Coverage Report

Created: 2025-06-10 06:56

/src/ghostpdl/base/gdevddrw.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 2001-2023 Artifex Software, Inc.
2
   All Rights Reserved.
3
4
   This software is provided AS-IS with no warranty, either express or
5
   implied.
6
7
   This software is distributed under license and may not be copied,
8
   modified or distributed except as expressly authorized under the terms
9
   of the license contained in the file LICENSE in this distribution.
10
11
   Refer to licensing information at http://www.artifex.com or contact
12
   Artifex Software, Inc.,  39 Mesa Street, Suite 108A, San Francisco,
13
   CA 94129, USA, for further information.
14
*/
15
16
/* Default polygon and image drawing device procedures */
17
#include "math_.h"
18
#include "memory_.h"
19
#include "stdint_.h"
20
#include "gx.h"
21
#include "gpcheck.h"
22
#include "gserrors.h"
23
#include "gsrect.h"
24
#include "gxfixed.h"
25
#include "gxmatrix.h"
26
#include "gxdcolor.h"
27
#include "gxdevice.h"
28
#include "gxiparam.h"
29
#include "gxgstate.h"
30
#include "gxhldevc.h"
31
#include "gdevddrw.h"
32
/*
33
#include "gxdtfill.h" - Do not remove this comment.
34
                        "gxdtfill.h" is included below.
35
*/
36
37
#define SWAP(a, b, t)\
38
319k
  (t = a, a = b, b = t)
39
40
/* ---------------- Polygon and line drawing ---------------- */
41
42
/* Define the 'remainder' analogue of fixed_mult_quo. */
43
static fixed
44
fixed_mult_rem(fixed a, fixed b, fixed c)
45
441k
{
46
    /* All kinds of truncation may happen here, but it's OK. */
47
441k
    return a * b - fixed_mult_quo(a, b, c) * c;
48
441k
}
49
50
/*
51
 * The trapezoid fill algorithm uses trap_line structures to keep track of
52
 * the left and right edges during the Bresenham loop.
53
 */
54
typedef struct trap_line_s {
55
        /*
56
         * h is the y extent of the line (edge.end.y - edge.start.y).
57
         * We know h > 0.
58
         */
59
    fixed h;
60
        /*
61
         * The dx/dy ratio for the line is di + df/h.
62
         * (The quotient refers to the l.s.b. of di, not fixed_1.)
63
         * We know 0 <= df < h.
64
         */
65
    int di;
66
    fixed df;
67
        /*
68
         * The intersection of the line with a scan line is x + xf/h + 1.
69
         * (The 1 refers to the least significant bit of x, not fixed_1;
70
         * similarly, the quotient refers to the l.s.b. of x.)
71
         * We know -h <= xf < 0.
72
         *
73
         * This rational value preciselly represents the mathematical line
74
         * (with no machine arithmetic error).
75
         *
76
         * Note that the fractional part is negative to simplify
77
         * some conditions in the Bresenham algorithm.
78
         * Due to that some expressions are inobvious.
79
         * We believe that it's a kind of archaic
80
         * for the modern hyperthreading architecture,
81
         * we still keep it because the code passed a huge testing
82
         * on various platforms.
83
         */
84
    fixed x, xf;
85
        /*
86
         * We increment (x,xf) by (ldi,ldf) after each scan line.
87
         * (ldi,ldf) is just (di,df) converted to fixed point.
88
         * We know 0 <= ldf < h.
89
         */
90
    fixed ldi, ldf;
91
} trap_line;
92
93
/*
94
 * The linear color trapezoid fill algorithm uses trap_color structures to keep track of
95
 * the color change during the Bresenham loop.
96
 */
97
typedef struct trap_gradient_s {
98
        frac31 *c; /* integer part of the color in frac32 units. */
99
        int32_t *f; /* the fraction part numerator */
100
        int32_t *num; /* the gradient numerator */
101
        int32_t den; /* color gradient denominator */
102
} trap_gradient;
103
104
/*
105
 * Compute the di and df members of a trap_line structure.  The x extent
106
 * (edge.end.x - edge.start.x) is a parameter; the y extent (h member)
107
 * has already been set.  Also adjust x for the initial y.
108
 */
109
static inline void
110
compute_dx(trap_line *tl, fixed xd, fixed ys)
111
3.63M
{
112
3.63M
    fixed h = tl->h;
113
3.63M
    int di;
114
115
3.63M
    if (xd >= 0) {
116
1.00M
        if (xd < h)
117
665k
            tl->di = 0, tl->df = xd;
118
334k
        else {
119
334k
            tl->di = di = (int)(xd / h);
120
334k
            tl->df = xd - di * h;
121
334k
            tl->x += ys * di;
122
334k
        }
123
2.63M
    } else {
124
2.63M
        if ((tl->df = xd + h) >= 0 /* xd >= -h */)
125
1.28M
            tl->di = -1, tl->x -= ys;
126
1.34M
        else {
127
1.34M
            tl->di = di = (int)((xd + 1) / h - 1);
128
1.34M
            tl->df = xd - di * h;
129
1.34M
            tl->x += ys * di;
130
1.34M
        }
131
2.63M
    }
132
3.63M
}
133
134
11.0M
#define YMULT_LIMIT (max_fixed / fixed_1)
135
136
/* Compute ldi, ldf, and xf similarly. */
137
static inline void
138
compute_ldx(trap_line *tl, fixed ys)
139
4.52M
{
140
4.52M
    int di = tl->di;
141
4.52M
    fixed df = tl->df;
142
4.52M
    fixed h = tl->h;
143
144
4.52M
    if ( df < YMULT_LIMIT ) {
145
4.52M
         if ( df == 0 )    /* vertical edge, worth checking for */
146
863k
             tl->ldi = int2fixed(di), tl->ldf = 0, tl->xf = -h;
147
3.66M
         else {
148
3.66M
             tl->ldi = int2fixed(di) + int2fixed(df) / h;
149
3.66M
             tl->ldf = int2fixed(df) % h;
150
3.66M
             tl->xf =
151
3.66M
                 (ys < fixed_1 ? ys * df % h : fixed_mult_rem(ys, df, h)) - h;
152
3.66M
         }
153
4.52M
    }
154
272
    else {
155
272
        tl->ldi = int2fixed(di) + fixed_mult_quo(fixed_1, df, h);
156
272
        tl->ldf = fixed_mult_rem(fixed_1, df, h);
157
272
        tl->xf = fixed_mult_rem(ys, df, h) - h;
158
272
    }
159
4.52M
}
160
161
static inline int
162
init_gradient(trap_gradient *g, const gs_fill_attributes *fa,
163
                const gs_linear_color_edge *e, const gs_linear_color_edge *e1,
164
                const trap_line *l, fixed ybot, int num_components)
165
4.21M
{
166
4.21M
    int i;
167
4.21M
    int64_t c;
168
4.21M
    int32_t d;
169
170
4.21M
    if (e->c1 == NULL || e->c0 == NULL)
171
319k
        g->den = 0; /* A wedge - the color is axial along another edge. */
172
3.89M
    else {
173
3.89M
        bool ends_from_fa = (e1->c1 == NULL || e1->c0 == NULL);
174
175
3.89M
        if (ends_from_fa)
176
319k
            g->den = fa->yend - fa->ystart;
177
3.57M
        else {
178
3.57M
            g->den = e->end.y - e->start.y;
179
3.57M
            if (g->den != l->h)
180
0
                return_error(gs_error_unregistered); /* Must not happen. */
181
3.57M
        }
182
19.4M
        for (i = 0; i < num_components; i++) {
183
15.5M
            g->num[i] = e->c1[i] - e->c0[i];
184
15.5M
            c = (int64_t)g->num[i] * (uint32_t)(ybot -
185
15.5M
                    (ends_from_fa ? fa->ystart : e->start.y));
186
15.5M
            d = (int32_t)(c / g->den);
187
15.5M
            g->c[i] = e->c0[i] + d;
188
15.5M
            c -= (int64_t)d * g->den;
189
15.5M
            if (c < 0) {
190
6.81M
                g->c[i]--;
191
6.81M
                c += g->den;
192
6.81M
            }
193
15.5M
            g->f[i] = (int32_t)c;
194
15.5M
        }
195
3.89M
    }
196
4.21M
    return 0;
197
4.21M
}
198
199
static inline void
200
step_gradient(trap_gradient *g, int num_components)
201
28.6M
{
202
28.6M
    int i;
203
204
28.6M
    if (g->den == 0)
205
3.02M
        return;
206
126M
    for (i = 0; i < num_components; i++) {
207
100M
        int64_t fc = g->f[i] + (int64_t)g->num[i] * fixed_1;
208
100M
        int32_t fc32;
209
210
100M
        g->c[i] += (int32_t)(fc / g->den);
211
100M
        fc32 = (int32_t)(fc -  fc / g->den * g->den);
212
100M
        if (fc32 < 0) {
213
47.4M
            fc32 += g->den;
214
47.4M
            g->c[i]--;
215
47.4M
        }
216
100M
        g->f[i] = fc32;
217
100M
    }
218
25.6M
}
219
220
static inline bool
221
check_gradient_overflow(const gs_linear_color_edge *le, const gs_linear_color_edge *re)
222
3.63M
{
223
3.63M
    if (le->c1 == NULL || re->c1 == NULL) {
224
        /* A wedge doesn't use a gradient by X. */
225
323k
        return false;
226
3.31M
    } else {
227
        /* Check whether set_x_gradient, fill_linear_color_scanline can overflow.
228
229
           dev_proc(dev, fill_linear_color_scanline) can perform its computation in 32-bit fractions,
230
           so we assume it never overflows. Devices which implement it with no this
231
           assumption must implement the check in gx_default_fill_linear_color_trapezoid,
232
           gx_default_fill_linear_color_triangle with a function other than this one.
233
234
           Since set_x_gradient perform computations in int64_t, which provides 63 bits
235
           while multiplying a 32-bits color value to a coordinate,
236
           we must restrict the X span with 63 - 32 = 31 bits.
237
         */
238
3.31M
        int32_t xl = min(le->start.x, le->end.x);
239
3.31M
        int32_t xr = min(re->start.x, re->end.x);
240
        /* The pixel span boundaries : */
241
3.31M
        return arith_rshift_1(xr) - arith_rshift_1(xl) >= 0x3FFFFFFE;
242
3.31M
    }
243
3.63M
}
244
245
static inline int
246
set_x_gradient_nowedge(trap_gradient *xg, const trap_gradient *lg, const trap_gradient *rg,
247
             const trap_line *l, const trap_line *r, int il, int ir, int num_components)
248
2.87M
{
249
    /* Ignoring the ending coordinats fractions,
250
       so the gridient is slightly shifted to the left (in <1 'fixed' unit). */
251
2.87M
    int32_t xl = l->x - (l->xf == -l->h ? 1 : 0) - fixed_half; /* Revert the GX_FILL_TRAPEZOID shift. */
252
2.87M
    int32_t xr = r->x - (r->xf == -r->h ? 1 : 0) - fixed_half; /* Revert the GX_FILL_TRAPEZOID shift. */
253
    /* The pixel span boundaries : */
254
2.87M
    int32_t x0 = int2fixed(il) + fixed_half; /* Shift to the pixel center. */
255
2.87M
    int32_t x1 = int2fixed(ir) - fixed_half; /* The center of the last pixel to paint. */
256
2.87M
    int i;
257
258
#   ifdef DEBUG
259
        if (arith_rshift_1(xr) - arith_rshift_1(xl) >= 0x3FFFFFFE) /* Can overflow ? */
260
            return_error(gs_error_unregistered); /* Must not happen. */
261
#   endif
262
    /* We cannot compute the color of the 'ir' pixel
263
       because it can overflow 'c1' due to the pixel ir center
264
       may be greater that r->x .
265
       Therefore we base the proportion on the pixel index ir-1 (see comment to 'x1').
266
       Debugged with CET 12-14O.PS SpecialTestJ02Test12.
267
     */
268
2.87M
    xg->den = fixed2int(x1 - x0);
269
2.87M
    if (xg->den <= 0) {
270
        /* The span contains a single pixel, will construct a degenerate gradient. */
271
1.31M
        xg->den = 1; /* Safety (against zerodivide). */
272
1.31M
    }
273
13.9M
    for (i = 0; i < num_components; i++) {
274
        /* Ignoring the ending colors fractions,
275
           so the color gets a slightly smaller value
276
           (in <1 'frac31' unit), but it's not important due to
277
           the further conversion to [0, 1 << cinfo->comp_bits[j]],
278
           which drops the fraction anyway. */
279
11.0M
        int32_t cl = lg->c[i];
280
11.0M
        int32_t cr = rg->c[i];
281
11.0M
        int32_t c0 = (int32_t)(cl + ((int64_t)cr - cl) * (x0 - xl) / (xr - xl));
282
11.0M
        int32_t c1 = (int32_t)(cl + ((int64_t)cr - cl) * (x1 - xl) / (xr - xl));
283
284
11.0M
        xg->c[i] = c0;
285
11.0M
        xg->f[i] = 0; /* Insufficient bits to compute it better.
286
                         The color so the color gets a slightly smaller value
287
                         (in <1 'frac31' unit), but it's not important due to
288
                         the further conversion to [0, 1 << cinfo->comp_bits[j]],
289
                         which drops the fraction anyway.
290
                         So setting 0 appears pretty good and fast. */
291
11.0M
        xg->num[i] = c1 - c0;
292
11.0M
    }
293
2.87M
    return 0;
294
2.87M
}
295
296
static inline int
297
set_x_gradient(trap_gradient *xg, const trap_gradient *lg, const trap_gradient *rg,
298
             const trap_line *l, const trap_line *r, int il, int ir, int num_components)
299
5.87M
{
300
5.87M
    if (lg->den == 0 || rg->den == 0) {
301
        /* A wedge doesn't use a gradient by X. */
302
2.99M
        int i;
303
304
2.99M
        xg->den = 1;
305
13.9M
        for (i = 0; i < num_components; i++) {
306
10.9M
            xg->c[i] = (lg->den == 0 ? rg->c[i] : lg->c[i]);
307
10.9M
            xg->f[i] = 0; /* Compatible to set_x_gradient_nowedge. */
308
10.9M
            xg->num[i] = 0;
309
10.9M
        }
310
2.99M
        return 0;
311
2.99M
    } else
312
2.87M
        return set_x_gradient_nowedge(xg, lg, rg, l, r, il, ir, num_components);
313
5.87M
}
314
315
/*
316
 * Fill a trapezoid.
317
 * Since we need several statically defined variants of this algorithm,
318
 * we stored it in gxdtfill.h and include it configuring with
319
 * macros defined here.
320
 */
321
1.74M
#define LINEAR_COLOR 0 /* Common for shading variants. */
322
#define EDGE_TYPE gs_fixed_edge  /* Common for non-shading variants. */
323
#define FILL_ATTRS gs_logical_operation_t  /* Common for non-shading variants. */
324
325
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_as_fd
326
#define CONTIGUOUS_FILL 0
327
0
#define SWAP_AXES 1
328
0
#define FILL_DIRECT 1
329
#include "gxdtfill.h"
330
#undef GX_FILL_TRAPEZOID
331
#undef CONTIGUOUS_FILL
332
#undef SWAP_AXES
333
#undef FILL_DIRECT
334
335
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_as_nd
336
#define CONTIGUOUS_FILL 0
337
38.0k
#define SWAP_AXES 1
338
38.0k
#define FILL_DIRECT 0
339
#include "gxdtfill.h"
340
#undef GX_FILL_TRAPEZOID
341
#undef CONTIGUOUS_FILL
342
#undef SWAP_AXES
343
#undef FILL_DIRECT
344
345
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_ns_fd
346
#define CONTIGUOUS_FILL 0
347
665k
#define SWAP_AXES 0
348
665k
#define FILL_DIRECT 1
349
#include "gxdtfill.h"
350
#undef GX_FILL_TRAPEZOID
351
#undef CONTIGUOUS_FILL
352
#undef SWAP_AXES
353
#undef FILL_DIRECT
354
355
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_ns_nd
356
#define CONTIGUOUS_FILL 0
357
760k
#define SWAP_AXES 0
358
760k
#define FILL_DIRECT 0
359
#include "gxdtfill.h"
360
#undef GX_FILL_TRAPEZOID
361
#undef CONTIGUOUS_FILL
362
#undef SWAP_AXES
363
#undef FILL_DIRECT
364
365
#define GX_FILL_TRAPEZOID int gx_fill_trapezoid_cf_fd
366
#define CONTIGUOUS_FILL 1
367
0
#define SWAP_AXES 0
368
0
#define FILL_DIRECT 1
369
#include "gxdtfill.h"
370
#undef GX_FILL_TRAPEZOID
371
#undef CONTIGUOUS_FILL
372
#undef SWAP_AXES
373
#undef FILL_DIRECT
374
375
#define GX_FILL_TRAPEZOID int gx_fill_trapezoid_cf_nd
376
#define CONTIGUOUS_FILL 1
377
0
#define SWAP_AXES 0
378
0
#define FILL_DIRECT 0
379
#include "gxdtfill.h"
380
#undef GX_FILL_TRAPEZOID
381
#undef CONTIGUOUS_FILL
382
#undef SWAP_AXES
383
#undef FILL_DIRECT
384
385
#undef EDGE_TYPE
386
#undef LINEAR_COLOR
387
#undef FILL_ATTRS
388
389
16.4M
#define LINEAR_COLOR 1 /* Common for shading variants. */
390
#define EDGE_TYPE gs_linear_color_edge /* Common for shading variants. */
391
#define FILL_ATTRS const gs_fill_attributes *  /* Common for non-shading variants. */
392
393
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_ns_lc
394
#define CONTIGUOUS_FILL 0
395
#define SWAP_AXES 0
396
0
#define FILL_DIRECT 1
397
#include "gxdtfill.h"
398
#undef GX_FILL_TRAPEZOID
399
#undef CONTIGUOUS_FILL
400
#undef SWAP_AXES
401
#undef FILL_DIRECT
402
403
#define GX_FILL_TRAPEZOID static int gx_fill_trapezoid_as_lc
404
#define CONTIGUOUS_FILL 0
405
#define SWAP_AXES 1
406
0
#define FILL_DIRECT 1
407
#include "gxdtfill.h"
408
#undef GX_FILL_TRAPEZOID
409
#undef CONTIGUOUS_FILL
410
#undef SWAP_AXES
411
#undef FILL_DIRECT
412
413
#undef EDGE_TYPE
414
#undef LINEAR_COLOR
415
#undef FILL_ATTRS
416
417
int
418
gx_default_fill_trapezoid(gx_device * dev, const gs_fixed_edge * left,
419
    const gs_fixed_edge * right, fixed ybot, fixed ytop, bool swap_axes,
420
    const gx_device_color * pdevc, gs_logical_operation_t lop)
421
1.66M
{
422
1.66M
    bool fill_direct = color_writes_pure(pdevc, lop);
423
424
1.66M
    if (swap_axes) {
425
133k
        if (dev->width != 0 && dev->non_strict_bounds == 0)
426
133k
        {
427
            /* Some devices init max->width to be int_max, which overflows when converted to fixed. */
428
133k
            int dw = dev->width > max_int_in_fixed ? max_int_in_fixed : dev->width;
429
133k
            if (ytop < 0)
430
3.23k
                return 0;
431
130k
            if (ybot < 0)
432
21
                ybot = 0;
433
130k
            dw = int2fixed(dw);
434
130k
            if (ybot > dw)
435
105k
                return 0;
436
24.3k
            if (ytop > dw)
437
48
                ytop = dw;
438
24.3k
        }
439
440
24.3k
        if (fill_direct)
441
0
            return gx_fill_trapezoid_as_fd(dev, left, right, ybot, ytop, 0, pdevc, lop);
442
24.3k
        else
443
24.3k
            return gx_fill_trapezoid_as_nd(dev, left, right, ybot, ytop, 0, pdevc, lop);
444
1.53M
    } else {
445
1.53M
        if (dev->height != 0 && dev->non_strict_bounds == 0)
446
1.47M
        {
447
            /* Some devices init max->height to be int_max, which overflows when converted to fixed. */
448
1.47M
            int dh = dev->height > max_int_in_fixed ? max_int_in_fixed : dev->height;
449
1.47M
            if (ytop < 0)
450
607k
                return 0;
451
866k
            if (ybot < 0)
452
1.25k
                ybot = 0;
453
866k
            dh = int2fixed(dh);
454
866k
            if (ybot > dh)
455
505k
                return 0;
456
360k
            if (ytop > dh)
457
1.42k
                ytop = dh;
458
360k
        }
459
460
417k
        if (fill_direct)
461
57.6k
            return gx_fill_trapezoid_ns_fd(dev, left, right, ybot, ytop, 0, pdevc, lop);
462
360k
        else
463
360k
            return gx_fill_trapezoid_ns_nd(dev, left, right, ybot, ytop, 0, pdevc, lop);
464
417k
    }
465
1.66M
}
466
467
static inline int
468
fill_linear_color_trapezoid_nocheck(gx_device *dev, const gs_fill_attributes *fa,
469
        const gs_linear_color_edge *le, const gs_linear_color_edge *re)
470
3.63M
{
471
3.63M
    fixed y02 = max(le->start.y, re->start.y), ymin = max(y02, fa->clip->p.y);
472
3.63M
    fixed y13 = min(le->end.y, re->end.y), ymax = min(y13, fa->clip->q.y);
473
3.63M
    int code;
474
475
3.63M
    code = (fa->swap_axes ? gx_fill_trapezoid_as_lc : gx_fill_trapezoid_ns_lc)(dev,
476
3.63M
            le, re, ymin, ymax, 0, NULL, fa);
477
3.63M
    if (code < 0)
478
0
        return code;
479
3.63M
    return !code;
480
3.63M
}
481
482
/*  Fill a trapezoid with a linear color.
483
    [p0 : p1] - left edge, from bottom to top.
484
    [p2 : p3] - right edge, from bottom to top.
485
    The filled area is within Y-spans of both edges.
486
487
    This implemetation actually handles a bilinear color,
488
    in which the generatrix keeps a parallelizm to the X axis.
489
    In general a bilinear function doesn't keep the generatrix parallelizm,
490
    so the caller must decompose/approximate such functions.
491
492
    Return values :
493
    1 - success;
494
    0 - Too big. The area isn't filled. The client must decompose the area.
495
    <0 - error.
496
 */
497
int
498
gx_default_fill_linear_color_trapezoid(gx_device *dev, const gs_fill_attributes *fa,
499
        const gs_fixed_point *p0, const gs_fixed_point *p1,
500
        const gs_fixed_point *p2, const gs_fixed_point *p3,
501
        const frac31 *c0, const frac31 *c1,
502
        const frac31 *c2, const frac31 *c3)
503
463k
{
504
463k
    gs_linear_color_edge le, re;
505
506
463k
    le.start = *p0;
507
463k
    le.end = *p1;
508
463k
    le.c0 = c0;
509
463k
    le.c1 = c1;
510
463k
    le.clip_x = fa->clip->p.x;
511
463k
    re.start = *p2;
512
463k
    re.end = *p3;
513
463k
    re.c0 = c2;
514
463k
    re.c1 = c3;
515
463k
    re.clip_x = fa->clip->q.x;
516
463k
    if (check_gradient_overflow(&le, &re))
517
0
        return 0;
518
463k
    return fill_linear_color_trapezoid_nocheck(dev, fa, &le, &re);
519
463k
}
520
521
static inline int
522
fill_linear_color_triangle(gx_device *dev, const gs_fill_attributes *fa,
523
        const gs_fixed_point *p0, const gs_fixed_point *p1,
524
        const gs_fixed_point *p2,
525
        const frac31 *c0, const frac31 *c1, const frac31 *c2)
526
1.72M
{   /* p0 must be the lowest vertex. */
527
1.72M
    int code;
528
1.72M
    gs_linear_color_edge e0, e1, e2;
529
530
1.72M
    if (p0->y == p1->y)
531
60.6k
        return gx_default_fill_linear_color_trapezoid(dev, fa, p0, p2, p1, p2, c0, c2, c1, c2);
532
1.66M
    if (p1->y == p2->y)
533
78.5k
        return gx_default_fill_linear_color_trapezoid(dev, fa, p0, p2, p0, p1, c0, c2, c0, c1);
534
1.58M
    e0.start = *p0;
535
1.58M
    e0.end = *p2;
536
1.58M
    e0.c0 = c0;
537
1.58M
    e0.c1 = c2;
538
1.58M
    e0.clip_x = fa->clip->p.x;
539
1.58M
    e1.start = *p0;
540
1.58M
    e1.end = *p1;
541
1.58M
    e1.c0 = c0;
542
1.58M
    e1.c1 = c1;
543
1.58M
    e1.clip_x = fa->clip->q.x;
544
1.58M
    if (p0->y < p1->y && p1->y < p2->y) {
545
767k
        e2.start = *p1;
546
767k
        e2.end = *p2;
547
767k
        e2.c0 = c1;
548
767k
        e2.c1 = c2;
549
767k
        e2.clip_x = fa->clip->q.x;
550
767k
        if (check_gradient_overflow(&e0, &e1))
551
0
            return 0;
552
767k
        if (check_gradient_overflow(&e0, &e2))
553
0
            return 0;
554
767k
        code = fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e1);
555
767k
        if (code <= 0) /* Sic! */
556
0
            return code;
557
767k
        return fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e2);
558
818k
    } else { /* p0->y < p2->y && p2->y < p1->y */
559
818k
        e2.start = *p2;
560
818k
        e2.end = *p1;
561
818k
        e2.c0 = c2;
562
818k
        e2.c1 = c1;
563
818k
        e2.clip_x = fa->clip->q.x;
564
818k
        if (check_gradient_overflow(&e0, &e1))
565
0
            return 0;
566
818k
        if (check_gradient_overflow(&e2, &e1))
567
0
            return 0;
568
818k
        code = fill_linear_color_trapezoid_nocheck(dev, fa, &e0, &e1);
569
818k
        if (code <= 0) /* Sic! */
570
0
            return code;
571
818k
        return fill_linear_color_trapezoid_nocheck(dev, fa, &e2, &e1);
572
818k
    }
573
1.58M
}
574
575
/*  Fill a triangle with a linear color. */
576
int
577
gx_default_fill_linear_color_triangle(gx_device *dev, const gs_fill_attributes *fa,
578
        const gs_fixed_point *p0, const gs_fixed_point *p1,
579
        const gs_fixed_point *p2,
580
        const frac31 *c0, const frac31 *c1, const frac31 *c2)
581
1.72M
{
582
1.72M
    fixed dx1 = p1->x - p0->x, dy1 = p1->y - p0->y;
583
1.72M
    fixed dx2 = p2->x - p0->x, dy2 = p2->y - p0->y;
584
585
1.72M
    if ((int64_t)dx1 * dy2 < (int64_t)dx2 * dy1) {
586
962k
        const gs_fixed_point *p = p1;
587
962k
        const frac31 *c = c1;
588
589
962k
        p1 = p2;
590
962k
        p2 = p;
591
962k
        c1 = c2;
592
962k
        c2 = c;
593
962k
    }
594
1.72M
    if (p0->y <= p1->y && p0->y <= p2->y)
595
807k
        return fill_linear_color_triangle(dev, fa, p0, p1, p2, c0, c1, c2);
596
917k
    if (p1->y <= p0->y && p1->y <= p2->y)
597
481k
        return fill_linear_color_triangle(dev, fa, p1, p2, p0, c1, c2, c0);
598
436k
    else
599
436k
        return fill_linear_color_triangle(dev, fa, p2, p0, p1, c2, c0, c1);
600
917k
}
601
602
/* Fill a parallelogram whose points are p, p+a, p+b, and p+a+b. */
603
/* We should swap axes to get best accuracy, but we don't. */
604
/* We must be very careful to follow the center-of-pixel rule in all cases. */
605
int
606
gx_default_fill_parallelogram(gx_device * dev,
607
                 fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by,
608
                  const gx_device_color * pdevc, gs_logical_operation_t lop)
609
802k
{
610
802k
    fixed t;
611
802k
    fixed qx, qy, ym;
612
802k
    dev_proc_fill_trapezoid((*fill_trapezoid));
613
802k
    gs_fixed_edge left, right;
614
802k
    int code;
615
616
    /* Make a special fast check for rectangles. */
617
802k
    if (PARALLELOGRAM_IS_RECT(ax, ay, bx, by)) {
618
1.79k
        gs_int_rect r;
619
620
1.79k
        INT_RECT_FROM_PARALLELOGRAM(&r, px, py, ax, ay, bx, by);
621
1.79k
        return gx_fill_rectangle_device_rop(r.p.x, r.p.y, r.q.x - r.p.x,
622
1.79k
                                            r.q.y - r.p.y, pdevc, dev, lop);
623
1.79k
    }
624
    /*
625
     * Not a rectangle.  Ensure that the 'a' line is to the left of
626
     * the 'b' line.  Testing ax <= bx is neither sufficient nor
627
     * necessary: in general, we need to compare the slopes.
628
     */
629
    /* Ensure ay >= 0, by >= 0. */
630
800k
    if (ay < 0)
631
775k
        px += ax, py += ay, ax = -ax, ay = -ay;
632
800k
    if (by < 0)
633
12.9k
        px += bx, py += by, bx = -bx, by = -by;
634
800k
    qx = px + ax + bx;
635
800k
    if ((ax ^ bx) < 0) { /* In this case, the test ax <= bx is sufficient. */
636
211k
        if (ax > bx)
637
78
            SWAP(ax, bx, t), SWAP(ay, by, t);
638
589k
    } else {     /*
639
                                 * Compare the slopes.  We know that ay >= 0, by >= 0,
640
                                 * and ax and bx have the same sign; the lines are in the
641
                                 * correct order iff
642
                                 *          ay/ax >= by/bx, or
643
                                 *          ay*bx >= by*ax
644
                                 * Eventually we can probably find a better way to test this,
645
                                 * without using floating point.
646
                                 */
647
589k
        if ((double)ay * bx < (double)by * ax)
648
12.8k
            SWAP(ax, bx, t), SWAP(ay, by, t);
649
589k
    }
650
800k
    fill_trapezoid = dev_proc(dev, fill_trapezoid);
651
800k
    qy = py + ay + by;
652
800k
    left.start.x = right.start.x = px;
653
800k
    left.start.y = right.start.y = py;
654
800k
    left.end.x = px + ax;
655
800k
    left.end.y = py + ay;
656
800k
    right.end.x = px + bx;
657
800k
    right.end.y = py + by;
658
800k
#define ROUNDED_SAME(p1, p2)\
659
2.40M
  (fixed_pixround(p1) == fixed_pixround(p2))
660
800k
    if (ay < by) {
661
576k
        if (!ROUNDED_SAME(py, left.end.y)) {
662
206k
            code = (*fill_trapezoid) (dev, &left, &right, py, left.end.y,
663
206k
                                      false, pdevc, lop);
664
206k
            if (code < 0)
665
0
                return code;
666
206k
        }
667
576k
        left.start = left.end;
668
576k
        left.end.x = qx, left.end.y = qy;
669
576k
        ym = right.end.y;
670
576k
        if (!ROUNDED_SAME(left.start.y, ym)) {
671
576k
            code = (*fill_trapezoid) (dev, &left, &right, left.start.y, ym,
672
576k
                                      false, pdevc, lop);
673
576k
            if (code < 0)
674
0
                return code;
675
576k
        }
676
576k
        right.start = right.end;
677
576k
        right.end.x = qx, right.end.y = qy;
678
576k
    } else {
679
224k
        if (!ROUNDED_SAME(py, right.end.y)) {
680
284
            code = (*fill_trapezoid) (dev, &left, &right, py, right.end.y,
681
284
                                      false, pdevc, lop);
682
284
            if (code < 0)
683
0
                return code;
684
284
        }
685
224k
        right.start = right.end;
686
224k
        right.end.x = qx, right.end.y = qy;
687
224k
        ym = left.end.y;
688
224k
        if (!ROUNDED_SAME(right.start.y, ym)) {
689
213k
            code = (*fill_trapezoid) (dev, &left, &right, right.start.y, ym,
690
213k
                                      false, pdevc, lop);
691
213k
            if (code < 0)
692
0
                return code;
693
213k
        }
694
224k
        left.start = left.end;
695
224k
        left.end.x = qx, left.end.y = qy;
696
224k
    }
697
800k
    if (!ROUNDED_SAME(ym, qy))
698
206k
        return (*fill_trapezoid) (dev, &left, &right, ym, qy,
699
206k
                                  false, pdevc, lop);
700
594k
    else
701
594k
        return 0;
702
800k
#undef ROUNDED_SAME
703
800k
}
704
705
/* Fill a triangle whose points are p, p+a, and p+b. */
706
/* We should swap axes to get best accuracy, but we don't. */
707
int
708
gx_default_fill_triangle(gx_device * dev,
709
                 fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by,
710
                  const gx_device_color * pdevc, gs_logical_operation_t lop)
711
0
{
712
0
    fixed t;
713
0
    fixed ym;
714
715
0
    dev_proc_fill_trapezoid((*fill_trapezoid)) =
716
0
        dev_proc(dev, fill_trapezoid);
717
0
    gs_fixed_edge left, right;
718
0
    int code;
719
720
    /* Ensure ay >= 0, by >= 0. */
721
0
    if (ay < 0)
722
0
        px += ax, py += ay, bx -= ax, by -= ay, ax = -ax, ay = -ay;
723
0
    if (by < 0)
724
0
        px += bx, py += by, ax -= bx, ay -= by, bx = -bx, by = -by;
725
    /* Ensure ay <= by. */
726
0
    if (ay > by)
727
0
        SWAP(ax, bx, t), SWAP(ay, by, t);
728
    /*
729
     * Make a special check for a flat bottom or top,
730
     * which we can handle with a single call on fill_trapezoid.
731
     */
732
0
    left.start.x = right.start.x = px;
733
0
    left.start.y = right.start.y = py;
734
0
    if (ay == 0) {
735
        /* Flat top */
736
0
        if (ax < 0)
737
0
            left.start.x = px + ax;
738
0
        else
739
0
            right.start.x = px + ax;
740
0
        left.end.x = right.end.x = px + bx;
741
0
        left.end.y = right.end.y = py + by;
742
0
        ym = py;
743
0
    } else if (ay == by) {
744
        /* Flat bottom */
745
0
        if (ax < bx)
746
0
            left.end.x = px + ax, right.end.x = px + bx;
747
0
        else
748
0
            left.end.x = px + bx, right.end.x = px + ax;
749
0
        left.end.y = right.end.y = py + by;
750
0
        ym = py;
751
0
    } else {
752
0
        ym = py + ay;
753
0
        if (fixed_mult_quo(bx, ay, by) < ax) {
754
            /* The 'b' line is to the left of the 'a' line. */
755
0
            left.end.x = px + bx, left.end.y = py + by;
756
0
            right.end.x = px + ax, right.end.y = py + ay;
757
0
            code = (*fill_trapezoid) (dev, &left, &right, py, ym,
758
0
                                      false, pdevc, lop);
759
0
            right.start = right.end;
760
0
            right.end = left.end;
761
0
        } else {
762
            /* The 'a' line is to the left of the 'b' line. */
763
0
            left.end.x = px + ax, left.end.y = py + ay;
764
0
            right.end.x = px + bx, right.end.y = py + by;
765
0
            code = (*fill_trapezoid) (dev, &left, &right, py, ym,
766
0
                                      false, pdevc, lop);
767
0
            left.start = left.end;
768
0
            left.end = right.end;
769
0
        }
770
0
        if (code < 0)
771
0
            return code;
772
0
    }
773
0
    return (*fill_trapezoid) (dev, &left, &right, ym, right.end.y,
774
0
                              false, pdevc, lop);
775
0
}
776
777
/* Draw a one-pixel-wide line. */
778
int
779
gx_default_draw_thin_line(gx_device * dev,
780
                          fixed fx0, fixed fy0, fixed fx1, fixed fy1,
781
                    const gx_device_color * pdevc, gs_logical_operation_t lop,
782
                          fixed adjustx, fixed adjusty)
783
314k
{
784
314k
    int ix, iy, itox, itoy;
785
314k
    int epsilon;
786
787
314k
    return_if_interrupt(dev->memory);
788
789
    /* This function was updated in revision 10391 to fix problems with
790
     * mispositioned thin lines. This introduced a regression (see bug
791
     * 691030). The code was then reworked to behave in what we believe is
792
     * the correct manner, but this causes unacceptable problems with PCL
793
     * output. While the current PCL work is underway, we have therefore
794
     * amended this code to take note of the fill adjust values; if non-
795
     * zero (i.e. postscript) we do "the correct thing". If zero, we do
796
     * what we used to.
797
     *
798
     * The one case where this doesn't work is in the case where our PCL
799
     * implementation thickens lines slightly to try and approximate HP
800
     * printer behaviour. Here we do use a non-zero fill_adjust and hence
801
     * have differences; tests show that these are acceptable though.
802
     *
803
     * It is hoped that this difference in behaviour will be short lived.
804
     */
805
806
314k
    epsilon = ((adjustx | adjusty) == 0 ? fixed_epsilon : 0);
807
808
314k
    {
809
314k
        fixed h = fy1 - fy0;
810
314k
        fixed w = fx1 - fx0;
811
314k
        fixed tf;
812
314k
        bool swap_axes;
813
314k
        gs_fixed_edge left, right;
814
815
314k
        if ((w < 0 ? -w : w) <= (h < 0 ? -h : h)) {
816
            /* A "mostly-vertical" line */
817
192k
            if (h < 0)
818
95.8k
                SWAP(fx0, fx1, tf), SWAP(fy0, fy1, tf),
819
95.8k
                    h = -h;
820
            /* So we are plotting a trapezoid with horizontal thin edges.
821
             * If we are drawing a non-axis aligned trap, then we check
822
             * for whether a triangular extension area on the end covers an
823
             * additional pixel centre; if so, we fill an extra pixel.
824
             * If we are drawing an axis aligned trap and fill adjust is 0,
825
             * then we shouldn't need to do this.
826
             * If we are drawing an axis aligned trap, and fill adjust is non
827
             * zero, then perform the check, but with a "butt cap" rather than
828
             * a "triangle cap" region.
829
             * See bug 687721 and bug 693212 for this history of this.
830
             */
831
192k
            if (w == 0 && adjusty) {
832
4.50k
                int deltay;
833
4.50k
                deltay = int2fixed(fixed2int_var(fy1)) + fixed_half -fy1;
834
835
4.50k
                if ((deltay > 0) && (deltay <= fixed_half))
836
2.66k
                {
837
2.66k
                    int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1),
838
2.66k
                                                         fixed2int_var(fy1),
839
2.66k
                                                         1,1,pdevc,dev,lop);
840
2.66k
                    if (c < 0) return c;
841
2.66k
                }
842
4.50k
                deltay = int2fixed(fixed2int_var(fy0)) + fixed_half -fy0;
843
844
4.50k
                if ((deltay < 0) && (deltay >= -fixed_half))
845
1.83k
                {
846
1.83k
                    int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0),
847
1.83k
                                                         fixed2int_var(fy0),
848
1.83k
                                                         1,1,pdevc,dev,lop);
849
1.83k
                    if (c < 0) return c;
850
1.83k
                }
851
188k
            } else if (w != 0) {
852
188k
                int deltax, deltay;
853
188k
                deltay = int2fixed(fixed2int_var(fy1)) + fixed_half -fy1;
854
188k
                deltax = int2fixed(fixed2int_var(fx1)) + fixed_half -fx1;
855
856
188k
                if (deltax < 0) deltax=-deltax;
857
188k
                if ((deltay > 0) && (deltay <= fixed_half) &&
858
188k
                    (deltay+deltax <= fixed_half))
859
47.1k
                {
860
47.1k
                    int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1),
861
47.1k
                                                         fixed2int_var(fy1),
862
47.1k
                                                         1,1,pdevc,dev,lop);
863
47.1k
                    if (c < 0) return c;
864
47.1k
                }
865
188k
                deltay = int2fixed(fixed2int_var(fy0)) + fixed_half -fy0;
866
188k
                deltax = int2fixed(fixed2int_var(fx0)) + fixed_half -fx0;
867
868
188k
                if (deltax < 0) deltax=-deltax;
869
188k
                if ((deltay < 0) && (deltay >= -fixed_half) &&
870
188k
                    (-deltay+deltax <= fixed_half))
871
47.2k
                {
872
47.2k
                    int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0),
873
47.2k
                                                         fixed2int_var(fy0),
874
47.2k
                                                         1,1,pdevc,dev,lop);
875
47.2k
                    if (c < 0) return c;
876
47.2k
                }
877
188k
            }
878
            /* Can we treat it as a vertical rectangle? */
879
192k
            ix   = fixed2int_var(fx0-epsilon);
880
192k
            itox = fixed2int_var(fx1-epsilon);
881
192k
            if (itox == ix) {
882
                /* Figure out the start/height, allowing for our "covers
883
                 * centre of pixel" rule. */
884
49.0k
                iy   = fixed2int_var(fy0+fixed_half-fixed_epsilon);
885
49.0k
                itoy = fixed2int_var(fy1+fixed_half-fixed_epsilon);
886
49.0k
                itoy = itoy - iy;
887
49.0k
                if (itoy <= 0) {
888
                    /* Zero height; drawing this as a trapezoid wouldn't
889
                     * fill any pixels, so just exit. */
890
950
                    return 0;
891
950
                }
892
48.0k
                return gx_fill_rectangle_device_rop(ix, iy, 1, itoy,
893
49.0k
                                                    pdevc, dev, lop);
894
49.0k
            }
895
143k
            left.start.x = fx0 - fixed_half + fixed_epsilon - epsilon;
896
143k
            right.start.x = left.start.x + fixed_1;
897
143k
            left.end.x = fx1 - fixed_half + fixed_epsilon - epsilon;
898
143k
            right.end.x = left.end.x + fixed_1;
899
143k
            left.start.y = right.start.y = fy0;
900
143k
            left.end.y = right.end.y = fy1;
901
143k
            swap_axes = false;
902
143k
        } else {
903
            /* A "mostly-horizontal" line */
904
121k
            if (w < 0)
905
50.8k
                SWAP(fx0, fx1, tf), SWAP(fy0, fy1, tf),
906
50.8k
                    w = -w;
907
            /* So we are plotting a trapezoid with vertical thin edges
908
             * Check for whether a triangular extension area on the end
909
             * covers an additional pixel centre. */
910
121k
            if (h == 0 && adjustx) {
911
579
                int deltax;
912
579
                deltax = int2fixed(fixed2int_var(fx1)) + fixed_half -fx1;
913
914
579
                if ((deltax > 0) && (deltax <= fixed_half))
915
131
                {
916
131
                    int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1),
917
131
                                                         fixed2int_var(fy1),
918
131
                                                         1,1,pdevc,dev,lop);
919
131
                    if (c < 0) return c;
920
131
                }
921
579
                deltax = int2fixed(fixed2int_var(fx0)) + fixed_half -fx0;
922
923
579
                if ((deltax < 0) && (deltax >= -fixed_half))
924
146
                {
925
146
                    int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0),
926
146
                                                         fixed2int_var(fy0),
927
146
                                                         1,1,pdevc,dev,lop);
928
146
                    if (c < 0) return c;
929
146
                }
930
121k
            } else if (h != 0) {
931
121k
                int deltax, deltay;
932
121k
                deltax = int2fixed(fixed2int_var(fx1)) + fixed_half -fx1;
933
121k
                deltay = int2fixed(fixed2int_var(fy1)) + fixed_half -fy1;
934
935
121k
                if (deltay < 0) deltay=-deltay;
936
121k
                if ((deltax > 0) && (deltax <= fixed_half) &&
937
121k
                    (deltax+deltay <= fixed_half))
938
30.2k
                {
939
30.2k
                    int c = gx_fill_rectangle_device_rop(fixed2int_var(fx1),
940
30.2k
                                                         fixed2int_var(fy1),
941
30.2k
                                                         1,1,pdevc,dev,lop);
942
30.2k
                    if (c < 0) return c;
943
30.2k
                }
944
121k
                deltax = int2fixed(fixed2int_var(fx0)) + fixed_half -fx0;
945
121k
                deltay = int2fixed(fixed2int_var(fy0)) + fixed_half -fy0;
946
947
121k
                if (deltay < 0) deltay=-deltay;
948
121k
                if ((deltax < 0) && (deltax >= -fixed_half) &&
949
121k
                    (-deltax+deltay <= fixed_half))
950
30.3k
                {
951
30.3k
                    int c = gx_fill_rectangle_device_rop(fixed2int_var(fx0),
952
30.3k
                                                         fixed2int_var(fy0),
953
30.3k
                                                         1,1,pdevc,dev,lop);
954
30.3k
                    if (c < 0) return c;
955
30.3k
                }
956
121k
            }
957
            /* Can we treat this as a horizontal rectangle? */
958
121k
            iy   = fixed2int_var(fy0 - epsilon);
959
121k
            itoy = fixed2int_var(fy1 - epsilon);
960
121k
            if (itoy == iy) {
961
                /* Figure out the start/width, allowing for our "covers
962
                * centre of pixel" rule. */
963
11.1k
                ix   = fixed2int_var(fx0+fixed_half-fixed_epsilon);
964
11.1k
                itox = fixed2int_var(fx1+fixed_half-fixed_epsilon);
965
11.1k
                itox = itox - ix;
966
11.1k
                if (itox <= 0) {
967
                    /* Zero width; drawing this as a trapezoid wouldn't
968
                     * fill any pixels, so just exit. */
969
21
                    return 0;
970
21
                }
971
11.1k
                return gx_fill_rectangle_device_rop(ix, iy, itox, 1,
972
11.1k
                                                    pdevc, dev, lop);
973
11.1k
            }
974
110k
            left.start.x = fy0 - fixed_half + fixed_epsilon - epsilon;
975
110k
            right.start.x = left.start.x + fixed_1;
976
110k
            left.end.x = fy1 - fixed_half + fixed_epsilon - epsilon;
977
110k
            right.end.x = left.end.x + fixed_1;
978
110k
            left.start.y = right.start.y = fx0;
979
110k
            left.end.y = right.end.y = fx1;
980
110k
            swap_axes = true;
981
110k
        }
982
254k
        return (*dev_proc(dev, fill_trapezoid)) (dev, &left, &right,
983
254k
                                                 left.start.y, left.end.y,
984
254k
                                                 swap_axes, pdevc, lop);
985
314k
    }
986
314k
}
987
988
/* ---------------- Image drawing ---------------- */
989
990
/* GC structures for image enumerator */
991
public_st_gx_image_enum_common();
992
993
static
994
0
ENUM_PTRS_WITH(image_enum_common_enum_ptrs, gx_image_enum_common_t *eptr)
995
0
    return 0;
996
0
case 0: return ENUM_OBJ(gx_device_enum_ptr(eptr->dev));
997
0
ENUM_PTR(1,gx_image_enum_common_t,pgs);
998
0
ENUM_PTRS_END
999
1000
0
static RELOC_PTRS_WITH(image_enum_common_reloc_ptrs, gx_image_enum_common_t *eptr)
1001
0
{
1002
0
    eptr->dev = gx_device_reloc_ptr(eptr->dev, gcst);
1003
0
    RELOC_PTR(gx_image_enum_common_t,pgs);
1004
0
}
1005
0
RELOC_PTRS_END
1006
1007
int
1008
gx_default_begin_typed_image(gx_device * dev,
1009
                        const gs_gstate * pgs, const gs_matrix * pmat,
1010
                   const gs_image_common_t * pic, const gs_int_rect * prect,
1011
              const gx_drawing_color * pdcolor, const gx_clip_path * pcpath,
1012
                      gs_memory_t * memory, gx_image_enum_common_t ** pinfo)
1013
12.6k
{
1014
12.6k
    return (*pic->type->begin_typed_image)
1015
12.6k
        (dev, pgs, pmat, pic, prect, pdcolor, pcpath, memory, pinfo);
1016
12.6k
}
1017
1018
int
1019
gx_default_fillpage(gx_device *dev, gs_gstate * pgs, gx_device_color *pdevc)
1020
3.46k
{
1021
3.46k
    bool hl_color_available = gx_hld_is_hl_color_available(pgs, pdevc);
1022
3.46k
    int code = 0;
1023
1024
    /* Fill the page directly, ignoring clipping. */
1025
    /* Use the default RasterOp. */
1026
3.46k
    if (hl_color_available) {
1027
0
        gs_fixed_rect rect;
1028
1029
0
        rect.p.x = rect.p.y = 0;
1030
0
        rect.q.x = int2fixed(dev->width);
1031
0
        rect.q.y = int2fixed(dev->height);
1032
0
        code = dev_proc(dev, fill_rectangle_hl_color)(dev,
1033
0
                &rect, (const gs_gstate *)pgs, pdevc, NULL);
1034
0
    }
1035
3.46k
    if (!hl_color_available || code == gs_error_rangecheck)
1036
3.46k
        code = gx_fill_rectangle_device_rop(0, 0, dev->width, dev->height, pdevc, dev, lop_default);
1037
3.46k
    return code;
1038
3.46k
}