Coverage Report

Created: 2025-06-10 07:15

/src/ghostpdl/base/gxstroke.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2025 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
17
/* Path stroking procedures for Ghostscript library */
18
#include "math_.h"
19
#include <stdlib.h> /* abs() */
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsdcolor.h"
24
#include "gsptype1.h"
25
#include "gsptype2.h"
26
#include "gxfixed.h"
27
#include "gxfarith.h"
28
#include "gxmatrix.h"
29
#include "gscoord.h"
30
#include "gsdevice.h"
31
#include "gxdevice.h"
32
#include "gxhttile.h"
33
#include "gxgstate.h"
34
#include "gzline.h"
35
#include "gzpath.h"
36
#include "gzcpath.h"
37
#include "gxpaint.h"
38
#include "gsstate.h"            /* for gs_currentcpsimode */
39
#include "gzacpath.h"
40
41
/* RJW: There appears to be a difference in the xps and postscript models
42
 * (at least in as far as Microsofts implementation of xps and Acrobats of
43
 * postscript). Acrobat (and ghostscript) are happy to join a line segment
44
 * around a corner, even when the next segment is a dash gap. Microsofts
45
 * implementation of XPS does not.
46
 *
47
 * A test file that shows this up is tests_private/comparefiles/298-05.ps
48
 *
49
 * Enabling the following define would emulate xps behaviour here.
50
 */
51
#undef AVOID_JOINING_TO_DASH_GAPS
52
53
/*
54
 * We don't really know whether it's a good idea to take fill adjustment
55
 * into account for stroking.  Disregarding it means that strokes
56
 * come out thinner than fills; observing it produces heavy-looking
57
 * strokes at low resolutions.  But in any case, we must disregard it
58
 * when stroking zero-width lines.
59
 */
60
#define USE_FILL_ADJUSTMENT
61
62
#ifdef USE_FILL_ADJUSTMENT
63
#  define STROKE_ADJUSTMENT(thin, pgs, xy)\
64
8.41M
     (thin ? fixed_0 : (pgs)->fill_adjust.xy)
65
#else
66
#  define STROKE_ADJUSTMENT(thin, pgs, xy) fixed_0
67
#endif
68
69
/*
70
 * For some reason, we commented out the optimization for portrait,
71
 * landscape, and uniform (non-scaled) transformations.  We have no record
72
 * of why we did this, and we don't know what bugs re-enabling it may
73
 * introduce.
74
 */
75
#define OPTIMIZE_ORIENTATION
76
77
/*
78
 * Compute the amount by which to expand a stroked bounding box to account
79
 * for line width, caps and joins.  Return 0 if the result is exact, 1 if
80
 * it may be conservative, or gs_error_limitcheck if the result is too
81
 * large to fit in a gs_fixed_point.
82
 *
83
 * Because of square caps and miter and triangular joins, the maximum
84
 * expansion on each side (in user space) is
85
 *      K * line_width/2
86
 * where K is determined as follows:
87
 *      For round or butt caps, E = 1
88
 *      For square caps, E = sqrt(2)
89
 *        If the path is only a single line segment, K = E;
90
 *          if triangular joins, K = 2;
91
 *          if miter joins, K = max(miter_limit, E);
92
 *      otherwise, K = E.
93
 *
94
 * If the following conditions apply, K = E yields an exact result:
95
 *      - The CTM is of the form [X 0 0 Y] or [0 X Y 0].
96
 *      - Square or round caps are used, or all subpaths are closed.
97
 *      - All segments (including the implicit segment created by
98
 *        closepath) are vertical or horizontal lines.
99
 *
100
 * Note that these conditions are sufficient, but not necessary, to get an
101
 * exact result.  We choose this set of conditions because it is easy to
102
 * check and covers many common cases.  Clients that care always have the
103
 * option of using strokepath to get an exact result.
104
 */
105
static float join_expansion_factor(const gs_gstate *, gs_line_join);
106
int
107
gx_stroke_path_expansion(const gs_gstate * pgs, const gx_path * ppath,
108
                         gs_fixed_point * ppt)
109
633k
{
110
633k
    const subpath *psub;
111
633k
    const segment *pseg;
112
633k
    double cx = fabs(pgs->ctm.xx) + fabs(pgs->ctm.yx);
113
633k
    double cy = fabs(pgs->ctm.xy) + fabs(pgs->ctm.yy);
114
633k
    double expand = pgs->line_params.half_width;
115
633k
    int result = 1;
116
117
633k
    if (ppath == NULL) {
118
0
        ppt->x = ppt->y = 0;
119
0
        return 0;   /* no expansion */
120
0
    }
121
633k
    psub = ppath->first_subpath;
122
    /* Adjust the expansion (E) for square caps, if needed */
123
633k
    if (pgs->line_params.start_cap == gs_cap_square ||
124
633k
        pgs->line_params.end_cap == gs_cap_square)
125
73.0k
            expand *= 1.414213562;
126
127
    /* Check for whether an exact result can be computed easily. */
128
633k
    if (is_fzero2(pgs->ctm.xy, pgs->ctm.yx) ||
129
633k
        is_fzero2(pgs->ctm.xx, pgs->ctm.yy)
130
633k
        ) {
131
445k
        bool must_be_closed =
132
445k
            !(pgs->line_params.start_cap == gs_cap_square ||
133
445k
              pgs->line_params.start_cap == gs_cap_round  ||
134
445k
              pgs->line_params.end_cap   == gs_cap_square ||
135
445k
              pgs->line_params.end_cap   == gs_cap_round  ||
136
445k
              pgs->line_params.dash_cap  == gs_cap_square ||
137
445k
              pgs->line_params.dash_cap  == gs_cap_round);
138
445k
        gs_fixed_point prev;
139
140
445k
        prev.x = prev.y = 0; /* Quiet gcc warning. */
141
1.17M
        for (pseg = (const segment *)psub; pseg;
142
731k
             prev = pseg->pt, pseg = pseg->next
143
445k
             )
144
870k
            switch (pseg->type) {
145
314k
            case s_start:
146
314k
                if (((const subpath *)pseg)->curve_count ||
147
314k
                    (must_be_closed && !((const subpath *)pseg)->is_closed)
148
314k
                    )
149
48.9k
                    goto not_exact;
150
265k
                break;
151
458k
            case s_line:
152
458k
            case s_dash:
153
556k
            case s_line_close:
154
556k
                if (!(pseg->pt.x == prev.x || pseg->pt.y == prev.y))
155
90.3k
                    goto not_exact;
156
465k
                break;
157
465k
            case s_gap:
158
0
            default:            /* other/unknown segment type */
159
0
                goto not_exact;
160
870k
            }
161
306k
        result = 0;             /* exact result */
162
306k
    }
163
633k
not_exact:
164
633k
    if (result) {
165
327k
        if (!gx_path_has_curves(ppath) && gx_path_subpath_count(ppath) <= 1 &&
166
327k
            (psub == 0 || (pseg = psub->next) == 0 ||
167
284k
             (pseg = pseg->next) == 0 || pseg->type == s_line_close))
168
327k
            DO_NOTHING;
169
82.2k
        else {
170
82.2k
            float factor = join_expansion_factor(pgs, pgs->line_params.join);
171
172
82.2k
            if (pgs->line_params.curve_join >= 0)
173
0
                factor = max(factor, join_expansion_factor(pgs,
174
82.2k
                                (gs_line_join)pgs->line_params.curve_join));
175
82.2k
            expand *= factor;
176
82.2k
        }
177
327k
    }
178
179
    /* Short-cut gs_bbox_transform. */
180
633k
    {
181
633k
        float exx = expand * cx;
182
633k
        float exy = expand * cy;
183
633k
        int code = set_float2fixed_vars(ppt->x, exx);
184
185
633k
        if (code < 0)
186
127k
            return code;
187
506k
        code = set_float2fixed_vars(ppt->y, exy);
188
506k
        if (code < 0)
189
9.01k
            return code;
190
506k
    }
191
192
497k
    return result;
193
506k
}
194
static float
195
join_expansion_factor(const gs_gstate *pgs, gs_line_join join)
196
82.2k
{
197
82.2k
    switch (join) {
198
65.9k
    case gs_join_miter: return pgs->line_params.miter_limit;
199
56
    case gs_join_triangle: return 2.0;
200
16.2k
    default: return 1.0;
201
82.2k
    }
202
82.2k
}
203
204
/*
205
 * Structure for a partial line (passed to the drawing routine).
206
 * Two of these are required to do joins right.
207
 * Each endpoint includes the two ends of the cap as well,
208
 * and the deltas for square, round, and triangular cap computation.
209
 *
210
 * The two base values for computing the caps of a partial line are the
211
 * width and the end cap delta.  The width value is one-half the line
212
 * width (suitably transformed) at 90 degrees counter-clockwise
213
 * (in device space, but with "90 degrees" interpreted in *user*
214
 * coordinates) at the end (as opposed to the origin) of the line.
215
 * The cdelta value is one-half the transformed line width in the same
216
 * direction as the line.  From these, we compute two other values at each
217
 * end of the line: co and ce, which are the ends of the cap.
218
 * Note that the cdelta values at o are the negatives of the values at e,
219
 * as are the offsets from p to co and ce.
220
 *
221
 * Initially, only o.p, e.p, e.cdelta, width, and thin are set.
222
 * compute_caps fills in the rest.
223
 */
224
typedef gs_fixed_point *p_ptr;
225
typedef struct endpoint_s {
226
    gs_fixed_point p;           /* the end of the line */
227
    gs_fixed_point co, ce;      /* ends of the cap, p +/- width */
228
    gs_fixed_point cdelta;      /* +/- cap length */
229
} endpoint;
230
typedef endpoint *ep_ptr;
231
typedef const endpoint *const_ep_ptr;
232
typedef struct partial_line_s {
233
    endpoint o;                 /* starting coordinate */
234
    endpoint e;                 /* ending coordinate */
235
    gs_fixed_point width;       /* one-half line width, see above */
236
    gs_fixed_point vector;      /* The line segment direction */
237
    bool thin;                  /* true if minimum-width line */
238
} partial_line;
239
typedef partial_line *pl_ptr;
240
241
/* As we stroke a path, we run through the line segments that make it up.
242
 * We gather each line segment together with any degenerate line segments
243
 * that follow it (call this set "prev"), and then 'join them' to the next
244
 * line segment (and any degenerate line segments that follow it) (if there
245
 * is one) (call this "current").
246
 *
247
 * In order to get the joins right we need to keep flags about both
248
 * prev and current, and whether they originally came from arcs.
249
 */
250
typedef enum note_flags {
251
252
    /* If set, all the line segments that make up current come from arcs. */
253
    nf_all_from_arc       = 1,
254
255
    /* If set, at least one of the line segments that make up current, come
256
     * from arcs. */
257
    nf_some_from_arc      = 2,
258
259
    /* If set then this segment should have a dash cap on the start rather
260
     * than a start cap. */
261
    nf_dash_head          = 4,
262
263
    /* If set then this segment should have a dash cap on the end rather
264
     * than an end cap. */
265
    nf_dash_tail          = 8,
266
267
    /* If set, all the line segments that make up prev come from arcs. */
268
    nf_prev_all_from_arc  = 16,
269
270
    /* If set, at least one of the line segment that make up prev, come from
271
     * arcs. */
272
    nf_prev_some_from_arc = 32,
273
274
    /* If set then prev should have a dash cap on the start rather
275
     * than a start cap. */
276
    nf_prev_dash_head     = 64,
277
278
    /* If set then prev should have a dash cap on the end rather
279
     * than an end cap. */
280
    nf_prev_dash_tail     = 128
281
282
} note_flags;
283
284
/* Macro to combine the prev and current arc_flags. After applying this
285
 * macro, the bits in the result have the following meanings:
286
 *  nf_all_from_arc    set if all the components of current and prev
287
 *                     come from an Arc.
288
 *  nf_some_from_arc   set if any of the components of current and
289
 *                     prev come from an Arc.
290
 *  nf_dash_head       set if prev should have a dash cap rather than
291
 *                     a start cap.
292
 *  nf_dash_tail       set if prev should have a dash cap rather than
293
 *                     an end cap.
294
 */
295
#define COMBINE_FLAGS(F) \
296
7.90M
    (((F>>4) | ((F) & nf_some_from_arc)) & \
297
7.90M
     (((F) & nf_all_from_arc) ? ~0 : ~nf_all_from_arc))
298
299
/* Assign a point.  Some compilers would do this with very slow code */
300
/* if we simply implemented it as an assignment. */
301
#define ASSIGN_POINT(pp, p)\
302
6.38M
  ((pp)->x = (p).x, (pp)->y = (p).y)
303
304
/* Other forward declarations */
305
static bool width_is_thin(pl_ptr);
306
static void adjust_stroke(gx_device *, pl_ptr, const gs_gstate *, bool, bool, note_flags);
307
static int line_join_points(const gx_line_params * pgs_lp,
308
                             pl_ptr plp, pl_ptr nplp,
309
                             gs_fixed_point * join_points,
310
                             const gs_matrix * pmat, gs_line_join join,
311
                             bool reflected);
312
static int line_join_points_fast_cw(const gx_line_params * pgs_lp,
313
                                    pl_ptr plp, pl_ptr nplp,
314
                                    gs_fixed_point * rjoin_points,
315
                                    const gs_matrix * pmat,
316
                                    gs_line_join join);
317
static int line_join_points_fast_ccw(const gx_line_params * pgs_lp,
318
                                     pl_ptr plp, pl_ptr nplp,
319
                                     gs_fixed_point * join_points,
320
                                     const gs_matrix * pmat,
321
                                     gs_line_join join);
322
static void compute_caps(pl_ptr);
323
static int add_points(gx_path *, const gs_fixed_point *,
324
                       int, bool);
325
static int add_pie_join(gx_path *, pl_ptr, pl_ptr, bool, bool);
326
static int add_pie_join_fast_cw(gx_path *, pl_ptr, pl_ptr, bool);
327
static int add_pie_join_fast_ccw(gx_path *, pl_ptr, pl_ptr, bool);
328
static int add_round_cap(gx_path *, const_ep_ptr);
329
static int add_pie_cap(gx_path *, const_ep_ptr);
330
static int cap_points(gs_line_cap, const_ep_ptr,
331
                       gs_fixed_point * /*[3] */ );
332
static int join_under_pie(gx_path *, pl_ptr, pl_ptr, bool);
333
334
int
335
gx_default_stroke_path_shading_or_pattern(gx_device        * pdev,
336
                                    const gs_gstate        * pgs_orig,
337
                                          gx_path          * ppath,
338
                                    const gx_stroke_params * params,
339
                                    const gx_drawing_color * pdevc,
340
                                    const gx_clip_path     * pcpath)
341
62
{
342
62
    gs_gstate *pgs = (gs_gstate *)pgs_orig; /* Nasty cast away const! */
343
62
    gs_logical_operation_t save_lop = gs_current_logical_op_inline(pgs);
344
62
    gx_device_cpath_accum adev;
345
62
    gx_device_color devc;
346
62
    gx_clip_path stroke_as_clip_path;
347
62
    int code;
348
62
    gs_fixed_rect dev_clip_rect = { {min_fixed, min_fixed}, {max_fixed, max_fixed}};
349
350
    /* We want to make a image of the stroke as a clip path, so
351
     * create an empty structure on the stack. */
352
62
    code = gx_cpath_init_local_shared_nested(&stroke_as_clip_path, NULL, pdev->memory, 1);
353
62
    if (code < 0)
354
0
        return code;
355
    /* Now we make an accumulator device that will fill that out. */
356
62
    gx_cpath_accum_begin(&adev, stroke_as_clip_path.path.memory, false);
357
62
    (*dev_proc(pdev, get_clipping_box))(pdev, &dev_clip_rect);
358
62
    gx_cpath_accum_set_cbox(&adev, &dev_clip_rect);
359
62
    set_nonclient_dev_color(&devc, 0); /* arbitrary, but not transparent */
360
62
    gs_set_logical_op_inline(pgs, lop_default);
361
    /* Stroke the path to the accumulator. */
362
62
    code = gx_stroke_path_only(ppath, NULL, (gx_device *)&adev, pgs, params,
363
62
                               &devc, pcpath);
364
    /* Now extract the accumulated path into stroke_as_clip_path. */
365
62
    if (code < 0 || (code = gx_cpath_accum_end(&adev, &stroke_as_clip_path)) < 0)
366
0
        gx_cpath_accum_discard(&adev);
367
62
    gs_set_logical_op_inline(pgs, save_lop);
368
62
    if (code >= 0)
369
62
    {
370
        /* Now, fill a rectangle with the original color through that
371
         * clip path. */
372
62
        gs_fixed_rect clip_box, shading_box;
373
62
        gs_int_rect cb;
374
62
        gx_device_clip cdev;
375
376
62
        gx_cpath_outer_box(&stroke_as_clip_path, &clip_box);
377
        /* This is horrid. If the pdevc is a shading color, then the
378
         * fill_rectangle routine requires us to have intersected it
379
         * with the shading rectangle first. If we don't do this,
380
         * ps3fts/470-01.ps goes wrong. */
381
62
        if (gx_dc_is_pattern2_color(pdevc) &&
382
62
            gx_dc_pattern2_get_bbox(pdevc, &shading_box) > 0)
383
0
        {
384
0
            rect_intersect(clip_box, shading_box);
385
0
        }
386
62
        cb.p.x = fixed2int_pixround(clip_box.p.x);
387
62
        cb.p.y = fixed2int_pixround(clip_box.p.y);
388
62
        cb.q.x = fixed2int_pixround(clip_box.q.x);
389
62
        cb.q.y = fixed2int_pixround(clip_box.q.y);
390
62
        gx_make_clip_device_on_stack(&cdev, &stroke_as_clip_path, pdev);
391
62
        code = pdevc->type->fill_rectangle(pdevc,
392
62
                        cb.p.x, cb.p.y, cb.q.x - cb.p.x, cb.q.y - cb.p.y,
393
62
                        (gx_device *)&cdev, pgs->log_op, NULL);
394
62
        gx_destroy_clip_device_on_stack(&cdev);
395
62
    }
396
62
    gx_cpath_free(&stroke_as_clip_path, "gx_default_stroke_path_shading_or_pattern");
397
398
62
    return code;
399
62
}
400
401
/* Define the default implementation of the device stroke_path procedure. */
402
int
403
gx_default_stroke_path(gx_device * dev, const gs_gstate * pgs,
404
                       gx_path * ppath, const gx_stroke_params * params,
405
                       const gx_drawing_color * pdevc,
406
                       const gx_clip_path * pcpath)
407
553k
{
408
553k
    if (gx_dc_is_pattern2_color(pdevc) ||
409
553k
        pdevc->type == &gx_dc_type_data_ht_colored ||
410
553k
        (gx_dc_is_pattern1_color(pdevc) &&
411
553k
         gx_pattern_tile_is_clist(pdevc->colors.pattern.p_tile)))
412
34
        return gx_default_stroke_path_shading_or_pattern(dev, pgs, ppath, params,
413
34
                                                         pdevc, pcpath);
414
553k
    else
415
553k
        return gx_stroke_path_only(ppath, (gx_path *) 0, dev, pgs, params,
416
553k
                                   pdevc, pcpath);
417
553k
}
418
419
/* Fill a partial stroked path.  Free variables: */
420
/* to_path, stroke_path_body, fill_params, always_thin, pgs, dev, pdevc, */
421
/* code, ppath, exit(label). */
422
#define FILL_STROKE_PATH(dev, thin, pcpath, final)\
423
4.31M
  if(to_path==&stroke_path_body && !gx_path_is_void(&stroke_path_body) &&\
424
4.31M
     (final || lop_is_idempotent(pgs->log_op))) {\
425
3.74M
    fill_params.adjust.x = STROKE_ADJUSTMENT(thin, pgs, x);\
426
3.74M
    fill_params.adjust.y = STROKE_ADJUSTMENT(thin, pgs, y);\
427
3.74M
    if (to_path_reverse != NULL) {\
428
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);\
429
0
        if(code < 0) goto exit;\
430
0
    }\
431
3.74M
    code = gx_fill_path_only(to_path, dev, pgs, &fill_params, pdevc, pcpath);\
432
3.74M
    gx_path_free(&stroke_path_body, "fill_stroke_path");\
433
3.74M
    if ( code < 0 ) goto exit;\
434
3.74M
    gx_path_init_local(&stroke_path_body, ppath->memory);\
435
3.74M
  }
436
437
/*
438
 * Define the internal procedures that stroke a partial_line
439
 * (the first pl_ptr argument).  If both partial_lines are non-null,
440
 * the procedure creates an appropriate join; otherwise, the procedure
441
 * creates an end cap.  If the first int is 0, the procedure also starts
442
 * with an appropriate cap.
443
 */
444
#define stroke_line_proc(proc)\
445
  int proc(gx_path *, gx_path *, bool ensure_closed, int, pl_ptr, pl_ptr,\
446
           const gx_device_color *, gx_device *, const gs_gstate *,\
447
           const gx_stroke_params *, const gs_fixed_rect *, int,\
448
           gs_line_join, bool, note_flags)
449
typedef stroke_line_proc((*stroke_line_proc_t));
450
451
static stroke_line_proc(stroke_add);
452
static stroke_line_proc(stroke_add_compat);
453
static stroke_line_proc(stroke_add_fast);
454
static stroke_line_proc(stroke_fill);
455
static int stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
456
           const gx_device_color * pdevc, gx_device * dev,
457
           const gs_gstate * pgs);
458
459
/* Define the orientations we handle specially. */
460
typedef enum {
461
    orient_other = 0,
462
    orient_portrait,            /* [xx 0 0 yy tx ty] */
463
    orient_landscape            /* [0 xy yx 0 tx ty] */
464
} orientation;
465
466
/*
467
 * Internal function used to merge the 2 sides of a stroked path.
468
 * path contains the 'forward' side, rpath contains the 'reversed' side.
469
 * Reverse rpath, then append it to path.
470
 *
471
 * If path is closed, then rpath should be too. If path is open, then the
472
 * starting and ending points of both paths should be the same, so as to
473
 * guarantee a closed path.
474
 */
475
static int
476
gx_join_path_and_reverse(gx_path * path, gx_path * rpath)
477
0
{
478
0
    int code;
479
480
0
    if (gx_path_is_void(rpath))
481
0
        return 0;
482
0
     code = gx_path_append_reversed(rpath, path);
483
0
    if (code < 0)
484
0
        return code;
485
486
0
    gx_path_free(rpath, "gx_join_path_and_reverse");
487
0
    gx_path_init_local(rpath, path->memory);
488
489
0
    return gx_path_close_subpath(path);
490
0
}
491
492
/*
493
 * Stroke a path.  If to_path != 0, append the stroke outline to it;
494
 * if to_path == 0, draw the strokes on pdev.
495
 *
496
 * Note that gx_stroke_path_only with to_path != NULL may clip the path to
497
 * the clipping path, as for to_path == NULL.  This is almost never
498
 * what is wanted.
499
 */
500
static int
501
gx_stroke_path_only_aux(gx_path          *ppath, /* lgtm[cpp/use-of-goto] */
502
                        gx_path          *to_path,
503
                        gx_device        *pdev,
504
                  const gs_gstate        *pgs,
505
                  const gx_stroke_params *params,
506
                  const gx_device_color  *pdevc,
507
                  const gx_clip_path     *pcpath)
508
553k
{
509
553k
    bool CPSI_mode = gs_currentcpsimode(pgs->memory);
510
553k
    bool traditional = CPSI_mode | params->traditional;
511
553k
    stroke_line_proc_t line_proc =
512
553k
               ((to_path == 0 && !gx_dc_is_pattern1_color_clist_based(pdevc))
513
553k
                      ? (lop_is_idempotent(pgs->log_op) ? stroke_fill : stroke_add) :
514
553k
                        (traditional ? stroke_add_compat : stroke_add_fast));
515
553k
    gs_fixed_rect ibox, cbox;
516
553k
    gx_device_clip cdev;
517
553k
    gx_device *dev = pdev;
518
553k
    int code = 0;
519
553k
    gx_fill_params fill_params;
520
553k
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
521
553k
    int dash_count = pgs_lp->dash.pattern_size;
522
553k
    gx_path fpath, dpath;
523
553k
    gx_path stroke_path_body;
524
553k
    gx_path stroke_path_reverse;
525
553k
    gx_path *to_path_reverse = NULL;
526
553k
    const gx_path *spath;
527
553k
    float xx = pgs->ctm.xx, xy = pgs->ctm.xy;
528
553k
    float yx = pgs->ctm.yx, yy = pgs->ctm.yy;
529
    /*
530
     * We are dealing with a reflected coordinate system
531
     * if transform(1,0) is counter-clockwise from transform(0,1).
532
     * See the note in stroke_add for the algorithm.
533
     */
534
553k
    int uniform;
535
553k
    bool reflected;
536
553k
    orientation orient =
537
553k
        (
538
553k
#ifdef OPTIMIZE_ORIENTATION
539
553k
         is_fzero2(xy, yx) ?
540
364k
         (uniform = (xx == yy ? 1 : xx == -yy ? -1 : 0),
541
364k
          reflected = (uniform ? uniform < 0 : (xx < 0) != (yy < 0)),
542
364k
          orient_portrait) :
543
553k
         is_fzero2(xx, yy) ?
544
4.20k
         (uniform = (xy == yx ? -1 : xy == -yx ? 1 : 0),
545
4.20k
          reflected = (uniform ? uniform < 0 : (xy < 0) == (yx < 0)),
546
4.20k
          orient_landscape) :
547
    /* We should optimize uniform rotated coordinate systems */
548
    /* here as well, but we don't. */
549
189k
#endif
550
189k
         (uniform = 0,
551
185k
          reflected = xy * yx > xx * yy,
552
185k
          orient_other));
553
553k
    const segment_notes not_first = sn_not_first;
554
553k
    gs_line_join curve_join =
555
553k
        (pgs_lp->curve_join >= 0 ? (gs_line_join)pgs_lp->curve_join :
556
553k
         pgs_lp->join == gs_join_none || pgs_lp->join == gs_join_round ?
557
475k
            gs_join_bevel : pgs_lp->join);
558
553k
    float line_width = pgs_lp->half_width;      /* (*half* the line width) */
559
553k
    bool always_thin;
560
553k
    double line_width_and_scale;
561
553k
    double device_line_width_scale = 0; /* Quiet compiler. */
562
553k
    double device_dot_length = pgs_lp->dot_length * fixed_1;
563
553k
    const subpath *psub;
564
553k
    gs_matrix initial_matrix;
565
553k
    bool initial_matrix_reflected, flattened_path = false;
566
553k
    note_flags flags;
567
568
553k
    (*dev_proc(pdev, get_initial_matrix)) (pdev, &initial_matrix);
569
553k
    initial_matrix_reflected = initial_matrix.xy * initial_matrix.yx >
570
553k
                               initial_matrix.xx * initial_matrix.yy;
571
572
#ifdef DEBUG
573
    if (gs_debug_c('o')) {
574
        int i;
575
576
        dmlprintf4(ppath->memory, "[o]half_width=%f, start_cap=%d, end_cap=%d, dash_cap=%d,\n",
577
                   pgs_lp->half_width, (int)pgs_lp->start_cap,
578
                   (int)pgs_lp->end_cap, (int)pgs_lp->dash_cap);
579
        dmlprintf3(ppath->memory, "   join=%d, miter_limit=%f, miter_check=%f,\n",
580
                   (int)pgs_lp->join, pgs_lp->miter_limit,
581
                   pgs_lp->miter_check);
582
        dmlprintf1(ppath->memory, "   dash pattern=%d", dash_count);
583
        for (i = 0; i < dash_count; i++)
584
            dmprintf1(ppath->memory, ",%f", pgs_lp->dash.pattern[i]);
585
        dmputs(ppath->memory, ",\n");
586
        dmlprintf4(ppath->memory, "\toffset=%f, init(ink_on=%d, index=%d, dist_left=%f)\n",
587
                   pgs_lp->dash.offset, pgs_lp->dash.init_ink_on,
588
                   pgs_lp->dash.init_index, pgs_lp->dash.init_dist_left);
589
    }
590
#endif
591
592
553k
    gx_path_bbox(ppath, &ibox);
593
    /* Expand the path bounding box by the scaled line width. */
594
553k
    {
595
553k
        gs_fixed_point expansion;
596
597
553k
        if (gx_stroke_path_expansion(pgs, ppath, &expansion) < 0) {
598
            /* The expansion is so large it caused a limitcheck. */
599
134k
            ibox.p.x = ibox.p.y = min_fixed;
600
134k
            ibox.q.x = ibox.q.y = max_fixed;
601
419k
        } else {
602
419k
            expansion.x += pgs->fill_adjust.x;
603
419k
            expansion.y += pgs->fill_adjust.y;
604
            /*
605
             * It's theoretically possible for the following computations to
606
             * overflow, so we need to check for this.
607
             */
608
419k
            ibox.p.x = (ibox.p.x < min_fixed + expansion.x ? min_fixed :
609
419k
                        ibox.p.x - expansion.x);
610
419k
            ibox.p.y = (ibox.p.y < min_fixed + expansion.y ? min_fixed :
611
419k
                        ibox.p.y - expansion.y);
612
419k
            ibox.q.x = (ibox.q.x > max_fixed - expansion.x ? max_fixed :
613
419k
                        ibox.q.x + expansion.x);
614
419k
            ibox.q.y = (ibox.q.y > max_fixed - expansion.y ? max_fixed :
615
419k
                        ibox.q.y + expansion.y);
616
419k
        }
617
553k
    }
618
    /* Check the expanded bounding box against the clipping regions. */
619
553k
    if (pcpath)
620
366k
        gx_cpath_inner_box(pcpath, &cbox);
621
187k
    else if (pdevc)
622
187k
        (*dev_proc(pdev, get_clipping_box)) (pdev, &cbox);
623
197
    else {
624
        /* This is strokepath, not stroke.  Don't clip. */
625
197
        cbox = ibox;
626
197
    }
627
553k
    if (!rect_within(ibox, cbox)) {
628
        /* Intersect the path box and the clip bounding box. */
629
        /* If the intersection is empty, this call is a no-op. */
630
550k
        gs_fixed_rect bbox;
631
632
550k
        if (pcpath) {
633
364k
            gx_cpath_outer_box(pcpath, &bbox);
634
364k
            if_debug4m('f', ppath->memory, "   outer_box=(%g,%g),(%g,%g)\n",
635
364k
                       fixed2float(bbox.p.x), fixed2float(bbox.p.y),
636
364k
                       fixed2float(bbox.q.x), fixed2float(bbox.q.y));
637
364k
            rect_intersect(ibox, bbox);
638
364k
        } else
639
550k
            rect_intersect(ibox, cbox);
640
550k
        if (ibox.p.x >= ibox.q.x || ibox.p.y >= ibox.q.y) {
641
            /* Intersection of boxes is empty! */
642
302k
            return 0;
643
302k
        }
644
        /*
645
         * The path is neither entirely inside the inner clip box
646
         * nor entirely outside the outer clip box.
647
         * If we had to flatten the path, this is where we would
648
         * recompute its bbox and make the tests again,
649
         * but we don't bother right now.
650
         */
651
        /*
652
         * If there is a clipping path, set up a clipping device.
653
         * for stroke_fill because, because the latter uses low level methods
654
         * which don't accept a clipping path.
655
         * Note that in some cases stroke_fill appends the path to stroke_path_body
656
         * instead a real painting, and it is painted with FILL_STROKE_PATH.
657
         *
658
         * Contrary to that, FILL_STROKE_PATH paints a path with
659
         * the fill_path method, which handles a clipping path,
660
         * so we don't pass the clipper device to FILL_STROKE_PATH
661
         * to prevent an appearence of superposing clippers.
662
         */
663
248k
        if (pcpath && line_proc == stroke_fill) {
664
74.2k
            gx_make_clip_device_on_stack(&cdev, pcpath, pdev);
665
74.2k
            cdev.max_fill_band = pdev->max_fill_band;
666
74.2k
            dev = (gx_device *)&cdev;
667
74.2k
        }
668
248k
    }
669
251k
    fill_params.rule = gx_rule_winding_number;
670
251k
    fill_params.flatness = pgs->flatness;
671
251k
    if (line_width < 0)
672
0
        line_width = -line_width;
673
251k
    line_width_and_scale = line_width * (double)int2fixed(1);
674
251k
    if (is_fzero(line_width))
675
7.06k
        always_thin = true;
676
244k
    else {
677
244k
        float xa, ya;
678
679
244k
        switch (orient) {
680
207k
            case orient_portrait:
681
207k
                xa = xx, ya = yy;
682
207k
                goto sat;
683
1.93k
            case orient_landscape:
684
1.93k
                xa = xy, ya = yx;
685
209k
              sat:
686
209k
                if (xa < 0)
687
0
                    xa = -xa;
688
209k
                if (ya < 0)
689
49.4k
                    ya = -ya;
690
209k
                always_thin = (max(xa, ya) * line_width < 0.5);
691
209k
                if (!always_thin && uniform) {  /* Precompute a value we'll need later. */
692
200k
                    device_line_width_scale = line_width_and_scale * xa;
693
200k
                }
694
209k
                break;
695
35.1k
            default:
696
35.1k
                {
697
                    /* The check is more complicated, but it's worth it. */
698
                    /* Compute radii of the transformed round brush. */
699
                    /* Let x = [a, sqrt(1-a^2)]'
700
                       radius^2 is an extremum of :
701
                       rr(a)=(CTM*x)^2 = (a*xx + sqrt(1 - a^2)*xy)^2 + (a*yx + sqrt(1 - a^2)*yy)^2
702
                       With solving D(rr(a),a)==0, got :
703
                       max_rr = (xx^2 + xy^2 + yx^2 + yy^2 + sqrt(((xy + yx)^2 + (xx - yy)^2)*((xy - yx)^2 + (xx + yy)^2)))/2.
704
                       r = sqrt(max_rr);
705
                       Well we could use eigenvalues of the quadratic form,
706
                       but it gives same result with a bigger calculus.
707
                     */
708
35.1k
                    double max_rr = ((double)(xx*xx + xy*xy + yx*yx + yy*yy) +
709
35.1k
                                     sqrt((double)((xy + yx)*(xy + yx) + (xx - yy)*(xx - yy)) *
710
35.1k
                                                  ((xy - yx)*(xy - yx) + (xx + yy)*(xx + yy))
711
35.1k
                                          )
712
35.1k
                                     )/2;
713
714
35.1k
                    always_thin = max_rr * line_width * line_width < 0.25;
715
35.1k
                }
716
244k
        }
717
244k
    }
718
251k
    if_debug7m('o', ppath->memory, "[o]ctm=(%g,%g,%g,%g,%g,%g) thin=%d\n",
719
251k
              xx, xy, yx, yy, pgs->ctm.tx, pgs->ctm.ty, always_thin);
720
251k
    if (device_dot_length != 0) {
721
        /*
722
         * Compute the dot length in device space.  We can't do this
723
         * quite right for non-uniform coordinate systems; too bad.
724
         */
725
0
        gs_matrix mat;
726
0
        const gs_matrix *pmat;
727
728
0
        if (pgs_lp->dot_length_absolute) {
729
0
            gs_deviceinitialmatrix(pdev, &mat);
730
0
            pmat = &mat;
731
0
        } else
732
0
            pmat = (const gs_matrix *)&pgs->ctm;
733
0
        device_dot_length *= fabs(pmat->xy) + fabs(pmat->yy);
734
0
    }
735
    /* Start by flattening the path.  We should do this on-the-fly.... */
736
251k
    if (!gx_path_has_curves(ppath) && !gx_path_has_long_segments(ppath)) {
737
        /* don't need to flatten */
738
233k
        if (!ppath->first_subpath) {
739
53.2k
            if (dev == (gx_device *)&cdev)
740
3.21k
                gx_destroy_clip_device_on_stack(&cdev);
741
53.2k
            return 0;
742
53.2k
        }
743
179k
        spath = ppath;
744
179k
    } else {
745
18.5k
        gx_path_init_local(&fpath, ppath->memory);
746
18.5k
        if ((code = gx_path_add_flattened_for_stroke(ppath, &fpath,
747
18.5k
            params->flatness, pgs)) < 0) {
748
0
            if (dev == (gx_device *)&cdev)
749
0
                gx_destroy_clip_device_on_stack(&cdev);
750
0
            return code;
751
0
        }
752
18.5k
        spath = &fpath;
753
18.5k
        flattened_path = true;
754
18.5k
    }
755
198k
    if (dash_count) {
756
5.47k
        float max_dash_len = 0;
757
5.47k
        float expand_squared;
758
5.47k
        int i;
759
5.47k
        float adjust = (float)pgs->fill_adjust.x;
760
5.47k
        if (adjust > (float)pgs->fill_adjust.y)
761
0
            adjust = (float)pgs->fill_adjust.y;
762
16.9k
        for (i = 0; i < dash_count; i++) {
763
11.4k
            if (max_dash_len < pgs_lp->dash.pattern[i])
764
5.75k
                max_dash_len = pgs_lp->dash.pattern[i];
765
11.4k
        }
766
5.47k
        expand_squared = pgs->ctm.xx * pgs->ctm.yy - pgs->ctm.xy * pgs->ctm.yx;
767
5.47k
        if (expand_squared < 0)
768
3.72k
            expand_squared = -expand_squared;
769
5.47k
        expand_squared *= max_dash_len * max_dash_len;
770
        /* Wide lines in curves can show dashes up, so fudge to allow for
771
         * this. */
772
5.47k
        if (pgs->line_params.half_width > 1)
773
134
            adjust /= pgs->line_params.half_width;
774
5.47k
        if (expand_squared*65536.0f >= (float)(adjust*adjust)) {
775
4.89k
            gx_path_init_local(&dpath, ppath->memory);
776
4.89k
            code = gx_path_add_dash_expansion(spath, &dpath, pgs);
777
4.89k
            if (code < 0)
778
0
                goto exf;
779
4.89k
            spath = &dpath;
780
4.89k
        } else {
781
586
            dash_count = 0;
782
586
        }
783
5.47k
    }
784
198k
    if (to_path == 0) {
785
        /* We might try to defer this if it's expensive.... */
786
198k
        to_path = &stroke_path_body;
787
198k
        gx_path_init_local(&stroke_path_body, ppath->memory);
788
198k
    }
789
198k
    if (line_proc == stroke_add_fast) {
790
0
        to_path_reverse = &stroke_path_reverse;
791
0
        gx_path_init_local(&stroke_path_reverse, ppath->memory);
792
0
    }
793
1.25M
    for (psub = spath->first_subpath; psub != 0;) {
794
1.05M
        int index = 0;
795
1.05M
        const segment *pseg = (const segment *)psub;
796
1.05M
        fixed x = pseg->pt.x;
797
1.05M
        fixed y = pseg->pt.y;
798
1.05M
        bool is_closed = ((const subpath *)pseg)->is_closed;
799
1.05M
        partial_line pl, pl_prev, pl_first;
800
1.05M
        bool zero_length = true;
801
1.05M
        int pseg_notes = pseg->notes;
802
803
1.05M
        flags = nf_all_from_arc;
804
805
        /* Run through each segment in the current path, drawing each segment
806
         * delayed by 1 - that is, when we're looking at segment n, we draw
807
         * (or not) segment n-1. This delay allows us to always know whether
808
         * to join or cap the line. */
809
5.23M
        while ((pseg = pseg->next) != 0 &&
810
5.23M
               pseg->type != s_start
811
4.18M
            ) {
812
            /* Compute the width parameters in device space. */
813
            /* We work with unscaled values, for speed. */
814
4.18M
            fixed sx, udx, sy, udy;
815
4.18M
            bool is_dash_segment;
816
817
4.18M
            pseg_notes = pseg->notes;
818
819
4.44M
         d2:is_dash_segment = false;
820
4.44M
         d1:if (pseg->type == s_dash) {
821
488k
                dash_segment *pd = (dash_segment *)pseg;
822
823
488k
                sx = pd->pt.x;
824
488k
                sy = pd->pt.y;
825
488k
                udx = pd->tangent.x;
826
488k
                udy = pd->tangent.y;
827
488k
                is_dash_segment = true;
828
3.95M
            } else if (pseg->type == s_gap) {
829
0
                sx = pseg->pt.x;
830
0
                sy = pseg->pt.y;
831
0
                udx = sx - x;
832
0
                udy = sy - y;
833
0
                is_dash_segment = true;
834
3.95M
            } else {
835
3.95M
                sx = pseg->pt.x;
836
3.95M
                sy = pseg->pt.y;
837
3.95M
                udx = sx - x;
838
3.95M
                udy = sy - y;
839
3.95M
            }
840
4.44M
            zero_length &= ((udx | udy) == 0);
841
4.44M
            pl.o.p.x = x, pl.o.p.y = y;
842
4.49M
          d:flags = (((pseg_notes & sn_not_first) ?
843
2.26M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
844
4.49M
                     ((pseg_notes & sn_dash_head) ? nf_dash_head : 0)    |
845
4.49M
                     ((pseg_notes & sn_dash_tail) ? nf_dash_tail : 0)    |
846
4.49M
                     (flags & ~nf_all_from_arc));
847
4.49M
            pl.e.p.x = sx, pl.e.p.y = sy;
848
4.49M
            if (!(udx | udy) || pseg->type == s_dash || pseg->type == s_gap) { /* degenerate or short */
849
                /*
850
                 * If this is the first segment of the subpath,
851
                 * check the entire subpath for degeneracy.
852
                 * Otherwise, ignore the degenerate segment.
853
                 */
854
863k
                if (index != 0 && pseg->type != s_dash && pseg->type != s_gap)
855
308k
                {
856
308k
                    if (pseg->next == NULL || pseg->next->type == s_start)
857
53.0k
                        continue;
858
255k
                    pseg = pseg->next;
859
                    /* We're skipping a degenerate path segment; if it was
860
                     * labelled as being the first from a curve, then make
861
                     * sure the one we're skipping to is also labelled as
862
                     * being the first from a curve, otherwise we can get
863
                     * improper joins being used. See Bug 696466. */
864
255k
                    pseg_notes = (((pseg_notes & sn_not_first) == 0) ?
865
254k
                                  (pseg->notes & ~sn_not_first) :
866
255k
                                  pseg->notes);
867
255k
                    goto d2;
868
308k
                }
869
                /* Check for a degenerate subpath. */
870
829k
                while ((pseg = pseg->next) != 0 &&
871
829k
                       pseg->type != s_start
872
554k
                    ) {
873
284k
                    if (is_dash_segment)
874
1.42k
                        break;
875
283k
                    if (pseg->type == s_dash || pseg->type == s_gap)
876
0
                        goto d1;
877
283k
                    sx = pseg->pt.x, udx = sx - x;
878
283k
                    sy = pseg->pt.y, udy = sy - y;
879
283k
                    if (udx | udy) {
880
8.35k
                        zero_length = false;
881
8.35k
                        goto d;
882
8.35k
                    }
883
283k
                }
884
546k
                if (pgs_lp->dot_length == 0 &&
885
546k
                    pgs_lp->start_cap != gs_cap_round &&
886
546k
                    pgs_lp->end_cap != gs_cap_round &&
887
546k
                    !is_dash_segment) {
888
                    /* From PLRM, stroke operator :
889
                       If a subpath is degenerate (consists of a single-point closed path
890
                       or of two or more points at the same coordinates),
891
                       stroke paints it only if round line caps have been specified */
892
12.2k
                    break;
893
12.2k
                }
894
                /*
895
                 * If the subpath is a dash, take the orientation from the dash segment.
896
                 * Otherwise orient the dot according to the previous segment if
897
                 * any, or else the next segment if any, or else
898
                 * according to the specified dot orientation.
899
                 */
900
534k
                {
901
                    /* When passing here, either pseg == NULL or it points to the
902
                       start of the next subpaph. So we can't use pseg
903
                       for determining the segment direction.
904
                       In same time, psub->last may help, so use it. */
905
534k
                    const segment *end = psub->last;
906
907
534k
                    if (is_dash_segment) {
908
                        /* Nothing. */
909
488k
                    } else if (end != 0 && (end->pt.x != x || end->pt.y != y))
910
0
                        sx = end->pt.x, sy = end->pt.y, udx = sx - x, udy = sy - y;
911
534k
                }
912
                /*
913
                 * Compute the properly oriented dot length, and then
914
                 * draw the dot like a very short line.
915
                 */
916
534k
                if ((udx | udy) == 0) {
917
45.7k
                    if (is_fzero(pgs_lp->dot_orientation.xy)) {
918
                        /* Portrait orientation, dot length = X */
919
45.7k
                        udx = fixed_1;
920
45.7k
                    } else {
921
                        /* Landscape orientation, dot length = Y */
922
0
                        udy = fixed_1;
923
0
                    }
924
45.7k
                }
925
534k
                if (sx == x && sy == y && (pseg == NULL || pseg->type == s_start)) {
926
529k
                    double scale = device_dot_length /
927
529k
                                hypot((double)udx, (double)udy);
928
529k
                    fixed udx1, udy1;
929
                    /*
930
                     * If we're using butt caps, make sure the "line" is
931
                     * long enough to show up.
932
                     * Don't apply this with always_thin, becase
933
                     * draw thin line always rounds the length up.
934
                     */
935
529k
                    if (!always_thin && (pgs_lp->start_cap == gs_cap_butt ||
936
529k
                                         pgs_lp->end_cap   == gs_cap_butt ||
937
529k
                                         pgs_lp->dash_cap  == gs_cap_butt)) {
938
0
                        fixed dmax = max(any_abs(udx), any_abs(udy));
939
940
0
                        if (dmax * scale < fixed_1)
941
0
                            scale = (float)fixed_1 / dmax;
942
0
                    }
943
529k
                    udx1 = (fixed) (udx * scale);
944
529k
                    udy1 = (fixed) (udy * scale);
945
529k
                    sx = x + udx1;
946
529k
                    sy = y + udy1;
947
529k
                }
948
                /*
949
                 * Back up 1 segment to keep the bookkeeping straight.
950
                 */
951
534k
                pseg = (pseg != 0 ? pseg->prev : psub->last);
952
534k
                if (!is_dash_segment)
953
45.7k
                    goto d;
954
488k
                pl.e.p.x = sx;
955
488k
                pl.e.p.y = sy;
956
488k
            }
957
4.12M
            pl.vector.x = udx;
958
4.12M
            pl.vector.y = udy;
959
4.12M
            if (always_thin) {
960
57.9k
                pl.e.cdelta.x = pl.e.cdelta.y = 0;
961
57.9k
                pl.width.x = pl.width.y = 0;
962
57.9k
                pl.thin = true;
963
4.06M
            } else {
964
4.06M
                if (uniform != 0) {
965
                    /* We can save a lot of work in this case. */
966
                    /* We know orient != orient_other. */
967
3.57M
                    double dpx = udx, dpy = udy;
968
3.57M
                    double wl = device_line_width_scale /
969
3.57M
                    hypot(dpx, dpy);
970
971
3.57M
                    pl.e.cdelta.x = (fixed) (dpx * wl);
972
3.57M
                    pl.e.cdelta.y = (fixed) (dpy * wl);
973
                    /* The width is the cap delta rotated by */
974
                    /* 90 degrees. */
975
3.57M
                    if (initial_matrix_reflected)
976
3.56M
                        pl.width.x = pl.e.cdelta.y, pl.width.y = -pl.e.cdelta.x;
977
1.00k
                    else
978
1.00k
                        pl.width.x = -pl.e.cdelta.y, pl.width.y = pl.e.cdelta.x;
979
3.57M
                    pl.thin = false;    /* if not always_thin, */
980
                    /* then never thin. */
981
982
3.57M
                } else {
983
492k
                    gs_point dpt;       /* unscaled */
984
492k
                    float wl;
985
986
492k
                    code = gs_gstate_idtransform(pgs,
987
492k
                                                 (float)udx, (float)udy,
988
492k
                                                 &dpt);
989
492k
                    if (code < 0) {
990
284k
                        dpt.x = 0; dpt.y = 0;
991
                        /* Swallow the error */
992
284k
                        code = 0;
993
284k
                    } else {
994
208k
                        wl = line_width_and_scale /
995
208k
                            hypot(dpt.x, dpt.y);
996
                        /* Construct the width vector in */
997
                        /* user space, still unscaled. */
998
208k
                        dpt.x *= wl;
999
208k
                        dpt.y *= wl;
1000
208k
                    }
1001
1002
                    /*
1003
                     * We now compute both perpendicular
1004
                     * and (optionally) parallel half-widths,
1005
                     * as deltas in device space.  We use
1006
                     * a fixed-point, unscaled version of
1007
                     * gs_dtransform.  The second computation
1008
                     * folds in a 90-degree rotation (in user
1009
                     * space, before transforming) in the
1010
                     * direction that corresponds to counter-
1011
                     * clockwise in device space.
1012
                     */
1013
492k
                    pl.e.cdelta.x = (fixed) (dpt.x * xx);
1014
492k
                    pl.e.cdelta.y = (fixed) (dpt.y * yy);
1015
492k
                    if (orient != orient_portrait)
1016
477k
                        pl.e.cdelta.x += (fixed) (dpt.y * yx),
1017
477k
                            pl.e.cdelta.y += (fixed) (dpt.x * xy);
1018
492k
                    if (!reflected ^ initial_matrix_reflected)
1019
150k
                        dpt.x = -dpt.x, dpt.y = -dpt.y;
1020
492k
                    pl.width.x = (fixed) (dpt.y * xx),
1021
492k
                        pl.width.y = -(fixed) (dpt.x * yy);
1022
492k
                    if (orient != orient_portrait)
1023
477k
                        pl.width.x -= (fixed) (dpt.x * yx),
1024
477k
                            pl.width.y += (fixed) (dpt.y * xy);
1025
492k
                    pl.thin = width_is_thin(&pl);
1026
492k
                }
1027
4.06M
                if (!pl.thin) {
1028
3.78M
                    if (index)
1029
2.90M
                        dev->sgr.stroke_stored = false;
1030
3.78M
                    adjust_stroke(dev, &pl, pgs, false,
1031
3.78M
                            (pseg->prev == 0 || pseg->prev->type == s_start) &&
1032
3.78M
                            (pseg->next == 0 || pseg->next->type == s_start) &&
1033
3.78M
                            (zero_length || !is_closed),
1034
3.78M
                            COMBINE_FLAGS(flags));
1035
3.78M
                    compute_caps(&pl);
1036
3.78M
                }
1037
4.06M
            }
1038
4.12M
            if (index++) {
1039
3.07M
                gs_line_join join =
1040
3.07M
                    (pseg_notes & not_first ? curve_join : pgs_lp->join);
1041
3.07M
                int first;
1042
3.07M
                pl_ptr lptr;
1043
3.07M
                bool ensure_closed;
1044
1045
3.07M
                if (join == gs_join_none) {
1046
                    /* Fake the end of a subpath so we get */
1047
                    /* caps instead of joins. */
1048
0
                    first = 0;
1049
0
                    lptr = 0;
1050
0
                    index = 1;
1051
3.07M
                } else {
1052
3.07M
                    first = (is_closed ? 1 : index - 2);
1053
3.07M
                    lptr = &pl;
1054
3.07M
                }
1055
#ifdef AVOID_JOINING_TO_DASH_GAPS
1056
                if (is_dash_segment) /* Never join to a dash segment */
1057
                    lptr = NULL;
1058
#endif
1059
3.07M
                if (pseg->type == s_gap)
1060
0
                {
1061
0
                    lptr = NULL;
1062
                    /* We are always drawing one line segment behind, so make
1063
                     * sure we don't draw the next one. */
1064
0
                    index = 0;
1065
0
                }
1066
1067
3.07M
                ensure_closed = ((to_path == &stroke_path_body &&
1068
3.07M
                                  lop_is_idempotent(pgs->log_op)) ||
1069
3.07M
                                 (lptr == NULL ? true : lptr->thin));
1070
                /* Draw the PREVIOUS line segment, joining it to lptr (or
1071
                 * capping if lptr == NULL. */
1072
3.07M
                code = (*line_proc) (to_path, to_path_reverse, ensure_closed,
1073
3.07M
                                     first, &pl_prev, lptr,
1074
3.07M
                                     pdevc, dev, pgs, params, &cbox,
1075
3.07M
                                     uniform, join, initial_matrix_reflected,
1076
3.07M
                                     COMBINE_FLAGS(flags));
1077
3.07M
                if (code < 0)
1078
0
                    goto exit;
1079
3.07M
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1080
3.07M
            } else if (pseg->type == s_gap) {
1081
                /* If this segment is a gap, then we don't want to draw it
1082
                 * next time! */
1083
0
                index = 0;
1084
0
            } else
1085
1.04M
                pl_first = pl;
1086
4.12M
            pl_prev = pl;
1087
4.12M
            x = sx, y = sy;
1088
4.12M
            flags = (flags<<4) | nf_all_from_arc;
1089
4.12M
        }
1090
1.05M
        if (index) {
1091
            /* If closed, join back to start, else cap. */
1092
1.04M
            segment_notes notes = (pseg == 0 ?
1093
197k
                                   (const segment *)spath->first_subpath :
1094
1.04M
                                   pseg)->notes;
1095
1.04M
            gs_line_join join = (notes & not_first ? curve_join :
1096
1.04M
                                 pgs_lp->join);
1097
1.04M
            gs_line_cap cap;
1098
            /* For some reason, the Borland compiler requires the cast */
1099
            /* in the following statement. */
1100
1.04M
            pl_ptr lptr =
1101
1.04M
                (!is_closed || join == gs_join_none || zero_length ?
1102
840k
                 (pl_ptr) 0 : (pl_ptr) & pl_first);
1103
1104
#ifdef AVOID_JOINING_TO_DASH_GAPS
1105
            if (lptr && psub->type == s_dash)
1106
                lptr = NULL;
1107
#endif
1108
            /* If the subpath starts with a gap, then cap, don't join! */
1109
1.04M
            if (lptr && psub->type == s_start && psub->next && psub->next->type == s_gap)
1110
0
                lptr = NULL;
1111
1112
1.04M
            flags = (((notes & sn_not_first) ?
1113
1.04M
                      ((flags & nf_all_from_arc) | nf_some_from_arc) : 0) |
1114
1.04M
                     ((notes & sn_dash_head) ? nf_dash_head : 0) |
1115
1.04M
                     ((notes & sn_dash_tail) ? nf_dash_tail : 0) |
1116
1.04M
                     (flags & ~nf_all_from_arc));
1117
1.04M
            code = (*line_proc) (to_path, to_path_reverse, true,
1118
1.04M
                                 index - 1, &pl_prev, lptr, pdevc,
1119
1.04M
                                 dev, pgs, params, &cbox, uniform, join,
1120
1.04M
                                 initial_matrix_reflected,
1121
1.04M
                                 COMBINE_FLAGS(flags));
1122
1.04M
            if (code < 0)
1123
0
                goto exit;
1124
1.04M
            FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1125
1.04M
            cap = ((flags & nf_prev_dash_head) ?
1126
666k
                   pgs_lp->start_cap : pgs_lp->dash_cap);
1127
1.04M
            if (traditional && lptr == 0 && cap != gs_cap_butt) {
1128
                /* Create the initial cap at last. */
1129
451
                code = stroke_add_initial_cap_compat(to_path, &pl_first, index == 1, pdevc, dev, pgs);
1130
451
                if (code < 0)
1131
0
                    goto exit;
1132
451
                FILL_STROKE_PATH(pdev, always_thin, pcpath, false);
1133
451
            }
1134
1.04M
        }
1135
1.05M
        psub = (const subpath *)pseg;
1136
1.05M
    }
1137
198k
    if (to_path_reverse != NULL)
1138
0
        code = gx_join_path_and_reverse(to_path, to_path_reverse);
1139
198k
    FILL_STROKE_PATH(pdev, always_thin, pcpath, true);
1140
198k
  exit:
1141
198k
    if (dev == (gx_device *)&cdev)
1142
71.0k
        cdev.target->sgr = cdev.sgr;
1143
198k
    if (to_path == &stroke_path_body)
1144
198k
        gx_path_free(&stroke_path_body, "gx_stroke_path_only error");   /* (only needed if error) */
1145
198k
    if (to_path_reverse == &stroke_path_reverse)
1146
0
        gx_path_free(&stroke_path_reverse, "gx_stroke_path_only error");
1147
198k
  exf:
1148
198k
    if (dash_count)
1149
4.89k
        gx_path_free(&dpath, "gx_stroke_path exit(dash path)");
1150
    /* If we flattened the path then we set spath to &fpath. If we flattned the path then now we need to free fpath */
1151
198k
    if(flattened_path)
1152
18.5k
        gx_path_free(&fpath, "gx_stroke_path exit(flattened path)");
1153
198k
    if (dev == (gx_device *)&cdev)
1154
71.0k
        gx_destroy_clip_device_on_stack(&cdev);
1155
198k
    return code;
1156
198k
}
1157
1158
int
1159
gx_stroke_path_only(gx_path * ppath, gx_path * to_path, gx_device * pdev,
1160
               const gs_gstate * pgs, const gx_stroke_params * params,
1161
                 const gx_device_color * pdevc, const gx_clip_path * pcpath)
1162
553k
{
1163
553k
    return gx_stroke_path_only_aux(ppath, to_path, pdev, pgs, params, pdevc, pcpath);
1164
553k
}
1165
1166
/* ------ Internal routines ------ */
1167
1168
/*
1169
 * Test whether a line is thin, i.e., whether the half-width, measured
1170
 * perpendicular to the line in device space, is less than 0.5 pixel.
1171
 * Unfortunately, the width values we computed are perpendicular to the
1172
 * line in *user* space, so we may have to do some extra work.
1173
 */
1174
static bool
1175
width_is_thin(pl_ptr plp)
1176
492k
{
1177
492k
    fixed dx, dy, wx = plp->width.x, wy = plp->width.y;
1178
1179
    /* If the line is horizontal or vertical, things are easy. */
1180
492k
    if ((dy = plp->vector.y) == 0)
1181
289k
        return any_abs(wy) < fixed_half;
1182
203k
    if ((dx = plp->vector.x) == 0)
1183
6.73k
        return any_abs(wx) < fixed_half;
1184
1185
    /* For the longest time, we used to have a test here that
1186
     * attempted to trivially accept diagonal lines as being
1187
     * thin based on the components of the perpendicular
1188
     * width vector in device space as both being less than 0.5.
1189
     * Bug 702196 showed some examples where this was clearly
1190
     * wrong.
1191
     *
1192
     * The cause for this bug was that the 0.5 figure was wrong.
1193
     * For the point to be less than 1/2 a pixel perpendicular
1194
     * distant from the line, we'd need x^2 + y^2 < .5^2.
1195
     * For a 45 degree line, that'd be 2(x^2) < 1/4 = x^2 < 1/8
1196
     * or x < sqr(1/8). 45 degree line is the "worst case", so
1197
     * if both horizontal and vertical widths are less than
1198
     * sqr(1/8), the line is thin. sqr(1/8) = 0.35355339059.
1199
     * So, we should be using sqr(1/8) rather than 0.5.
1200
     *
1201
     * Fixing this did indeed produce many many progressions,
1202
     * but left just the odd file still showing problems.
1203
     *
1204
     * Further investigations show that those cases were due to
1205
     * the use of "non-uniform" scaling matrices, for example
1206
     * (83 0 0 51 0 0). With such matrices, it's possible for
1207
     * nearly horizontal lines to be thin, but nearly vertical
1208
     * ones to be thick (or vice versa). Having the style of
1209
     * line "pop" between thick and thin in a single stroke
1210
     * looks very noticeable.
1211
     *
1212
     * We could change the trivial optimisation below to only
1213
     * apply in the 'uniform' case, but that would never actually
1214
     * trigger (as tested on the cluster), because all such
1215
     * cases are caught by the "always_thin" condition in the
1216
     * caller.
1217
     *
1218
     * Just removing the trivial test and leaving the 'complicated'
1219
     * test below us would leave us vulnerable to "popping",
1220
     * so we disable both. In practice this makes no difference
1221
     * to the number of tests showing diffs in the cluster.
1222
     */
1223
#if 0 /* DISABLED TEST, see above */
1224
    {
1225
        /* thin_threshold = fixed sqr(1/8) - see above. */
1226
        const fixed thin_threshold = float2fixed(0.35355339059f);
1227
        if (any_abs(wx) < thin_threshold && any_abs(wy) < thin_threshold)
1228
            return true;
1229
    }
1230
1231
    /*
1232
     * We have to do this the hard way, by actually computing the
1233
     * perpendicular distance.  The distance from the point (U,V)
1234
     * from a line from (0,0) to (C,D) is
1235
     *      abs(C*V - D*U) / sqrt(C^2 + D^2)
1236
     * In this case, (U,V) is plp->width, and (C,D) is (dx,dy).
1237
     */
1238
    {
1239
        double C = dx, D = dy;
1240
        double num = C * wy - D * wx;
1241
        double denom = hypot(C, D);
1242
1243
        /* both num and denom are scaled by fixed_scale^2, */
1244
        /* so we don't need to do any de-scaling for the test. */
1245
        return fabs(num) < denom * 0.5;
1246
    }
1247
#else
1248
196k
    return false;
1249
203k
#endif
1250
203k
}
1251
1252
/* Adjust the endpoints and width of a stroke segment along a specified axis */
1253
static void
1254
adjust_stroke_transversal(pl_ptr plp, const gs_gstate * pgs, bool thin, bool horiz)
1255
482k
{
1256
482k
    fixed *pw;
1257
482k
    fixed *pov;
1258
482k
    fixed *pev;
1259
482k
    fixed w, w2;
1260
482k
    fixed adj2;
1261
1262
482k
    if (horiz) {
1263
        /* More horizontal stroke */
1264
441k
        pw = &plp->width.y, pov = &plp->o.p.y, pev = &plp->e.p.y;
1265
441k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, y) << 1;
1266
441k
    } else {
1267
        /* More vertical stroke */
1268
40.6k
        pw = &plp->width.x, pov = &plp->o.p.x, pev = &plp->e.p.x;
1269
40.6k
        adj2 = STROKE_ADJUSTMENT(thin, pgs, x) << 1;
1270
40.6k
    }
1271
    /* Round the larger component of the width up or down, */
1272
    /* whichever way produces a result closer to the correct width. */
1273
    /* Note that just rounding the larger component */
1274
    /* may not produce the correct result. */
1275
482k
    w = *pw;
1276
482k
    if (w > 0)
1277
26.0k
        w2 = fixed_rounded(w << 1);     /* full line width */
1278
456k
    else
1279
456k
        w2 = -fixed_rounded(-w << 1);   /* full line width */
1280
482k
    if (w2 == 0 && *pw != 0) {
1281
        /* Make sure thin lines don't disappear. */
1282
0
        w2 = (*pw < 0 ? -fixed_1 + adj2 : fixed_1 - adj2);
1283
0
        *pw = arith_rshift_1(w2);
1284
0
    }
1285
    /* Only adjust the endpoints if the line is horizontal or vertical. */
1286
482k
    if (*pov == *pev) {
1287
        /* We're going to round the endpoint coordinates, so */
1288
        /* take the fill adjustment into account now. */
1289
443k
        if (w >= 0)
1290
6.35k
            w2 += adj2;
1291
437k
        else
1292
437k
            w2 = adj2 - w2;
1293
443k
        if (w2 & fixed_1)       /* odd width, move to half-pixel */
1294
5.68k
            *pov = *pev = fixed_floor(*pov) + fixed_half;
1295
437k
        else                    /* even width, move to pixel */
1296
437k
            *pov = *pev = fixed_rounded(*pov);
1297
1298
443k
    }
1299
482k
}
1300
1301
static void
1302
adjust_stroke_longitude(pl_ptr plp, const gs_gstate * pgs,
1303
                        bool thin, bool horiz,
1304
                        gs_line_cap start_cap, gs_line_cap end_cap)
1305
437k
{
1306
1307
437k
    fixed *pow = (horiz ? &plp->o.p.y : &plp->o.p.x);
1308
437k
    fixed *pew = (horiz ? &plp->e.p.y : &plp->e.p.x);
1309
1310
    /* Only adjust the endpoints if the line is horizontal or vertical.
1311
       Debugged with pdfwrite->ppmraw 72dpi file2.pdf */
1312
437k
    if (*pow == *pew) {
1313
433k
        fixed *pov = (horiz ? &plp->o.p.x : &plp->o.p.y);
1314
433k
        fixed *pev = (horiz ? &plp->e.p.x : &plp->e.p.y);
1315
433k
        fixed length = any_abs(*pov - *pev);
1316
433k
        fixed length_r, length_r_2;
1317
433k
        fixed mv = (*pov + *pev) / 2, mv_r;
1318
433k
        fixed adj2 = (horiz ? STROKE_ADJUSTMENT(thin, pgs, x)
1319
433k
                            : STROKE_ADJUSTMENT(thin, pgs, y)) << 1;
1320
1321
        /* fixme :
1322
           The best value for adjust_longitude is whether
1323
           the dash is isolated and doesn't cover entire segment.
1324
           The current data structure can't pass this info.
1325
           Therefore we restrict adjust_stroke_longitude with 1 pixel length.
1326
        */
1327
433k
        if (length > fixed_1) /* comparefiles/file2.pdf */
1328
20.6k
            return;
1329
413k
        if (start_cap == gs_cap_butt || end_cap == gs_cap_butt) {
1330
0
            length_r = fixed_rounded(length);
1331
0
            if (length_r < fixed_1)
1332
0
                length_r = fixed_1;
1333
0
            length_r_2 = length_r / 2;
1334
413k
        } else {
1335
            /* Account width for proper placing cap centers. */
1336
413k
            fixed width = any_abs(horiz ? plp->width.y : plp->width.x);
1337
1338
413k
            length_r = fixed_rounded(length + width * 2 + adj2);
1339
413k
            length_r_2 = fixed_rounded(length) / 2;
1340
413k
        }
1341
413k
        if (length_r & fixed_1)
1342
2
            mv_r = fixed_floor(mv) + fixed_half;
1343
413k
        else
1344
413k
            mv_r = fixed_floor(mv);
1345
413k
        if (*pov < *pev) {
1346
0
            *pov = mv_r - length_r_2;
1347
0
            *pev = mv_r + length_r_2;
1348
413k
        } else {
1349
413k
            *pov = mv_r + length_r_2;
1350
413k
            *pev = mv_r - length_r_2;
1351
413k
        }
1352
413k
    }
1353
437k
}
1354
1355
/* Adjust the endpoints and width of a stroke segment */
1356
/* to achieve more uniform rendering. */
1357
/* Only o.p, e.p, e.cdelta, and width have been set. */
1358
static void
1359
adjust_stroke(gx_device *dev, pl_ptr plp, const gs_gstate * pgs,
1360
              bool thin, bool adjust_longitude, note_flags flags)
1361
3.79M
{
1362
3.79M
    bool horiz, adjust = true;
1363
3.79M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1364
24.0k
                             pgs->line_params.dash_cap :
1365
3.79M
                             pgs->line_params.start_cap);
1366
3.79M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1367
24.1k
                             pgs->line_params.dash_cap :
1368
3.79M
                             pgs->line_params.end_cap);
1369
1370
    /* If stroke_adjustment is disabled, or this isn't a horizontal or
1371
     * vertical line, then bale. */
1372
3.79M
    if (!pgs->stroke_adjust || (plp->width.x != 0 && plp->width.y != 0)) {
1373
3.31M
        dev->sgr.stroke_stored = false;
1374
3.31M
        return;                 /* don't adjust */
1375
3.31M
    }
1376
    /* Recognizing gradients, which some obsolete software
1377
       represent as a set of parallel strokes.
1378
       Such strokes must not be adjusted - bug 687974. */
1379
482k
    if (dev->sgr.stroke_stored &&
1380
482k
        (start_cap == gs_cap_butt || end_cap == gs_cap_butt) &&
1381
482k
        dev->sgr.orig[3].x == plp->vector.x && dev->sgr.orig[3].y == plp->vector.y) {
1382
        /* Parallel. */
1383
82
        if ((int64_t)(plp->o.p.x - dev->sgr.orig[0].x) * plp->vector.x ==
1384
82
            (int64_t)(plp->o.p.y - dev->sgr.orig[0].y) * plp->vector.y &&
1385
82
            (int64_t)(plp->e.p.x - dev->sgr.orig[1].x) * plp->vector.x ==
1386
0
            (int64_t)(plp->e.p.y - dev->sgr.orig[1].y) * plp->vector.y) {
1387
            /* Transversal shift. */
1388
0
            if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1389
0
                any_abs(plp->o.p.y - dev->sgr.orig[0].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y) &&
1390
0
                any_abs(plp->e.p.x - dev->sgr.orig[1].x) <= any_abs(plp->width.x + dev->sgr.orig[2].x) &&
1391
0
                any_abs(plp->e.p.y - dev->sgr.orig[1].y) <= any_abs(plp->width.y + dev->sgr.orig[2].y)) {
1392
                /* The strokes were contacting or overlapping. */
1393
0
                if (any_abs(plp->o.p.x - dev->sgr.orig[0].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1394
0
                    any_abs(plp->o.p.y - dev->sgr.orig[0].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2 &&
1395
0
                    any_abs(plp->e.p.x - dev->sgr.orig[1].x) >= any_abs(plp->width.x + dev->sgr.orig[2].x) / 2 &&
1396
0
                    any_abs(plp->e.p.y - dev->sgr.orig[1].y) >= any_abs(plp->width.y + dev->sgr.orig[2].y) / 2) {
1397
                    /* The strokes were not much overlapping. */
1398
0
                    if (!(any_abs(plp->o.p.x - dev->sgr.adjusted[0].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1399
0
                          any_abs(plp->o.p.y - dev->sgr.adjusted[0].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y) &&
1400
0
                          any_abs(plp->e.p.x - dev->sgr.adjusted[1].x) <= any_abs(plp->width.x + dev->sgr.adjusted[2].x) &&
1401
0
                          any_abs(plp->e.p.y - dev->sgr.adjusted[1].y) <= any_abs(plp->width.y + dev->sgr.adjusted[2].y))) {
1402
                        /* they became not contacting.
1403
                           We should not have adjusted the last stroke. Since if we did,
1404
                           lets change the current one to restore the contact,
1405
                           so that we don't leave gaps when rasterising. See bug 687974.
1406
                         */
1407
0
                        fixed delta_w_x = (dev->sgr.adjusted[2].x - dev->sgr.orig[2].x);
1408
0
                        fixed delta_w_y = (dev->sgr.adjusted[2].y - dev->sgr.orig[2].y);
1409
0
                        fixed shift_o_x = (dev->sgr.adjusted[0].x - dev->sgr.orig[0].x);
1410
0
                        fixed shift_o_y = (dev->sgr.adjusted[0].y - dev->sgr.orig[0].y);
1411
0
                        fixed shift_e_x = (dev->sgr.adjusted[1].x - dev->sgr.orig[1].x); /* Must be same, but we prefer clarity. */
1412
0
                        fixed shift_e_y = (dev->sgr.adjusted[1].y - dev->sgr.orig[1].y);
1413
1414
0
                        if (plp->o.p.x < dev->sgr.orig[0].x ||
1415
0
                            (plp->o.p.x == dev->sgr.orig[0].x && plp->o.p.y < dev->sgr.orig[0].y)) {
1416
                            /* Left contact, adjust to keep the contact. */
1417
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1418
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1419
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1420
0
                            plp->width.x += (shift_o_x - delta_w_x) / 2;
1421
0
                            plp->width.y += (shift_o_y - delta_w_y) / 2;
1422
0
                            plp->o.p.x += (shift_o_x - delta_w_x) / 2;
1423
0
                            plp->o.p.y += (shift_o_y - delta_w_y) / 2;
1424
0
                            plp->e.p.x += (shift_e_x - delta_w_x) / 2;
1425
0
                            plp->e.p.y += (shift_e_y - delta_w_y) / 2;
1426
0
                            adjust = false;
1427
0
                        } else {
1428
                            /* Right contact, adjust to keep the contact. */
1429
0
                            if_debug4m('O', dev->memory, "[O]don't adjust {{%f,%f},{%f,%f}}\n",
1430
0
                                       fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
1431
0
                                       fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
1432
0
                            plp->width.x -= (shift_o_x + delta_w_x) / 2;
1433
0
                            plp->width.y -= (shift_o_y + delta_w_y) / 2;
1434
0
                            plp->o.p.x += (shift_o_x + delta_w_x) / 2;
1435
0
                            plp->o.p.y += (shift_o_y + delta_w_y) / 2;
1436
0
                            plp->e.p.x += (shift_e_x + delta_w_x) / 2;
1437
0
                            plp->e.p.y += (shift_e_y + delta_w_y) / 2;
1438
0
                            adjust = false;
1439
0
                        }
1440
0
                    }
1441
0
                }
1442
0
            }
1443
0
        }
1444
82
    }
1445
482k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1446
7.88k
        dev->sgr.stroke_stored = true;
1447
7.88k
        dev->sgr.orig[0] = plp->o.p;
1448
7.88k
        dev->sgr.orig[1] = plp->e.p;
1449
7.88k
        dev->sgr.orig[2] = plp->width;
1450
7.88k
        dev->sgr.orig[3] = plp->vector;
1451
7.88k
    } else
1452
474k
        dev->sgr.stroke_stored = false;
1453
482k
    if (adjust) {
1454
482k
        horiz = (any_abs(plp->width.x) <= any_abs(plp->width.y));
1455
482k
        adjust_stroke_transversal(plp, pgs, thin, horiz);
1456
482k
        if (adjust_longitude)
1457
437k
            adjust_stroke_longitude(plp, pgs, thin, horiz, start_cap, end_cap);
1458
482k
    }
1459
482k
    if ((start_cap == gs_cap_butt) || (end_cap == gs_cap_butt)) {
1460
7.88k
        dev->sgr.adjusted[0] = plp->o.p;
1461
7.88k
        dev->sgr.adjusted[1] = plp->e.p;
1462
7.88k
        dev->sgr.adjusted[2] = plp->width;
1463
7.88k
        dev->sgr.adjusted[3] = plp->vector;
1464
7.88k
    }
1465
482k
}
1466
1467
/* Compute the intersection of two lines.  This is a messy algorithm */
1468
/* that somehow ought to be useful in more places than just here.... */
1469
/* If the lines are (nearly) parallel, return -1 without setting *pi; */
1470
/* otherwise, return 0 if the intersection is beyond *pp1 and *pp2 in */
1471
/* the direction determined by *pd1 and *pd2, and 1 otherwise. */
1472
static int
1473
line_intersect(
1474
                  p_ptr pp1,    /* point on 1st line */
1475
                  p_ptr pd1,    /* slope of 1st line (dx,dy) */
1476
                  p_ptr pp2,    /* point on 2nd line */
1477
                  p_ptr pd2,    /* slope of 2nd line */
1478
                  p_ptr pi)
1479
3.06M
{                               /* return intersection here */
1480
    /* We don't have to do any scaling, the factors all work out right. */
1481
3.06M
    double u1 = pd1->x, v1 = pd1->y;
1482
3.06M
    double u2 = pd2->x, v2 = pd2->y;
1483
3.06M
    double denom = u1 * v2 - u2 * v1;
1484
3.06M
    double xdiff = pp2->x - pp1->x;
1485
3.06M
    double ydiff = pp2->y - pp1->y;
1486
3.06M
    double f1;
1487
3.06M
    double max_result = any_abs(denom) * (double)max_fixed;
1488
1489
#ifdef DEBUG
1490
    if (gs_debug_c('O')) {
1491
        dlprintf4("[o]Intersect %f,%f(%f/%f)",
1492
                  fixed2float(pp1->x), fixed2float(pp1->y),
1493
                  fixed2float(pd1->x), fixed2float(pd1->y));
1494
        dlprintf4(" & %f,%f(%f/%f),\n",
1495
                  fixed2float(pp2->x), fixed2float(pp2->y),
1496
                  fixed2float(pd2->x), fixed2float(pd2->y));
1497
        dlprintf3("\txdiff=%f ydiff=%f denom=%f ->\n",
1498
                  xdiff, ydiff, denom);
1499
    }
1500
#endif
1501
    /* Check for degenerate result. */
1502
3.06M
    if (any_abs(xdiff) >= max_result || any_abs(ydiff) >= max_result) {
1503
        /* The lines are nearly parallel, */
1504
        /* or one of them has zero length.  Punt. */
1505
6.38k
        if_debug0('O', "\tdegenerate!\n");
1506
6.38k
        return -1;
1507
6.38k
    }
1508
3.05M
    f1 = (v2 * xdiff - u2 * ydiff) / denom;
1509
3.05M
    pi->x = pp1->x + (fixed) (f1 * u1);
1510
3.05M
    pi->y = pp1->y + (fixed) (f1 * v1);
1511
3.05M
    if_debug2('O', "\t%f,%f\n",
1512
3.05M
              fixed2float(pi->x), fixed2float(pi->y));
1513
3.05M
    return (f1 >= 0 && (v1 * xdiff >= u1 * ydiff ? denom >= 0 : denom < 0) ? 0 : 1);
1514
3.06M
}
1515
1516
/* Set up the width and delta parameters for a thin line. */
1517
/* We only approximate the width and height. */
1518
static void
1519
set_thin_widths(register pl_ptr plp)
1520
15.5k
{
1521
15.5k
    fixed dx = plp->e.p.x - plp->o.p.x, dy = plp->e.p.y - plp->o.p.y;
1522
1523
15.5k
#define TRSIGN(v, c) ((v) >= 0 ? (c) : -(c))
1524
15.5k
    if (any_abs(dx) > any_abs(dy)) {
1525
7.88k
        plp->width.x = plp->e.cdelta.y = 0;
1526
7.88k
        plp->width.y = plp->e.cdelta.x = TRSIGN(dx, fixed_half);
1527
7.88k
    } else {
1528
7.70k
        plp->width.y = plp->e.cdelta.x = 0;
1529
7.70k
        plp->width.x = -(plp->e.cdelta.y = TRSIGN(dy, fixed_half));
1530
7.70k
    }
1531
15.5k
#undef TRSIGN
1532
15.5k
}
1533
1534
/* Draw a line on the device. */
1535
/* Treat no join the same as a bevel join. */
1536
/* rpath should always be NULL, hence ensure_closed can be ignored */
1537
static int
1538
stroke_fill(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1539
            register pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1540
            gx_device * dev, const gs_gstate * pgs,
1541
            const gx_stroke_params * params, const gs_fixed_rect * pbbox,
1542
            int uniform, gs_line_join join, bool reflected,
1543
            note_flags flags)
1544
4.06M
{
1545
4.06M
    const fixed lix = plp->o.p.x;
1546
4.06M
    const fixed liy = plp->o.p.y;
1547
4.06M
    const fixed litox = plp->e.p.x;
1548
4.06M
    const fixed litoy = plp->e.p.y;
1549
1550
    /* assert(lop_is_idempotent(pgs->log_op)); */
1551
4.06M
    if (plp->thin) {
1552
        /* Minimum-width line, don't have to be careful with caps/joins. */
1553
324k
        return (*dev_proc(dev, draw_thin_line))(dev, lix, liy, litox, litoy,
1554
324k
                                                pdevc, pgs->log_op,
1555
324k
                                                pgs->fill_adjust.x,
1556
324k
                                                pgs->fill_adjust.y);
1557
324k
    }
1558
    /* Check for being able to fill directly. */
1559
3.73M
    {
1560
3.73M
        const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1561
3.73M
        gs_line_cap start_cap = (flags & nf_dash_head ?
1562
3.05M
                                 pgs_lp->dash_cap : pgs_lp->start_cap);
1563
3.73M
        gs_line_cap end_cap   = (flags & nf_dash_tail ?
1564
3.04M
                                 pgs_lp->dash_cap : pgs_lp->end_cap);
1565
1566
3.73M
        if (first != 0)
1567
2.96M
            start_cap = gs_cap_butt;
1568
3.73M
        if (nplp != 0)
1569
2.96M
            end_cap = gs_cap_butt;
1570
3.73M
        if (!plp->thin && (nplp == 0 || !nplp->thin)
1571
3.73M
            && (start_cap == gs_cap_butt || start_cap == gs_cap_square)
1572
3.73M
            && (end_cap   == gs_cap_butt || end_cap   == gs_cap_square)
1573
3.73M
            && (join == gs_join_bevel || join == gs_join_miter ||
1574
3.11M
                join == gs_join_none)
1575
3.73M
            && (pgs->fill_adjust.x | pgs->fill_adjust.y) == 0
1576
3.73M
            ) {
1577
0
            gs_fixed_point points[6];
1578
0
            int npoints, code;
1579
0
            fixed ax, ay, bx, by;
1580
1581
0
            npoints = cap_points(start_cap, &plp->o, points);
1582
0
            if (nplp == 0)
1583
0
                code = cap_points(end_cap, &plp->e, points + npoints);
1584
0
            else
1585
0
                code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1586
0
                                        (uniform ? (gs_matrix *) 0 :
1587
0
                                         &ctm_only(pgs)), join, reflected);
1588
0
            if (code < 0)
1589
0
                goto general;
1590
            /* Make sure the parallelogram fill won't overflow. */
1591
0
#define SUB_OVERFLOWS(r, u, v)\
1592
0
  (((r = u - v) ^ u) < 0 && (u ^ v) < 0)
1593
0
            if (SUB_OVERFLOWS(ax, points[0].x, points[1].x) ||
1594
0
                SUB_OVERFLOWS(ay, points[0].y, points[1].y) ||
1595
0
                SUB_OVERFLOWS(bx, points[2].x, points[1].x) ||
1596
0
                SUB_OVERFLOWS(by, points[2].y, points[1].y)
1597
0
                )
1598
0
                goto general;
1599
0
#undef SUB_OVERFLOWS
1600
0
            if (nplp != 0) {
1601
0
                if (join == gs_join_miter) {
1602
                    /* Make sure we have a bevel and not a miter. */
1603
0
                    if (!(points[2].x == plp->e.co.x &&
1604
0
                          points[2].y == plp->e.co.y &&
1605
0
                          points[5].x == plp->e.ce.x &&
1606
0
                          points[5].y == plp->e.ce.y)
1607
0
                        )
1608
0
                        goto fill;
1609
0
                } {
1610
0
                    const gs_fixed_point *bevel = points + 2;
1611
1612
                    /* Identify which 3 points define the bevel triangle. */
1613
0
                    if (points[3].x == nplp->o.p.x &&
1614
0
                        points[3].y == nplp->o.p.y
1615
0
                        )
1616
0
                        ++bevel;
1617
                    /* Fill the bevel. */
1618
0
                    code = (*dev_proc(dev, fill_triangle)) (dev,
1619
0
                                                         bevel->x, bevel->y,
1620
0
                               bevel[1].x - bevel->x, bevel[1].y - bevel->y,
1621
0
                               bevel[2].x - bevel->x, bevel[2].y - bevel->y,
1622
0
                                                        pdevc, pgs->log_op);
1623
0
                    if (code < 0)
1624
0
                        return code;
1625
0
                }
1626
0
            }
1627
            /* Fill the body of the stroke. */
1628
0
            return (*dev_proc(dev, fill_parallelogram)) (dev,
1629
0
                                                   points[1].x, points[1].y,
1630
0
                                                         ax, ay, bx, by,
1631
0
                                                         pdevc, pgs->log_op);
1632
0
          fill:
1633
0
            code = add_points(ppath, points, npoints + code, true);
1634
0
            if (code < 0)
1635
0
                return code;
1636
0
            return gx_path_close_subpath(ppath);
1637
0
        }
1638
3.73M
    }
1639
    /* General case: construct a path for the fill algorithm. */
1640
3.73M
 general:
1641
3.73M
    return stroke_add(ppath, rpath, ensure_closed, first, plp, nplp, pdevc,
1642
3.73M
                      dev, pgs, params, pbbox, uniform, join, reflected,
1643
3.73M
                      flags);
1644
3.73M
}
1645
1646
/* Add a segment to the path.  This handles all the complex cases. */
1647
static int
1648
stroke_add(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1649
           pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1650
           gx_device * dev, const gs_gstate * pgs,
1651
           const gx_stroke_params * params,
1652
           const gs_fixed_rect * ignore_pbbox, int uniform,
1653
           gs_line_join join, bool reflected, note_flags flags)
1654
3.79M
{
1655
3.79M
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1656
3.79M
    gs_fixed_point points[8];
1657
3.79M
    int npoints;
1658
3.79M
    int code;
1659
3.79M
    bool moveto_first = true;
1660
3.79M
    gs_line_cap start_cap = (flags & nf_dash_head ?
1661
3.10M
                             pgs_lp->dash_cap : pgs_lp->start_cap);
1662
3.79M
    gs_line_cap end_cap   = (flags & nf_dash_tail ?
1663
3.10M
                             pgs_lp->dash_cap : pgs_lp->end_cap);
1664
1665
3.79M
    if (plp->thin) {
1666
        /* We didn't set up the endpoint parameters before, */
1667
        /* because the line was thin.  Do it now. */
1668
15.5k
        set_thin_widths(plp);
1669
15.5k
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1670
15.5k
        compute_caps(plp);
1671
15.5k
    }
1672
    /* Create an initial cap if desired. */
1673
3.79M
    if (first == 0 && start_cap == gs_cap_round) {
1674
581k
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1675
581k
            (code = add_pie_cap(ppath, &plp->o)) < 0)
1676
0
            return code;
1677
581k
        npoints = 0;
1678
581k
        moveto_first = false;
1679
3.21M
    } else {
1680
3.21M
        if ((npoints = cap_points((first == 0 ? start_cap : gs_cap_butt),
1681
3.21M
                                  &plp->o, points)) < 0)
1682
0
            return npoints;
1683
3.21M
    }
1684
3.79M
    if (nplp == 0) {
1685
        /* Add a final cap. */
1686
773k
        if (end_cap == gs_cap_round) {
1687
581k
            ASSIGN_POINT(&points[npoints], plp->e.co);
1688
581k
            ++npoints;
1689
581k
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1690
0
                return code;
1691
581k
            code = add_pie_cap(ppath, &plp->e);
1692
581k
            goto done;
1693
581k
        }
1694
192k
        code = cap_points(end_cap, &plp->e, points + npoints);
1695
3.02M
    } else if (nplp->thin) /* no join */
1696
15.5k
        code = cap_points(gs_cap_butt, &plp->e, points + npoints);
1697
3.00M
    else if (join == gs_join_round) {
1698
127k
        ASSIGN_POINT(&points[npoints], plp->e.co);
1699
127k
        ++npoints;
1700
127k
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1701
0
            return code;
1702
127k
        code = add_pie_join(ppath, plp, nplp, reflected, true);
1703
127k
        goto done;
1704
2.87M
    } else if (flags & nf_all_from_arc) {
1705
        /* If all the segments in 'prev' and 'current' are from a curve
1706
         * then the join should actually be a round one, because it would
1707
         * have been round if we had flattened it enough. */
1708
2.10M
        ASSIGN_POINT(&points[npoints], plp->e.co);
1709
2.10M
        ++npoints;
1710
2.10M
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
1711
0
            return code;
1712
2.10M
        code = add_pie_join(ppath, plp, nplp, reflected, false);
1713
2.10M
        goto done;
1714
2.10M
    } else                      /* non-round join */
1715
769k
       code = line_join_points(pgs_lp, plp, nplp, points + npoints,
1716
769k
                                (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
1717
769k
                                join, reflected);
1718
977k
    if (code < 0)
1719
0
        return code;
1720
977k
    code = add_points(ppath, points, npoints + code, moveto_first);
1721
3.79M
  done:
1722
3.79M
    if (code < 0)
1723
0
        return code;
1724
3.79M
    if ((flags & nf_some_from_arc) && (!plp->thin) &&
1725
3.79M
        (nplp != NULL) && (!nplp->thin))
1726
2.39M
        code = join_under_pie(ppath, plp, nplp, reflected);
1727
3.79M
    return gx_path_close_subpath(ppath);
1728
3.79M
}
1729
1730
/* When painting the 'underjoin' (the 'inside' of a join), we
1731
 * need to take special care if the curve is particularly wide as
1732
 * the leading edge of the underside of the first stroked segment
1733
 * may be beyond the leading edge of the underside of the second
1734
 * stroked segment. Similarly, the trailing edge of the second
1735
 * stroked segment may be behing the trailing edge of the first
1736
 * stroked segment. We detect those cases here.
1737
 *
1738
 * We detect the first case by projecting plp.width onto nplp.vector.
1739
 * If the projected vector is longer then nplp.vector, we have a
1740
 * problem.
1741
 *
1742
 * len_vector_squared = nplp.vector.x * nplp.vector.x + nplp.vector.y * nplp.nvector.y
1743
 * len_vector = sqr(len_vector_squared)
1744
 * len_projection_unnormalised = plp.width.x * nplp.vector.x + plp.width.y * nplp.vector.y
1745
 * len_projection = len_projection_unnormalised / len_vector
1746
 *
1747
 * len_projection > len_vector === len_projection_unnormalised > len_vector * len_vector
1748
 * === len_projection_unnormalised > len_vector_squared
1749
 */
1750
1751
#ifdef SLOWER_BUT_MORE_ACCURATE_STROKING
1752
static bool
1753
wide_underjoin(pl_ptr plp, pl_ptr nplp)
1754
{
1755
    double h_squared = (double)nplp->vector.x * nplp->vector.x + (double)nplp->vector.y * nplp->vector.y;
1756
    double dot = (double)plp->width.x * nplp->vector.x + (double)plp->width.y * nplp->vector.y;
1757
1758
    if (dot < 0)
1759
        dot = -dot;
1760
    if (dot > h_squared)
1761
        return 1;
1762
1763
    h_squared = (double)plp->vector.x * plp->vector.x + (double)plp->vector.y * plp->vector.y;
1764
    dot = (double)nplp->width.x * plp->vector.x + (double)nplp->width.y * plp->vector.y;
1765
    if (dot < 0)
1766
        dot = -dot;
1767
    if (dot > h_squared)
1768
        return 1;
1769
1770
    return 0;
1771
}
1772
#endif
1773
1774
static int
1775
check_miter(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
1776
            const gs_matrix * pmat, p_ptr outp, p_ptr np, p_ptr mpt,
1777
            bool ccw0)
1778
744k
{
1779
    /*
1780
     * Check whether a miter join is appropriate.
1781
     * Let a, b be the angles of the two lines.
1782
     * We check tan(a-b) against the miter_check
1783
     * by using the following formula:
1784
     *      If tan(a)=u1/v1 and tan(b)=u2/v2, then
1785
     *      tan(a-b) = (u1*v2 - u2*v1) / (u1*u2 + v1*v2).
1786
     *
1787
     * We can do all the computations unscaled,
1788
     * because we're only concerned with ratios.
1789
     * However, if we have a non-uniform coordinate
1790
     * system (indicated by pmat != 0), we must do the
1791
     * computations in user space.
1792
     */
1793
744k
    float check;
1794
744k
    double u1, v1, u2, v2;
1795
744k
    double num, denom;
1796
744k
    int code;
1797
1798
    /*
1799
     * Don't bother with the miter check if the two
1800
     * points to be joined are very close together,
1801
     * namely, in the same square half-pixel.
1802
     */
1803
744k
    if (fixed2long(outp->x << 1) == fixed2long(np->x << 1) &&
1804
744k
        fixed2long(outp->y << 1) == fixed2long(np->y << 1))
1805
212k
        return 1;
1806
1807
531k
    check = pgs_lp->miter_check;
1808
531k
    u1 = plp->vector.y, v1 = plp->vector.x;
1809
531k
    u2 = -nplp->vector.y, v2 = -nplp->vector.x;
1810
1811
531k
    if (pmat) {
1812
13.5k
        gs_point pt;
1813
1814
13.5k
        code = gs_distance_transform_inverse(v1, u1, pmat, &pt);
1815
13.5k
        if (code < 0)
1816
0
        return code;
1817
13.5k
        v1 = pt.x, u1 = pt.y;
1818
13.5k
        code = gs_distance_transform_inverse(v2, u2, pmat, &pt);
1819
13.5k
        if (code < 0)
1820
0
            return code;
1821
13.5k
        v2 = pt.x, u2 = pt.y;
1822
        /*
1823
         * We need to recompute ccw according to the
1824
         * relative positions of the lines in user space.
1825
         * We repeat the computation described above,
1826
         * using the cdelta values instead of the widths.
1827
         * Because the definition of ccw above is inverted
1828
         * from the intuitive one (for historical reasons),
1829
         * we actually have to do the test backwards.
1830
         */
1831
13.5k
        ccw0 = v1 * u2 < v2 * u1;
1832
#ifdef DEBUG
1833
        {
1834
            double a1 = atan2(u1, v1), a2 = atan2(u2, v2), dif = a1 - a2;
1835
1836
            if (dif < 0)
1837
                dif += 2 * M_PI;
1838
            else if (dif >= 2 * M_PI)
1839
                dif -= 2 * M_PI;
1840
            if (dif != 0 && (dif < M_PI) != ccw0)
1841
                lprintf8("ccw wrong: tan(a1=%g)=%g/%g, tan(a2=%g)=%g,%g, dif=%g, ccw0=%d\n",
1842
                         a1, u1, v1, a2, u2, v2, dif, ccw0);
1843
        }
1844
#endif
1845
13.5k
    }
1846
531k
    num = u1 * v2 - u2 * v1;
1847
531k
    denom = u1 * u2 + v1 * v2;
1848
    /*
1849
     * We will want either tan(a-b) or tan(b-a)
1850
     * depending on the orientations of the lines.
1851
     * Fortunately we know the relative orientations already.
1852
     */
1853
531k
    if (!ccw0)          /* have plp - nplp, want vice versa */
1854
344k
        num = -num;
1855
#ifdef DEBUG
1856
    if (gs_debug_c('O')) {
1857
        dlprintf4("[o]Miter check: u1/v1=%f/%f, u2/v2=%f/%f,\n",
1858
                  u1, v1, u2, v2);
1859
        dlprintf3("        num=%f, denom=%f, check=%f\n",
1860
                  num, denom, check);
1861
    }
1862
#endif
1863
    /*
1864
     * If we define T = num / denom, then we want to use
1865
     * a miter join iff arctan(T) >= arctan(check).
1866
     * We know that both of these angles are in the 1st
1867
     * or 2nd quadrant, and since arctan is monotonic
1868
     * within each quadrant, we can do the comparisons
1869
     * on T and check directly, taking signs into account
1870
     * as follows:
1871
     *              sign(T) sign(check)     atan(T) >= atan(check)
1872
     *              ------- -----------     ----------------------
1873
     *              +       +               T >= check
1874
     *              -       +               true
1875
     *              +       -               false
1876
     *              -       -               T >= check
1877
     */
1878
531k
    if (num == 0 && denom == 0)
1879
0
        return_error(gs_error_unregistered); /* Must not happen. */
1880
531k
    if (denom < 0)
1881
239k
        num = -num, denom = -denom;
1882
    /* Now denom >= 0, so sign(num) = sign(T). */
1883
531k
    if (check > 0 ?
1884
531k
        (num < 0 || num >= denom * check) :
1885
531k
        (num < 0 && num >= denom * check)
1886
531k
        ) {
1887
        /* OK to use a miter join. */
1888
497k
        gs_fixed_point dirn1, dirn2;
1889
1890
497k
        dirn1.x = plp->e.cdelta.x;
1891
497k
        dirn1.y = plp->e.cdelta.y;
1892
        /* If this direction is small enough that we might have
1893
         * underflowed and the vector record is suitable for us
1894
         * to use to calculate a better one, then do so. */
1895
497k
        if ((abs(dirn1.x) + abs(dirn1.y) < 16) &&
1896
497k
            ((plp->vector.x != 0) || (plp->vector.y != 0)))
1897
0
        {
1898
0
            float scale = 65536.0;
1899
0
            if (abs(plp->vector.x) > abs(plp->vector.y))
1900
0
                scale /= abs(plp->vector.x);
1901
0
            else
1902
0
                scale /= abs(plp->vector.y);
1903
0
            dirn1.x = (fixed)(plp->vector.x*scale);
1904
0
            dirn1.y = (fixed)(plp->vector.y*scale);
1905
0
        }
1906
497k
        dirn2.x = nplp->o.cdelta.x;
1907
497k
        dirn2.y = nplp->o.cdelta.y;
1908
        /* If this direction is small enough that we might have
1909
         * underflowed and the vector record is suitable for us
1910
         * to use to calculate a better one, then do so. */
1911
497k
        if ((abs(dirn2.x) + abs(dirn2.y) < 16) &&
1912
497k
            ((nplp->vector.x != 0) || (nplp->vector.y != 0)))
1913
0
        {
1914
0
            float scale = 65536.0;
1915
0
            if (abs(nplp->vector.x) > abs(nplp->vector.y))
1916
0
                scale /= abs(nplp->vector.x);
1917
0
            else
1918
0
                scale /= abs(nplp->vector.y);
1919
0
            dirn2.x = (fixed)(-nplp->vector.x*scale);
1920
0
            dirn2.y = (fixed)(-nplp->vector.y*scale);
1921
0
        }
1922
497k
        if_debug0('O', "        ... passes.\n");
1923
        /* Compute the intersection of the extended edge lines. */
1924
497k
        if (line_intersect(outp, &dirn1, np, &dirn2, mpt) == 0)
1925
485k
            return 0;
1926
497k
    }
1927
46.8k
    return 1;
1928
531k
}
1929
1930
/* Add a segment to the path.
1931
 * This works by crafting 2 paths, one for each edge, that will later be
1932
 * merged together. */
1933
static int
1934
stroke_add_fast(gx_path * ppath, gx_path * rpath, bool ensure_closed, int first,
1935
                pl_ptr plp, pl_ptr nplp, const gx_device_color * pdevc,
1936
                gx_device * dev, const gs_gstate * pgs,
1937
                const gx_stroke_params * params,
1938
                const gs_fixed_rect * ignore_pbbox, int uniform,
1939
                gs_line_join join, bool reflected, note_flags flags)
1940
0
{
1941
0
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
1942
0
    gs_fixed_point points[8];
1943
0
    gs_fixed_point rpoints[8];
1944
0
    int npoints  = 0;
1945
0
    int nrpoints = 0;
1946
0
    int code;
1947
0
    bool moveto_first  = false;
1948
0
    bool rmoveto_first = false;
1949
0
    gs_line_cap start_cap, end_cap;
1950
0
    const gs_matrix *pmat = (uniform ? (const gs_matrix *)NULL : &ctm_only(pgs));
1951
0
    enum {
1952
0
        joinsense_cap = 0,
1953
0
        joinsense_cw = 1,
1954
0
        joinsense_ccw = 2,
1955
0
        joinsense_over = 4,
1956
0
        joinsense_under = 8,
1957
0
    } joinsense = joinsense_cap;
1958
1959
0
    if (plp->thin) {
1960
        /* We didn't set up the endpoint parameters before, */
1961
        /* because the line was thin.  Do it now. */
1962
0
        set_thin_widths(plp);
1963
0
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
1964
0
        compute_caps(plp);
1965
0
    }
1966
0
    start_cap = (flags & nf_dash_head ?
1967
0
                 pgs_lp->dash_cap : pgs_lp->start_cap);
1968
0
    end_cap   = (flags & nf_dash_tail ?
1969
0
                 pgs_lp->dash_cap : pgs_lp->end_cap);
1970
    /* If we're starting a new rpath here, we need to fake a new cap.
1971
     * Don't interfere if we would have been doing a cap anyway. */
1972
0
    if (gx_path_is_void(rpath) && (first != 0)) {
1973
0
        first = 0;
1974
0
        start_cap = gs_cap_butt;
1975
0
        end_cap   = gs_cap_butt;
1976
0
        moveto_first  = true;
1977
0
        rmoveto_first = true;
1978
0
    }
1979
0
    if (first == 0) {
1980
        /* Create an initial cap. */
1981
0
        if (start_cap == gs_cap_round) {
1982
0
            if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
1983
0
                (code = add_pie_cap(ppath, &plp->o)) < 0)
1984
0
                return code;
1985
0
            moveto_first = false;
1986
0
        } else {
1987
0
            if ((npoints = cap_points(start_cap, &plp->o, points)) < 0)
1988
0
                return npoints;
1989
0
            moveto_first = true;
1990
0
        }
1991
0
        rmoveto_first = true;
1992
0
        ASSIGN_POINT(&rpoints[0], plp->o.co);
1993
0
        nrpoints = 1;
1994
0
    }
1995
    /* Add points to move us along the edges of this stroke */
1996
0
    ASSIGN_POINT(&points [npoints ], plp->e.co);
1997
0
    ASSIGN_POINT(&rpoints[nrpoints], plp->e.ce);
1998
0
    npoints++;
1999
0
    nrpoints++;
2000
2001
0
    if (nplp != NULL && !nplp->thin) {
2002
        /* We need to do a join. What sense is it it? */
2003
0
        double l, r;
2004
2005
0
        l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2006
0
        r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2007
2008
0
        if ((l == r) && (join == gs_join_round))
2009
0
             joinsense = joinsense_cap;
2010
0
        else if ((l > r) ^ reflected)
2011
0
             joinsense = joinsense_ccw | joinsense_over | joinsense_under;
2012
0
        else
2013
0
             joinsense = joinsense_cw | joinsense_over | joinsense_under;
2014
2015
0
        if (joinsense != joinsense_cap && join == gs_join_miter) {
2016
            /* We need to do a miter line join. Miters are 'special'
2017
             * in that we'd like to do them by adjusting the existing
2018
             * points, rather than adding new ones. */
2019
0
            gs_fixed_point mpt;
2020
0
            if (joinsense & joinsense_ccw) {
2021
                /* Underjoin (in reverse path):
2022
                 * A = plp->o.co, B = plp->e.ce, C = nplp->o.co, D = nplp->e.ce */
2023
0
                double xa =  plp->o.co.x, ya =  plp->o.co.y;
2024
0
                double xb =  plp->e.ce.x, yb =  plp->e.ce.y;
2025
0
                double xc = nplp->o.co.x, yc = nplp->o.co.y;
2026
0
                double xd = nplp->e.ce.x, yd = nplp->e.ce.y;
2027
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2028
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2029
0
                double t_num = xac * ycd - yac * xcd;
2030
0
                double t_den = xab * ycd - yab * xcd;
2031
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.co,
2032
0
                                   &nplp->o.ce, &mpt, true);
2033
0
                if (code < 0)
2034
0
                    return code;
2035
0
                if (code == 0) {
2036
0
                    points[npoints-1].x = mpt.x;
2037
0
                    points[npoints-1].y = mpt.y;
2038
0
                    if (ensure_closed) {
2039
0
                        points[npoints].x = nplp->o.ce.x;
2040
0
                        points[npoints].y = nplp->o.ce.y;
2041
0
                        npoints++;
2042
0
                    }
2043
0
                    joinsense &= ~joinsense_over;
2044
0
                } else
2045
0
                    join = gs_join_bevel;
2046
0
                if (t_den != 0 &&
2047
0
                    ((t_num >= 0 && t_num <= t_den) ||
2048
0
                     (t_num <= 0 && t_num >= t_den))) {
2049
0
                    double x = xa - xab * t_num / t_den;
2050
0
                    double y = ya - yab * t_num / t_den;
2051
0
                    rpoints[nrpoints-1].x = (fixed)x;
2052
0
                    rpoints[nrpoints-1].y = (fixed)y;
2053
0
                    joinsense &= ~joinsense_under;
2054
0
                }
2055
0
            } else {
2056
                /* Underjoin (in fwd path):
2057
                 * A = plp->o.ce, B = plp->e.co, C = nplp->o.ce, D = nplp->e.co */
2058
0
                double xa =  plp->o.ce.x, ya =  plp->o.ce.y;
2059
0
                double xb =  plp->e.co.x, yb =  plp->e.co.y;
2060
0
                double xc = nplp->o.ce.x, yc = nplp->o.ce.y;
2061
0
                double xd = nplp->e.co.x, yd = nplp->e.co.y;
2062
0
                double xab = xa-xb, xac = xa-xc, xcd = xc-xd;
2063
0
                double yab = ya-yb, yac = ya-yc, ycd = yc-yd;
2064
0
                double t_num = xac * ycd - yac * xcd;
2065
0
                double t_den = xab * ycd - yab * xcd;
2066
0
                code = check_miter(pgs_lp, plp, nplp, pmat, &plp->e.ce,
2067
0
                                   &nplp->o.co, &mpt, false);
2068
0
                if (code < 0)
2069
0
                    return code;
2070
0
                if (code == 0) {
2071
0
                    rpoints[nrpoints-1].x = mpt.x;
2072
0
                    rpoints[nrpoints-1].y = mpt.y;
2073
0
                    if (ensure_closed) {
2074
0
                        rpoints[nrpoints].x = nplp->o.co.x;
2075
0
                        rpoints[nrpoints].y = nplp->o.co.y;
2076
0
                        nrpoints++;
2077
0
                    }
2078
0
                    joinsense &= ~joinsense_over;
2079
0
                } else
2080
0
                    join = gs_join_bevel;
2081
0
                if (t_den != 0 &&
2082
0
                    ((t_num >= 0 && t_num <= t_den) ||
2083
0
                     (t_num <= 0 && t_num >= t_den)))   {
2084
0
                    double x = xa - xab * t_num / t_den;
2085
0
                    double y = ya - yab * t_num / t_den;
2086
0
                    points[npoints-1].x = (fixed)x;
2087
0
                    points[npoints-1].y = (fixed)y;
2088
0
                    joinsense &= ~joinsense_under;
2089
0
                }
2090
0
            }
2091
0
        }
2092
0
    }
2093
2094
0
    if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2095
0
        return code;
2096
0
    if ((code = add_points(rpath, rpoints, nrpoints, rmoveto_first)) < 0)
2097
0
        return code;
2098
0
    npoints  = 0;
2099
0
    nrpoints = 0;
2100
2101
0
    if (nplp == 0) { /* Add a final cap. */
2102
0
        if (end_cap == gs_cap_round) {
2103
0
            code = add_pie_cap(ppath, &plp->e);
2104
0
        } else {
2105
0
            code = cap_points(end_cap, &plp->e, points);
2106
0
            npoints = code;
2107
0
        }
2108
0
    } else if (nplp->thin) { /* no join */
2109
0
        code = cap_points(gs_cap_butt, &plp->e, points);
2110
0
        npoints = code;
2111
0
    } else if (joinsense == joinsense_cap) {
2112
        /* Do a cap */
2113
0
        code = add_pie_cap(ppath, &plp->e);
2114
0
        if (code >= 0) {
2115
            /* If the next line is in the opposite direction as the current one
2116
             * we want to leave the point on the same side as it was
2117
             * originally. This is required for paths that come to a stop
2118
             * and then reverse themselves, but may produce more complexity
2119
             * than we'd really like at the ends of smooth beziers. */
2120
0
            if ((double)(plp->width.x) * nplp->width.x + (double)plp->width.y * nplp->width.y >= 0)
2121
0
                code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2122
0
        }
2123
0
    } else if (joinsense & joinsense_ccw) {
2124
        /* CCW rotation. Join in the forward path. "Underjoin" in the
2125
         * reverse path. */
2126
0
        if (joinsense & joinsense_over) {
2127
            /* RJW: Ideally we should include the "|| flags" clause in
2128
             * the following condition. This forces all joins between
2129
             * line segments generated from arcs to be round. This would
2130
             * solve some flatness issues, but makes some pathological
2131
             * cases incredibly slow. */
2132
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2133
0
                code = add_pie_join_fast_ccw(ppath, plp, nplp, reflected);
2134
0
            } else { /* non-round join */
2135
0
                code = line_join_points_fast_ccw(pgs_lp, plp, nplp,
2136
0
                                                 points, pmat, join);
2137
0
                npoints = code;
2138
0
            }
2139
0
            if (code < 0)
2140
0
                return code;
2141
0
        }
2142
0
        if (joinsense & joinsense_under) {
2143
            /* The underjoin */
2144
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2145
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0) {
2146
                /* RJW: This is an approximation. We ought to draw a line
2147
                 * back to nplp->o.p, and then independently fill any exposed
2148
                 * region under the curve with a round join. Sadly, that's
2149
                 * a) really hard to do, and b) makes certain pathological
2150
                 * filling cases MUCH slower due to the greater number of
2151
                 * "cross-segment" line segments this produces. Instead,
2152
                 * we just skip the line to the middle, and join across the
2153
                 * bottom instead. This is akin to what other graphics libs
2154
                 * do (such as fitz, libart, etc). It's not perfect but in
2155
                 * most cases it's close, and results in faster to fill
2156
                 * paths.
2157
                 */
2158
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2159
                 * will be the wrong way. See bug 694971 */
2160
0
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2161
0
                if (code < 0)
2162
0
                    return code;
2163
0
            }
2164
#else
2165
            if (wide_underjoin(plp, nplp))
2166
            {
2167
                code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2168
                if (code < 0)
2169
                    return code;
2170
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2171
                    code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2172
                    if (code < 0)
2173
                        return code;
2174
                    code = gx_path_add_line(rpath, plp->e.ce.x, plp->e.ce.y);
2175
                    if (code < 0)
2176
                        return code;
2177
                    code = gx_path_add_line(rpath, nplp->o.p.x, nplp->o.p.y);
2178
                    if (code < 0)
2179
                        return code;
2180
                }
2181
            }
2182
#endif
2183
0
            code = gx_path_add_line(rpath, nplp->o.co.x, nplp->o.co.y);
2184
0
        }
2185
0
    } else if (joinsense & joinsense) {
2186
        /* CW rotation. Join in the reverse path. "Underjoin" in the
2187
         * forward path. */
2188
0
        if (joinsense & joinsense_over) {
2189
            /* RJW: Ideally we should include the "|| flags" clause in
2190
             * the following condition. This forces all joins between
2191
             * line segments generated from arcs to be round. This would
2192
             * solve some flatness issues, but makes some pathological
2193
             * cases incredibly slow. */
2194
0
            if (join == gs_join_round /* || (flags & nf_all_from_arc) */) {
2195
0
                code = add_pie_join_fast_cw(rpath, plp, nplp, reflected);
2196
0
            } else { /* non-round join */
2197
0
                code = line_join_points_fast_cw(pgs_lp, plp, nplp,
2198
0
                                                rpoints, pmat, join);
2199
0
                nrpoints = code;
2200
0
            }
2201
0
            if (code < 0)
2202
0
                return code;
2203
0
        }
2204
0
        if (joinsense & joinsense_under) {
2205
            /* The underjoin */
2206
0
#ifndef SLOWER_BUT_MORE_ACCURATE_STROKING
2207
0
            if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) == 0 &&
2208
0
                join != gs_join_miter) {
2209
                /* RJW: This is an approximation. We ought to draw a line
2210
                 * back to nplp->o.p, and then independently fill any exposed
2211
                 * region under the curve with a round join. Sadly, that's
2212
                 * a) really hard to do, and b) makes certain pathological
2213
                 * filling cases MUCH slower due to the greater number of
2214
                 * "cross-segment" line segments this produces. Instead,
2215
                 * we just skip the line to the middle, and join across the
2216
                 * bottom instead. This is akin to what other graphics libs
2217
                 * do (such as fitz, libart, etc). It's not perfect but in
2218
                 * most cases it's close, and results in faster to fill
2219
                 * paths.
2220
                 */
2221
                /* RJW: This goes wrong for some paths, as the 'underjoin' wind
2222
                 * will be the wrong way. See bug 694971 */
2223
0
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2224
0
                if (code < 0)
2225
0
                    return code;
2226
0
            }
2227
#else
2228
            if (wide_underjoin(plp, nplp))
2229
            {
2230
                code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2231
                if (code < 0)
2232
                    return code;
2233
                if ((flags & (nf_some_from_arc | nf_prev_some_from_arc)) != 0) {
2234
                    code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2235
                    if (code < 0)
2236
                        return code;
2237
                    code = gx_path_add_line(ppath, plp->e.co.x, plp->e.co.y);
2238
                    if (code < 0)
2239
                        return code;
2240
                    code = gx_path_add_line(ppath, nplp->o.p.x, nplp->o.p.y);
2241
                    if (code < 0)
2242
                        return code;
2243
                }
2244
            }
2245
#endif
2246
0
            code = gx_path_add_line(ppath, nplp->o.ce.x, nplp->o.ce.y);
2247
0
        }
2248
0
    }
2249
0
    if (code < 0)
2250
0
        return code;
2251
0
    if (npoints > 0) {
2252
0
        code = add_points(ppath, points, npoints, false);
2253
0
        if (code < 0)
2254
0
            return code;
2255
0
    }
2256
0
    if (nrpoints > 0) {
2257
0
        code = add_points(rpath, rpoints, nrpoints, false);
2258
0
        if (code < 0)
2259
0
            return code;
2260
0
    }
2261
0
    if (ensure_closed)
2262
0
        return gx_join_path_and_reverse(ppath, rpath);
2263
0
    return 0;
2264
0
}
2265
2266
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2267
 * cases.
2268
 *
2269
 * This method doesn't support start/end/dash caps, but it's only used from
2270
 * postscript, so it doesn't need to.
2271
 */
2272
static int
2273
stroke_add_compat(gx_path * ppath, gx_path *rpath, bool ensure_closed,
2274
                  int first, pl_ptr plp, pl_ptr nplp,
2275
                  const gx_device_color * pdevc, gx_device * dev,
2276
                  const gs_gstate * pgs,
2277
                  const gx_stroke_params * params,
2278
                  const gs_fixed_rect * ignore_pbbox, int uniform,
2279
                  gs_line_join join, bool reflected, note_flags flags)
2280
467
{
2281
    /* Actually it adds 2 contours : one for the segment itself,
2282
       and another one for line join or for the ending cap.
2283
       Note CPSI creates negative contours. */
2284
467
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2285
467
    gs_fixed_point points[6];
2286
467
    int npoints;
2287
467
    bool const moveto_first = true; /* Keeping this code closer to "stroke_add". */
2288
467
    int code;
2289
2290
467
    if (plp->thin) {
2291
        /* We didn't set up the endpoint parameters before, */
2292
        /* because the line was thin.  Do it now. */
2293
1
        set_thin_widths(plp);
2294
1
        adjust_stroke(dev, plp, pgs, true, first == 0 && nplp == 0, flags);
2295
1
        compute_caps(plp);
2296
1
    }
2297
    /* The segment itself : */
2298
467
    ASSIGN_POINT(&points[0], plp->o.ce);
2299
467
    ASSIGN_POINT(&points[1], plp->e.co);
2300
467
    ASSIGN_POINT(&points[2], plp->e.ce);
2301
467
    ASSIGN_POINT(&points[3], plp->o.co);
2302
467
    code = add_points(ppath, points, 4, moveto_first);
2303
467
    if (code < 0)
2304
0
        return code;
2305
467
    code = gx_path_close_subpath(ppath);
2306
467
    if (code < 0)
2307
0
        return code;
2308
467
    npoints = 0;
2309
467
    if (nplp == 0) {
2310
        /* Add a final cap. */
2311
463
        if (pgs_lp->start_cap == gs_cap_butt)
2312
12
            return 0;
2313
451
        if (pgs_lp->start_cap == gs_cap_round) {
2314
451
            ASSIGN_POINT(&points[npoints], plp->e.co);
2315
451
            ++npoints;
2316
451
            if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2317
0
                return code;
2318
451
            return add_round_cap(ppath, &plp->e);
2319
451
        }
2320
0
        ASSIGN_POINT(&points[0], plp->e.ce);
2321
0
        ++npoints;
2322
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2323
0
        ++npoints;
2324
0
        code = cap_points(pgs_lp->start_cap, &plp->e, points + npoints);
2325
0
        if (code < 0)
2326
0
            return code;
2327
0
        npoints += code;
2328
4
    } else if (join == gs_join_round) {
2329
0
        ASSIGN_POINT(&points[npoints], plp->e.co);
2330
0
        ++npoints;
2331
0
        if ((code = add_points(ppath, points, npoints, moveto_first)) < 0)
2332
0
            return code;
2333
0
        return add_round_cap(ppath, &plp->e);
2334
4
    } else if (nplp->thin) {    /* no join */
2335
0
        npoints = 0;
2336
4
    } else {                    /* non-round join */
2337
4
        bool ccw =
2338
4
            (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2339
4
            (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2340
2341
4
        if (ccw ^ reflected) {
2342
0
            ASSIGN_POINT(&points[0], plp->e.co);
2343
0
            ++npoints;
2344
0
            code = line_join_points(pgs_lp, plp, nplp, points + npoints,
2345
0
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2346
0
                                    join, reflected);
2347
0
            if (code < 0)
2348
0
                return code;
2349
0
            code--; /* Drop the last point of the non-compatible mode. */
2350
0
            npoints += code;
2351
4
        } else {
2352
4
            code = line_join_points(pgs_lp, plp, nplp, points,
2353
4
                                    (uniform ? (gs_matrix *) 0 : &ctm_only(pgs)),
2354
4
                                    join, reflected);
2355
4
            if (code < 0)
2356
0
                return code;
2357
4
            ASSIGN_POINT(&points[0], plp->e.ce); /* Replace the starting point of the non-compatible mode. */
2358
4
            npoints = code;
2359
4
        }
2360
4
    }
2361
4
    code = add_points(ppath, points, npoints, moveto_first);
2362
4
    if (code < 0)
2363
0
        return code;
2364
4
    code = gx_path_close_subpath(ppath);
2365
4
    return code;
2366
4
}
2367
2368
/* Add a CPSI-compatible segment to the path.  This handles all the complex
2369
 * cases.
2370
 *
2371
 * This method doesn't support start/end/dash caps, but it's only used from
2372
 * postscript, so it doesn't need to.
2373
 */
2374
static int
2375
stroke_add_initial_cap_compat(gx_path * ppath, pl_ptr plp, bool adlust_longitude,
2376
           const gx_device_color * pdevc, gx_device * dev,
2377
           const gs_gstate * pgs)
2378
451
{
2379
451
    const gx_line_params *pgs_lp = gs_currentlineparams_inline(pgs);
2380
451
    gs_fixed_point points[5];
2381
451
    int npoints = 0;
2382
451
    int code;
2383
2384
451
    if (pgs_lp->start_cap == gs_cap_butt)
2385
0
        return 0;
2386
451
    if (plp->thin) {
2387
        /* We didn't set up the endpoint parameters before, */
2388
        /* because the line was thin.  Do it now. */
2389
1
        set_thin_widths(plp);
2390
1
        adjust_stroke(dev, plp, pgs, true, adlust_longitude, 0);
2391
1
        compute_caps(plp);
2392
1
    }
2393
    /* Create an initial cap if desired. */
2394
451
    if (pgs_lp->start_cap == gs_cap_round) {
2395
451
        if ((code = gx_path_add_point(ppath, plp->o.co.x, plp->o.co.y)) < 0 ||
2396
451
            (code = add_round_cap(ppath, &plp->o)) < 0
2397
451
            )
2398
0
            return code;
2399
451
        return 0;
2400
451
    } else {
2401
0
        ASSIGN_POINT(&points[0], plp->o.co);
2402
0
        ++npoints;
2403
0
        if ((code = cap_points(pgs_lp->start_cap, &plp->o, points + npoints)) < 0)
2404
0
            return npoints;
2405
0
        npoints += code;
2406
0
        ASSIGN_POINT(&points[npoints], plp->o.ce);
2407
0
        ++npoints;
2408
0
        code = add_points(ppath, points, npoints, true);
2409
0
        if (code < 0)
2410
0
            return code;
2411
0
        return gx_path_close_subpath(ppath);
2412
0
    }
2413
451
}
2414
2415
/* Add lines with a possible initial moveto. */
2416
static int
2417
add_points(gx_path * ppath, const gs_fixed_point * points, int npoints,
2418
           bool moveto_first)
2419
3.79M
{
2420
3.79M
    int code;
2421
2422
3.79M
    if (moveto_first) {
2423
3.21M
        code = gx_path_add_point(ppath, points[0].x, points[0].y);
2424
3.21M
        if (code < 0)
2425
0
            return code;
2426
3.21M
        return gx_path_add_lines(ppath, points + 1, npoints - 1);
2427
3.21M
    } else {
2428
581k
        return gx_path_add_lines(ppath, points, npoints);
2429
581k
    }
2430
3.79M
}
2431
2432
/* ---------------- Join computation ---------------- */
2433
2434
/* Compute the points for a bevel, miter, or triangle join. */
2435
/* Treat no join the same as a bevel join. */
2436
/* If pmat != 0, we must inverse-transform the distances for */
2437
/* the miter check. */
2438
static int
2439
line_join_points(const gx_line_params * pgs_lp, pl_ptr plp, pl_ptr nplp,
2440
                 gs_fixed_point * join_points, const gs_matrix * pmat,
2441
                 gs_line_join join, bool reflected)
2442
769k
{
2443
769k
#define jp1 join_points[0]
2444
769k
#define np1 join_points[1]
2445
769k
#define np2 join_points[2]
2446
769k
#define jp2 join_points[3]
2447
769k
#define jpx join_points[4]
2448
    /*
2449
     * Set np to whichever of nplp->o.co or .ce is outside
2450
     * the current line.  We observe that the point (x2,y2)
2451
     * is counter-clockwise from (x1,y1), relative to the origin,
2452
     * iff
2453
     *  (arctan(y2/x2) - arctan(y1/x1)) mod 2*pi < pi,
2454
     * taking the signs of xi and yi into account to determine
2455
     * the quadrants of the results.  It turns out that
2456
     * even though arctan is monotonic only in the 4th/1st
2457
     * quadrants and the 2nd/3rd quadrants, case analysis on
2458
     * the signs of xi and yi demonstrates that this test
2459
     * is equivalent to the much less expensive test
2460
     *  x1 * y2 > x2 * y1
2461
     * in all cases.
2462
     *
2463
     * In the present instance, x1,y1 are plp->width,
2464
     * x2,y2 are nplp->width, and the origin is
2465
     * their common point (plp->e.p, nplp->o.p).
2466
     * ccw will be true iff nplp.o.co (nplp.o.p + width) is
2467
     * counter-clockwise from plp.e.ce (plp.e.p + width),
2468
     * in which case we want tan(a-b) rather than tan(b-a).
2469
     *
2470
     * We make the test using double arithmetic only because
2471
     * the !@#&^*% C language doesn't give us access to
2472
     * the double-width-result multiplication operation
2473
     * that almost all CPUs provide!
2474
     */
2475
769k
    bool ccw =
2476
769k
        (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */ >
2477
769k
        (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2478
769k
    bool ccw0 = ccw;
2479
769k
    p_ptr outp, np;
2480
769k
    int   code;
2481
769k
    gs_fixed_point mpt;
2482
2483
769k
    ccw ^= reflected;
2484
2485
    /* Initialize for a bevel join. */
2486
769k
    ASSIGN_POINT(&jp1, plp->e.co);
2487
769k
    ASSIGN_POINT(&jp2, plp->e.ce);
2488
2489
    /*
2490
     * Because of stroke adjustment, it is possible that
2491
     * plp->e.p != nplp->o.p.  For that reason, we must use
2492
     * nplp->o.p as np1 or np2.
2493
     */
2494
769k
    if (!ccw) {
2495
265k
        outp = &jp2;
2496
265k
        ASSIGN_POINT(&np2, nplp->o.co);
2497
265k
        ASSIGN_POINT(&np1, nplp->o.p);
2498
265k
        np = &np2;
2499
504k
    } else {
2500
504k
        outp = &jp1;
2501
504k
        ASSIGN_POINT(&np1, nplp->o.ce);
2502
504k
        ASSIGN_POINT(&np2, nplp->o.p);
2503
504k
        np = &np1;
2504
504k
    }
2505
769k
    if_debug1('O', "[O]use %s\n", (ccw ? "co (ccw)" : "ce (cw)"));
2506
2507
    /* Handle triangular joins now. */
2508
769k
    if (join == gs_join_triangle) {
2509
0
        fixed tpx = outp->x - nplp->o.p.x + np->x;
2510
0
        fixed tpy = outp->y - nplp->o.p.y + np->y;
2511
2512
0
        ASSIGN_POINT(&jpx, jp2);
2513
0
        if (!ccw) {
2514
            /* Insert tp between np2 and jp2. */
2515
0
            jp2.x = tpx, jp2.y = tpy;
2516
0
        } else {
2517
            /* Insert tp between jp1 and np1. */
2518
0
            ASSIGN_POINT(&jp2, np2);
2519
0
            ASSIGN_POINT(&np2, np1);
2520
0
            np1.x = tpx, np1.y = tpy;
2521
0
        }
2522
0
        return 5;
2523
0
    }
2524
769k
    if (join == gs_join_miter &&
2525
769k
        (code = check_miter(pgs_lp, plp, nplp, pmat, outp, np, &mpt, ccw0)) <= 0) {
2526
485k
        if (code < 0)
2527
0
            return code;
2528
485k
        ASSIGN_POINT(outp, mpt);
2529
485k
    }
2530
769k
    return 4;
2531
769k
}
2532
2533
static int
2534
line_join_points_fast_cw(const gx_line_params * pgs_lp,
2535
                         pl_ptr plp, pl_ptr nplp,
2536
                         gs_fixed_point * rjoin_points,
2537
                         const gs_matrix * pmat,
2538
                         gs_line_join join)
2539
0
{
2540
    /* rjoin_points will be added to a path that is currently at plp->e.ce.
2541
     */
2542
2543
    /* Join will be between plp->e.ce and nplp->o.co */
2544
0
    if (join == gs_join_triangle)
2545
0
    {
2546
0
        gs_fixed_point tp;
2547
2548
0
        tp.x = plp->e.ce.x - nplp->o.p.x + nplp->o.co.x;
2549
0
        tp.y = plp->e.ce.y - nplp->o.p.y + nplp->o.co.y;
2550
0
        ASSIGN_POINT(&rjoin_points[0], tp);
2551
0
        ASSIGN_POINT(&rjoin_points[1], nplp->o.co);
2552
0
        return 2;
2553
0
    }
2554
2555
    /* Set up for a Bevel join */
2556
0
    ASSIGN_POINT(&rjoin_points[0], nplp->o.co);
2557
2558
0
    return 1;
2559
0
}
2560
2561
static int
2562
line_join_points_fast_ccw(const gx_line_params * pgs_lp,
2563
                          pl_ptr plp, pl_ptr nplp,
2564
                          gs_fixed_point * join_points,
2565
                          const gs_matrix * pmat,
2566
                          gs_line_join join)
2567
0
{
2568
    /* join_points will be added to a path that is currently at plp->e.co.
2569
     */
2570
    /* Join will be between plp->e.co and nplp->o.ce */
2571
0
    if (join == gs_join_triangle)
2572
0
    {
2573
0
        gs_fixed_point tp;
2574
2575
0
        tp.x = plp->e.co.x - nplp->o.p.x + nplp->o.ce.x;
2576
0
        tp.y = plp->e.co.y - nplp->o.p.y + nplp->o.ce.y;
2577
0
        ASSIGN_POINT(&join_points[0], tp);
2578
0
        ASSIGN_POINT(&join_points[1], nplp->o.ce);
2579
0
        return 2;
2580
0
    }
2581
2582
    /* Set up for a Bevel join */
2583
0
    ASSIGN_POINT(&join_points[0], nplp->o.ce);
2584
2585
0
    return 1;
2586
0
}
2587
/* ---------------- Cap computations ---------------- */
2588
2589
/* Compute the endpoints of the two caps of a segment. */
2590
/* Only o.p, e.p, width, and cdelta have been set. */
2591
static void
2592
compute_caps(pl_ptr plp)
2593
3.79M
{
2594
3.79M
    fixed wx2 = plp->width.x;
2595
3.79M
    fixed wy2 = plp->width.y;
2596
2597
3.79M
    plp->o.co.x = plp->o.p.x + wx2, plp->o.co.y = plp->o.p.y + wy2;
2598
3.79M
    plp->o.cdelta.x = -plp->e.cdelta.x,
2599
3.79M
        plp->o.cdelta.y = -plp->e.cdelta.y;
2600
3.79M
    plp->o.ce.x = plp->o.p.x - wx2, plp->o.ce.y = plp->o.p.y - wy2;
2601
3.79M
    plp->e.co.x = plp->e.p.x - wx2, plp->e.co.y = plp->e.p.y - wy2;
2602
3.79M
    plp->e.ce.x = plp->e.p.x + wx2, plp->e.ce.y = plp->e.p.y + wy2;
2603
#ifdef DEBUG
2604
    if (gs_debug_c('O')) {
2605
        dlprintf4("[o]Stroke o=(%f,%f) e=(%f,%f)\n",
2606
                  fixed2float(plp->o.p.x), fixed2float(plp->o.p.y),
2607
                  fixed2float(plp->e.p.x), fixed2float(plp->e.p.y));
2608
        dlprintf4("\twxy=(%f,%f) lxy=(%f,%f)\n",
2609
                  fixed2float(wx2), fixed2float(wy2),
2610
                  fixed2float(plp->e.cdelta.x),
2611
                  fixed2float(plp->e.cdelta.y));
2612
    }
2613
#endif
2614
3.79M
}
2615
2616
#define px endp->p.x
2617
#define py endp->p.y
2618
#define xo endp->co.x
2619
#define yo endp->co.y
2620
#define xe endp->ce.x
2621
#define ye endp->ce.y
2622
#define cdx endp->cdelta.x
2623
#define cdy endp->cdelta.y
2624
2625
/* Add a round cap to a path. */
2626
/* Assume the current point is the cap origin (endp->co). */
2627
static int
2628
add_round_cap(gx_path * ppath, const_ep_ptr endp)
2629
902
{
2630
902
    int code;
2631
2632
    /*
2633
     * Per the Red Book, we draw a full circle, even though a semicircle
2634
     * is sufficient for the join.
2635
     */
2636
902
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2637
902
                                        xo + cdx, yo + cdy,
2638
902
                                        quarter_arc_fraction)) < 0 ||
2639
902
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2640
902
                                        quarter_arc_fraction)) < 0 ||
2641
902
        (code = gx_path_add_partial_arc(ppath, px - cdx, py - cdy,
2642
902
                                        xe - cdx, ye - cdy,
2643
902
                                        quarter_arc_fraction)) < 0 ||
2644
902
        (code = gx_path_add_partial_arc(ppath, xo, yo, xo - cdx, yo - cdy,
2645
902
                                        quarter_arc_fraction)) < 0 ||
2646
        /* The final point must be (xe,ye). */
2647
902
        (code = gx_path_add_line(ppath, xe, ye)) < 0
2648
902
        )
2649
0
        return code;
2650
902
    return 0;
2651
902
}
2652
2653
/* Add a semicircular cap to a path. */
2654
/* Assume the current point is the cap origin (endp->co). */
2655
static int
2656
add_pie_cap(gx_path * ppath, const_ep_ptr endp)
2657
1.16M
{
2658
1.16M
    int code;
2659
2660
1.16M
    if ((code = gx_path_add_partial_arc(ppath, px + cdx, py + cdy,
2661
1.16M
                                        xo + cdx, yo + cdy,
2662
1.16M
                                        quarter_arc_fraction)) < 0 ||
2663
1.16M
        (code = gx_path_add_partial_arc(ppath, xe, ye, xe + cdx, ye + cdy,
2664
1.16M
                                        quarter_arc_fraction)) < 0 ||
2665
1.16M
        (code = gx_path_add_line(ppath, xe, ye)) < 0)
2666
0
        return code;
2667
1.16M
    return 0;
2668
1.16M
}
2669
2670
static int
2671
do_pie_join(gx_path * ppath, gs_fixed_point *centre,
2672
            gs_fixed_point *current_orig, gs_fixed_point *current_tangent,
2673
            gs_fixed_point *final, gs_fixed_point *final_tangent, bool ccw,
2674
            gs_fixed_point *width)
2675
1.26M
{
2676
1.26M
    int code;
2677
1.26M
    double rad_squared, dist_squared, F;
2678
1.26M
    gs_fixed_point current, tangent, tangmeet;
2679
2680
1.26M
    tangent.x = current_tangent->x;
2681
1.26M
    tangent.y = current_tangent->y;
2682
1.26M
    current.x = current_orig->x;
2683
1.26M
    current.y = current_orig->y;
2684
2685
    /* Is the join more than 90 degrees? */
2686
1.26M
    if ((double)tangent.x * (double)final_tangent->x +
2687
1.26M
        (double)tangent.y * (double)final_tangent->y > 0) {
2688
        /* Yes, so do a quarter turn. */
2689
10.1k
        code = gx_path_add_partial_arc(ppath,
2690
10.1k
                                       centre->x + tangent.x,
2691
10.1k
                                       centre->y + tangent.y,
2692
                                       /* Point where tangents meet */
2693
10.1k
                                       current.x + tangent.x,
2694
10.1k
                                       current.y + tangent.y,
2695
10.1k
                                       quarter_arc_fraction);
2696
10.1k
        if (code < 0)
2697
0
            return code;
2698
10.1k
        current.x = centre->x + tangent.x;
2699
10.1k
        current.y = centre->y + tangent.y;
2700
10.1k
        if (ccw) {
2701
0
            int tmp = tangent.x;
2702
0
            tangent.x = -tangent.y;
2703
0
            tangent.y = tmp;
2704
10.1k
        } else {
2705
10.1k
            int tmp = tangent.x;
2706
10.1k
            tangent.x = tangent.y;
2707
10.1k
            tangent.y = -tmp;
2708
10.1k
        }
2709
10.1k
    }
2710
2711
    /* Now we are guaranteed that the remaining arc is 90 degrees or
2712
     * less. Find where the tangents meet for this final section. */
2713
1.26M
    if (line_intersect(&current, &tangent,
2714
1.26M
                       final, final_tangent, &tangmeet) != 0) {
2715
493k
        return gx_path_add_line(ppath, final->x, final->y);
2716
493k
    }
2717
769k
    current.x -= tangmeet.x;
2718
769k
    current.y -= tangmeet.y;
2719
769k
    dist_squared = ((double)current.x) * current.x +
2720
769k
                   ((double)current.y) * current.y;
2721
769k
    rad_squared  = ((double)width->x) * width->x +
2722
769k
                   ((double)width->y) * width->y;
2723
769k
    dist_squared /= rad_squared;
2724
769k
    F = (4.0/3.0)*(1/(1+sqrt(1+dist_squared)));
2725
769k
    return gx_path_add_partial_arc(ppath, final->x, final->y,
2726
1.26M
                                   tangmeet.x, tangmeet.y, F);
2727
1.26M
}
2728
2729
/* Add a pie shaped join to a path. */
2730
/* Assume the current point is the cap origin (endp->co). */
2731
static int
2732
add_pie_join(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected,
2733
             bool cap)
2734
2.23M
{
2735
2.23M
    int code;
2736
2.23M
    gs_fixed_point *current, *final, *tangent, *final_tangent;
2737
2.23M
    double l, r;
2738
2.23M
    bool ccw;
2739
2740
2.23M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2741
2.23M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2742
2743
2.23M
    if (l == r) {
2744
        /* Colinear. Suppress drawing a cap unless the path reverses direction. */
2745
1.04M
        if (cap &&
2746
1.04M
            ((double)(plp->width.x) * (nplp->width.x) + (double)(nplp->width.y) * (plp->width.y)) < 0)
2747
227
            return add_pie_cap(ppath, &plp->e);
2748
1.04M
        else
2749
1.04M
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2750
1.04M
    }
2751
2752
1.18M
    ccw = (l > r);
2753
2754
1.18M
    ccw ^= reflected;
2755
2756
    /* At this point, the current point is plp->e.co */
2757
1.18M
    if (ccw) {
2758
750k
        current       = & plp->e.co;
2759
750k
        final         = &nplp->o.ce;
2760
750k
        tangent       = & plp->e.cdelta;
2761
750k
        final_tangent = &nplp->o.cdelta;
2762
        /* Check for no join required */
2763
750k
        if (current->x == final->x && current->y == final->y) {
2764
0
            return gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y);
2765
0
        }
2766
750k
    } else {
2767
437k
        current       = &nplp->o.co;
2768
437k
        final         = & plp->e.ce;
2769
437k
        tangent       = &nplp->o.cdelta;
2770
437k
        final_tangent = & plp->e.cdelta;
2771
437k
        code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y);
2772
437k
        if (code < 0)
2773
0
            return code;
2774
437k
        code = gx_path_add_line(ppath, current->x, current->y);
2775
437k
        if (code < 0)
2776
0
            return code;
2777
437k
        if (current->x == final->x && current->y == final->y)
2778
0
            return 0;
2779
437k
    }
2780
2781
1.18M
    if ((code = do_pie_join(ppath, &plp->e.p, current, tangent,
2782
1.18M
                            final, final_tangent, !reflected, &plp->width)) < 0)
2783
0
        return code;
2784
1.18M
    if (ccw &&
2785
1.18M
        ((code = gx_path_add_line(ppath, plp->e.p.x, plp->e.p.y)) < 0 ||
2786
750k
         (code = gx_path_add_line(ppath, plp->e.ce.x, plp->e.ce.y)) < 0))
2787
0
        return code;
2788
2789
1.18M
    return 0;
2790
1.18M
}
2791
2792
/* Add a pie shaped join to a path. */
2793
static int
2794
add_pie_join_fast_cw(gx_path * rpath, pl_ptr plp, pl_ptr nplp, bool reflected)
2795
0
{
2796
    /* At this point, the current point is plp->e.ce */
2797
0
    if (plp->e.ce.x == nplp->o.co.x && plp->e.ce.y == nplp->o.co.y)
2798
0
        return 0;
2799
2800
0
    return do_pie_join(rpath, &plp->e.p, &plp->e.ce, &plp->e.cdelta,
2801
0
                       &nplp->o.co, &nplp->o.cdelta, reflected, &plp->width);
2802
0
}
2803
2804
static int
2805
add_pie_join_fast_ccw(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2806
0
{
2807
    /* At this point, the current point is plp->e.co */
2808
    /* Check for no join required */
2809
0
    if (plp->e.co.x == nplp->o.ce.x && plp->e.co.y == nplp->o.ce.y)
2810
0
        return 0;
2811
2812
0
    return do_pie_join(ppath, &plp->e.p, &plp->e.co, &plp->e.cdelta,
2813
0
                       &nplp->o.ce, &nplp->o.cdelta, !reflected, &plp->width);
2814
0
}
2815
2816
static int
2817
join_under_pie(gx_path * ppath, pl_ptr plp, pl_ptr nplp, bool reflected)
2818
2.39M
{
2819
2.39M
    int code;
2820
2.39M
    gs_fixed_point dirn1, dirn2, tangmeet;
2821
2.39M
    double l, r;
2822
2.39M
    bool ccw;
2823
2824
2.39M
    l = (double)(plp->width.x) /* x1 */ * (nplp->width.y) /* y2 */;
2825
2.39M
    r = (double)(nplp->width.x) /* x2 */ * (plp->width.y) /* y1 */;
2826
2827
2.39M
    if (l == r)
2828
1.08M
        return 0;
2829
2830
1.30M
    ccw = (l > r);
2831
2832
1.30M
    ccw ^= reflected;
2833
2834
1.30M
    if (ccw) {
2835
771k
        dirn1.x = - plp->width.x;
2836
771k
        dirn1.y = - plp->width.y;
2837
771k
        dirn2.x = -nplp->width.x;
2838
771k
        dirn2.y = -nplp->width.y;
2839
771k
        if (line_intersect(& plp->o.co, &dirn1,
2840
771k
                           &nplp->e.ce, &dirn2, &tangmeet) != 0)
2841
730k
            return 0;
2842
40.6k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2843
40.6k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2844
40.6k
            (code = gx_path_add_line(ppath,plp->o.co.x,plp->o.co.y)) < 0 ||
2845
40.6k
            (code = do_pie_join(ppath, &plp->e.p, &plp->o.co, &plp->o.cdelta,
2846
40.6k
                                &nplp->e.ce, &nplp->e.cdelta, !reflected,
2847
40.6k
                                &plp->width)))
2848
0
            return code;
2849
533k
    } else {
2850
533k
        if (line_intersect(& plp->o.ce, & plp->width,
2851
533k
                           &nplp->e.co, &nplp->width, &tangmeet) != 0)
2852
499k
            return 0;
2853
34.7k
        if ((code = gx_path_close_subpath(ppath)) < 0 ||
2854
34.7k
            (code = gx_path_add_point(ppath, tangmeet.x, tangmeet.y)) < 0  ||
2855
34.7k
            (code = gx_path_add_line(ppath,nplp->e.co.x,nplp->e.co.y)) < 0 ||
2856
34.7k
            (code = do_pie_join(ppath, &plp->e.p,&nplp->e.co,&nplp->e.cdelta,
2857
34.7k
                                &plp->o.ce, &plp->o.cdelta, !reflected,
2858
34.7k
                                &plp->width)))
2859
0
            return code;
2860
34.7k
    }
2861
75.3k
    return 0;
2862
1.30M
}
2863
2864
/* Compute the points for a non-round cap. */
2865
/* Return the number of points. */
2866
static int
2867
cap_points(gs_line_cap type, const_ep_ptr endp, gs_fixed_point *pts /*[3]*/)
2868
3.42M
{
2869
3.42M
#define PUT_POINT(i, px, py)\
2870
6.84M
  pts[i].x = (px), pts[i].y = (py)
2871
3.42M
    switch (type) {
2872
3.39M
        case gs_cap_butt:
2873
3.39M
            PUT_POINT(0, xo, yo);
2874
3.39M
            PUT_POINT(1, xe, ye);
2875
3.39M
            return 2;
2876
28.7k
        case gs_cap_square:
2877
28.7k
            PUT_POINT(0, xo + cdx, yo + cdy);
2878
28.7k
            PUT_POINT(1, xe + cdx, ye + cdy);
2879
28.7k
            return 2;
2880
0
        case gs_cap_triangle:   /* (not supported by PostScript) */
2881
0
            PUT_POINT(0, xo, yo);
2882
0
            PUT_POINT(1, px + cdx, py + cdy);
2883
0
            PUT_POINT(2, xe, ye);
2884
0
            return 3;
2885
0
        default:                /* can't happen */
2886
0
            return_error(gs_error_unregistered);
2887
3.42M
    }
2888
3.42M
#undef PUT_POINT
2889
3.42M
}