEED GC DESCRIPTOR ******/
52
53
static inline void
54
make_other_poles(patch_curve_t curve[4])
55
97.7k
{
56
97.7k
    int i, j;
57
58
488k
    for (i = 0; i < 4; i++) {
59
390k
        j = (i + 1) % 4;
60
390k
        curve[i].control[0].x = (curve[i].vertex.p.x * 2 + curve[j].vertex.p.x) / 3;
61
390k
        curve[i].control[0].y = (curve[i].vertex.p.y * 2 + curve[j].vertex.p.y) / 3;
62
390k
        curve[i].control[1].x = (curve[i].vertex.p.x + curve[j].vertex.p.x * 2) / 3;
63
390k
        curve[i].control[1].y = (curve[i].vertex.p.y + curve[j].vertex.p.y * 2) / 3;
64
390k
        curve[i].straight = true;
65
390k
    }
66
97.7k
}
67
68
/* Transform a point with a fixed-point result. */
69
static void
70
gs_point_transform2fixed_clamped(const gs_matrix_fixed * pmat,
71
                         double x, double y, gs_fixed_point * ppt)
72
0
{
73
0
    gs_point fpt;
74
75
0
    gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt);
76
0
    ppt->x = clamp_coord(fpt.x);
77
0
    ppt->y = clamp_coord(fpt.y);
78
0
}
79
80
static int
81
Fb_fill_region(Fb_fill_state_t * pfs, const gs_fixed_rect *rect)
82
0
{
83
0
    patch_fill_state_t pfs1;
84
0
    patch_curve_t curve[4];
85
0
    Fb_frame_t * fp = &pfs->frame;
86
0
    int code;
87
88
0
    memcpy(&pfs1, (shading_fill_state_t *)pfs, sizeof(shading_fill_state_t));
89
0
    pfs1.Function = pfs->psh->params.Function;
90
0
    code = init_patch_fill_state(&pfs1);
91
0
    if (code < 0)
92
0
        return code;
93
0
    pfs1.maybe_self_intersecting = false;
94
0
    pfs1.n_color_args = 2;
95
0
    pfs1.rect = *rect;
96
0
    gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.p.y, &curve[0].vertex.p);
97
0
    gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.p.y, &curve[1].vertex.p);
98
0
    gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.q.y, &curve[2].vertex.p);
99
0
    gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.q.y, &curve[3].vertex.p);
100
0
    make_other_poles(curve);
101
0
    curve[0].vertex.cc[0] = fp->region.p.x;   curve[0].vertex.cc[1] = fp->region.p.y;
102
0
    curve[1].vertex.cc[0] = fp->region.q.x;   curve[1].vertex.cc[1] = fp->region.p.y;
103
0
    curve[2].vertex.cc[0] = fp->region.q.x;   curve[2].vertex.cc[1] = fp->region.q.y;
104
0
    curve[3].vertex.cc[0] = fp->region.p.x;   curve[3].vertex.cc[1] = fp->region.q.y;
105
0
    code = patch_fill(&pfs1, curve, NULL, NULL);
106
0
    if (term_patch_fill_state(&pfs1))
107
0
        return_error(gs_error_unregistered); /* Must not happen. */
108
0
    return code;
109
0
}
110
111
int
112
gs_shading_Fb_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
113
                             const gs_fixed_rect * rect_clip,
114
                             gx_device * dev, gs_gstate * pgs)
115
0
{
116
0
    const gs_shading_Fb_t * const psh = (const gs_shading_Fb_t *)psh0;
117
0
    gs_matrix save_ctm;
118
0
    int xi, yi, code;
119
0
    float x[2], y[2];
120
0
    Fb_fill_state_t state;
121
122
0
    code = shade_init_fill_state((shading_fill_state_t *) & state, psh0, dev, pgs);
123
0
    if (code < 0)
124
0
        return code;
125
0
    state.psh = psh;
126
    /****** HACK FOR FIXED-POINT MATRIX MULTIPLY ******/
127
0
    gs_currentmatrix((gs_gstate *) pgs, &save_ctm);
128
0
    gs_concat((gs_gstate *) pgs, &psh->params.Matrix);
129
0
    state.ptm = pgs->ctm;
130
0
    gs_setmatrix((gs_gstate *) pgs, &save_ctm);
131
    /* Compute the parameter X and Y ranges. */
132
0
    {
133
0
        gs_rect pbox;
134
135
0
        code = gs_bbox_transform_inverse(rect, &psh->params.Matrix, &pbox);
136
0
        if (code < 0)
137
0
            return code;
138
0
        x[0] = max(pbox.p.x, psh->params.Domain[0]);
139
0
        x[1] = min(pbox.q.x, psh->params.Domain[1]);
140
0
        y[0] = max(pbox.p.y, psh->params.Domain[2]);
141
0
        y[1] = min(pbox.q.y, psh->params.Domain[3]);
142
0
    }
143
0
    if (x[0] > x[1] || y[0] > y[1]) {
144
        /* The region is outside the shading area. */
145
0
        if (state.icclink != NULL) gsicc_release_link(state.icclink);
146
0
        return 0;
147
0
    }
148
0
    for (xi = 0; xi < 2; ++xi)
149
0
        for (yi = 0; yi < 2; ++yi) {
150
0
            float v[2];
151
152
0
            v[0] = x[xi], v[1] = y[yi];
153
0
            gs_function_evaluate(psh->params.Function, v,
154
0
                                 state.frame.cc[yi * 2 + xi].paint.values);
155
0
        }
156
0
    state.frame.region.p.x = x[0];
157
0
    state.frame.region.p.y = y[0];
158
0
    state.frame.region.q.x = x[1];
159
0
    state.frame.region.q.y = y[1];
160
0
    code = Fb_fill_region(&state, rect_clip);
161
0
    if (state.icclink != NULL) gsicc_release_link(state.icclink);
162
0
    return code;
163
0
}
164
165
/* ---------------- Axial shading ---------------- */
166
167
typedef struct A_fill_state_s {
168
    const gs_shading_A_t *psh;
169
    gs_point delta;
170
    double length;
171
    double t0, t1;
172
    double v0, v1, u0, u1;
173
} A_fill_state_t;
174
/****** NEED GC DESCRIPTOR ******/
175
176
/* Note t0 and t1 vary over [0..1], not the Domain. */
177
178
typedef struct
179
{
180
    patch_curve_t curve[4];
181
    gs_point corners[4];
182
} corners_and_curves;
183
184
/* Ghostscript cannot possibly render any patch whose bounds aren't
185
 * representable in fixed's. In fact, this is a larger limit than
186
 * we need. We notionally have an area defined by coordinates
187
 * that can be represented in fixed point with at least 1 bit to
188
 * spare.
189
 *
190
 * Any patch that lies completely outside this region can be clipped
191
 * away. Any patch that isn't representable by fixed points can be
192
 * subdivided into 4.
193
 *
194
 * This avoids us subdividing patches huge numbers of times because
195
 * one side is just outside the region we will accept.
196
 */
197
198
199
#define MIN_CLIP_LIMIT ((int)(fixed2int(min_fixed)/2))
200
#define MAX_CLIP_LIMIT ((int)(fixed2int(max_fixed)/2))
201
202
static int not_clipped_away(const gs_point *p, const gs_fixed_rect *rect)
203
4
{
204
4
    if (p[0].x < rect->p.x &&
205
4
        p[1].x < rect->p.x &&
206
4
        p[2].x < rect->p.x &&
207
4
        p[3].x < rect->p.x)
208
0
        return 0; /* Clipped away! */
209
4
    if (p[0].x > rect->q.x &&
210
4
        p[1].x > rect->q.x &&
211
4
        p[2].x > rect->q.x &&
212
4
        p[3].x > rect->q.x)
213
0
        return 0; /* Clipped away! */
214
4
    if (p[0].y < rect->p.y &&
215
4
        p[1].y < rect->p.y &&
216
4
        p[2].y < rect->p.y &&
217
4
        p[3].y < rect->p.y)
218
0
        return 0; /* Clipped away! */
219
4
    if (p[0].y > rect->q.y &&
220
4
        p[1].y > rect->q.y &&
221
4
        p[2].y > rect->q.y &&
222
4
        p[3].y > rect->q.y)
223
0
        return 0; /* Clipped away! */
224
4
    return 1;
225
4
}
226
227
#define midpoint(a,b)\
228
33.7k
  (arith_rshift_1(a) + arith_rshift_1(b) + (((a) | (b)) & 1))
229
230
#define quarterpoint(a,b)\
231
19.7k
  (midpoint(a,midpoint(a,b)))
232
233
static int
234
subdivide_patch_fill(patch_fill_state_t *pfs, patch_curve_t c[4])
235
98.3k
{
236
98.3k
    fixed m0, m1;
237
98.3k
    int v0, v1;
238
98.3k
    int changed;
239
240
98.3k
    if (pfs->rect.p.x >= pfs->rect.q.x || pfs->rect.p.y >= pfs->rect.q.y)
241
89
        return 0;
242
243
    /* On entry we have a patch:
244
     *   c[0].vertex  c[1].vertex
245
     *
246
     *   c[3].vertex  c[2].vertex
247
     *
248
     * Only the corners are set. The control points are not!
249
     *
250
     * BUT... in terms of spacial coords, it might be different...
251
     * They might be flipped on X, Y or both, giving:
252
     *  01 or 10 or 32 or 23
253
     *  32    23    01    10
254
     * or they might be rotated, and then flipped on X, Y or both, giving:
255
     *  03 or 30 or 12 or 21
256
     *  12    21    03    30
257
     */
258
259
    /* The +MIDPOINT_ACCURACY in the tests below is to allow for us finding the midpoint of [a] = z+1 and [b] = z, and getting z+1,
260
     * and updating [a] to be z+1, hence never actually shrinking the gap. Just accept not culling the patch as
261
     * much as we might. See bug 706378 for an example. */
262
98.2k
#define MIDPOINT_ACCURACY 1
263
98.2k
#define QUARTERPOINT_ACCURACY 3
264
265
99.7k
    do {
266
99.7k
        changed = 0;
267
268
        /* Is the whole of our patch outside the clipping rectangle? */
269
        /* Tempting to try to roll this into the cases below, but that
270
         * doesn't work because we want <= or >= here. Do X ones first. */
271
99.7k
        if ((c[0].vertex.p.x <= pfs->rect.p.x &&
272
99.7k
             c[1].vertex.p.x <= pfs->rect.p.x &&
273
99.7k
             c[2].vertex.p.x <= pfs->rect.p.x &&
274
99.7k
             c[3].vertex.p.x <= pfs->rect.p.x) ||
275
99.7k
            (c[0].vertex.p.x >= pfs->rect.q.x &&
276
99.3k
             c[1].vertex.p.x >= pfs->rect.q.x &&
277
99.3k
             c[2].vertex.p.x >= pfs->rect.q.x &&
278
99.3k
             c[3].vertex.p.x >= pfs->rect.q.x))
279
557
                return 0;
280
281
        /* First, let's try to see if we can cull the patch horizontally with the clipping
282
         * rectangle. */
283
        /* Non rotated cases first. Can we cull the left hand half? */
284
99.1k
        if (c[0].vertex.p.x < pfs->rect.p.x && c[3].vertex.p.x < pfs->rect.p.x)
285
357
        {
286
            /* Check 0+3 off left. */
287
357
            v0 = 0;
288
357
            v1 = 3;
289
357
            goto check_left;
290
357
        }
291
98.8k
        else if (c[1].vertex.p.x < pfs->rect.p.x && c[2].vertex.p.x < pfs->rect.p.x)
292
2
        {
293
            /* Check 1+2 off left. */
294
2
            v0 = 1;
295
2
            v1 = 2;
296
359
check_left:
297
            /* At this point we know that the condition for the following loop is true, so it
298
             * can be a do...while rather than a while. */
299
359
            do
300
374
            {
301
                /* Let's form (X coords only):
302
                 *
303
                 * c[v0].vertex  m0  c[v0^1].vertex
304
                 * c[v1].vertex  m1  c[v1^1].vertex
305
                 */
306
374
                m0 = midpoint(c[0].vertex.p.x, c[1].vertex.p.x);
307
374
                if (m0 >= pfs->rect.p.x)
308
359
                    goto check_left_quarter;
309
15
                m1 = midpoint(c[3].vertex.p.x, c[2].vertex.p.x);
310
15
                if (m1 >= pfs->rect.p.x)
311
0
                    goto check_left_quarter;
312
                /* So, we can completely discard the left hand half of the patch. */
313
15
                c[v0].vertex.p.x = m0;
314
15
                c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[1].vertex.p.y);
315
15
                c[v1].vertex.p.x = m1;
316
15
                c[v1].vertex.p.y = midpoint(c[3].vertex.p.y, c[2].vertex.p.y);
317
15
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2;
318
15
                c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2;
319
15
                changed = 1;
320
15
            }
321
359
            while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x);
322
0
            if (0)
323
0
            {
324
359
check_left_quarter:
325
                /* At this point we know that the condition for the following loop is true, so it
326
                 * can be a do...while rather than a while. */
327
359
                do
328
363
                {
329
                    /* Let's form (X coords only):
330
                     *
331
                     * c[v0].vertex  m0  x  x  c[v0^1].vertex
332
                     * c[v1].vertex  m1  x  x  c[v1^1].vertex
333
                     */
334
363
                    m0 = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x);
335
363
                    if (m0 >= pfs->rect.p.x)
336
359
                        break;
337
4
                    m1 = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x);
338
4
                    if (m1 >= pfs->rect.p.x)
339
0
                        break;
340
                    /* So, we can completely discard the left hand quarter of the patch. */
341
4
                    c[v0].vertex.p.x = m0;
342
4
                    c[v0].vertex.p.y = midpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y);
343
4
                    c[v1].vertex.p.x = m1;
344
4
                    c[v1].vertex.p.y = midpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y);
345
4
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4;
346
4
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4;
347
4
                    changed = 1;
348
4
                }
349
359
                while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x);
350
359
            }
351
0
        }
352
353
        /* or the right hand half? */
354
99.1k
        if (c[0].vertex.p.x > pfs->rect.q.x && c[3].vertex.p.x > pfs->rect.q.x)
355
6
        {
356
            /* Check 0+3 off right. */
357
6
            v0 = 0;
358
6
            v1 = 3;
359
6
            goto check_right;
360
6
        }
361
99.1k
        else if (c[1].vertex.p.x > pfs->rect.q.x && c[2].vertex.p.x > pfs->rect.q.x)
362
16
        {
363
            /* Check 1+2 off right. */
364
16
            v0 = 1;
365
16
            v1 = 2;
366
22
check_right:
367
            /* At this point we know that the condition for the following loop is true, so it
368
             * can be a do...while rather than a while. */
369
22
            do
370
42
            {
371
                /* Let's form (X coords only):
372
                 *
373
                 * c[v0].vertex  m0  c[v0^1].vertex
374
                 * c[v1].vertex  m1  c[v1^1].vertex
375
                 */
376
42
                m0 = midpoint(c[0].vertex.p.x, c[1].vertex.p.x);
377
42
                if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
378
22
                    goto check_right_quarter;
379
20
                m1 = midpoint(c[3].vertex.p.x, c[2].vertex.p.x);
380
20
                if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
381
0
                    goto check_right_quarter;
382
                /* So, we can completely discard the left hand half of the patch. */
383
20
                c[v0].vertex.p.x = m0;
384
20
                c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[1].vertex.p.y);
385
20
                c[v1].vertex.p.x = m1;
386
20
                c[v1].vertex.p.y = midpoint(c[3].vertex.p.y, c[2].vertex.p.y);
387
20
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2;
388
20
                c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2;
389
20
                changed = 1;
390
20
            }
391
22
            while (c[v0].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY);
392
0
            if (0)
393
0
            {
394
22
check_right_quarter:
395
                /* At this point we know that the condition for the following loop is true, so it
396
                 * can be a do...while rather than a while. */
397
22
                do
398
35
                {
399
                    /* Let's form (X coords only):
400
                     *
401
                     * c[v0].vertex  m0  x  x  c[v0^1].vertex
402
                     * c[v1].vertex  m1  x  x  c[v1^1].vertex
403
                     */
404
35
                    m0 = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x);
405
35
                    if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
406
22
                        break;
407
13
                    m1 = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x);
408
13
                    if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
409
0
                        break;
410
                    /* So, we can completely discard the left hand half of the patch. */
411
13
                    c[v0].vertex.p.x = m0;
412
13
                    c[v0].vertex.p.y = quarterpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y);
413
13
                    c[v1].vertex.p.x = m1;
414
13
                    c[v1].vertex.p.y = quarterpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y);
415
13
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4;
416
13
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4;
417
13
                    changed = 1;
418
13
                }
419
22
                while (c[v0].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY);
420
22
            }
421
0
        }
422
423
        /* Now, rotated cases: Can we cull the left hand half? */
424
99.1k
        if (c[0].vertex.p.x < pfs->rect.p.x && c[1].vertex.p.x < pfs->rect.p.x)
425
2.06k
        {
426
            /* Check 0+1 off left. */
427
2.06k
            v0 = 0;
428
2.06k
            v1 = 1;
429
2.06k
            goto check_rot_left;
430
2.06k
        }
431
97.0k
        else if (c[3].vertex.p.x < pfs->rect.p.x && c[2].vertex.p.x < pfs->rect.p.x)
432
952
        {
433
            /* Check 3+2 off left. */
434
952
            v0 = 3;
435
952
            v1 = 2;
436
3.01k
check_rot_left:
437
            /* At this point we know that the condition for the following loop is true, so it
438
             * can be a do...while rather than a while. */
439
3.01k
            do
440
3.05k
            {
441
                /* Let's form (X coords only):
442
                 *
443
                 * c[v0].vertex    m0  c[v0^3].vertex
444
                 * c[v1^3].vertex  m1  c[v1].vertex
445
                 */
446
3.05k
                m0 = midpoint(c[0].vertex.p.x, c[3].vertex.p.x);
447
3.05k
                if (m0 >= pfs->rect.p.x)
448
2.89k
                    goto check_rot_left_quarter;
449
166
                m1 = midpoint(c[1].vertex.p.x, c[2].vertex.p.x);
450
166
                if (m1 >= pfs->rect.p.x)
451
125
                    goto check_rot_left_quarter;
452
                /* So, we can completely discard the left hand half of the patch. */
453
41
                c[v0].vertex.p.x = m0;
454
41
                c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[3].vertex.p.y);
455
41
                c[v1].vertex.p.x = m1;
456
41
                c[v1].vertex.p.y = midpoint(c[1].vertex.p.y, c[2].vertex.p.y);
457
41
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2;
458
41
                c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2;
459
41
                changed = 1;
460
41
            }
461
3.01k
            while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x);
462
0
            if (0)
463
0
            {
464
3.01k
check_rot_left_quarter:
465
                /* At this point we know that the condition for the following loop is true, so it
466
                 * can be a do...while rather than a while. */
467
3.01k
                do
468
3.47k
                {
469
                    /* Let's form (X coords only):
470
                     *
471
                     * c[v0].vertex  m0  x  x  c[v0^3].vertex
472
                     * c[v1].vertex  m1  x  x  c[v1^3].vertex
473
                     */
474
3.47k
                    m0 = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x);
475
3.47k
                    if (m0 >= pfs->rect.p.x)
476
2.30k
                        break;
477
1.16k
                    m1 = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x);
478
1.16k
                    if (m1 >= pfs->rect.p.x)
479
710
                        break;
480
                    /* So, we can completely discard the left hand half of the patch. */
481
458
                    c[v0].vertex.p.x = m0;
482
458
                    c[v0].vertex.p.y = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y);
483
458
                    c[v1].vertex.p.x = m1;
484
458
                    c[v1].vertex.p.y = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y);
485
458
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4;
486
458
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4;
487
458
                    changed = 1;
488
458
                }
489
3.01k
                while (c[v0].vertex.p.x < pfs->rect.p.x && c[v1].vertex.p.x < pfs->rect.p.x);
490
3.01k
            }
491
0
        }
492
493
        /* or the right hand half? */
494
99.1k
        if (c[0].vertex.p.x > pfs->rect.q.x && c[1].vertex.p.x > pfs->rect.q.x)
495
533
        {
496
            /* Check 0+1 off right. */
497
533
            v0 = 0;
498
533
            v1 = 1;
499
533
            goto check_rot_right;
500
533
        }
501
98.6k
        else if (c[3].vertex.p.x > pfs->rect.q.x && c[2].vertex.p.x > pfs->rect.q.x)
502
1.57k
        {
503
            /* Check 3+2 off right. */
504
1.57k
            v0 = 3;
505
1.57k
            v1 = 2;
506
2.10k
check_rot_right:
507
            /* At this point we know that the condition for the following loop is true, so it
508
             * can be a do...while rather than a while. */
509
2.10k
            do
510
2.14k
            {
511
                /* Let's form (X coords only):
512
                 *
513
                 * c[v0].vertex  m0  c[v0^3].vertex
514
                 * c[v1].vertex  m1  c[v1^3].vertex
515
                 */
516
2.14k
                m0 = midpoint(c[0].vertex.p.x, c[3].vertex.p.x);
517
2.14k
                if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
518
2.03k
                    goto check_rot_right_quarter;
519
103
                m1 = midpoint(c[1].vertex.p.x, c[2].vertex.p.x);
520
103
                if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
521
68
                    goto check_rot_right_quarter;
522
                /* So, we can completely discard the left hand half of the patch. */
523
35
                c[v0].vertex.p.x = m0;
524
35
                c[v0].vertex.p.y = midpoint(c[0].vertex.p.y, c[3].vertex.p.y);
525
35
                c[v1].vertex.p.x = m1;
526
35
                c[v1].vertex.p.y = midpoint(c[1].vertex.p.y, c[2].vertex.p.y);
527
35
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2;
528
35
                c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2;
529
35
                changed = 1;
530
35
            }
531
2.10k
            while (c[v0].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+MIDPOINT_ACCURACY);
532
0
            if (0)
533
0
            {
534
2.10k
check_rot_right_quarter:
535
                /* At this point we know that the condition for the following loop is true, so it
536
                 * can be a do...while rather than a while. */
537
2.10k
                do
538
2.53k
                {
539
                    /* Let's form (X coords only):
540
                     *
541
                     * c[v0].vertex  m0  c[v0^3].vertex
542
                     * c[v1].vertex  m1  c[v1^3].vertex
543
                     */
544
2.53k
                    m0 = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x);
545
2.53k
                    if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
546
1.43k
                        break;
547
1.10k
                    m1 = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x);
548
1.10k
                    if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
549
675
                        break;
550
                    /* So, we can completely discard the left hand half of the patch. */
551
433
                    c[v0].vertex.p.x = m0;
552
433
                    c[v0].vertex.p.y = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y);
553
433
                    c[v1].vertex.p.x = m1;
554
433
                    c[v1].vertex.p.y = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y);
555
433
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4;
556
433
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4;
557
433
                    changed = 1;
558
433
                }
559
2.10k
                while (c[v0].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && c[v1].vertex.p.x > pfs->rect.q.x+QUARTERPOINT_ACCURACY);
560
2.10k
            }
561
0
        }
562
563
        /* Is the whole of our patch outside the clipping rectangle? */
564
        /* Tempting to try to roll this into the cases below, but that
565
         * doesn't work because we want <= or >= here. Do Y ones. Can't have
566
         * done this earlier, as the previous set of tests might have reduced
567
         * the range here. */
568
99.1k
        if ((c[0].vertex.p.y <= pfs->rect.p.y &&
569
99.1k
             c[1].vertex.p.y <= pfs->rect.p.y &&
570
99.1k
             c[2].vertex.p.y <= pfs->rect.p.y &&
571
99.1k
             c[3].vertex.p.y <= pfs->rect.p.y) ||
572
99.1k
            (c[0].vertex.p.y >= pfs->rect.q.y &&
573
99.1k
             c[1].vertex.p.y >= pfs->rect.q.y &&
574
99.1k
             c[2].vertex.p.y >= pfs->rect.q.y &&
575
99.1k
             c[3].vertex.p.y >= pfs->rect.q.y))
576
11
            return 0;
577
578
        /* Now, let's try to see if we can cull the patch vertically with the clipping
579
         * rectangle. */
580
        /* Non rotated cases first. Can we cull the top half? */
581
99.1k
        if (c[0].vertex.p.y < pfs->rect.p.y && c[1].vertex.p.y < pfs->rect.p.y)
582
693
        {
583
            /* Check 0+1 off above. */
584
693
            v0 = 0;
585
693
            v1 = 1;
586
693
            goto check_above;
587
693
        }
588
98.4k
        else if (c[3].vertex.p.y < pfs->rect.p.y && c[2].vertex.p.y < pfs->rect.p.y)
589
1.16k
        {
590
            /* Check 3+2 off above. */
591
1.16k
            v0 = 3;
592
1.16k
            v1 = 2;
593
1.85k
check_above:
594
            /* At this point we know that the condition for the following loop is true, so it
595
             * can be a do...while rather than a while. */
596
1.85k
            do
597
2.14k
            {
598
                /* Let's form (Y coords only):
599
                 *
600
                 * c[v0].vertex     c[v1].vertex
601
                 * m0               m1
602
                 * c[v0^3].vertex   c[v1^3].vertex
603
                 */
604
2.14k
                m0 = midpoint(c[0].vertex.p.y, c[3].vertex.p.y);
605
2.14k
                if (m0 >= pfs->rect.p.y)
606
1.76k
                    goto check_above_quarter;
607
379
                m1 = midpoint(c[1].vertex.p.y, c[2].vertex.p.y);
608
379
                if (m1 >= pfs->rect.p.y)
609
93
                    goto check_above_quarter;
610
                /* So, we can completely discard the top half of the patch. */
611
286
                c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[3].vertex.p.x);
612
286
                c[v0].vertex.p.y = m0;
613
286
                c[v1].vertex.p.x = midpoint(c[1].vertex.p.x, c[2].vertex.p.x);
614
286
                c[v1].vertex.p.y = m1;
615
286
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2;
616
286
                c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2;
617
286
                changed = 1;
618
286
            }
619
1.85k
            while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y);
620
0
            if (0)
621
0
            {
622
1.85k
check_above_quarter:
623
                /* At this point we know that the condition for the following loop is true, so it
624
                 * can be a do...while rather than a while. */
625
1.85k
                do
626
2.30k
                {
627
                    /* Let's form (Y coords only):
628
                     *
629
                     * c[v0].vertex     c[v1].vertex
630
                     * m0               m1
631
                     * x                x
632
                     * x                x
633
                     * c[v0^3].vertex   c[v1^3].vertex
634
                     */
635
2.30k
                    m0 = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y);
636
2.30k
                    if (m0 >= pfs->rect.p.y)
637
1.72k
                        break;
638
581
                    m1 = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y);
639
581
                    if (m1 >= pfs->rect.p.y)
640
128
                        break;
641
                    /* So, we can completely discard the top half of the patch. */
642
453
                    c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x);
643
453
                    c[v0].vertex.p.y = m0;
644
453
                    c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x);
645
453
                    c[v1].vertex.p.y = m1;
646
453
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4;
647
453
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4;
648
453
                    changed = 1;
649
453
                }
650
1.85k
                while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y);
651
1.85k
            }
652
0
        }
653
654
        /* or the bottom half? */
655
99.1k
        if (c[0].vertex.p.y > pfs->rect.q.y && c[1].vertex.p.y > pfs->rect.q.y)
656
1.18k
        {
657
            /* Check 0+1 off bottom. */
658
1.18k
            v0 = 0;
659
1.18k
            v1 = 1;
660
1.18k
            goto check_bottom;
661
1.18k
        }
662
97.9k
        else if (c[3].vertex.p.y > pfs->rect.q.y && c[2].vertex.p.y > pfs->rect.q.y)
663
642
        {
664
            /* Check 3+2 off bottom. */
665
642
            v0 = 3;
666
642
            v1 = 2;
667
1.82k
check_bottom:
668
            /* At this point we know that the condition for the following loop is true, so it
669
             * can be a do...while rather than a while. */
670
1.82k
            do
671
2.06k
            {
672
                /* Let's form (Y coords only):
673
                 *
674
                 * c[v0].vertex     c[v1].vertex
675
                 * m0               m1
676
                 * c[v0^3].vertex   c[v1^3].vertex
677
                 */
678
2.06k
                m0 = midpoint(c[0].vertex.p.y, c[3].vertex.p.y);
679
2.06k
                if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
680
323
                    goto check_bottom_quarter;
681
1.74k
                m1 = midpoint(c[1].vertex.p.y, c[2].vertex.p.y);
682
1.74k
                if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
683
1.50k
                    goto check_bottom_quarter;
684
                /* So, we can completely discard the bottom half of the patch. */
685
241
                c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[3].vertex.p.x);
686
241
                c[v0].vertex.p.y = m0;
687
241
                c[v1].vertex.p.x = midpoint(c[1].vertex.p.x, c[2].vertex.p.x);
688
241
                c[v1].vertex.p.y = m1;
689
241
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[3].vertex.cc[0])/2;
690
241
                c[v1].vertex.cc[0] = (c[1].vertex.cc[0] + c[2].vertex.cc[0])/2;
691
241
                changed = 1;
692
241
            }
693
1.82k
            while (c[v0].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY);
694
0
            if (0)
695
0
            {
696
1.82k
check_bottom_quarter:
697
                /* At this point we know that the condition for the following loop is true, so it
698
                 * can be a do...while rather than a while. */
699
1.82k
                do
700
2.20k
                {
701
                    /* Let's form (Y coords only):
702
                     *
703
                     * c[v0].vertex     c[v1].vertex
704
                     * x                x
705
                     * x                x
706
                     * m0               m1
707
                     * c[v0^3].vertex   c[v1^3].vertex
708
                     */
709
2.20k
                    m0 = quarterpoint(c[v0].vertex.p.y, c[v0^3].vertex.p.y);
710
2.20k
                    if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
711
204
                        break;
712
2.00k
                    m1 = quarterpoint(c[v1].vertex.p.y, c[v1^3].vertex.p.y);
713
2.00k
                    if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
714
1.61k
                        break;
715
                    /* So, we can completely discard the bottom half of the patch. */
716
385
                    c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^3].vertex.p.x);
717
385
                    c[v0].vertex.p.y = m0;
718
385
                    c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^3].vertex.p.x);
719
385
                    c[v1].vertex.p.y = m1;
720
385
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^3].vertex.cc[0])/4;
721
385
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^3].vertex.cc[0])/4;
722
385
                    changed = 1;
723
385
                }
724
1.82k
                while (c[v0].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY);
725
1.82k
            }
726
0
        }
727
728
        /* Now, rotated cases: Can we cull the top half? */
729
99.1k
        if (c[0].vertex.p.y < pfs->rect.p.y && c[3].vertex.p.y < pfs->rect.p.y)
730
0
        {
731
            /* Check 0+3 off above. */
732
0
            v0 = 0;
733
0
            v1 = 3;
734
0
            goto check_rot_above;
735
0
        }
736
99.1k
        else if (c[1].vertex.p.y < pfs->rect.p.y && c[2].vertex.p.y < pfs->rect.p.y)
737
373
        {
738
            /* Check 1+2 off above. */
739
373
            v0 = 1;
740
373
            v1 = 2;
741
373
check_rot_above:
742
            /* At this point we know that the condition for the following loop is true, so it
743
             * can be a do...while rather than a while. */
744
373
            do
745
373
            {
746
                /* Let's form (Y coords only):
747
                 *
748
                 * c[v0].vertex     c[v1].vertex
749
                 * m0               m1
750
                 * c[v0^1].vertex   c[v1^1].vertex
751
                 */
752
373
                m0 = midpoint(c[0].vertex.p.y, c[1].vertex.p.y);
753
373
                if (m0 >= pfs->rect.p.y)
754
373
                    goto check_rot_above_quarter;
755
0
                m1 = midpoint(c[3].vertex.p.y, c[2].vertex.p.y);
756
0
                if (m1 >= pfs->rect.p.y)
757
0
                    goto check_rot_above_quarter;
758
                /* So, we can completely discard the top half of the patch. */
759
0
                c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[1].vertex.p.x);
760
0
                c[v0].vertex.p.y = m0;
761
0
                c[v1].vertex.p.x = midpoint(c[3].vertex.p.x, c[2].vertex.p.x);
762
0
                c[v1].vertex.p.y = m1;
763
0
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2;
764
0
                c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2;
765
0
                changed = 1;
766
0
            }
767
373
            while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y);
768
0
            if (0)
769
0
            {
770
373
check_rot_above_quarter:
771
                /* At this point we know that the condition for the following loop is true, so it
772
                 * can be a do...while rather than a while. */
773
373
                do
774
373
                {
775
                    /* Let's form (Y coords only):
776
                     *
777
                     * c[v0].vertex     c[v1].vertex
778
                     * m0               m1
779
                     * x                x
780
                     * x                x
781
                     * c[v0^1].vertex   c[v1^1].vertex
782
                     */
783
373
                    m0 = quarterpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y);
784
373
                    if (m0 >= pfs->rect.p.y)
785
373
                        break;
786
0
                    m1 = quarterpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y);
787
0
                    if (m1 >= pfs->rect.p.y)
788
0
                        break;
789
                    /* So, we can completely discard the top half of the patch. */
790
0
                    c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x);
791
0
                    c[v0].vertex.p.y = m0;
792
0
                    c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x);
793
0
                    c[v1].vertex.p.y = m1;
794
0
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4;
795
0
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4;
796
0
                    changed = 1;
797
0
                }
798
373
                while (c[v0].vertex.p.y < pfs->rect.p.y && c[v1].vertex.p.y < pfs->rect.p.y);
799
373
            }
800
0
        }
801
802
        /* or the bottom half? */
803
99.1k
        if (c[0].vertex.p.y > pfs->rect.q.y && c[3].vertex.p.y > pfs->rect.q.y)
804
20
        {
805
            /* Check 0+3 off the bottom. */
806
20
            v0 = 0;
807
20
            v1 = 3;
808
20
            goto check_rot_bottom;
809
20
        }
810
99.1k
        else if (c[1].vertex.p.y > pfs->rect.q.y && c[2].vertex.p.y > pfs->rect.q.y)
811
2
        {
812
            /* Check 1+2 off the bottom. */
813
2
            v0 = 1;
814
2
            v1 = 2;
815
22
check_rot_bottom:
816
            /* At this point we know that the condition for the following loop is true, so it
817
             * can be a do...while rather than a while. */
818
22
            do
819
51
            {
820
                /* Let's form (Y coords only):
821
                 *
822
                 * c[v0].vertex     c[v1].vertex
823
                 * m0               m1
824
                 * c[v0^1].vertex   c[v1^1].vertex
825
                 */
826
51
                m0 = midpoint(c[0].vertex.p.y, c[1].vertex.p.y);
827
51
                if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
828
22
                    goto check_rot_bottom_quarter;
829
29
                m1 = midpoint(c[3].vertex.p.y, c[2].vertex.p.y);
830
29
                if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
831
0
                    goto check_rot_bottom_quarter;
832
                /* So, we can completely discard the left hand half of the patch. */
833
29
                c[v0].vertex.p.x = midpoint(c[0].vertex.p.x, c[1].vertex.p.x);
834
29
                c[v0].vertex.p.y = m0;
835
29
                c[v1].vertex.p.x = midpoint(c[3].vertex.p.x, c[2].vertex.p.x);
836
29
                c[v1].vertex.p.y = m1;
837
29
                c[v0].vertex.cc[0] = (c[0].vertex.cc[0] + c[1].vertex.cc[0])/2;
838
29
                c[v1].vertex.cc[0] = (c[3].vertex.cc[0] + c[2].vertex.cc[0])/2;
839
29
                changed = 1;
840
29
            }
841
29
            while (c[v0].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+MIDPOINT_ACCURACY);
842
0
            if (0)
843
0
            {
844
22
check_rot_bottom_quarter:
845
                /* At this point we know that the condition for the following loop is true, so it
846
                 * can be a do...while rather than a while. */
847
22
                do
848
30
                {
849
                    /* Let's form (Y coords only):
850
                     *
851
                     * c[v0].vertex     c[v1].vertex
852
                     * x                x
853
                     * x                x
854
                     * m0               m1
855
                     * c[v0^1].vertex   c[v1^1].vertex
856
                     */
857
30
                    m0 = quarterpoint(c[v0].vertex.p.y, c[v0^1].vertex.p.y);
858
30
                    if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
859
22
                        break;
860
8
                    m1 = quarterpoint(c[v1].vertex.p.y, c[v1^1].vertex.p.y);
861
8
                    if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
862
0
                        break;
863
                    /* So, we can completely discard the left hand half of the patch. */
864
8
                    c[v0].vertex.p.x = quarterpoint(c[v0].vertex.p.x, c[v0^1].vertex.p.x);
865
8
                    c[v0].vertex.p.y = m0;
866
8
                    c[v1].vertex.p.x = quarterpoint(c[v1].vertex.p.x, c[v1^1].vertex.p.x);
867
8
                    c[v1].vertex.p.y = m1;
868
8
                    c[v0].vertex.cc[0] = (c[v0].vertex.cc[0] + 3*c[v0^1].vertex.cc[0])/4;
869
8
                    c[v1].vertex.cc[0] = (c[v1].vertex.cc[0] + 3*c[v1^1].vertex.cc[0])/4;
870
8
                    changed = 1;
871
8
                }
872
22
                while (c[v0].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && c[v1].vertex.p.y > pfs->rect.q.y+QUARTERPOINT_ACCURACY);
873
22
            }
874
0
        }
875
99.1k
    } while (changed);
876
877
97.7k
    c[0].vertex.cc[1] = c[1].vertex.cc[1] =
878
97.7k
                        c[2].vertex.cc[1] =
879
97.7k
                        c[3].vertex.cc[1] = 0;
880
97.7k
    make_other_poles(c);
881
97.7k
    return patch_fill(pfs, c, NULL, NULL);
882
98.2k
}
883
#undef midpoint
884
#undef quarterpoint
885
#undef MIDPOINT_ACCURACY
886
#undef QUARTERPOINT_ACCURACY
887
888
32
#define f_fits_in_fixed(f) f_fits_in_bits(f, fixed_int_bits)
889
890
static int
891
A_fill_region_floats(patch_fill_state_t *pfs1, corners_and_curves *cc, int depth)
892
5
{
893
5
    corners_and_curves sub[4];
894
5
    int code;
895
896
5
    if (depth == 32)
897
0
        return gs_error_limitcheck;
898
899
5
    if (depth > 0 &&
900
5
        f_fits_in_fixed(cc->corners[0].x) &&
901
5
        f_fits_in_fixed(cc->corners[0].y) &&
902
5
        f_fits_in_fixed(cc->corners[1].x) &&
903
5
        f_fits_in_fixed(cc->corners[1].y) &&
904
5
        f_fits_in_fixed(cc->corners[2].x) &&
905
5
        f_fits_in_fixed(cc->corners[2].y) &&
906
5
        f_fits_in_fixed(cc->corners[3].x) &&
907
5
        f_fits_in_fixed(cc->corners[3].y))
908
4
    {
909
4
        cc->curve[0].vertex.p.x = float2fixed(cc->corners[0].x);
910
4
        cc->curve[0].vertex.p.y = float2fixed(cc->corners[0].y);
911
4
        cc->curve[1].vertex.p.x = float2fixed(cc->corners[1].x);
912
4
        cc->curve[1].vertex.p.y = float2fixed(cc->corners[1].y);
913
4
        cc->curve[2].vertex.p.x = float2fixed(cc->corners[2].x);
914
4
        cc->curve[2].vertex.p.y = float2fixed(cc->corners[2].y);
915
4
        cc->curve[3].vertex.p.x = float2fixed(cc->corners[3].x);
916
4
        cc->curve[3].vertex.p.y = float2fixed(cc->corners[3].y);
917
4
        return subdivide_patch_fill(pfs1, cc->curve);
918
4
    }
919
920
    /* We have patches with corners:
921
     *  0  1
922
     *  3  2
923
     * We subdivide these into 4 smaller patches:
924
     *
925
     *  0   10   1     Where 0123 are corners
926
     *   [0]  [1]      [0][1][2][3] are patches.
927
     *  3   23   2
928
     *  0   10   1
929
     *   [3]  [2]
930
     *  3   23   2
931
     */
932
933
1
    sub[0].corners[0].x = cc->corners[0].x;
934
1
    sub[0].corners[0].y = cc->corners[0].y;
935
1
    sub[1].corners[1].x = cc->corners[1].x;
936
1
    sub[1].corners[1].y = cc->corners[1].y;
937
1
    sub[2].corners[2].x = cc->corners[2].x;
938
1
    sub[2].corners[2].y = cc->corners[2].y;
939
1
    sub[3].corners[3].x = cc->corners[3].x;
940
1
    sub[3].corners[3].y = cc->corners[3].y;
941
1
    sub[1].corners[0].x = sub[0].corners[1].x = (cc->corners[0].x + cc->corners[1].x)/2;
942
1
    sub[1].corners[0].y = sub[0].corners[1].y = (cc->corners[0].y + cc->corners[1].y)/2;
943
1
    sub[3].corners[2].x = sub[2].corners[3].x = (cc->corners[2].x + cc->corners[3].x)/2;
944
1
    sub[3].corners[2].y = sub[2].corners[3].y = (cc->corners[2].y + cc->corners[3].y)/2;
945
1
    sub[3].corners[0].x = sub[0].corners[3].x = (cc->corners[0].x + cc->corners[3].x)/2;
946
1
    sub[3].corners[0].y = sub[0].corners[3].y = (cc->corners[0].y + cc->corners[3].y)/2;
947
1
    sub[2].corners[1].x = sub[1].corners[2].x = (cc->corners[1].x + cc->corners[2].x)/2;
948
1
    sub[2].corners[1].y = sub[1].corners[2].y = (cc->corners[1].y + cc->corners[2].y)/2;
949
1
    sub[0].corners[2].x = sub[1].corners[3].x =
950
1
                          sub[2].corners[0].x =
951
1
                          sub[3].corners[1].x = (sub[0].corners[3].x + sub[1].corners[2].x)/2;
952
1
    sub[0].corners[2].y = sub[1].corners[3].y =
953
1
                          sub[2].corners[0].y =
954
1
                          sub[3].corners[1].y = (sub[0].corners[3].y + sub[1].corners[2].y)/2;
955
1
    sub[0].curve[0].vertex.cc[0] = sub[0].curve[3].vertex.cc[0] =
956
1
                                   sub[3].curve[0].vertex.cc[0] =
957
1
                                   sub[3].curve[3].vertex.cc[0] = cc->curve[0].vertex.cc[0];
958
1
    sub[1].curve[1].vertex.cc[0] = sub[1].curve[2].vertex.cc[0] =
959
1
                                   sub[2].curve[1].vertex.cc[0] =
960
1
                                   sub[2].curve[2].vertex.cc[0] = cc->curve[1].vertex.cc[0];
961
1
    sub[0].curve[1].vertex.cc[0] = sub[0].curve[2].vertex.cc[0] =
962
1
                                   sub[1].curve[0].vertex.cc[0] =
963
1
                                   sub[1].curve[3].vertex.cc[0] =
964
1
                                   sub[2].curve[0].vertex.cc[0] =
965
1
                                   sub[2].curve[3].vertex.cc[0] =
966
1
                                   sub[3].curve[1].vertex.cc[0] =
967
1
                                   sub[3].curve[2].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
968
969
1
    depth++;
970
1
    if (not_clipped_away(sub[0].corners, &pfs1->rect)) {
971
1
        code = A_fill_region_floats(pfs1, &sub[0], depth);
972
1
        if (code < 0)
973
0
            return code;
974
1
    }
975
1
    if (not_clipped_away(sub[1].corners, &pfs1->rect)) {
976
1
        code = A_fill_region_floats(pfs1, &sub[1], depth);
977
1
        if (code < 0)
978
0
            return code;
979
1
    }
980
1
    if (not_clipped_away(sub[2].corners, &pfs1->rect)) {
981
1
        code = A_fill_region_floats(pfs1, &sub[2], depth);
982
1
        if (code < 0)
983
0
            return code;
984
1
    }
985
1
    if (not_clipped_away(sub[3].corners, &pfs1->rect)) {
986
1
        code = A_fill_region_floats(pfs1, &sub[3], depth);
987
1
        if (code < 0)
988
0
            return code;
989
1
    }
990
991
1
    return 0;
992
1
}
993
994
136
#define midpoint(a,b)      ((a+b)/2)
995
996
4
#define quarterpoint(a,b)  ((a+3*b)/4)
997
998
static int
999
subdivide_patch_fill_floats(patch_fill_state_t *pfs, corners_and_curves *cc)
1000
10
{
1001
10
    double m0, m1;
1002
10
    int v0, v1;
1003
10
    int changed;
1004
1005
10
    if (pfs->rect.p.x >= pfs->rect.q.x || pfs->rect.p.y >= pfs->rect.q.y)
1006
0
        return 0;
1007
1008
    /* On entry we have a patch:
1009
     *   c[0].vertex  c[1].vertex
1010
     *
1011
     *   c[3].vertex  c[2].vertex
1012
     *
1013
     * Only the corners are set. The control points are not!
1014
     *
1015
     * BUT... in terms of spacial coords, it might be different...
1016
     * They might be flipped on X, Y or both, giving:
1017
     *  01 or 10 or 32 or 23
1018
     *  32    23    01    10
1019
     * or they might be rotated, and then flipped on X, Y or both, giving:
1020
     *  03 or 30 or 12 or 21
1021
     *  12    21    03    30
1022
     */
1023
1024
    /* The +MIDPOINT_ACCURACY in the tests below is to allow for us finding the midpoint of [a] = z+1 and [b] = z, and getting z+1,
1025
     * and updating [a] to be z+1, hence never actually shrinking the gap. Just accept not culling the patch as
1026
     * much as we might. See bug 706378 for an example. */
1027
27
#define MIDPOINT_ACCURACY 0.0001
1028
10
#define QUARTERPOINT_ACCURACY 0.0003
1029
1030
11
    do {
1031
11
        changed = 0;
1032
1033
        /* Is the whole of our patch outside the clipping rectangle? */
1034
        /* Tempting to try to roll this into the cases below, but that
1035
         * doesn't work because we want <= or >= here. Do the X ones
1036
         * first. */
1037
11
        if ((cc->corners[0].x <= pfs->rect.p.x &&
1038
11
             cc->corners[1].x <= pfs->rect.p.x &&
1039
11
             cc->corners[2].x <= pfs->rect.p.x &&
1040
11
             cc->corners[3].x <= pfs->rect.p.x) ||
1041
11
            (cc->corners[0].x >= pfs->rect.q.x &&
1042
5
             cc->corners[1].x >= pfs->rect.q.x &&
1043
5
             cc->corners[2].x >= pfs->rect.q.x &&
1044
5
             cc->corners[3].x >= pfs->rect.q.x))
1045
7
                return 0;
1046
1047
        /* First, let's try to see if we can cull the patch horizontally with the clipping
1048
         * rectangle. */
1049
        /* Non rotated cases first. Can we cull the left hand half? */
1050
4
        if (cc->corners[0].x < pfs->rect.p.x && cc->corners[3].x < pfs->rect.p.x)
1051
1
        {
1052
            /* Check 0+3 off left. */
1053
1
            v0 = 0;
1054
1
            v1 = 3;
1055
1
            goto check_left;
1056
1
        }
1057
3
        else if (cc->corners[1].x < pfs->rect.p.x && cc->corners[2].x < pfs->rect.p.x)
1058
1
        {
1059
            /* Check 1+2 off left. */
1060
1
            v0 = 1;
1061
1
            v1 = 2;
1062
2
check_left:
1063
            /* At this point we know that the condition for the following loop is true, so it
1064
             * can be a do...while rather than a while. */
1065
2
            do
1066
30
            {
1067
                /* Let's form (X coords only):
1068
                 *
1069
                 * c[v0].vertex  m0  c[v0^1].vertex
1070
                 * c[v1].vertex  m1  c[v1^1].vertex
1071
                 */
1072
30
                m0 = midpoint(cc->corners[0].x, cc->corners[1].x);
1073
30
                if (m0 >= pfs->rect.p.x)
1074
2
                    goto check_left_quarter;
1075
28
                m1 = midpoint(cc->corners[3].x, cc->corners[2].x);
1076
28
                if (m1 >= pfs->rect.p.x)
1077
0
                    goto check_left_quarter;
1078
                /* So, we can completely discard the left hand half of the patch. */
1079
28
                cc->corners[v0].x = m0;
1080
28
                cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[1].y);
1081
28
                cc->corners[v1].x = m1;
1082
28
                cc->corners[v1].y = midpoint(cc->corners[3].y, cc->corners[2].y);
1083
28
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
1084
28
                cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1085
28
                changed = 1;
1086
28
            }
1087
28
            while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x);
1088
0
            if (0)
1089
0
            {
1090
2
check_left_quarter:
1091
                /* At this point we know that the condition for the following loop is true, so it
1092
                 * can be a do...while rather than a while. */
1093
2
                do
1094
2
                {
1095
                    /* Let's form (X coords only):
1096
                     *
1097
                     * c[v0].vertex  m0  x  x  c[v0^1].vertex
1098
                     * c[v1].vertex  m1  x  x  c[v1^1].vertex
1099
                     */
1100
2
                    m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x);
1101
2
                    if (m0 >= pfs->rect.p.x)
1102
2
                        break;
1103
0
                    m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x);
1104
0
                    if (m1 >= pfs->rect.p.x)
1105
0
                        break;
1106
                    /* So, we can completely discard the left hand quarter of the patch. */
1107
0
                    cc->corners[v0].x = m0;
1108
0
                    cc->corners[v0].y = midpoint(cc->corners[v0].y, cc->corners[v0^1].y);
1109
0
                    cc->corners[v1].x = m1;
1110
0
                    cc->corners[v1].y = midpoint(cc->corners[v1].y, cc->corners[v1^1].y);
1111
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4;
1112
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4;
1113
0
                    changed = 1;
1114
0
                }
1115
2
                while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x);
1116
2
            }
1117
0
        }
1118
1119
        /* or the right hand half? */
1120
4
        if (cc->corners[0].x > pfs->rect.q.x && cc->corners[3].x > pfs->rect.q.x)
1121
2
        {
1122
            /* Check 0+3 off right. */
1123
2
            v0 = 0;
1124
2
            v1 = 3;
1125
2
            goto check_right;
1126
2
        }
1127
2
        else if (cc->corners[1].x > pfs->rect.q.x && cc->corners[2].x > pfs->rect.q.x)
1128
0
        {
1129
            /* Check 1+2 off right. */
1130
0
            v0 = 1;
1131
0
            v1 = 2;
1132
2
check_right:
1133
            /* At this point we know that the condition for the following loop is true, so it
1134
             * can be a do...while rather than a while. */
1135
2
            do
1136
7
            {
1137
                /* Let's form (X coords only):
1138
                 *
1139
                 * c[v0].vertex  m0  c[v0^1].vertex
1140
                 * c[v1].vertex  m1  c[v1^1].vertex
1141
                 */
1142
7
                m0 = midpoint(cc->corners[0].x, cc->corners[1].x);
1143
7
                if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
1144
2
                    goto check_right_quarter;
1145
5
                m1 = midpoint(cc->corners[3].x, cc->corners[2].x);
1146
5
                if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
1147
0
                    goto check_right_quarter;
1148
                /* So, we can completely discard the left hand half of the patch. */
1149
5
                cc->corners[v0].x = m0;
1150
5
                cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[1].y);
1151
5
                cc->corners[v1].x = m1;
1152
5
                cc->corners[v1].y = midpoint(cc->corners[3].y, cc->corners[2].y);
1153
5
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
1154
5
                cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1155
5
                changed = 1;
1156
5
            }
1157
5
            while (cc->corners[v0].x > pfs->rect.q.x+MIDPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+MIDPOINT_ACCURACY);
1158
0
            if (0)
1159
0
            {
1160
2
check_right_quarter:
1161
                /* At this point we know that the condition for the following loop is true, so it
1162
                 * can be a do...while rather than a while. */
1163
2
                do
1164
2
                {
1165
                    /* Let's form (X coords only):
1166
                     *
1167
                     * c[v0].vertex  m0  x  x  c[v0^1].vertex
1168
                     * c[v1].vertex  m1  x  x  c[v1^1].vertex
1169
                     */
1170
2
                    m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x);
1171
2
                    if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
1172
2
                        break;
1173
0
                    m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x);
1174
0
                    if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
1175
0
                        break;
1176
                    /* So, we can completely discard the left hand half of the patch. */
1177
0
                    cc->corners[v0].x = m0;
1178
0
                    cc->corners[v0].y = quarterpoint(cc->corners[v0].y, cc->corners[v0^1].y);
1179
0
                    cc->corners[v1].x = m1;
1180
0
                    cc->corners[v1].y = quarterpoint(cc->corners[v1].y, cc->corners[v1^1].y);
1181
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4;
1182
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4;
1183
0
                    changed = 1;
1184
0
                }
1185
2
                while (cc->corners[v0].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY);
1186
2
            }
1187
0
        }
1188
1189
        /* Now, rotated cases: Can we cull the left hand half? */
1190
4
        if (cc->corners[0].x < pfs->rect.p.x && cc->corners[1].x < pfs->rect.p.x)
1191
0
        {
1192
            /* Check 0+1 off left. */
1193
0
            v0 = 0;
1194
0
            v1 = 1;
1195
0
            goto check_rot_left;
1196
0
        }
1197
4
        else if (cc->corners[3].x < pfs->rect.p.x && cc->corners[2].x < pfs->rect.p.x)
1198
0
        {
1199
            /* Check 3+2 off left. */
1200
0
            v0 = 3;
1201
0
            v1 = 2;
1202
0
check_rot_left:
1203
            /* At this point we know that the condition for the following loop is true, so it
1204
             * can be a do...while rather than a while. */
1205
0
            do
1206
0
            {
1207
                /* Let's form (X coords only):
1208
                 *
1209
                 * c[v0].vertex    m0  c[v0^3].vertex
1210
                 * c[v1^3].vertex  m1  c[v1].vertex
1211
                 */
1212
0
                m0 = midpoint(cc->corners[0].x, cc->corners[3].x);
1213
0
                if (m0 >= pfs->rect.p.x)
1214
0
                    goto check_rot_left_quarter;
1215
0
                m1 = midpoint(cc->corners[1].x, cc->corners[2].x);
1216
0
                if (m1 >= pfs->rect.p.x)
1217
0
                    goto check_rot_left_quarter;
1218
                /* So, we can completely discard the left hand half of the patch. */
1219
0
                cc->corners[v0].x = m0;
1220
0
                cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[3].y);
1221
0
                cc->corners[v1].x = m1;
1222
0
                cc->corners[v1].y = midpoint(cc->corners[1].y, cc->corners[2].y);
1223
0
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2;
1224
0
                cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1225
0
                changed = 1;
1226
0
            }
1227
0
            while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x);
1228
0
            if (0)
1229
0
            {
1230
0
check_rot_left_quarter:
1231
                /* At this point we know that the condition for the following loop is true, so it
1232
                 * can be a do...while rather than a while. */
1233
0
                do
1234
0
                {
1235
                    /* Let's form (X coords only):
1236
                     *
1237
                     * c[v0].vertex  m0  x  x  c[v0^3].vertex
1238
                     * c[v1].vertex  m1  x  x  c[v1^3].vertex
1239
                     */
1240
0
                    m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x);
1241
0
                    if (m0 >= pfs->rect.p.x)
1242
0
                        break;
1243
0
                    m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x);
1244
0
                    if (m1 >= pfs->rect.p.x)
1245
0
                        break;
1246
                    /* So, we can completely discard the left hand half of the patch. */
1247
0
                    cc->corners[v0].x = m0;
1248
0
                    cc->corners[v0].y = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y);
1249
0
                    cc->corners[v1].x = m1;
1250
0
                    cc->corners[v1].y = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y);
1251
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4;
1252
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4;
1253
0
                    changed = 1;
1254
0
                }
1255
0
                while (cc->corners[v0].x < pfs->rect.p.x && cc->corners[v1].x < pfs->rect.p.x);
1256
0
            }
1257
0
        }
1258
1259
        /* or the right hand half? */
1260
4
        if (cc->corners[0].x > pfs->rect.q.x && cc->corners[1].x > pfs->rect.q.x)
1261
0
        {
1262
            /* Check 0+1 off right. */
1263
0
            v0 = 0;
1264
0
            v1 = 1;
1265
0
            goto check_rot_right;
1266
0
        }
1267
4
        else if (cc->corners[3].x > pfs->rect.q.x && cc->corners[2].x > pfs->rect.q.x)
1268
0
        {
1269
            /* Check 3+2 off right. */
1270
0
            v0 = 3;
1271
0
            v1 = 2;
1272
0
check_rot_right:
1273
            /* At this point we know that the condition for the following loop is true, so it
1274
             * can be a do...while rather than a while. */
1275
0
            do
1276
0
            {
1277
                /* Let's form (X coords only):
1278
                 *
1279
                 * c[v0].vertex  m0  c[v0^3].vertex
1280
                 * c[v1].vertex  m1  c[v1^3].vertex
1281
                 */
1282
0
                m0 = midpoint(cc->corners[0].x, cc->corners[3].x);
1283
0
                if (m0 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
1284
0
                    goto check_rot_right_quarter;
1285
0
                m1 = midpoint(cc->corners[1].x, cc->corners[2].x);
1286
0
                if (m1 <= pfs->rect.q.x+MIDPOINT_ACCURACY)
1287
0
                    goto check_rot_right_quarter;
1288
                /* So, we can completely discard the left hand half of the patch. */
1289
0
                cc->corners[v0].x = m0;
1290
0
                cc->corners[v0].y = midpoint(cc->corners[0].y, cc->corners[3].y);
1291
0
                cc->corners[v1].x = m1;
1292
0
                cc->corners[v1].y = midpoint(cc->corners[1].y, cc->corners[2].y);
1293
0
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2;
1294
0
                cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1295
0
                changed = 1;
1296
0
            }
1297
0
            while (cc->corners[v0].x > pfs->rect.q.x+MIDPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+MIDPOINT_ACCURACY);
1298
0
            if (0)
1299
0
            {
1300
0
check_rot_right_quarter:
1301
                /* At this point we know that the condition for the following loop is true, so it
1302
                 * can be a do...while rather than a while. */
1303
0
                do
1304
0
                {
1305
                    /* Let's form (X coords only):
1306
                     *
1307
                     * c[v0].vertex  m0  c[v0^3].vertex
1308
                     * c[v1].vertex  m1  c[v1^3].vertex
1309
                     */
1310
0
                    m0 = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x);
1311
0
                    if (m0 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
1312
0
                        break;
1313
0
                    m1 = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x);
1314
0
                    if (m1 <= pfs->rect.q.x+QUARTERPOINT_ACCURACY)
1315
0
                        break;
1316
                    /* So, we can completely discard the left hand half of the patch. */
1317
0
                    cc->corners[v0].x = m0;
1318
0
                    cc->corners[v0].y = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y);
1319
0
                    cc->corners[v1].x = m1;
1320
0
                    cc->corners[v1].y = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y);
1321
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4;
1322
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4;
1323
0
                    changed = 1;
1324
0
                }
1325
0
                while (cc->corners[v0].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY && cc->corners[v1].x > pfs->rect.q.x+QUARTERPOINT_ACCURACY);
1326
0
            }
1327
0
        }
1328
1329
        /* Is the whole of our patch outside the clipping rectangle? */
1330
        /* Tempting to try to roll this into the cases below, but that
1331
         * doesn't work because we want <= or >= here. Do the Y ones.
1332
         * Can't do these at the same time as the X ones, as the cases
1333
         * above may have reduced Y by the time we get here. */
1334
4
        if ((cc->corners[0].y <= pfs->rect.p.y &&
1335
4
             cc->corners[1].y <= pfs->rect.p.y &&
1336
4
             cc->corners[2].y <= pfs->rect.p.y &&
1337
4
             cc->corners[3].y <= pfs->rect.p.y) ||
1338
4
            (cc->corners[0].y >= pfs->rect.q.y &&
1339
2
             cc->corners[1].y >= pfs->rect.q.y &&
1340
2
             cc->corners[2].y >= pfs->rect.q.y &&
1341
2
             cc->corners[3].y >= pfs->rect.q.y))
1342
2
            return 0;
1343
1344
        /* Now, let's try to see if we can cull the patch vertically with the clipping
1345
         * rectangle. */
1346
        /* Non rotated cases first. Can we cull the top half? */
1347
2
        if (cc->corners[0].y < pfs->rect.p.y && cc->corners[1].y < pfs->rect.p.y)
1348
0
        {
1349
            /* Check 0+1 off above. */
1350
0
            v0 = 0;
1351
0
            v1 = 1;
1352
0
            goto check_above;
1353
0
        }
1354
2
        else if (cc->corners[3].y < pfs->rect.p.y && cc->corners[2].y < pfs->rect.p.y)
1355
0
        {
1356
            /* Check 3+2 off above. */
1357
0
            v0 = 3;
1358
0
            v1 = 2;
1359
0
check_above:
1360
            /* At this point we know that the condition for the following loop is true, so it
1361
             * can be a do...while rather than a while. */
1362
0
            do
1363
0
            {
1364
                /* Let's form (Y coords only):
1365
                 *
1366
                 * c[v0].vertex     c[v1].vertex
1367
                 * m0               m1
1368
                 * c[v0^3].vertex   c[v1^3].vertex
1369
                 */
1370
0
                m0 = midpoint(cc->corners[0].y, cc->corners[3].y);
1371
0
                if (m0 >= pfs->rect.p.y)
1372
0
                    goto check_above_quarter;
1373
0
                m1 = midpoint(cc->corners[1].y, cc->corners[2].y);
1374
0
                if (m1 >= pfs->rect.p.y)
1375
0
                    goto check_above_quarter;
1376
                /* So, we can completely discard the top half of the patch. */
1377
0
                cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[3].x);
1378
0
                cc->corners[v0].y = m0;
1379
0
                cc->corners[v1].x = midpoint(cc->corners[1].x, cc->corners[2].x);
1380
0
                cc->corners[v1].y = m1;
1381
0
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2;
1382
0
                cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1383
0
                changed = 1;
1384
0
            }
1385
0
            while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y);
1386
0
            if (0)
1387
0
            {
1388
0
check_above_quarter:
1389
                /* At this point we know that the condition for the following loop is true, so it
1390
                 * can be a do...while rather than a while. */
1391
0
                do
1392
0
                {
1393
                    /* Let's form (Y coords only):
1394
                     *
1395
                     * c[v0].vertex     c[v1].vertex
1396
                     * m0               m1
1397
                     * x                x
1398
                     * x                x
1399
                     * c[v0^3].vertex   c[v1^3].vertex
1400
                     */
1401
0
                    m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y);
1402
0
                    if (m0 >= pfs->rect.p.y)
1403
0
                        break;
1404
0
                    m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y);
1405
0
                    if (m1 >= pfs->rect.p.y)
1406
0
                        break;
1407
                    /* So, we can completely discard the top half of the patch. */
1408
0
                    cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x);
1409
0
                    cc->corners[v0].y = m0;
1410
0
                    cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x);
1411
0
                    cc->corners[v1].y = m1;
1412
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4;
1413
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4;
1414
0
                    changed = 1;
1415
0
                }
1416
0
                while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y);
1417
0
            }
1418
0
        }
1419
1420
        /* or the bottom half? */
1421
2
        if (cc->corners[0].y > pfs->rect.q.y && cc->corners[1].y > pfs->rect.q.y)
1422
0
        {
1423
            /* Check 0+1 off bottom. */
1424
0
            v0 = 0;
1425
0
            v1 = 1;
1426
0
            goto check_bottom;
1427
0
        }
1428
2
        else if (cc->corners[3].y > pfs->rect.q.y && cc->corners[2].y > pfs->rect.q.y)
1429
0
        {
1430
            /* Check 3+2 off bottom. */
1431
0
            v0 = 3;
1432
0
            v1 = 2;
1433
0
check_bottom:
1434
            /* At this point we know that the condition for the following loop is true, so it
1435
             * can be a do...while rather than a while. */
1436
0
            do
1437
0
            {
1438
                /* Let's form (Y coords only):
1439
                 *
1440
                 * c[v0].vertex     c[v1].vertex
1441
                 * m0               m1
1442
                 * c[v0^3].vertex   c[v1^3].vertex
1443
                 */
1444
0
                m0 = midpoint(cc->corners[0].y, cc->corners[3].y);
1445
0
                if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
1446
0
                    goto check_bottom_quarter;
1447
0
                m1 = midpoint(cc->corners[1].y, cc->corners[2].y);
1448
0
                if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
1449
0
                    goto check_bottom_quarter;
1450
                /* So, we can completely discard the bottom half of the patch. */
1451
0
                cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[3].x);
1452
0
                cc->corners[v0].y = m0;
1453
0
                cc->corners[v1].x = midpoint(cc->corners[1].x, cc->corners[2].x);
1454
0
                cc->corners[v1].y = m1;
1455
0
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[3].vertex.cc[0])/2;
1456
0
                cc->curve[v1].vertex.cc[0] = (cc->curve[1].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1457
0
                changed = 1;
1458
0
            }
1459
0
            while (cc->corners[v0].y > pfs->rect.q.y+MIDPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+MIDPOINT_ACCURACY);
1460
0
            if (0)
1461
0
            {
1462
0
check_bottom_quarter:
1463
                /* At this point we know that the condition for the following loop is true, so it
1464
                 * can be a do...while rather than a while. */
1465
0
                do
1466
0
                {
1467
                    /* Let's form (Y coords only):
1468
                     *
1469
                     * c[v0].vertex     c[v1].vertex
1470
                     * x                x
1471
                     * x                x
1472
                     * m0               m1
1473
                     * c[v0^3].vertex   c[v1^3].vertex
1474
                     */
1475
0
                    m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^3].y);
1476
0
                    if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
1477
0
                        break;
1478
0
                    m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^3].y);
1479
0
                    if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
1480
0
                        break;
1481
                    /* So, we can completely discard the bottom half of the patch. */
1482
0
                    cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^3].x);
1483
0
                    cc->corners[v0].y = m0;
1484
0
                    cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^3].x);
1485
0
                    cc->corners[v1].y = m1;
1486
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^3].vertex.cc[0])/4;
1487
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^3].vertex.cc[0])/4;
1488
0
                    changed = 1;
1489
0
                }
1490
0
                while (cc->corners[v0].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY);
1491
0
            }
1492
0
        }
1493
1494
        /* Now, rotated cases: Can we cull the top half? */
1495
2
        if (cc->corners[0].y < pfs->rect.p.y && cc->corners[3].y < pfs->rect.p.y)
1496
0
        {
1497
            /* Check 0+3 off above. */
1498
0
            v0 = 0;
1499
0
            v1 = 3;
1500
0
            goto check_rot_above;
1501
0
        }
1502
2
        else if (cc->corners[1].y < pfs->rect.p.y && cc->corners[2].y < pfs->rect.p.y)
1503
0
        {
1504
            /* Check 1+2 off above. */
1505
0
            v0 = 1;
1506
0
            v1 = 2;
1507
0
check_rot_above:
1508
            /* At this point we know that the condition for the following loop is true, so it
1509
             * can be a do...while rather than a while. */
1510
0
            do
1511
0
            {
1512
                /* Let's form (Y coords only):
1513
                 *
1514
                 * c[v0].vertex     c[v1].vertex
1515
                 * m0               m1
1516
                 * c[v0^1].vertex   c[v1^1].vertex
1517
                 */
1518
0
                m0 = midpoint(cc->corners[0].y, cc->corners[1].y);
1519
0
                if (m0 >= pfs->rect.p.y)
1520
0
                    goto check_rot_above_quarter;
1521
0
                m1 = midpoint(cc->corners[3].y, cc->corners[2].y);
1522
0
                if (m1 >= pfs->rect.p.y)
1523
0
                    goto check_rot_above_quarter;
1524
                /* So, we can completely discard the top half of the patch. */
1525
0
                cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[1].x);
1526
0
                cc->corners[v0].y = m0;
1527
0
                cc->corners[v1].x = midpoint(cc->corners[3].x, cc->corners[2].x);
1528
0
                cc->corners[v1].y = m1;
1529
0
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
1530
0
                cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1531
0
                changed = 1;
1532
0
            }
1533
0
            while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y);
1534
0
            if (0)
1535
0
            {
1536
0
check_rot_above_quarter:
1537
                /* At this point we know that the condition for the following loop is true, so it
1538
                 * can be a do...while rather than a while. */
1539
0
                do
1540
0
                {
1541
                    /* Let's form (Y coords only):
1542
                     *
1543
                     * c[v0].vertex     c[v1].vertex
1544
                     * m0               m1
1545
                     * x                x
1546
                     * x                x
1547
                     * c[v0^1].vertex   c[v1^1].vertex
1548
                     */
1549
0
                    m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^1].y);
1550
0
                    if (m0 >= pfs->rect.p.y)
1551
0
                        break;
1552
0
                    m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^1].y);
1553
0
                    if (m1 >= pfs->rect.p.y)
1554
0
                        break;
1555
                    /* So, we can completely discard the top half of the patch. */
1556
0
                    cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x);
1557
0
                    cc->corners[v0].y = m0;
1558
0
                    cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x);
1559
0
                    cc->corners[v1].y = m1;
1560
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4;
1561
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4;
1562
0
                    changed = 1;
1563
0
                }
1564
0
                while (cc->corners[v0].y < pfs->rect.p.y && cc->corners[v1].y < pfs->rect.p.y);
1565
0
            }
1566
0
        }
1567
1568
        /* or the bottom half? */
1569
2
        if (cc->corners[0].y > pfs->rect.q.y && cc->corners[3].y > pfs->rect.q.y)
1570
0
        {
1571
            /* Check 0+3 off the bottom. */
1572
0
            v0 = 0;
1573
0
            v1 = 3;
1574
0
            goto check_rot_bottom;
1575
0
        }
1576
2
        else if (cc->corners[1].y > pfs->rect.q.y && cc->corners[2].y > pfs->rect.q.y)
1577
0
        {
1578
            /* Check 1+2 off the bottom. */
1579
0
            v0 = 1;
1580
0
            v1 = 2;
1581
0
check_rot_bottom:
1582
            /* At this point we know that the condition for the following loop is true, so it
1583
             * can be a do...while rather than a while. */
1584
0
            do
1585
0
            {
1586
                /* Let's form (Y coords only):
1587
                 *
1588
                 * c[v0].vertex     c[v1].vertex
1589
                 * m0               m1
1590
                 * c[v0^1].vertex   c[v1^1].vertex
1591
                 */
1592
0
                m0 = midpoint(cc->corners[0].y, cc->corners[1].y);
1593
0
                if (m0 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
1594
0
                    goto check_rot_bottom_quarter;
1595
0
                m1 = midpoint(cc->corners[3].y, cc->corners[2].y);
1596
0
                if (m1 <= pfs->rect.q.y+MIDPOINT_ACCURACY)
1597
0
                    goto check_rot_bottom_quarter;
1598
                /* So, we can completely discard the left hand half of the patch. */
1599
0
                cc->corners[v0].x = midpoint(cc->corners[0].x, cc->corners[1].x);
1600
0
                cc->corners[v0].y = m0;
1601
0
                cc->corners[v1].x = midpoint(cc->corners[3].x, cc->corners[2].x);
1602
0
                cc->corners[v1].y = m1;
1603
0
                cc->curve[v0].vertex.cc[0] = (cc->curve[0].vertex.cc[0] + cc->curve[1].vertex.cc[0])/2;
1604
0
                cc->curve[v1].vertex.cc[0] = (cc->curve[3].vertex.cc[0] + cc->curve[2].vertex.cc[0])/2;
1605
0
                changed = 1;
1606
0
            }
1607
0
            while (cc->corners[v0].y > pfs->rect.q.y+MIDPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+MIDPOINT_ACCURACY);
1608
0
            if (0)
1609
0
            {
1610
0
check_rot_bottom_quarter:
1611
                /* At this point we know that the condition for the following loop is true, so it
1612
                 * can be a do...while rather than a while. */
1613
0
                do
1614
0
                {
1615
                    /* Let's form (Y coords only):
1616
                     *
1617
                     * c[v0].vertex     c[v1].vertex
1618
                     * x                x
1619
                     * x                x
1620
                     * m0               m1
1621
                     * c[v0^1].vertex   c[v1^1].vertex
1622
                     */
1623
0
                    m0 = quarterpoint(cc->corners[v0].y, cc->corners[v0^1].y);
1624
0
                    if (m0 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
1625
0
                        break;
1626
0
                    m1 = quarterpoint(cc->corners[v1].y, cc->corners[v1^1].y);
1627
0
                    if (m1 <= pfs->rect.q.y+QUARTERPOINT_ACCURACY)
1628
0
                        break;
1629
                    /* So, we can completely discard the left hand half of the patch. */
1630
0
                    cc->corners[v0].x = quarterpoint(cc->corners[v0].x, cc->corners[v0^1].x);
1631
0
                    cc->corners[v0].y = m0;
1632
0
                    cc->corners[v1].x = quarterpoint(cc->corners[v1].x, cc->corners[v1^1].x);
1633
0
                    cc->corners[v1].y = m1;
1634
0
                    cc->curve[v0].vertex.cc[0] = (cc->curve[v0].vertex.cc[0] + 3*cc->curve[v0^1].vertex.cc[0])/4;
1635
0
                    cc->curve[v1].vertex.cc[0] = (cc->curve[v1].vertex.cc[0] + 3*cc->curve[v1^1].vertex.cc[0])/4;
1636
0
                    changed = 1;
1637
0
                }
1638
0
                while (cc->corners[v0].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY && cc->corners[v1].y > pfs->rect.q.y+QUARTERPOINT_ACCURACY);
1639
0
            }
1640
0
        }
1641
2
    } while (changed);
1642
1643
1
    return A_fill_region_floats(pfs, cc, 0);
1644
10
}
1645
#undef midpoint
1646
#undef quarterpoint
1647
#undef MIDPOINT_ACCURACY
1648
#undef QUARTERPOINT_ACCURACY
1649
1650
static int
1651
A_fill_region(A_fill_state_t * pfs, patch_fill_state_t *pfs1)
1652
98.3k
{
1653
98.3k
    const gs_shading_A_t * const psh = pfs->psh;
1654
98.3k
    double x0 = psh->params.Coords[0] + pfs->delta.x * pfs->v0;
1655
98.3k
    double y0 = psh->params.Coords[1] + pfs->delta.y * pfs->v0;
1656
98.3k
    double x1 = psh->params.Coords[0] + pfs->delta.x * pfs->v1;
1657
98.3k
    double y1 = psh->params.Coords[1] + pfs->delta.y * pfs->v1;
1658
98.3k
    double h0 = pfs->u0, h1 = pfs->u1;
1659
98.3k
    corners_and_curves cc;
1660
98.3k
    int code;
1661
1662
98.3k
    double dx0 = pfs->delta.x * h0;
1663
98.3k
    double dy0 = pfs->delta.y * h0;
1664
98.3k
    double dx1 = pfs->delta.x * h1;
1665
98.3k
    double dy1 = pfs->delta.y * h1;
1666
1667
98.3k
    cc.curve[0].vertex.cc[0] = pfs->t0; /* The element cc[1] is set to a dummy value against */
1668
98.3k
    cc.curve[1].vertex.cc[0] = pfs->t1; /* interrupts while an idle processing in gxshade6.c .  */
1669
98.3k
    cc.curve[2].vertex.cc[0] = pfs->t1;
1670
98.3k
    cc.curve[3].vertex.cc[0] = pfs->t0;
1671
98.3k
    cc.corners[0].x = x0 + dy0;
1672
98.3k
    cc.corners[0].y = y0 - dx0;
1673
98.3k
    cc.corners[1].x = x1 + dy0;
1674
98.3k
    cc.corners[1].y = y1 - dx0;
1675
98.3k
    cc.corners[2].x = x1 + dy1;
1676
98.3k
    cc.corners[2].y = y1 - dx1;
1677
98.3k
    cc.corners[3].x = x0 + dy1;
1678
98.3k
    cc.corners[3].y = y0 - dx1;
1679
98.3k
    code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[0].x, cc.corners[0].y, &cc.curve[0].vertex.p);
1680
98.3k
    if (code < 0)
1681
7
        goto fail;
1682
98.3k
    code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[1].x, cc.corners[1].y, &cc.curve[1].vertex.p);
1683
98.3k
    if (code < 0)
1684
3
        goto fail;
1685
98.3k
    code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[2].x, cc.corners[2].y, &cc.curve[2].vertex.p);
1686
98.3k
    if (code < 0)
1687
0
        goto fail;
1688
98.3k
    code = gs_point_transform2fixed(&pfs1->pgs->ctm, cc.corners[3].x, cc.corners[3].y, &cc.curve[3].vertex.p);
1689
98.3k
    if (code < 0)
1690
0
        goto fail;
1691
98.3k
    return subdivide_patch_fill(pfs1, cc.curve);
1692
10
fail:
1693
10
    if (code != gs_error_limitcheck)
1694
0
        return code;
1695
10
    code = gs_point_transform(cc.corners[0].x, cc.corners[0].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[0]);
1696
10
    if (code < 0)
1697
0
        return code;
1698
10
    code = gs_point_transform(cc.corners[1].x, cc.corners[1].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[1]);
1699
10
    if (code < 0)
1700
0
        return code;
1701
10
    code = gs_point_transform(cc.corners[2].x, cc.corners[2].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[2]);
1702
10
    if (code < 0)
1703
0
        return code;
1704
10
    code = gs_point_transform(cc.corners[3].x, cc.corners[3].y, (const gs_matrix *)&pfs1->pgs->ctm, &cc.corners[3]);
1705
10
    if (code < 0)
1706
0
        return code;
1707
10
    return subdivide_patch_fill_floats(pfs1, &cc);
1708
10
}
1709
1710
static inline int
1711
gs_shading_A_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect,
1712
                            const gs_fixed_rect *clip_rect,
1713
                            gx_device * dev, gs_gstate * pgs)
1714
86.4k
{
1715
86.4k
    const gs_shading_A_t *const psh = (const gs_shading_A_t *)psh0;
1716
86.4k
    gs_function_t * const pfn = psh->params.Function;
1717
86.4k
    gs_matrix cmat;
1718
86.4k
    gs_rect t_rect;
1719
86.4k
    A_fill_state_t state;
1720
86.4k
    patch_fill_state_t pfs1;
1721
86.4k
    float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1];
1722
86.4k
    float dd = d1 - d0;
1723
86.4k
    double t0, t1;
1724
86.4k
    gs_point dist;
1725
86.4k
    int code;
1726
1727
86.4k
    state.psh = psh;
1728
86.4k
    code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs);
1729
86.4k
    if (code < 0)
1730
4
        return code;
1731
86.4k
    pfs1.Function = pfn;
1732
86.4k
    pfs1.rect = *clip_rect;
1733
86.4k
    code = init_patch_fill_state(&pfs1);
1734
86.4k
    if (code < 0)
1735
0
        goto fail;
1736
86.4k
    pfs1.maybe_self_intersecting = false;
1737
86.4k
    pfs1.function_arg_shift = 1;
1738
    /*
1739
     * Compute the parameter range.  We construct a matrix in which
1740
     * (0,0) corresponds to t = 0 and (0,1) corresponds to t = 1,
1741
     * and use it to inverse-map the rectangle to be filled.
1742
     */
1743
86.4k
    cmat.tx = psh->params.Coords[0];
1744
86.4k
    cmat.ty = psh->params.Coords[1];
1745
86.4k
    state.delta.x = psh->params.Coords[2] - psh->params.Coords[0];
1746
86.4k
    state.delta.y = psh->params.Coords[3] - psh->params.Coords[1];
1747
86.4k
    cmat.yx = state.delta.x;
1748
86.4k
    cmat.yy = state.delta.y;
1749
86.4k
    cmat.xx = cmat.yy;
1750
86.4k
    cmat.xy = -cmat.yx;
1751
86.4k
    code = gs_bbox_transform_inverse(rect, &cmat, &t_rect);
1752
86.4k
    if (code < 0) {
1753
0
        code = 0; /* Swallow this silently */
1754
0
        goto fail;
1755
0
    }
1756
86.4k
    t0 = min(max(t_rect.p.y, 0), 1);
1757
86.4k
    t1 = max(min(t_rect.q.y, 1), 0);
1758
86.4k
    state.v0 = t0;
1759
86.4k
    state.v1 = t1;
1760
86.4k
    state.u0 = t_rect.p.x;
1761
86.4k
    state.u1 = t_rect.q.x;
1762
86.4k
    state.t0 = t0 * dd + d0;
1763
86.4k
    state.t1 = t1 * dd + d0;
1764
86.4k
    code = gs_distance_transform(state.delta.x, state.delta.y, &ctm_only(pgs),
1765
86.4k
                          &dist);
1766
86.4k
    if (code < 0)
1767
0
        goto fail;
1768
86.4k
    state.length = hypot(dist.x, dist.y); /* device space line length */
1769
86.4k
    code = A_fill_region(&state, &pfs1);
1770
86.4k
    if (psh->params.Extend[0] && t0 > t_rect.p.y) {
1771
5.90k
        if (code < 0)
1772
0
            goto fail;
1773
        /* Use the general algorithm, because we need the trapping. */
1774
5.90k
        state.v0 = t_rect.p.y;
1775
5.90k
        state.v1 = t0;
1776
5.90k
        state.t0 = state.t1 = t0 * dd + d0;
1777
5.90k
        code = A_fill_region(&state, &pfs1);
1778
5.90k
    }
1779
86.4k
    if (psh->params.Extend[1] && t1 < t_rect.q.y) {
1780
6.03k
        if (code < 0)
1781
0
            goto fail;
1782
        /* Use the general algorithm, because we need the trapping. */
1783
6.03k
        state.v0 = t1;
1784
6.03k
        state.v1 = t_rect.q.y;
1785
6.03k
        state.t0 = state.t1 = t1 * dd + d0;
1786
6.03k
        code = A_fill_region(&state, &pfs1);
1787
6.03k
    }
1788
86.4k
fail:
1789
86.4k
    gsicc_release_link(pfs1.icclink);
1790
86.4k
    if (term_patch_fill_state(&pfs1))
1791
0
        return_error(gs_error_unregistered); /* Must not happen. */
1792
86.4k
    return code;
1793
86.4k
}
1794
1795
int
1796
gs_shading_A_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
1797
                            const gs_fixed_rect * rect_clip,
1798
                            gx_device * dev, gs_gstate * pgs)
1799
86.4k
{
1800
86.4k
    return gs_shading_A_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs);
1801
86.4k
}
1802
1803
/* ---------------- Radial shading ---------------- */
1804
1805
/* Some notes on what I have struggled to understand about the following
1806
 * function. This function renders the 'tube' given by interpolating one
1807
 * circle to another.
1808
 *
1809
 * The first circle is at (x0, y0) with radius r0, and has 'color' t0.
1810
 * The other circle is at (x1, y1) with radius r1, and has 'color' t1.
1811
 *
1812
 * We perform this rendering by approximating each quadrant of the 'tube'
1813
 * by a tensor patch. The tensor patch is formed by taking a curve along
1814
 * 1/4 of the circumference of the first circle, a straight line to the
1815
 * equivalent point on the circumference of the second circle, a curve
1816
 * back along the circumference of the second circle, and then a straight
1817
 * line back to where we started.
1818
 *
1819
 * There is additional logic in this function that forms the directions of
1820
 * the curves differently for different quadrants. This is done to ensure
1821
 * that we always paint 'around' the tube from the back towards the front,
1822
 * so we don't get unexpected regions showing though. This is explained more
1823
 * below.
1824
 *
1825
 * The original code here examined the position change between the two
1826
 * circles dx and dy. Based upon this vector it would pick which quadrant/
1827
 * tensor patch to draw first. It would draw the quadrants/tensor patches
1828
 * in anticlockwise order. Presumably this was intended to be done so that
1829
 * the 'top' quadrant would be drawn last.
1830
 *
1831
 * Unfortunately this did not always work; see bug 692513. If the quadrants
1832
 * were rendered in the order 0,1,2,3, the rendering of 1 was leaving traces
1833
 * on top of 0, which was unexpected.
1834
 *
1835
 * I have therefore altered the code slightly; rather than picking a start
1836
 * quadrant and moving anticlockwise, we now draw the 'undermost' quadrant,
1837
 * then the two adjacent quadrants, then the topmost quadrant.
1838
 *
1839
 * For the purposes of explanation, we shall label the octants as below:
1840
 *
1841
 *     \2|1/       and Quadrants as:       |
1842
 *     3\|/0                            Q1 | Q0
1843
 *    ---+---                          ----+----
1844
 *     4/|\7                            Q2 | Q3
1845
 *     /5|6\                               |
1846
 *
1847
 * We find (dx,dy), the difference between the centres of the circles.
1848
 * We look to see which octant this falls in. Firstly, this tells us which
1849
 * quadrant of the circle we need to draw first (Octant n, starts with
1850
 * Quadrant floor(n/2)). Secondly, it tells us which direction to form the
1851
 * tensor patch in; we always want to draw from the side 'closest' to
1852
 * dx/dy to the side further away. This ensures that we don't overwrite
1853
 * pixels in the incorrect order as the patch decomposes.
1854
 */
1855
static int
1856
R_tensor_annulus(patch_fill_state_t *pfs,
1857
    double x0, double y0, double r0, double t0,
1858
    double x1, double y1, double r1, double t1)
1859
51
{
1860
51
    double dx = x1 - x0, dy = y1 - y0;
1861
51
    double d = hypot(dx, dy);
1862
51
    gs_point p0, p1, pc0, pc1;
1863
51
    int k, j, code, dirn;
1864
51
    bool inside = 0;
1865
1866
    /* pc0 and pc1 are the centres of the respective circles. */
1867
51
    pc0.x = x0, pc0.y = y0;
1868
51
    pc1.x = x1, pc1.y = y1;
1869
    /* Set p0 up so it's a unit vector giving the direction of 90 degrees
1870
     * to the right of the major axis as we move from p0c to p1c. */
1871
51
    if (r0 + d <= r1 || r1 + d <= r0) {
1872
        /* One circle is inside another one.
1873
           Use any subdivision,
1874
           but don't depend on dx, dy, which may be too small. */
1875
51
        p0.x = 0, p0.y = -1, dirn = 0;
1876
        /* Align stripes along radii for faster triangulation : */
1877
51
        inside = 1;
1878
51
        pfs->function_arg_shift = 1;
1879
51
    } else {
1880
        /* Must generate canonic quadrangle arcs,
1881
           because we approximate them with curves. */
1882
0
        if(dx >= 0) {
1883
0
            if (dy >= 0)
1884
0
                p0.x = 1, p0.y = 0, dirn = (dx >= dy ? 1 : 0);
1885
0
            else
1886
0
                p0.x = 0, p0.y = -1, dirn = (dx >= -dy ? 0 : 1);
1887
0
        } else {
1888
0
            if (dy >= 0)
1889
0
                p0.x = 0, p0.y = 1, dirn = (-dx >= dy ? 1 : 0);
1890
0
            else
1891
0
                p0.x = -1, p0.y = 0, dirn = (-dx >= -dy ? 0 : 1);
1892
0
        }
1893
0
        pfs->function_arg_shift = 0;
1894
0
    }
1895
    /* fixme: wish: cut invisible parts off.
1896
       Note : when r0 != r1 the invisible part is not a half circle. */
1897
253
    for (k = 0; k < 4; k++) {
1898
203
        gs_point p[12];
1899
203
        patch_curve_t curve[4];
1900
1901
        /* Set p1 to be 90 degrees anticlockwise from p0 */
1902
203
        p1.x = -p0.y; p1.y = p0.x;
1903
203
        if (dirn == 0) { /* Clockwise */
1904
152
            make_quadrant_arc(p + 0, &pc0, &p1, &p0, r0);
1905
152
            make_quadrant_arc(p + 6, &pc1, &p0, &p1, r1);
1906
152
        } else { /* Anticlockwise */
1907
51
            make_quadrant_arc(p + 0, &pc0, &p0, &p1, r0);
1908
51
            make_quadrant_arc(p + 6, &pc1, &p1, &p0, r1);
1909
51
        }
1910
203
        p[4].x = (p[3].x * 2 + p[6].x) / 3;
1911
203
        p[4].y = (p[3].y * 2 + p[6].y) / 3;
1912
203
        p[5].x = (p[3].x + p[6].x * 2) / 3;
1913
203
        p[5].y = (p[3].y + p[6].y * 2) / 3;
1914
203
        p[10].x = (p[9].x * 2 + p[0].x) / 3;
1915
203
        p[10].y = (p[9].y * 2 + p[0].y) / 3;
1916
203
        p[11].x = (p[9].x + p[0].x * 2) / 3;
1917
203
        p[11].y = (p[9].y + p[0].y * 2) / 3;
1918
1.01k
        for (j = 0; j < 4; j++) {
1919
812
            int jj = (j + inside) % 4;
1920
1921
812
            if (gs_point_transform2fixed(&pfs->pgs->ctm,         p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p) < 0)
1922
0
                gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p);
1923
1924
812
            if (gs_point_transform2fixed(&pfs->pgs->ctm,         p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]) < 0)
1925
0
                gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]);
1926
1927
812
            if (gs_point_transform2fixed(&pfs->pgs->ctm,         p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]) < 0)
1928
0
                gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]);
1929
812
            curve[j].straight = (((j + inside) & 1) != 0);
1930
812
        }
1931
203
        curve[(0 + inside) % 4].vertex.cc[0] = t0;
1932
203
        curve[(1 + inside) % 4].vertex.cc[0] = t0;
1933
203
        curve[(2 + inside) % 4].vertex.cc[0] = t1;
1934
203
        curve[(3 + inside) % 4].vertex.cc[0] = t1;
1935
203
        curve[0].vertex.cc[1] = curve[1].vertex.cc[1] = 0; /* Initialize against FPE. */
1936
203
        curve[2].vertex.cc[1] = curve[3].vertex.cc[1] = 0; /* Initialize against FPE. */
1937
203
        code = patch_fill(pfs, curve, NULL, NULL);
1938
203
        if (code < 0)
1939
1
            return code;
1940
        /* Move p0 to be ready for the next position */
1941
202
        if (k == 0) {
1942
            /* p0 moves clockwise */
1943
51
            p1 = p0;
1944
51
            p0.x = p1.y; p0.y = -p1.x;
1945
51
            dirn = 0;
1946
151
        } else if (k == 1) {
1947
            /* p0 flips sides */
1948
51
            p0.x = -p0.x; p0.y = -p0.y;
1949
51
            dirn = 1;
1950
100
        } else if (k == 2) {
1951
            /* p0 moves anti-clockwise */
1952
50
            p1 = p0;
1953
50
            p0.x = -p1.y; p0.y = p1.x;
1954
50
            dirn = 0;
1955
50
        }
1956
202
    }
1957
50
    return 0;
1958
51
}
1959
1960
/* Find the control points for two points on the arc of a circle
1961
 * the points must be within the same quadrant.
1962
 */
1963
static int find_arc_control_points(gs_point *from, gs_point *to, gs_point *from_control, gs_point *to_control, gs_point *centre)
1964
0
{
1965
0
    double from_tan_alpha, to_tan_alpha, from_alpha, to_alpha;
1966
0
    double half_inscribed_angle, intersect_x, intersect_y, intersect_dist;
1967
0
    double radius = sqrt(((from->x - centre->x) * (from->x - centre->x)) + ((from->y - centre->y) * (from->y - centre->y)));
1968
0
    double tangent_intersect_dist;
1969
0
    double F;
1970
0
    int quadrant;
1971
1972
    /* Quadrant 0 is upper right, numbered anti-clockwise.
1973
     * If the direction of the from->to is atni-clockwise, add 4
1974
     */
1975
0
    if (from->x > to->x) {
1976
0
        if (from->y > to->y) {
1977
0
            if (to->y >= centre->y)
1978
0
                quadrant = 1 + 4;
1979
0
            else
1980
0
                quadrant = 3;
1981
0
        } else {
1982
0
            if (to->x >= centre->x)
1983
0
                quadrant = 0 + 4;
1984
0
            else
1985
0
                quadrant = 2;
1986
0
        }
1987
0
    } else {
1988
0
        if (from->y > to->y) {
1989
0
            if (from->x >= centre->x)
1990
0
                quadrant = 0;
1991
0
            else
1992
0
                quadrant = 2 + 4;
1993
0
        } else {
1994
0
            if (from->x >= centre->x)
1995
0
                quadrant = 3 + 4;
1996
0
            else
1997
0
                quadrant = 1;
1998
0
        }
1999
0
    }
2000
2001
0
    switch(quadrant) {
2002
        /* quadrant 0, arc goes clockwise */
2003
0
        case 0:
2004
0
            if (from->x == centre->x) {
2005
0
                from_alpha = M_PI / 2;
2006
0
            } else {
2007
0
                from_tan_alpha = (from->y - centre->y) / (from->x - centre->x);
2008
0
                from_alpha = atan(from_tan_alpha);
2009
0
            }
2010
0
            to_tan_alpha = (to->y - centre->y) / (to->x - centre->x);
2011
0
            to_alpha = atan(to_tan_alpha);
2012
2013
0
            half_inscribed_angle = (from_alpha - to_alpha) / 2;
2014
0
            intersect_dist = radius / cos(half_inscribed_angle);
2015
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2016
2017
0
            intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist;
2018
0
            intersect_y = centre->y + sin(to_alpha + half_inscribed_angle) * intersect_dist;
2019
0
            break;
2020
        /* quadrant 1, arc goes clockwise */
2021
0
        case 1:
2022
0
            from_tan_alpha = (from->y - centre->y) / (centre->x - from->x);
2023
0
            from_alpha = atan(from_tan_alpha);
2024
2025
0
            if (to->x == centre->x) {
2026
0
                to_alpha = M_PI / 2;
2027
0
            } else {
2028
0
                to_tan_alpha = (to->y - centre->y) / (centre->x - to->x);
2029
0
                to_alpha = atan(to_tan_alpha);
2030
0
            }
2031
2032
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2033
0
            intersect_dist = radius / cos(half_inscribed_angle);
2034
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2035
2036
0
            intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist;
2037
0
            intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist;
2038
0
            break;
2039
        /* quadrant 2, arc goes clockwise */
2040
0
        case 2:
2041
0
            if (from->x == centre->x) {
2042
0
                from_alpha = M_PI / 2;
2043
0
            } else {
2044
0
                from_tan_alpha = (centre->y - from->y) / (centre->x - from->x);
2045
0
                from_alpha = atan(from_tan_alpha);
2046
0
            }
2047
2048
0
            to_tan_alpha = (centre->y - to->y) / (centre->x - to->x);
2049
0
            to_alpha = atan(to_tan_alpha);
2050
2051
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2052
0
            intersect_dist = radius / cos(half_inscribed_angle);
2053
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2054
2055
0
            intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist;
2056
0
            intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist;
2057
0
            break;
2058
        /* quadrant 3, arc goes clockwise */
2059
0
        case 3:
2060
0
            from_tan_alpha = (centre->y - from->y) / (from->x - centre->x);
2061
0
            from_alpha = atan(from_tan_alpha);
2062
2063
0
            if (to->x == centre->x) {
2064
0
                to_alpha = M_PI / 2;
2065
0
            } else {
2066
0
                to_tan_alpha = (centre->y - to->y) / (to->x - centre->x);
2067
0
                to_alpha = atan(to_tan_alpha);
2068
0
            }
2069
2070
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2071
0
            intersect_dist = radius / cos(half_inscribed_angle);
2072
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2073
2074
0
            intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist;
2075
0
            intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist;
2076
0
            break;
2077
        /* quadrant 0, arc goes anti-clockwise */
2078
0
        case 4:
2079
0
            from_tan_alpha = (from->y - centre->y) / (from->x - centre->x);
2080
0
            from_alpha = atan(from_tan_alpha);
2081
2082
0
            if (to->y == centre->y)
2083
0
                to_alpha = M_PI / 2;
2084
0
            else {
2085
0
                to_tan_alpha = (to->y - centre->y) / (to->x - centre->x);
2086
0
                to_alpha = atan(to_tan_alpha);
2087
0
            }
2088
2089
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2090
0
            intersect_dist = radius / cos(half_inscribed_angle);
2091
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2092
2093
0
            intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist;
2094
0
            intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist;
2095
0
            break;
2096
        /* quadrant 1, arc goes anti-clockwise */
2097
0
        case 5:
2098
0
            from_tan_alpha = (centre->x - from->x) / (from->y - centre->y);
2099
0
            from_alpha = atan(from_tan_alpha);
2100
2101
0
            if (to->y == centre->y) {
2102
0
                to_alpha = M_PI / 2;
2103
0
            }
2104
0
            else {
2105
0
                to_tan_alpha = (centre->x - to->x) / (to->y - centre->y);
2106
0
                to_alpha = atan(to_tan_alpha);
2107
0
            }
2108
2109
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2110
0
            intersect_dist = radius / cos(half_inscribed_angle);
2111
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2112
2113
0
            intersect_x = centre->x - sin(from_alpha + half_inscribed_angle) * intersect_dist;
2114
0
            intersect_y = centre->y + cos(from_alpha + half_inscribed_angle) * intersect_dist;
2115
0
            break;
2116
        /* quadrant 2, arc goes anti-clockwise */
2117
0
        case 6:
2118
0
            from_tan_alpha = (from->y - centre->y) / (centre->x - from->x);
2119
0
            from_alpha = atan(from_tan_alpha);
2120
2121
0
            if (to->x == centre->x) {
2122
0
                to_alpha = M_PI / 2;
2123
0
            } else {
2124
0
                to_tan_alpha = (centre->y - to->y) / (centre->x - to->x);
2125
0
                to_alpha = atan(to_tan_alpha);
2126
0
            }
2127
2128
0
            half_inscribed_angle = (to_alpha - from_alpha) / 2;
2129
0
            intersect_dist = radius / cos(half_inscribed_angle);
2130
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2131
2132
0
            intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist;
2133
0
            intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist;
2134
0
            break;
2135
        /* quadrant 3, arc goes anti-clockwise */
2136
0
        case 7:
2137
0
            if (from->x == centre->x) {
2138
0
                from_alpha = M_PI / 2;
2139
0
            } else {
2140
0
                from_tan_alpha = (centre->y - from->y) / (from->x - centre->x);
2141
0
                from_alpha = atan(from_tan_alpha);
2142
0
            }
2143
0
            to_tan_alpha = (centre->y - to->y) / (to->x - centre->x);
2144
0
            to_alpha = atan(to_tan_alpha);
2145
2146
0
            half_inscribed_angle = (from_alpha - to_alpha) / 2;
2147
0
            intersect_dist = radius / cos(half_inscribed_angle);
2148
0
            tangent_intersect_dist = tan(half_inscribed_angle) * radius;
2149
2150
0
            intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist;
2151
0
            intersect_y = centre->y - sin(to_alpha + half_inscribed_angle) * intersect_dist;
2152
0
            break;
2153
0
    }
2154
2155
0
    F = (4.0 / 3.0) / (1 + sqrt(1 + ((tangent_intersect_dist / radius) * (tangent_intersect_dist / radius))));
2156
2157
0
    from_control->x = from->x - ((from->x - intersect_x) * F);
2158
0
    from_control->y = from->y - ((from->y - intersect_y) * F);
2159
0
    to_control->x = to->x - ((to->x - intersect_x) * F);
2160
0
    to_control->y = to->y - ((to->y - intersect_y) * F);
2161
2162
0
    return 0;
2163
0
}
2164
2165
/* Create a 'patch_curve' element whch is a straight line between two points */
2166
static int patch_lineto(gs_matrix_fixed *ctm, gs_point *from, gs_point *to, patch_curve_t *p, float t)
2167
0
{
2168
0
    double x_1third, x_2third, y_1third, y_2third;
2169
2170
0
    x_1third = (to->x - from->x) / 3;
2171
0
    x_2third = x_1third * 2;
2172
0
    y_1third = (to->y - from->y) / 3;
2173
0
    y_2third = y_1third * 2;
2174
2175
0
    gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p);
2176
0
    gs_point_transform2fixed(ctm, from->x + x_1third, from->y + y_1third, &p->control[0]);
2177
0
    gs_point_transform2fixed(ctm, from->x + x_2third, from->y + y_2third, &p->control[1]);
2178
2179
0
    p->vertex.cc[0] = t;
2180
0
    p->vertex.cc[1] = t;
2181
0
    p->straight = 1;
2182
2183
0
    return 0;
2184
0
}
2185
2186
static int patch_curveto(gs_matrix_fixed *ctm, gs_point *centre, gs_point *from, gs_point *to, patch_curve_t *p, float t)
2187
0
{
2188
0
    gs_point from_control, to_control;
2189
2190
0
    find_arc_control_points(from, to, &from_control, &to_control, centre);
2191
2192
0
    gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p);
2193
0
    gs_point_transform2fixed(ctm, from_control.x, from_control.y, &p->control[0]);
2194
0
    gs_point_transform2fixed(ctm, to_control.x, to_control.y, &p->control[1]);
2195
0
    p->vertex.cc[0] = t;
2196
0
    p->vertex.cc[1] = t;
2197
0
    p->straight = 0;
2198
2199
0
    return 0;
2200
0
}
2201
2202
static int draw_quarter_annulus(patch_fill_state_t *pfs, gs_point *centre, double radius, gs_point *corner, float t)
2203
0
{
2204
0
    gs_point p0, p1, initial;
2205
0
    patch_curve_t p[4];
2206
0
    int code;
2207
2208
0
    if (corner->x > centre->x) {
2209
0
        initial.x = centre->x + radius;
2210
0
    }
2211
0
    else {
2212
0
        initial.x = centre->x - radius;
2213
0
    }
2214
0
    initial.y = centre->y;
2215
2216
0
    p1.x = initial.x;
2217
0
    p1.y = corner->y;
2218
0
    patch_lineto(&pfs->pgs->ctm, &initial, &p1, &p[0], t);
2219
0
    p0.x = centre->x;
2220
0
    p0.y = p1.y;
2221
0
    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &p[1], t);
2222
0
    p1.x = centre->x;
2223
0
    if (centre->y > corner->y) {
2224
0
        p1.y = centre->y - radius;
2225
0
    } else {
2226
0
        p1.y = centre->y + radius;
2227
0
    }
2228
0
    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t);
2229
0
    patch_curveto(&pfs->pgs->ctm, centre, &p1, &initial, &p[3], t);
2230
0
    code = patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL);
2231
0
    if (code < 0)
2232
0
        return code;
2233
2234
0
    if (corner->x > centre->x)
2235
0
        initial.x = corner->x - (corner->x - (centre->x + radius));
2236
0
    else
2237
0
        initial.x = centre->x - radius;
2238
0
    initial.y = corner->y;
2239
0
    patch_lineto(&pfs->pgs->ctm, corner, &initial, &p[0], t);
2240
2241
0
    p0.x = initial.x;
2242
0
    p0.y = centre->y;
2243
0
    patch_lineto(&pfs->pgs->ctm, &initial, &p0, &p[1], t);
2244
2245
0
    p1.y = p0.y;
2246
0
    p1.x = corner->x;
2247
0
    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t);
2248
0
    patch_lineto(&pfs->pgs->ctm, &p1, corner, &p[3], t);
2249
2250
0
    return (patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL));
2251
0
}
2252
2253
static int R_tensor_annulus_extend_tangent(patch_fill_state_t *pfs,
2254
    double x0, double y0, double r0, double t0,
2255
    double x1, double y1, double r1, double t1, double r2)
2256
0
{
2257
0
    patch_curve_t curve[4];
2258
0
    gs_point p0, p1;
2259
0
    int code = 0, q = 0;
2260
2261
    /* special case axis aligned circles. Its quicker to handle these specially as it
2262
     * avoid lots of trigonometry in the general case code, and avoids us
2263
     * having to watch out for infinity as the result of tan() operations.
2264
     */
2265
0
    if (x0 == x1 || y0 == y1) {
2266
0
        if (x0 == x1 && y0 > y1) {
2267
            /* tangent at top of circles */
2268
0
            p0.x = x1, p0.y = y1;
2269
0
            p1.x = x1 + r2, p1.y = y1 - r2;
2270
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2271
0
            p1.x = x1 - r2, p1.y = y1 - r2;
2272
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2273
0
            p1.x = x1 + r2, p1.y = y1 + r1;
2274
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2275
0
            p1.x = x1 - r2, p1.y = y1 + r1;
2276
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2277
0
        }
2278
0
        if (x0 == x1 && y0 < y1) {
2279
            /* tangent at bottom of circles */
2280
0
            p0.x = x1, p0.y = y1;
2281
0
            p1.x = x1 + r2, p1.y = y1 + r2;
2282
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2283
0
            p1.x = x1 - r2, p1.y = y1 + r2;
2284
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2285
0
            p1.x = x1 + r2, p1.y = y1 - r1;
2286
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2287
0
            p1.x = x1 - r2, p1.y = y1 - r1;
2288
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2289
0
        }
2290
0
        if (y0 == y1 && x0 > x1) {
2291
            /* tangent at right of circles */
2292
0
            p0.x = x1, p0.y = y1;
2293
0
            p1.x = x1 - r2, p1.y = y1 - r2;
2294
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2295
0
            p1.x = x1 - r2, p1.y = y1 + r2;
2296
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2297
0
            p1.x = x1 + r1, p1.y = y1 + r2;
2298
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2299
0
            p1.x = x1 + r1, p1.y = y1 - r2;
2300
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2301
0
        }
2302
0
        if (y0 == y1 && x0 < x1) {
2303
            /* tangent at left of circles */
2304
0
            p0.x = x1, p0.y = y1;
2305
0
            p1.x = x1 + r2, p1.y = y1 - r2;
2306
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2307
0
            p1.x = x1 + r2, p1.y = y1 + r2;
2308
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2309
0
            p1.x = x1 - r1, p1.y = y1 + r2;
2310
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2311
0
            p1.x = x1 - r1, p1.y = y1 - r2;
2312
0
            draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2313
0
        }
2314
0
    }
2315
0
    else {
2316
0
        double tx, ty, endx, endy, intersectx, intersecty, alpha, sinalpha, cosalpha, tanalpha;
2317
0
        gs_point centre;
2318
2319
        /* First lets figure out which quadrant the smaller circle is in (we always
2320
         * get called to fill from the larger circle), x0, y0, r0 is the smaller circle.
2321
         */
2322
0
        if (x0 < x1) {
2323
0
            if (y0 < y1)
2324
0
                q = 2;
2325
0
            else
2326
0
                q = 1;
2327
0
        } else {
2328
0
            if (y0 < y1)
2329
0
                q = 3;
2330
0
            else
2331
0
                q = 0;
2332
0
        }
2333
0
        switch(q) {
2334
0
            case 0:
2335
                /* We have two four-sided elements, from the tangent point
2336
                 * each side, to the point where the tangent crosses an
2337
                 * axis of the larger circle. A line back to the edge
2338
                 * of the larger circle, a line to the point where an axis
2339
                 * crosses the smaller circle, then an arc back to the starting point.
2340
                 */
2341
                /* Figure out the tangent point */
2342
                /* sin (angle) = y1 - y0 / r1 - r0
2343
                 * ty = ((y1 - y0) / (r1 - r0)) * r1
2344
                 */
2345
0
                ty = y1 + ((y0 - y1) / (r1 - r0)) * r1;
2346
0
                tx = x1 + ((x0 - x1) / (r1 - r0)) * r1;
2347
                /* Now actually calculating the point where the tangent crosses the axis of the larger circle
2348
                 * So we need to know the angle the tangent makes with the axis of the smaller circle
2349
                 * as its the same angle where it crosses the axis of the larger circle.
2350
                 * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
2351
                 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
2352
                 * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
2353
                 * circle
2354
                 */
2355
0
                sinalpha = (y0 - y1) / (r1 - r0);
2356
0
                alpha = asin(sinalpha);
2357
0
                cosalpha = cos(alpha);
2358
0
                intersectx = x1 + (r1 / cosalpha);
2359
0
                intersecty = y1;
2360
2361
0
                p0.x = tx, p0.y = ty;
2362
0
                p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2;
2363
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2364
0
                p0.x = intersectx, p0.y = intersecty;
2365
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2366
0
                p1.x = x1 + r1, p1.y = y1;
2367
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2368
0
                p0.x = tx, p0.y = ty;
2369
0
                centre.x = x1, centre.y = y1;
2370
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2371
0
                code = patch_fill(pfs, curve, NULL, NULL);
2372
0
                if (code < 0)
2373
0
                    return code;
2374
2375
0
                if (intersectx < x1 + r2) {
2376
                    /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-(
2377
                     * An 'annulus' where the right edge is less than the normal extent and a
2378
                     * quad which is a rectangle with one corner chopped of at an angle.
2379
                     */
2380
0
                    p0.x = x1, p0.y = y1;
2381
0
                    p1.x = intersectx, p1.y = y1 - r2;
2382
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2383
0
                    endx = x1 + r2;
2384
0
                    endy = y1 - (tan ((M_PI / 2) - alpha)) * (endx - intersectx);
2385
0
                    p0.x = intersectx, p0.y = y1;
2386
0
                    p1.x = x1 + r2, p1.y = endy;
2387
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2388
0
                    p0.x = x1 + r2, p0.y = y0 - r2;
2389
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2390
0
                    p1.x = intersectx, p1.y = p0.y;
2391
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2392
0
                    p0.x = intersectx, p0.y = y1;
2393
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2394
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2395
0
                    if (code < 0)
2396
0
                        return code;
2397
2398
0
                } else {
2399
                    /* Quadrant 3 is a normal quarter annulua */
2400
0
                    p0.x = x1, p0.y = y1;
2401
0
                    p1.x = x1 + r2, p1.y = y1 - r2;
2402
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2403
0
                }
2404
2405
                /* Q2 is always a full annulus... */
2406
0
                p0.x = x1, p0.y = y1;
2407
0
                p1.x = x1 - r2, p1.y = y1 - r2;
2408
0
                draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2409
2410
                /* alpha is now the angle between the x axis and the tangent to the
2411
                 * circles.
2412
                 */
2413
0
                alpha = (M_PI / 2) - alpha;
2414
0
                cosalpha = cos(alpha);
2415
0
                endy = y1 + (r1 / cosalpha);
2416
0
                endx = x1;
2417
2418
0
                p0.x = tx, p0.y = ty;
2419
0
                p1.x = endx - ((endx - tx) / 2), p1.y = endy - ((endy - ty) / 2);
2420
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2421
0
                p0.x = endx, p0.y = endy;
2422
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2423
0
                p1.x = x1, p1.y = y1 + r1;
2424
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2425
0
                p0.x = tx, p0.y = ty;
2426
0
                centre.x = x1, centre.y = y1;
2427
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2428
0
                code = patch_fill(pfs, curve, NULL, NULL);
2429
0
                if (code < 0)
2430
0
                    return code;
2431
2432
                /* Q1 is simimlar to Q3, either a full quarter annulus
2433
                 * or a partial one, depending on where the tangent crosses
2434
                 * the y axis
2435
                 */
2436
0
                tanalpha = tan(alpha);
2437
0
                intersecty = y1 + tanalpha * (r2 + (intersectx - x1));
2438
0
                intersectx = x1 - r2;
2439
2440
0
                if (endy < y1 + r2) {
2441
                    /* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-(
2442
                     * An 'annulus' where the right edge is less than the normal extent and a
2443
                     * quad which is a rectangle with one corner chopped of at an angle.
2444
                     */
2445
0
                    p0.x = x1, p0.y = y1;
2446
0
                    p1.x = x1 - r2, p1.y = endy;
2447
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2448
0
                    p0.x = x1, p0.y = y1 + r1;
2449
0
                    p1.x = x1, p1.y = endy;
2450
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2451
0
                    p0.x = x1 - r2, p0.y = intersecty;
2452
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2453
0
                    p1.x = p0.x, p1.y = y1 + r1;
2454
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2455
0
                    p0.x = x1, p0.y = y1 + r1;
2456
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2457
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2458
0
                    if (code < 0)
2459
0
                        return code;
2460
0
                } else {
2461
                    /* Quadrant 1 is a normal quarter annulua */
2462
0
                    p0.x = x1, p0.y = y1;
2463
0
                    p1.x = x1 - r2, p1.y = y1 + r2;
2464
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2465
0
                }
2466
0
                break;
2467
0
            case 1:
2468
                /* We have two four-sided elements, from the tangent point
2469
                 * each side, to the point where the tangent crosses an
2470
                 * axis of the larger circle. A line back to the edge
2471
                 * of the larger circle, a line to the point where an axis
2472
                 * crosses the smaller circle, then an arc back to the starting point.
2473
                 */
2474
                /* Figure out the tangent point */
2475
                /* sin (angle) = y1 - y0 / r1 - r0
2476
                 * ty = ((y1 - y0) / (r1 - r0)) * r1
2477
                 */
2478
0
                ty = y1 + ((y0 - y1) / (r1 - r0)) * r1;
2479
0
                tx = x1 - ((x1 - x0) / (r1 - r0)) * r1;
2480
                /* Now actually calculating the point where the tangent crosses the axis of the larger circle
2481
                 * So we need to know the angle the tangent makes with the axis of the smaller circle
2482
                 * as its the same angle where it crosses the axis of the larger circle.
2483
                 * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
2484
                 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
2485
                 * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
2486
                 * circle
2487
                 */
2488
0
                sinalpha = (y0 - y1) / (r1 - r0);
2489
0
                alpha = asin(sinalpha);
2490
0
                cosalpha = cos(alpha);
2491
0
                intersectx = x1 - (r1 / cosalpha);
2492
0
                intersecty = y1;
2493
2494
0
                p0.x = tx, p0.y = ty;
2495
0
                p1.x = tx - (tx - intersectx) / 2, p1.y = ty - (ty - intersecty) / 2;
2496
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2497
0
                p0.x = intersectx, p0.y = intersecty;
2498
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2499
0
                p1.x = x1 - r1, p1.y = y1;
2500
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2501
0
                p0.x = tx, p0.y = ty;
2502
0
                centre.x = x1, centre.y = y1;
2503
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2504
0
                code = patch_fill(pfs, curve, NULL, NULL);
2505
0
                if (code < 0)
2506
0
                    return code;
2507
2508
0
                if (intersectx > x1 - r2) {
2509
                    /* didn't get all the way to the edge, quadrant 2 is composed of 2 quads :-(
2510
                     * An 'annulus' where the right edge is less than the normal extent and a
2511
                     * quad which is a rectangle with one corner chopped of at an angle.
2512
                     */
2513
0
                    p0.x = x1, p0.y = y1;
2514
0
                    p1.x = intersectx, p1.y = y1 - r2;
2515
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2516
0
                    endx = x1 - r2;
2517
0
                    endy = y1 - (tan ((M_PI / 2) - alpha)) * (intersectx - endx);
2518
0
                    p0.x = intersectx, p0.y = y1;
2519
0
                    p1.x = x1 - r2, p1.y = endy;
2520
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2521
0
                    p0.x = x1 - r2, p0.y = y0 - r2;
2522
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2523
0
                    p1.x = intersectx, p1.y = p0.y;
2524
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2525
0
                    p0.x = intersectx, p0.y = y1;
2526
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2527
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2528
0
                    if (code < 0)
2529
0
                        return code;
2530
2531
0
                } else {
2532
                    /* Quadrant 2 is a normal quarter annulua */
2533
0
                    p0.x = x1, p0.y = y1;
2534
0
                    p1.x = x1 - r2, p1.y = y1 - r2;
2535
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2536
0
                }
2537
2538
                /* Q3 is always a full annulus... */
2539
0
                p0.x = x1, p0.y = y1;
2540
0
                p1.x = x1 + r2, p1.y = y1 - r2;
2541
0
                draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2542
2543
                /* alpha is now the angle between the x axis and the tangent to the
2544
                 * circles.
2545
                 */
2546
0
                alpha = (M_PI / 2) - alpha;
2547
0
                cosalpha = cos(alpha);
2548
0
                endy = y1 + (r1 / cosalpha);
2549
0
                endx = x1;
2550
2551
0
                p0.x = tx, p0.y = ty;
2552
0
                p1.x = endx + ((tx - endx) / 2), p1.y = endy - ((endy - ty) / 2);
2553
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2554
0
                p0.x = endx, p0.y = endy;
2555
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2556
0
                p1.x = x1, p1.y = y1 + r1;
2557
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2558
0
                p0.x = tx, p0.y = ty;
2559
0
                centre.x = x1, centre.y = y1;
2560
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2561
0
                code = patch_fill(pfs, curve, NULL, NULL);
2562
0
                if (code < 0)
2563
0
                    return code;
2564
2565
                /* Q0 is simimlar to Q2, either a full quarter annulus
2566
                 * or a partial one, depending on where the tangent crosses
2567
                 * the y axis
2568
                 */
2569
0
                tanalpha = tan(alpha);
2570
0
                intersecty = y1 + tanalpha * (r2 + (x1 - intersectx));
2571
0
                intersectx = x1 + r2;
2572
2573
0
                if (endy < y1 + r2) {
2574
                    /* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-(
2575
                     * An 'annulus' where the right edge is less than the normal extent and a
2576
                     * quad which is a rectangle with one corner chopped of at an angle.
2577
                     */
2578
0
                    p0.x = x1, p0.y = y1;
2579
0
                    p1.x = x1 + r2, p1.y = endy;
2580
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2581
0
                    p0.x = x1, p0.y = y1 + r1;
2582
0
                    p1.x = x1, p1.y = endy;
2583
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2584
0
                    p0.x = x1 + r2, p0.y = intersecty;
2585
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2586
0
                    p1.x = p0.x, p1.y = y1 + r1;
2587
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2588
0
                    p0.x = x1, p0.y = y1 + r1;
2589
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2590
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2591
0
                    if (code < 0)
2592
0
                        return code;
2593
0
                } else {
2594
                    /* Quadrant 0 is a normal quarter annulua */
2595
0
                    p0.x = x1, p0.y = y1;
2596
0
                    p1.x = x1 + r2, p1.y = y1 + r2;
2597
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2598
0
                }
2599
0
                break;
2600
0
            case 2:
2601
                /* We have two four-sided elements, from the tangent point
2602
                 * each side, to the point where the tangent crosses an
2603
                 * axis of the larger circle. A line back to the edge
2604
                 * of the larger circle, a line to the point where an axis
2605
                 * crosses the smaller circle, then an arc back to the starting point.
2606
                 */
2607
                /* Figure out the tangent point */
2608
                /* sin (angle) = y1 - y0 / r1 - r0
2609
                 * ty = ((y1 - y0) / (r1 - r0)) * r1
2610
                 */
2611
0
                ty = y1 - ((y1 - y0) / (r1 - r0)) * r1;
2612
0
                tx = x1 - ((x1 - x0) / (r1 - r0)) * r1;
2613
                /* Now actually calculating the point where the tangent crosses the axis of the larger circle
2614
                 * So we need to know the angle the tangent makes with the axis of the smaller circle
2615
                 * as its the same angle where it crosses the axis of the larger circle.
2616
                 * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
2617
                 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
2618
                 * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
2619
                 * circle
2620
                 */
2621
0
                sinalpha = (y1 - y0) / (r1 - r0);
2622
0
                alpha = asin(sinalpha);
2623
0
                cosalpha = cos(alpha);
2624
0
                intersectx = x1 - (r1 / cosalpha);
2625
0
                intersecty = y1;
2626
2627
0
                p0.x = tx, p0.y = ty;
2628
0
                p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2;
2629
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2630
0
                p0.x = intersectx, p0.y = intersecty;
2631
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2632
0
                p1.x = x1 - r1, p1.y = y1;
2633
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2634
0
                p0.x = tx, p0.y = ty;
2635
0
                centre.x = x1, centre.y = y1;
2636
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2637
0
                code = patch_fill(pfs, curve, NULL, NULL);
2638
0
                if (code < 0)
2639
0
                    return code;
2640
0
                if (intersectx > x1 - r2) {
2641
                    /* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-(
2642
                     * An 'annulus' where the right edge is less than the normal extent and a
2643
                     * quad which is a rectangle with one corner chopped of at an angle.
2644
                     */
2645
0
                    p0.x = x1, p0.y = y1;
2646
0
                    p1.x = intersectx, p1.y = y1 + r2;
2647
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2648
0
                    endy = y1+r2;
2649
0
                    endx = intersectx - ((endy - intersecty) / (tan ((M_PI / 2) - alpha)));
2650
0
                    p0.x = intersectx, p0.y = y1;
2651
0
                    p1.x = endx, p1.y = endy;
2652
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2653
0
                    p0.x = x1 - r1, p0.y = endy;
2654
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2655
0
                    p1.x = x1 - r1, p1.y = y1;
2656
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2657
0
                    p0.x = intersectx, p0.y = y1;
2658
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2659
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2660
0
                    if (code < 0)
2661
0
                        return code;
2662
0
                } else {
2663
                    /* Quadrant 1 is a normal quarter annulua */
2664
0
                    p0.x = x1, p0.y = y1;
2665
0
                    p1.x = x1 - r2, p1.y = y1 + r2;
2666
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2667
0
                }
2668
2669
                /* Q0 is always a full annulus... */
2670
0
                p0.x = x1, p0.y = y1;
2671
0
                p1.x = x1 + r2, p1.y = y1 + r2;
2672
0
                if (p1.y < 0)
2673
0
                    p1.y = 0;
2674
0
                draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2675
2676
                /* alpha is now the angle between the x axis and the tangent to the
2677
                 * circles.
2678
                 */
2679
0
                alpha = (M_PI / 2) - alpha;
2680
0
                cosalpha = cos(alpha);
2681
0
                endy = y1 - (r1 / cosalpha);
2682
0
                endx = x1;
2683
2684
0
                p0.x = tx, p0.y = ty;
2685
0
                p1.x = endx + ((endx - tx) / 2), p1.y = endy - ((ty - endy) / 2);
2686
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2687
0
                p0.x = endx, p0.y = endy;
2688
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2689
0
                p1.x = x1, p1.y = y1 - r1;
2690
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2691
0
                p0.x = tx, p0.y = ty;
2692
0
                centre.x = x1, centre.y = y1;
2693
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2694
0
                code = patch_fill(pfs, curve, NULL, NULL);
2695
0
                if (code < 0)
2696
0
                    return code;
2697
2698
                /* Q3 is simimlar to Q1, either a full quarter annulus
2699
                 * or a partial one, depending on where the tangent crosses
2700
                 * the y axis
2701
                 */
2702
0
                tanalpha = tan(alpha);
2703
0
                intersecty = y1 - tanalpha * (r2 + (x1 - intersectx));
2704
0
                intersectx = x1 + r2;
2705
2706
0
                if (endy > y1 - r2) {
2707
                    /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-(
2708
                     * An 'annulus' where the right edge is less than the normal extent and a
2709
                     * quad which is a rectangle with one corner chopped of at an angle.
2710
                     */
2711
0
                    p0.x = x1, p0.y = y1;
2712
0
                    p1.x = x1 + r2, p1.y = endy;
2713
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2714
0
                    p0.x = x1, p0.y = y1 - r1;
2715
0
                    p1.x = x1, p1.y = endy;
2716
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2717
0
                    p0.x = x1 + r2, p0.y = intersecty;
2718
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2719
0
                    p1.x = p0.x, p1.y = y1 - r1;
2720
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2721
0
                    p0.x = x1, p0.y = y1 - r1;
2722
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2723
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2724
0
                    if (code < 0)
2725
0
                        return code;
2726
0
                } else {
2727
                    /* Quadrant 1 is a normal quarter annulua */
2728
0
                    p0.x = x1, p0.y = y1;
2729
0
                    p1.x = x1 + r2, p1.y = y1 - r2;
2730
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2731
0
                }
2732
0
                break;
2733
0
            case 3:
2734
                /* We have two four-sided elements, from the tangent point
2735
                 * each side, to the point where the tangent crosses an
2736
                 * axis of the larger circle. A line back to the edge
2737
                 * of the larger circle, a line to the point where an axis
2738
                 * crosses the smaller circle, then an arc back to the starting point.
2739
                 */
2740
                /* Figure out the tangent point */
2741
                /* sin (angle) = y1 - y0 / r1 - r0
2742
                 * ty = ((y1 - y0) / (r1 - r0)) * r1
2743
                 */
2744
0
                ty = y1 - ((y1 - y0) / (r1 - r0)) * r1;
2745
0
                tx = x1 + ((x0 - x1) / (r1 - r0)) * r1;
2746
                /* Now actually calculating the point where the tangent crosses the axis of the larger circle
2747
                 * So we need to know the angle the tangent makes with the axis of the smaller circle
2748
                 * as its the same angle where it crosses the axis of the larger circle.
2749
                 * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0
2750
                 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse
2751
                 * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger
2752
                 * circle
2753
                 */
2754
0
                sinalpha = (y1 - y0) / (r1 - r0);
2755
0
                alpha = asin(sinalpha);
2756
0
                cosalpha = cos(alpha);
2757
0
                intersectx = x1 + (r1 / cosalpha);
2758
0
                intersecty = y1;
2759
2760
0
                p0.x = tx, p0.y = ty;
2761
0
                p1.x = tx + (intersectx - tx) / 2, p1.y = ty + (intersecty - ty) / 2;
2762
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2763
0
                p0.x = intersectx, p0.y = intersecty;
2764
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2765
0
                p1.x = x1 + r1, p1.y = y1;
2766
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2767
0
                p0.x = tx, p0.y = ty;
2768
0
                centre.x = x1, centre.y = y1;
2769
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2770
0
                code = patch_fill(pfs, curve, NULL, NULL);
2771
0
                if (code < 0)
2772
0
                    return code;
2773
0
                if (intersectx < x1 + r2) {
2774
                    /* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-(
2775
                     * An 'annulus' where the right edge is less than the normal extent and a
2776
                     * quad which is a rectangle with one corner chopped of at an angle.
2777
                     */
2778
0
                    p0.x = x1, p0.y = y1;
2779
0
                    p1.x = intersectx, p1.y = y1 + r2;
2780
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2781
0
                    endy = y1 + r2;
2782
0
                    endx = intersectx + ((endy - intersecty) / (tan ((M_PI / 2) - alpha)));
2783
0
                    p0.x = intersectx, p0.y = y1;
2784
0
                    p1.x = endx, p1.y = endy;
2785
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2786
0
                    p0.x = x1 + r1, p0.y = endy;
2787
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2788
0
                    p1.x = x1 + r1, p1.y = y1;
2789
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2790
0
                    p0.x = intersectx, p0.y = y1;
2791
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2792
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2793
0
                    if (code < 0)
2794
0
                        return code;
2795
2796
0
                } else {
2797
                    /* Quadrant 0 is a normal quarter annulua */
2798
0
                    p0.x = x1, p0.y = y1;
2799
0
                    p1.x = x1 + r2, p1.y = y1 + r2;
2800
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2801
0
                }
2802
                /* Q1 is always a full annulus... */
2803
0
                p0.x = x1, p0.y = y1;
2804
0
                p1.x = x1 - r2, p1.y = y1 + r2;
2805
0
                draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2806
2807
                /* alpha is now the angle between the x axis and the tangent to the
2808
                 * circles.
2809
                 */
2810
0
                alpha = (M_PI / 2) - alpha;
2811
0
                cosalpha = cos(alpha);
2812
0
                endy = y1 - (r1 / cosalpha);
2813
0
                endx = x1;
2814
2815
0
                p0.x = tx, p0.y = ty;
2816
0
                p1.x = endx + ((tx - endx) / 2), p1.y = endy + ((ty - endy) / 2);
2817
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2818
0
                p0.x = endx, p0.y = endy;
2819
0
                patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2820
0
                p1.x = x1, p1.y = y1 - r1;
2821
0
                patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2822
0
                p0.x = tx, p0.y = ty;
2823
0
                centre.x = x1, centre.y = y1;
2824
0
                patch_curveto(&pfs->pgs->ctm, &centre, &p1, &p0, &curve[3], t0);
2825
0
                code = patch_fill(pfs, curve, NULL, NULL);
2826
0
                if (code < 0)
2827
0
                    return code;
2828
2829
                /* Q3 is simimlar to Q1, either a full quarter annulus
2830
                 * or a partial one, depending on where the tangent crosses
2831
                 * the y axis
2832
                 */
2833
0
                tanalpha = tan(alpha);
2834
0
                intersecty = y1 - tanalpha * (r2 + (intersectx - x1));
2835
0
                intersectx = x1 - r2;
2836
2837
0
                if (endy > y1 - r2) {
2838
                    /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-(
2839
                     * An 'annulus' where the right edge is less than the normal extent and a
2840
                     * quad which is a rectangle with one corner chopped of at an angle.
2841
                     */
2842
0
                    p0.x = x1, p0.y = y1;
2843
0
                    p1.x = x1 - r2, p1.y = endy;
2844
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2845
0
                    p0.x = x1, p0.y = y1 - r1;
2846
0
                    p1.x = x1, p1.y = endy;
2847
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0);
2848
0
                    p0.x = x1 - r2, p0.y = intersecty;
2849
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0);
2850
0
                    p1.x = p0.x, p1.y = y1 - r1;
2851
0
                    patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0);
2852
0
                    p0.x = x1, p0.y = y1 - r1;
2853
0
                    patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0);
2854
0
                    code = patch_fill(pfs, curve, NULL, NULL);
2855
0
                    if (code < 0)
2856
0
                        return code;
2857
0
                } else {
2858
                    /* Quadrant 1 is a normal quarter annulua */
2859
0
                    p0.x = x1, p0.y = y1;
2860
0
                    p1.x = x1 - r2, p1.y = y1 - r2;
2861
0
                    draw_quarter_annulus(pfs, &p0, r1, &p1, t0);
2862
0
                }
2863
0
                break;
2864
0
        }
2865
0
    }
2866
0
    return 0;
2867
0
}
2868
2869
static int
2870
R_outer_circle(patch_fill_state_t *pfs, const gs_rect *rect,
2871
        double x0, double y0, double r0,
2872
        double x1, double y1, double r1,
2873
        double *x2, double *y2, double *r2)
2874
0
{
2875
0
    double dx = x1 - x0, dy = y1 - y0;
2876
0
    double sp, sq, s;
2877
2878
    /* Compute a cone circle, which contacts the rect externally. */
2879
    /* Don't bother with all 4 sides of the rect,
2880
       just do with the X or Y span only,
2881
       so it's not an exact contact, sorry. */
2882
0
    if (any_abs(dx) > any_abs(dy)) {
2883
        /* Solving :
2884
            x0 + (x1 - x0) * sq + r0 + (r1 - r0) * sq == bbox_px
2885
            (x1 - x0) * sp + (r1 - r0) * sp == bbox_px - x0 - r0
2886
            sp = (bbox_px - x0 - r0) / (x1 - x0 + r1 - r0)
2887
2888
            x0 + (x1 - x0) * sq - r0 - (r1 - r0) * sq == bbox_qx
2889
            (x1 - x0) * sq - (r1 - r0) * sq == bbox_x - x0 + r0
2890
            sq = (bbox_x - x0 + r0) / (x1 - x0 - r1 + r0)
2891
         */
2892
0
        if (x1 - x0 + r1 - r0 ==  0) /* We checked for obtuse cone. */
2893
0
            return_error(gs_error_unregistered); /* Must not happen. */
2894
0
        if (x1 - x0 - r1 + r0 ==  0) /* We checked for obtuse cone. */
2895
0
            return_error(gs_error_unregistered); /* Must not happen. */
2896
0
        sp = (rect->p.x - x0 - r0) / (x1 - x0 + r1 - r0);
2897
0
        sq = (rect->q.x - x0 + r0) / (x1 - x0 - r1 + r0);
2898
0
    } else {
2899
        /* Same by Y. */
2900
0
        if (y1 - y0 + r1 - r0 ==  0) /* We checked for obtuse cone. */
2901
0
            return_error(gs_error_unregistered); /* Must not happen. */
2902
0
        if (y1 - y0 - r1 + r0 ==  0) /* We checked for obtuse cone. */
2903
0
            return_error(gs_error_unregistered); /* Must not happen. */
2904
0
        sp = (rect->p.y - y0 - r0) / (y1 - y0 + r1 - r0);
2905
0
        sq = (rect->q.y - y0 + r0) / (y1 - y0 - r1 + r0);
2906
0
    }
2907
0
    if (sp >= 1 && sq >= 1)
2908
0
        s = max(sp, sq);
2909
0
    else if(sp >= 1)
2910
0
        s = sp;
2911
0
    else if (sq >= 1)
2912
0
        s = sq;
2913
0
    else {
2914
        /* The circle 1 is outside the rect, use it. */
2915
0
        s = 1;
2916
0
    }
2917
0
    if (r0 + (r1 - r0) * s < 0) {
2918
        /* Passed the cone apex, use the apex. */
2919
0
        s = r0 / (r0 - r1);
2920
0
        *r2 = 0;
2921
0
    } else
2922
0
        *r2 = r0 + (r1 - r0) * s;
2923
0
    *x2 = x0 + (x1 - x0) * s;
2924
0
    *y2 = y0 + (y1 - y0) * s;
2925
0
    return 0;
2926
0
}
2927
2928
static double
2929
R_rect_radius(const gs_rect *rect, double x0, double y0)
2930
24
{
2931
24
    double d, dd;
2932
2933
24
    dd = hypot(rect->p.x - x0, rect->p.y - y0);
2934
24
    d = hypot(rect->p.x - x0, rect->q.y - y0);
2935
24
    dd = max(dd, d);
2936
24
    d = hypot(rect->q.x - x0, rect->q.y - y0);
2937
24
    dd = max(dd, d);
2938
24
    d = hypot(rect->q.x - x0, rect->p.y - y0);
2939
24
    dd = max(dd, d);
2940
24
    return dd;
2941
24
}
2942
2943
static int
2944
R_fill_triangle_new(patch_fill_state_t *pfs, const gs_rect *rect,
2945
    double x0, double y0, double x1, double y1, double x2, double y2, double t)
2946
0
{
2947
0
    shading_vertex_t p0, p1, p2;
2948
0
    patch_color_t *c;
2949
0
    int code;
2950
0
    reserve_colors(pfs, &c, 1); /* Can't fail */
2951
2952
0
    p0.c = c;
2953
0
    p1.c = c;
2954
0
    p2.c = c;
2955
0
    code = gs_point_transform2fixed(&pfs->pgs->ctm, x0, y0, &p0.p);
2956
0
    if (code >= 0)
2957
0
        code = gs_point_transform2fixed(&pfs->pgs->ctm, x1, y1, &p1.p);
2958
0
    if (code >= 0)
2959
0
        code = gs_point_transform2fixed(&pfs->pgs->ctm, x2, y2, &p2.p);
2960
0
    if (code >= 0) {
2961
0
        c->t[0] = c->t[1] = t;
2962
0
        patch_resolve_color(c, pfs);
2963
0
        code = mesh_triangle(pfs, &p0, &p1, &p2);
2964
0
    }
2965
0
    release_colors(pfs, pfs->color_stack, 1);
2966
0
    return code;
2967
0
}
2968
2969
static int
2970
R_obtuse_cone(patch_fill_state_t *pfs, const gs_rect *rect,
2971
        double x0, double y0, double r0,
2972
        double x1, double y1, double r1, double t0, double r_rect)
2973
0
{
2974
0
    double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0);
2975
0
    double d = hypot(dx, dy);
2976
    /* Assuming dr > d / 3 && d > dr + 1e-7 * (d + dr), see the caller. */
2977
0
    double r = r_rect * 1.4143; /* A few bigger than sqrt(2). */
2978
0
    double ax, ay, as; /* Cone apex. */
2979
0
    double g0; /* The distance from apex to the tangent point of the 0th circle. */
2980
0
    int code;
2981
2982
0
    as = r0 / (r0 - r1);
2983
0
    ax = x0 + (x1 - x0) * as;
2984
0
    ay = y0 + (y1 - y0) * as;
2985
0
    g0 = sqrt(dx * dx + dy * dy - dr * dr) * as;
2986
0
    if (g0 < 1e-7 * r0) {
2987
        /* Nearly degenerate, replace with half-plane. */
2988
        /* Restrict the half plane with triangle, which covers the rect. */
2989
0
        gs_point p0, p1, p2; /* Right tangent limit, apex limit, left tangent linit,
2990
                                (right, left == when looking from the apex). */
2991
2992
0
        p0.x = ax - dy * r / d;
2993
0
        p0.y = ay + dx * r / d;
2994
0
        p1.x = ax - dx * r / d;
2995
0
        p1.y = ay - dy * r / d;
2996
0
        p2.x = ax + dy * r / d;
2997
0
        p2.y = ay - dx * r / d;
2998
        /* Split into 2 triangles at the apex,
2999
           so that the apex is preciselly covered.
3000
           Especially important when it is not exactly degenerate. */
3001
0
        code = R_fill_triangle_new(pfs, rect, ax, ay, p0.x, p0.y, p1.x, p1.y, t0);
3002
0
        if (code < 0)
3003
0
            return code;
3004
0
        return R_fill_triangle_new(pfs, rect, ax, ay, p1.x, p1.y, p2.x, p2.y, t0);
3005
0
    } else {
3006
        /* Compute the "limit" circle so that its
3007
           tangent points are outside the rect. */
3008
        /* Note: this branch is executed when the condition above is false :
3009
           g0 >= 1e-7 * r0 .
3010
           We believe that computing this branch with doubles
3011
           provides enough precision after converting coordinates into 'fixed',
3012
           and that the limit circle radius is not dramatically big.
3013
         */
3014
0
        double es, er; /* The limit circle parameter, radius. */
3015
0
        double ex, ey; /* The limit circle centrum. */
3016
3017
0
        es = as - as * r / g0; /* Always negative. */
3018
0
        er = r * r0 / g0 ;
3019
0
        ex = x0 + dx * es;
3020
0
        ey = y0 + dy * es;
3021
        /* Fill the annulus: */
3022
0
        code = R_tensor_annulus(pfs, x0, y0, r0, t0, ex, ey, er, t0);
3023
0
        if (code < 0)
3024
0
            return code;
3025
        /* Fill entire ending circle to ensure entire rect is covered. */
3026
0
        return R_tensor_annulus(pfs, ex, ey, er, t0, ex, ey, 0, t0);
3027
0
    }
3028
0
}
3029
3030
static int
3031
R_tensor_cone_apex(patch_fill_state_t *pfs, const gs_rect *rect,
3032
        double x0, double y0, double r0,
3033
        double x1, double y1, double r1, double t)
3034
0
{
3035
0
    double as = r0 / (r0 - r1);
3036
0
    double ax = x0 + (x1 - x0) * as;
3037
0
    double ay = y0 + (y1 - y0) * as;
3038
3039
0
    return R_tensor_annulus(pfs, x1, y1, r1, t, ax, ay, 0, t);
3040
0
}
3041
3042
/*
3043
 * A map of this code:
3044
 *
3045
 * R_extensions
3046
 * |-> (R_rect_radius)
3047
 * |-> (R_outer_circle)
3048
 * |-> R_obtuse_cone
3049
 * |   |-> R_fill_triangle_new
3050
 * |   |   '-> mesh_triangle
3051
 * |   |       '-> mesh_triangle_rec <--.
3052
 * |   |           |--------------------'
3053
 * |   |           |-> small_mesh_triangle
3054
 * |   |           |   '-> fill_triangle
3055
 * |   |           |       '-> triangle_by_4 <--.
3056
 * |   |           |           |----------------'
3057
 * |   |           |           |-> constant_color_triangle
3058
 * |   |           |           |-> make_wedge_median (etc)
3059
 * |   |           '-----------+--------------------.
3060
 * |   '-------------------.                        |
3061
 * |-> R_tensor_cone_apex  |                        |
3062
 * |   '-------------------+                        |
3063
 * '-> R_tensor_annulus <--'                       \|/
3064
 *     |-> (make_quadrant_arc)                      |
3065
 *     '-> patch_fill                               |
3066
 *         |-> fill_patch <--.                      |
3067
 *         |   |-------------'                      |
3068
 *         |   |------------------------------------+
3069
 *         |   '-> fill_stripe                      |
3070
 *         |       |-----------------------.        |
3071
 *         |      \|/                      |        |
3072
 *         |-> fill_wedges                 |        |
3073
 *             '-> fill_wedges_aux <--.    |        |
3074
 *                 |------------------'   \|/       |
3075
 *                 |----------------> mesh_padding  '
3076
 *                 |                  '----------------------------------.
3077
 *                 '-> wedge_by_triangles <--.      .                    |
3078
 *                     |---------------------'      |                    |
3079
 *                     '-> fill_triangle_wedge <----'                    |
3080
 *                         '-> fill_triangle_wedge_aux                   |
3081
 *                             '-> fill_wedge_trap                       |
3082
 *                                 '-> wedge_trap_decompose              |
3083
 *                                     '-> linear_color_trapezoid        |
3084
 *                                         '-> decompose_linear_color <--|
3085
 *                                             |-------------------------'
3086
 *                                             '-> constant_color_trapezoid
3087
 */
3088
static int
3089
R_extensions(patch_fill_state_t *pfs, const gs_shading_R_t *psh, const gs_rect *rect,
3090
        double t0, double t1, bool Extend0, bool Extend1)
3091
47
{
3092
47
    float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1];
3093
47
    double r0 = psh->params.Coords[2];
3094
47
    float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4];
3095
47
    double r1 = psh->params.Coords[5];
3096
47
    double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0);
3097
47
    double d = hypot(dx, dy), r;
3098
47
    int code;
3099
3100
    /* In order for the circles to be nested, one end circle
3101
     * needs to be sufficiently large to cover the entirety
3102
     * of the other end circle. i.e.
3103
     *
3104
     *     max(r0,r1) >= d + min(r0,r1)
3105
     * === min(r0,r1) + dr >= d + min(r0,r1)
3106
     * === dr >= d
3107
     *
3108
     * This, plus a fudge factor for FP operation is what we use below.
3109
     *
3110
     * An "Obtuse Cone" is defined to be one for which the "opening
3111
     * angle" is obtuse.
3112
     *
3113
     * Consider two circles; one at (r0,r0) of radius r0, and one at
3114
     * (r1,r1) of radius r1. These clearly lie on the acute/obtuse
3115
     * boundary. The distance between the centres of these two circles
3116
     * is d = sqr(2.(r0-r1)^2) by pythagoras. Thus d = sqr(2).dr.
3117
     * By observation if d gets longer, we become acute, shorter, obtuse.
3118
     * i.e. if sqr(2).dr > d we are obtuse, if d > sqr(2).dr we are acute.
3119
     * (Thanks to Paul Gardiner for this reasoning).
3120
     *
3121
     * The code below tests (dr > d/3) (i.e. 3.dr > d). This
3122
     * appears to be a factor of 2 and a bit out, so I am confused
3123
     * by it.
3124
     *
3125
     * Either Igor meant something different to the standard meaning
3126
     * of "Obtuse Cone", or he got his maths wrong. Or he was more
3127
     * cunning than I can understand. Leave it as it until we find
3128
     * an actual example that goes wrong.
3129
     */
3130
3131
    /* Tests with Acrobat seem to indicate that it uses a fudge factor
3132
     * of around .0001. (i.e. [1.0001 0 0 0 0 1] is accepted as a
3133
     * non nested circle, but [1.00009 0 0 0 0 1] is a nested one.
3134
     * Approximate the same sort of value here to appease bug 690831.
3135
     */
3136
47
    if (any_abs (dr - d) < 0.001) {
3137
0
        if ((r0 > r1 && Extend0) || (r1 > r0 && Extend1)) {
3138
0
            r = R_rect_radius(rect, x0, y0);
3139
0
            if (r0 < r1)
3140
0
                code = R_tensor_annulus_extend_tangent(pfs, x0, y0, r0, t1, x1, y1, r1, t1, r);
3141
0
            else
3142
0
                code = R_tensor_annulus_extend_tangent(pfs, x1, y1, r1, t0, x0, y0, r0, t0, r);
3143
0
            if (code < 0)
3144
0
                return code;
3145
0
        } else {
3146
0
            if (r0 > r1) {
3147
0
                if (Extend1 && r1 > 0)
3148
0
                    return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1);
3149
0
            }
3150
0
            else {
3151
0
                if (Extend0 && r0 > 0)
3152
0
                    return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0);
3153
0
            }
3154
0
        }
3155
0
    } else
3156
47
    if (dr > d - 1e-4 * (d + dr)) {
3157
        /* Nested circles, or degenerate. */
3158
47
        if (r0 > r1) {
3159
0
            if (Extend0) {
3160
0
                r = R_rect_radius(rect, x0, y0);
3161
0
                if (r > r0) {
3162
0
                    code = R_tensor_annulus(pfs, x0, y0, r, t0, x0, y0, r0, t0);
3163
0
                    if (code < 0)
3164
0
                        return code;
3165
0
                }
3166
0
            }
3167
0
            if (Extend1 && r1 > 0)
3168
0
                return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1);
3169
47
        } else {
3170
47
            if (Extend1) {
3171
24
                r = R_rect_radius(rect, x1, y1);
3172
24
                if (r > r1) {
3173
24
                    code = R_tensor_annulus(pfs, x1, y1, r, t1, x1, y1, r1, t1);
3174
24
                    if (code < 0)
3175
0
                        return code;
3176
24
                }
3177
24
            }
3178
47
            if (Extend0 && r0 > 0)
3179
0
                return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0);
3180
47
        }
3181
47
    } else if (dr > d / 3) {
3182
        /* Obtuse cone. */
3183
0
        if (r0 > r1) {
3184
0
            if (Extend0) {
3185
0
                r = R_rect_radius(rect, x0, y0);
3186
0
                code = R_obtuse_cone(pfs, rect, x0, y0, r0, x1, y1, r1, t0, r);
3187
0
                if (code < 0)
3188
0
                    return code;
3189
0
            }
3190
0
            if (Extend1 && r1 != 0)
3191
0
                return R_tensor_cone_apex(pfs, rect, x0, y0, r0, x1, y1, r1, t1);
3192
0
            return 0;
3193
0
        } else {
3194
0
            if (Extend1) {
3195
0
                r = R_rect_radius(rect, x1, y1);
3196
0
                code = R_obtuse_cone(pfs, rect, x1, y1, r1, x0, y0, r0, t1, r);
3197
0
                if (code < 0)
3198
0
                    return code;
3199
0
            }
3200
0
            if (Extend0 && r0 != 0)
3201
0
                return R_tensor_cone_apex(pfs, rect, x1, y1, r1, x0, y0, r0, t0);
3202
0
        }
3203
0
    } else {
3204
        /* Acute cone or cylinder. */
3205
0
        double x2, y2, r2, x3, y3, r3;
3206
3207
0
        if (Extend0) {
3208
0
            code = R_outer_circle(pfs, rect, x1, y1, r1, x0, y0, r0, &x3, &y3, &r3);
3209
0
            if (code < 0)
3210
0
                return code;
3211
0
            if (x3 != x1 || y3 != y1) {
3212
0
                code = R_tensor_annulus(pfs, x0, y0, r0, t0, x3, y3, r3, t0);
3213
0
                if (code < 0)
3214
0
                    return code;
3215
0
            }
3216
0
        }
3217
0
        if (Extend1) {
3218
0
            code = R_outer_circle(pfs, rect, x0, y0, r0, x1, y1, r1, &x2, &y2, &r2);
3219
0
            if (code < 0)
3220
0
                return code;
3221
0
            if (x2 != x0 || y2 != y0) {
3222
0
                code = R_tensor_annulus(pfs, x1, y1, r1, t1, x2, y2, r2, t1);
3223
0
                if (code < 0)
3224
0
                    return code;
3225
0
            }
3226
0
        }
3227
0
    }
3228
47
    return 0;
3229
47
}
3230
3231
static int
3232
R_fill_rect_with_const_color(patch_fill_state_t *pfs, const gs_fixed_rect *clip_rect, float t)
3233
0
{
3234
#if 0 /* Disabled because the clist writer device doesn't pass
3235
         the clipping path with fill_recatangle. */
3236
    patch_color_t pc;
3237
    const gs_color_space *pcs = pfs->direct_space;
3238
    gx_device_color dc;
3239
    int code;
3240
3241
    code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values);
3242
    if (code < 0)
3243
        return code;
3244
    pcs->type->restrict_color(&pc.cc, pcs);
3245
    code = patch_color_to_device_color(pfs, &pc, &dc);
3246
    if (code < 0)
3247
        return code;
3248
    return gx_fill_rectangle_device_rop(fixed2int_pixround(clip_rect->p.x), fixed2int_pixround(clip_rect->p.y),
3249
                                        fixed2int_pixround(clip_rect->q.x) - fixed2int_pixround(clip_rect->p.x),
3250
                                        fixed2int_pixround(clip_rect->q.y) - fixed2int_pixround(clip_rect->p.y),
3251
                                        &dc, pfs->dev, pfs->pgs->log_op);
3252
#else
3253
    /* Can't apply fill_rectangle, because the clist writer device doesn't pass
3254
       the clipping path with fill_recatangle. Convert into trapezoids instead.
3255
    */
3256
0
    quadrangle_patch p;
3257
0
    shading_vertex_t pp[2][2];
3258
0
    const gs_color_space *pcs = pfs->direct_space;
3259
0
    patch_color_t pc;
3260
0
    int code;
3261
3262
0
    code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values);
3263
0
    if (code < 0)
3264
0
        return code;
3265
0
    pcs->type->restrict_color(&pc.cc, pcs);
3266
0
    pc.t[0] = pc.t[1] = t;
3267
0
    pp[0][0].p = clip_rect->p;
3268
0
    pp[0][1].p.x = clip_rect->q.x;
3269
0
    pp[0][1].p.y = clip_rect->p.y;
3270
0
    pp[1][0].p.x = clip_rect->p.x;
3271
0
    pp[1][0].p.y = clip_rect->q.y;
3272
0
    pp[1][1].p = clip_rect->q;
3273
0
    pp[0][0].c = pp[0][1].c = pp[1][0].c = pp[1][1].c = &pc;
3274
0
    p.p[0][0] = &pp[0][0];
3275
0
    p.p[0][1] = &pp[0][1];
3276
0
    p.p[1][0] = &pp[1][0];
3277
0
    p.p[1][1] = &pp[1][1];
3278
0
    return constant_color_quadrangle(pfs, &p, false);
3279
0
#endif
3280
0
}
3281
3282
typedef struct radial_shading_attrs_s {
3283
    double x0, y0;
3284
    double x1, y1;
3285
    double span[2][2];
3286
    double apex;
3287
    bool have_apex;
3288
    bool have_root[2]; /* ongoing contact, outgoing contact. */
3289
    bool outer_contact[2];
3290
    gs_point p[6]; /* 4 corners of the rectangle, p[4] = p[0], p[5] = p[1] */
3291
} radial_shading_attrs_t;
3292
3293
448
#define Pw2(a) ((a)*(a))
3294
3295
static void
3296
radial_shading_external_contact(radial_shading_attrs_t *rsa, int point_index, double t, double r0, double r1, bool at_corner, int root_index)
3297
64
{
3298
64
    double cx = rsa->x0 + (rsa->x1 - rsa->x0) * t;
3299
64
    double cy = rsa->y0 + (rsa->y1 - rsa->y0) * t;
3300
64
    double rx = rsa->p[point_index].x - cx;
3301
64
    double ry = rsa->p[point_index].y - cy;
3302
64
    double dx = rsa->p[point_index - 1].x - rsa->p[point_index].x;
3303
64
    double dy = rsa->p[point_index - 1].y - rsa->p[point_index].y;
3304
3305
64
    if (at_corner) {
3306
64
        double Dx = rsa->p[point_index + 1].x - rsa->p[point_index].x;
3307
64
        double Dy = rsa->p[point_index + 1].y - rsa->p[point_index].y;
3308
64
        bool b1 = (dx * rx + dy * ry >= 0);
3309
64
        bool b2 = (Dx * rx + Dy * ry >= 0);
3310
3311
64
        if (b1 & b2)
3312
12
            rsa->outer_contact[root_index] = true;
3313
64
    } else {
3314
0
        if (rx * dy - ry * dx < 0)
3315
0
            rsa->outer_contact[root_index] = true;
3316
0
    }
3317
64
}
3318
3319
static void
3320
store_roots(radial_shading_attrs_t *rsa, const bool have_root[2], const double t[2], double r0, double r1, int point_index, bool at_corner)
3321
128
{
3322
128
    int i;
3323
3324
384
    for (i = 0; i < 2; i++) {
3325
256
        bool good_root;
3326
3327
256
        if (!have_root[i])
3328
128
            continue;
3329
128
        good_root = (!rsa->have_apex || (rsa->apex <= 0 || r0 == 0 ? t[i] >= rsa->apex : t[i] <= rsa->apex));
3330
128
        if (good_root) {
3331
64
            radial_shading_external_contact(rsa, point_index, t[i], r0, r1, at_corner, i);
3332
64
            if (!rsa->have_root[i]) {
3333
4
                rsa->span[i][0] = rsa->span[i][1] = t[i];
3334
4
                rsa->have_root[i] = true;
3335
60
            } else {
3336
60
                if (rsa->span[i][0] > t[i])
3337
3
                    rsa->span[i][0] = t[i];
3338
60
                if (rsa->span[i][1] < t[i])
3339
9
                    rsa->span[i][1] = t[i];
3340
60
            }
3341
64
        }
3342
128
    }
3343
128
}
3344
3345
static void
3346
compute_radial_shading_span_extended_side(radial_shading_attrs_t *rsa, double r0, double r1, int point_index)
3347
64
{
3348
64
    double cc, c;
3349
64
    bool have_root[2] = {false, false};
3350
64
    double t[2];
3351
64
    bool by_x = (rsa->p[point_index].x != rsa->p[point_index + 1].x);
3352
64
    int i;
3353
3354
    /* As t moves from 0 to 1, the circles move from r0 to r1, and from
3355
     * from position p0 to py. For simplicity, adjust so that p0 is at
3356
     * the origin. Consider the projection of the circle drawn at any given
3357
     * time onto the x axis. The range of points would be:
3358
     * p1x*t +/- (r0+(r1-r0)*t). We are interested in the first (and last)
3359
     * moments when the range includes a point c on the x axis. So solve for:
3360
     * p1x*t +/- (r0+(r1-r0)*t) = c. Let cc = p1x.
3361
     * So p1x*t0 + (r1-r0)*t0 = c - r0 => t0 = (c - r0)/(p1x + r1 - r0)
3362
     *    p1x*t1 - (r1-r0)*t1 = c + r0 => t1 = (c + r0)/(p1x - r1 + r0)
3363
     */
3364
64
    if (by_x) {
3365
32
        c = rsa->p[point_index].x - rsa->x0;
3366
32
        cc = rsa->x1 - rsa->x0;
3367
32
    } else {
3368
32
        c = rsa->p[point_index].y - rsa->y0;
3369
32
        cc = rsa->y1 - rsa->y0;
3370
32
    }
3371
64
    t[0] = (c - r0) / (cc + r1 - r0);
3372
64
    t[1] = (c + r0) / (cc - r1 + r0);
3373
64
    if (t[0] > t[1]) {
3374
52
        c    = t[0];
3375
52
        t[0] = t[1];
3376
52
        t[1] = c;
3377
52
    }
3378
192
    for (i = 0; i < 2; i++) {
3379
128
        double d, d0, d1;
3380
3381
128
        if (by_x) {
3382
64
            d = rsa->y1 - rsa->y0 + r0 + (r1 - r0) * t[i];
3383
64
            d0 = rsa->p[point_index].y;
3384
64
            d1 = rsa->p[point_index + 1].y;
3385
64
        } else {
3386
64
            d = rsa->x1 - rsa->x0 + r0 + (r1 - r0) * t[i];
3387
64
            d0 = rsa->p[point_index].x;
3388
64
            d1 = rsa->p[point_index + 1].x;
3389
64
        }
3390
128
        if (d1 > d0 ? d0 <= d && d <= d1 : d1 <= d && d <= d0)
3391
0
            have_root[i] = true;
3392
128
    }
3393
64
    store_roots(rsa, have_root, t, r0, r1, point_index, false);
3394
64
}
3395
3396
static int
3397
compute_radial_shading_span_extended_point(radial_shading_attrs_t *rsa, double r0, double r1, int point_index)
3398
64
{
3399
    /* As t moves from 0 to 1, the circles move from r0 to r1, and from
3400
     * from position p0 to py. At any given time t, therefore, we
3401
     * paint the points that are distance r0+(r1-r0)*t from point
3402
     * (p0x+(p1x-p0x)*t,p0y+(p1y-p0y)*t) = P(t).
3403
     *
3404
     * To simplify our algebra, adjust so that (p0x, p0y) is at the origin.
3405
     * To find the time(s) t at which the a point q is painted, we therefore
3406
     * solve for t in:
3407
     *
3408
     * |q-P(t)| = r0+(r1-r0)*t
3409
     *
3410
     *   (qx-p1x*t)^2 + (qy-p1y*t)^2 - (r0+(r1-r0)*t)^2 = 0
3411
     * = qx^2 - 2qx.p1x.t + p1x^2.t^2 + qy^2 - 2qy.p1y.t + p1y^2.t^2 -
3412
     *                                   (r0^2 + 2r0(r1-r0)t + (r1-r0)^2.t^2)
3413
     * =   qx^2 + qy^2 - r0^2
3414
     *   + -2(qx.p1x + qy.p1y + r0(r1-r0)).t
3415
     *   + (p1x^2 + p1y^2 - (r1-r0)^2).t^2
3416
     *
3417
     * So solve using the usual t = (-b +/- SQRT(b^2 - 4ac)) where
3418
     *   a = p1x^2 + p1y^2 - (r1-r0)^2
3419
     *   b = -2(qx.p1x + qy.p1y + r0(r1-r0))
3420
     *   c = qx^2 + qy^2 - r0^2
3421
     */
3422
64
    double p1x = rsa->x1 - rsa->x0;
3423
64
    double p1y = rsa->y1 - rsa->y0;
3424
64
    double qx  = rsa->p[point_index].x - rsa->x0;
3425
64
    double qy  = rsa->p[point_index].y - rsa->y0;
3426
64
    double a   = (Pw2(p1x) + Pw2(p1y) - Pw2(r0 - r1));
3427
64
    bool have_root[2] = {false, false};
3428
64
    double t[2];
3429
3430
64
    if (fabs(a) < 1e-8) {
3431
        /* Linear equation. */
3432
        /* This case is always the ongoing ellipse contact. */
3433
0
        double cx = rsa->x0 - (rsa->x1 - rsa->x0) * r0 / (r1 - r0);
3434
0
        double cy = rsa->y0 - (rsa->y1 - rsa->y0) * r0 / (r1 - r0);
3435
3436
0
        t[0] = (Pw2(qx) + Pw2(qy))/(cx*qx + cy*qy) / 2;
3437
0
        have_root[0] = true;
3438
64
    } else {
3439
        /* Square equation.  No solution if b^2 - 4ac = 0. Equivalently if
3440
         * (b^2)/4 -a.c = 0 === (b/2)^2 - a.c = 0 ===  (-b/2)^2 - a.c = 0 */
3441
64
        double minushalfb = r0*(r1-r0) + p1x*qx + p1y*qy;
3442
64
        double c          = Pw2(qx) + Pw2(qy) - Pw2(r0);
3443
64
        double desc2      = Pw2(minushalfb) - a*c; /* desc2 = 1/4 (b^2-4ac) */
3444
3445
64
        if (desc2 < 0) {
3446
0
            return -1; /* The point is outside the shading coverage.
3447
                          Do not shorten, because we didn't observe it in practice. */
3448
64
        } else {
3449
64
            double desc1 = sqrt(desc2); /* desc1 = 1/2 SQRT(b^2-4ac) */
3450
3451
64
            if (a > 0) {
3452
0
                t[0] = (minushalfb - desc1) / a;
3453
0
                t[1] = (minushalfb + desc1) / a;
3454
64
            } else {
3455
64
                t[0] = (minushalfb + desc1) / a;
3456
64
                t[1] = (minushalfb - desc1) / a;
3457
64
            }
3458
64
            have_root[0] = have_root[1] = true;
3459
64
        }
3460
64
    }
3461
64
    store_roots(rsa, have_root, t, r0, r1, point_index, true);
3462
64
    if (have_root[0] && have_root[1])
3463
64
        return 15;
3464
0
    if (have_root[0])
3465
0
        return 15 - 4;
3466
0
    if (have_root[1])
3467
0
        return 15 - 2;
3468
0
    return -1;
3469
0
}
3470
3471
#undef Pw2
3472
3473
static int
3474
compute_radial_shading_span_extended(radial_shading_attrs_t *rsa, double r0, double r1)
3475
16
{
3476
16
    int span_type0, span_type1;
3477
3478
16
    span_type0 = compute_radial_shading_span_extended_point(rsa, r0, r1, 1);
3479
16
    if (span_type0 == -1)
3480
0
        return -1;
3481
16
    span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 2);
3482
16
    if (span_type0 != span_type1)
3483
0
        return -1;
3484
16
    span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 3);
3485
16
    if (span_type0 != span_type1)
3486
0
        return -1;
3487
16
    span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 4);
3488
16
    if (span_type0 != span_type1)
3489
0
        return -1;
3490
16
    compute_radial_shading_span_extended_side(rsa, r0, r1, 1);
3491
16
    compute_radial_shading_span_extended_side(rsa, r0, r1, 2);
3492
16
    compute_radial_shading_span_extended_side(rsa, r0, r1, 3);
3493
16
    compute_radial_shading_span_extended_side(rsa, r0, r1, 4);
3494
16
    return span_type0;
3495
16
}
3496
3497
static int
3498
compute_radial_shading_span(radial_shading_attrs_t *rsa, float x0, float y0, double r0, float x1, float y1, double r1, const gs_rect * rect)
3499
4
{
3500
    /* If the shading area is much larger than the path bbox,
3501
       we want to shorten the shading for a faster rendering.
3502
       If any point of the path bbox falls outside the shading area,
3503
       our math is not applicable, and we render entire shading.
3504
       If the path bbox is inside the shading area,
3505
       we compute 1 or 2 'spans' - the shading parameter intervals,
3506
       which covers the bbox. For doing that we need to resolve
3507
       a square eqation by the shading parameter
3508
       for each corner of the bounding box,
3509
       and for each side of the shading bbox.
3510
       Note the equation to be solved in the user space.
3511
       Since each equation gives 2 roots (because the points are
3512
       strongly inside the shading area), we will get 2 parameter intervals -
3513
       the 'lower' one corresponds to the first (ongoing) contact of
3514
       the running circle, and the second one corresponds to the last (outgoing) contact
3515
       (like in a sun eclipse; well our sun is rectangular).
3516
3517
       Here are few exceptions.
3518
3519
       First, the equation degenerates when the distance sqrt((x1-x0)^2 + (y1-y0)^2)
3520
       appears equal to r0-r1. In this case the base circles do contact,
3521
       and the running circle does contact at the same point.
3522
       The equation degenerates to a linear one.
3523
       Since we don't want float precision noize to affect the result,
3524
       we compute this condition in 'fixed' coordinates.
3525
3526
       Second, Postscript approximates any circle with 3d order beziers.
3527
       This approximation may give a 2% error.
3528
       Therefore using the precise roots may cause a dropout.
3529
       To prevetn them, we slightly modify the base radii.
3530
       However the sign of modification smartly depends
3531
       on the relative sizes of the base circles,
3532
       and on the contact number. Currently we don't want to
3533
       define and debug the smart optimal logic for that,
3534
       so we simply try all 4 variants for each source equation,
3535
       and use the union of intervals.
3536
3537
       Third, we could compute which quarter of the circle
3538
       really covers the path bbox. Using it we could skip
3539
       rendering of uncovering quarters. Currently we do not
3540
       implement this optimization. The general tensor patch algorithm
3541
       will skip uncovering parts.
3542
3543
       Fourth, when one base circle is (almost) inside the other,
3544
       the parameter interval must include the shading apex.
3545
       To know that, we determine whether the contacting circle
3546
       is outside the rectangle (the "outer" contact),
3547
       or it is (partially) inside the rectangle.
3548
3549
       At last, a small shortening of a shading won't give a
3550
       sensible speedup, but it may replace a symmetric function domain
3551
       with an assymmetric one, so that the rendering
3552
       would be asymmetyric for a symmetric shading.
3553
       Therefore we do not perform a small sortening.
3554
       Instead we shorten only if the shading span
3555
       is much smaller that the shading domain.
3556
     */
3557
4
    const double extent = 1.02;
3558
4
    int span_type0, span_type1, span_type;
3559
3560
4
    memset(rsa, 0, sizeof(*rsa));
3561
4
    rsa->x0 = x0;
3562
4
    rsa->y0 = y0;
3563
4
    rsa->x1 = x1;
3564
4
    rsa->y1 = y1;
3565
4
    rsa->p[0] = rsa->p[4] = rect->p;
3566
4
    rsa->p[1].x = rsa->p[5].x = rect->p.x;
3567
4
    rsa->p[1].y = rsa->p[5].y = rect->q.y;
3568
4
    rsa->p[2] = rect->q;
3569
4
    rsa->p[3].x = rect->q.x;
3570
4
    rsa->p[3].y = rect->p.y;
3571
4
    rsa->have_apex = any_abs(r1 - r0) > 1e-7 * any_abs(r1 + r0);
3572
4
    rsa->apex = (rsa->have_apex ? -r0 / (r1 - r0) : 0);
3573
4
    span_type0 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 * extent);
3574
4
    if (span_type0 == -1)
3575
0
        return -1;
3576
4
    span_type1 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 / extent);
3577
4
    if (span_type0 != span_type1)
3578
0
        return -1;
3579
4
    span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 * extent);
3580
4
    if (span_type0 != span_type1)
3581
0
        return -1;
3582
4
    span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 / extent);
3583
4
    if (span_type1 == -1)
3584
0
        return -1;
3585
4
    if (r0 < r1) {
3586
4
        if (rsa->have_root[0] && !rsa->outer_contact[0])
3587
0
            rsa->span[0][0] = rsa->apex; /* Likely never happens. Remove ? */
3588
4
        if (rsa->have_root[1] && !rsa->outer_contact[1])
3589
1
            rsa->span[1][0] = rsa->apex;
3590
4
    } else if (r0 > r1) {
3591
0
        if (rsa->have_root[0] && !rsa->outer_contact[0])
3592
0
            rsa->span[0][1] = rsa->apex;
3593
0
        if (rsa->have_root[1] && !rsa->outer_contact[1])
3594
0
            rsa->span[1][1] = rsa->apex; /* Likely never happens. Remove ? */
3595
0
    }
3596
4
    span_type = 0;
3597
4
    if (rsa->have_root[0] && rsa->span[0][0] < 0)
3598
0
        span_type |= 1;
3599
4
    if (rsa->have_root[1] && rsa->span[1][0] < 0)
3600
0
        span_type |= 1;
3601
4
    if (rsa->have_root[0] && rsa->span[0][1] > 0 && rsa->span[0][0] < 1)
3602
0
        span_type |= 2;
3603
4
    if (rsa->have_root[1] && rsa->span[1][1] > 0 && rsa->span[1][0] < 1)
3604
4
        span_type |= 4;
3605
4
    if (rsa->have_root[0] && rsa->span[0][1] > 1)
3606
0
        span_type |= 8;
3607
4
    if (rsa->have_root[1] && rsa->span[1][1] > 1)
3608
1
        span_type |= 8;
3609
4
    return span_type;
3610
4
}
3611
3612
static bool
3613
shorten_radial_shading(float *x0, float *y0, double *r0, float *d0, float *x1, float *y1, double *r1, float *d1, double span_[2])
3614
4
{
3615
4
    double s0 = span_[0], s1 = span_[1], w;
3616
3617
4
    if (s0 < 0)
3618
0
        s0 = 0;
3619
4
    if (s1 < 0)
3620
0
        s1 = 0;
3621
4
    if (s0 > 1)
3622
0
        s0 = 1;
3623
4
    if (s1 > 1)
3624
1
        s1 = 1;
3625
4
    w = s1 - s0;
3626
4
    if (w == 0)
3627
0
        return false; /* Don't pass a degenerate shading. */
3628
4
    if (w > 0.3)
3629
4
        return false; /* The span is big, don't shorten it. */
3630
0
    { /* Do shorten. */
3631
0
        double R0 = *r0, X0 = *x0, Y0 = *y0, D0 = *d0;
3632
0
        double R1 = *r1, X1 = *x1, Y1 = *y1, D1 = *d1;
3633
3634
0
        *r0 = R0 + (R1 - R0) * s0;
3635
0
        *x0 = X0 + (X1 - X0) * s0;
3636
0
        *y0 = Y0 + (Y1 - Y0) * s0;
3637
0
        *d0 = D0 + (D1 - D0) * s0;
3638
0
        *r1 = R0 + (R1 - R0) * s1;
3639
0
        *x1 = X0 + (X1 - X0) * s1;
3640
0
        *y1 = Y0 + (Y1 - Y0) * s1;
3641
0
        *d1 = D0 + (D1 - D0) * s1;
3642
0
    }
3643
0
    return true;
3644
4
}
3645
3646
static bool inline
3647
is_radial_shading_large(double x0, double y0, double r0, double x1, double y1, double r1, const gs_rect * rect)
3648
27
{
3649
27
    const double d = hypot(x1 - x0, y1 - y0);
3650
27
    const double area0 = M_PI * r0 * r0 / 2;
3651
27
    const double area1 = M_PI * r1 * r1 / 2;
3652
27
    const double area2 = (r0 + r1) / 2 * d;
3653
27
    const double arbitrary = 8;
3654
27
    double areaX, areaY;
3655
3656
    /* The shading area is not equal to area0 + area1 + area2
3657
       when one circle is (almost) inside the other.
3658
       We believe that the 'arbitrary' coefficient recovers that
3659
       when it is set greater than 2. */
3660
    /* If one dimension is large enough, the shading parameter span is wide. */
3661
27
    areaX = (rect->q.x - rect->p.x) * (rect->q.x - rect->p.x);
3662
27
    if (areaX * arbitrary < area0 + area1 + area2)
3663
3
        return true;
3664
24
    areaY = (rect->q.y - rect->p.y) * (rect->q.y - rect->p.y);
3665
24
    if (areaY * arbitrary < area0 + area1 + area2)
3666
1
        return true;
3667
23
    return false;
3668
24
}
3669
3670
static int
3671
gs_shading_R_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect,
3672
                            const gs_fixed_rect *clip_rect,
3673
                            gx_device * dev, gs_gstate * pgs)
3674
29
{
3675
29
    const gs_shading_R_t *const psh = (const gs_shading_R_t *)psh0;
3676
29
    float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1];
3677
29
    float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1];
3678
29
    double r0 = psh->params.Coords[2];
3679
29
    float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4];
3680
29
    double r1 = psh->params.Coords[5];
3681
29
    radial_shading_attrs_t rsa;
3682
29
    int span_type; /* <0 - don't shorten, 1 - extent0, 2 - first contact, 4 - last contact, 8 - extent1. */
3683
29
    int code;
3684
29
    patch_fill_state_t pfs1;
3685
3686
29
    if (r0 == 0 && r1 == 0)
3687
2
        return 0; /* PLRM requires to paint nothing. */
3688
27
    code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs);
3689
27
    if (code < 0)
3690
0
        return code;
3691
27
    pfs1.Function = psh->params.Function;
3692
27
    code = init_patch_fill_state(&pfs1);
3693
27
    if (code < 0) {
3694
0
        if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
3695
0
        return code;
3696
0
    }
3697
27
    pfs1.function_arg_shift = 0;
3698
27
    pfs1.rect = *clip_rect;
3699
27
    pfs1.maybe_self_intersecting = false;
3700
27
    if (is_radial_shading_large(x0, y0, r0, x1, y1, r1, rect))
3701
4
        span_type = compute_radial_shading_span(&rsa, x0, y0, r0, x1, y1, r1, rect);
3702
23
    else
3703
23
        span_type = -1;
3704
27
    if (span_type < 0) {
3705
23
        code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false);
3706
23
        if (code >= 0)
3707
23
            code = R_tensor_annulus(&pfs1, x0, y0, r0, d0, x1, y1, r1, d1);
3708
23
        if (code >= 0)
3709
23
            code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]);
3710
23
    } else if (span_type == 1) {
3711
0
        code = R_fill_rect_with_const_color(&pfs1, clip_rect, d0);
3712
4
    } else if (span_type == 8) {
3713
0
        code = R_fill_rect_with_const_color(&pfs1, clip_rect, d1);
3714
4
    } else {
3715
4
        bool second_interval = true;
3716
3717
4
        code = 0;
3718
4
        if (span_type & 1)
3719
0
            code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false);
3720
4
        if ((code >= 0) && (span_type & 2)) {
3721
0
            float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1;
3722
0
            double R0 = r0, R1 = r1;
3723
3724
0
            if ((span_type & 4) && rsa.span[0][1] >= rsa.span[1][0]) {
3725
0
                double united[2];
3726
3727
0
                united[0] = rsa.span[0][0];
3728
0
                united[1] = rsa.span[1][1];
3729
0
                shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, united);
3730
0
                second_interval = false;
3731
0
            } else {
3732
0
                second_interval = shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[0]);
3733
0
            }
3734
0
            code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1);
3735
0
        }
3736
4
        if (code >= 0 && second_interval) {
3737
4
            if (span_type & 4) {
3738
4
                float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1;
3739
4
                double R0 = r0, R1 = r1;
3740
3741
4
                shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[1]);
3742
4
                code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1);
3743
4
            }
3744
4
        }
3745
4
        if (code >= 0 && (span_type & 8))
3746
1
            code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]);
3747
4
    }
3748
27
    if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink);
3749
27
    if (term_patch_fill_state(&pfs1))
3750
0
        return_error(gs_error_unregistered); /* Must not happen. */
3751
27
    return code;
3752
27
}
3753
3754
int
3755
gs_shading_R_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect,
3756
                            const gs_fixed_rect * rect_clip,
3757
                            gx_device * dev, gs_gstate * pgs)
3758
29
{
3759
29
    return gs_shading_R_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs);
3760
29
}